file_path
stringlengths 21
207
| content
stringlengths 5
1.02M
| size
int64 5
1.02M
| lang
stringclasses 9
values | avg_line_length
float64 1.33
100
| max_line_length
int64 4
993
| alphanum_fraction
float64 0.27
0.93
|
---|---|---|---|---|---|---|
StanfordVL/OmniGibson/omnigibson/object_states/burnt.py | from omnigibson.macros import create_module_macros
from omnigibson.object_states.max_temperature import MaxTemperature
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.DEFAULT_BURN_TEMPERATURE = 200
class Burnt(AbsoluteObjectState, BooleanStateMixin):
def __init__(self, obj, burn_temperature=m.DEFAULT_BURN_TEMPERATURE):
super(Burnt, self).__init__(obj)
self.burn_temperature = burn_temperature
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(MaxTemperature)
return deps
def _set_value(self, new_value):
current_max_temp = self.obj.states[MaxTemperature].get_value()
if new_value:
# Set at exactly the burnt temperature (or higher if we have it in history)
desired_max_temp = max(current_max_temp, self.burn_temperature)
else:
# Set at exactly one below burnt temperature (or lower if in history).
desired_max_temp = min(current_max_temp, self.burn_temperature - 1.0)
return self.obj.states[MaxTemperature].set_value(desired_max_temp)
def _get_value(self):
return self.obj.states[MaxTemperature].get_value() >= self.burn_temperature
@staticmethod
def get_texture_change_params():
# Decrease all channels by 0.3 (to make it black)
albedo_add = -0.3
# No final scaling
diffuse_tint = (1.0, 1.0, 1.0)
return albedo_add, diffuse_tint
# Nothing needs to be done to save/load Burnt since it will happen due to
# MaxTemperature caching.
| 1,709 | Python | 35.382978 | 93 | 0.67993 |
StanfordVL/OmniGibson/omnigibson/object_states/cooked.py | from omnigibson.macros import create_module_macros
from omnigibson.object_states.max_temperature import MaxTemperature
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.DEFAULT_COOK_TEMPERATURE = 70
class Cooked(AbsoluteObjectState, BooleanStateMixin):
def __init__(self, obj, cook_temperature=m.DEFAULT_COOK_TEMPERATURE):
super(Cooked, self).__init__(obj)
self.cook_temperature = cook_temperature
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(MaxTemperature)
return deps
def _set_value(self, new_value):
current_max_temp = self.obj.states[MaxTemperature].get_value()
if new_value:
# Set at exactly the cook temperature (or higher if we have it in history)
desired_max_temp = max(current_max_temp, self.cook_temperature)
else:
# Set at exactly one below cook temperature (or lower if in history).
desired_max_temp = min(current_max_temp, self.cook_temperature - 1.0)
return self.obj.states[MaxTemperature].set_value(desired_max_temp)
def _get_value(self):
return self.obj.states[MaxTemperature].get_value() >= self.cook_temperature
@staticmethod
def get_texture_change_params():
# Increase all channels by 0.1
albedo_add = 0.1
# Then scale up "brown" color and scale down others
diffuse_tint = (1.5, 0.75, 0.25)
return albedo_add, diffuse_tint
# Nothing needs to be done to save/load Burnt since it will happen due to
# MaxTemperature caching.
| 1,723 | Python | 35.68085 | 93 | 0.68195 |
StanfordVL/OmniGibson/omnigibson/object_states/on_fire.py | from omnigibson.macros import create_module_macros
from omnigibson.object_states.temperature import Temperature
from omnigibson.object_states.heat_source_or_sink import HeatSourceOrSink
# Create settings for this module
m = create_module_macros(module_path=__file__)
# TODO: Delete default values for this and make them required.
m.DEFAULT_IGNITION_TEMPERATURE = 250
m.DEFAULT_FIRE_TEMPERATURE = 1000
m.DEFAULT_HEATING_RATE = 0.04
m.DEFAULT_DISTANCE_THRESHOLD = 0.2
class OnFire(HeatSourceOrSink):
"""
This state indicates the heat source is currently on fire.
Once the temperature is above ignition_temperature, OnFire will become True and stay True.
Its temperature will further raise to fire_temperature, and start heating other objects around it.
It may include a heatsource_link annotation (e.g. candle wick), in which case the fire visualization will be placed
under that meta link. Otherwise (e.g. charcoal), the fire visualization will be placed under the root link.
"""
def __init__(
self,
obj,
ignition_temperature=m.DEFAULT_IGNITION_TEMPERATURE,
fire_temperature=m.DEFAULT_FIRE_TEMPERATURE,
heating_rate=m.DEFAULT_HEATING_RATE,
distance_threshold=m.DEFAULT_DISTANCE_THRESHOLD,
):
"""
Args:
obj (StatefulObject): The object with the heat source ability.
ignition_temperature (float): The temperature threshold above which on fire will become true.
fire_temperature (float): The temperature of the fire (heat source) once on fire is true.
heating_rate (float): Fraction in [0, 1] of the temperature difference with the
heat source temperature should be received every step, per second.
distance_threshold (float): The distance threshold which an object needs
to be closer than in order to receive heat from this heat source.
"""
assert fire_temperature > ignition_temperature, "fire temperature should be higher than ignition temperature."
super().__init__(
obj,
temperature=fire_temperature,
heating_rate=heating_rate,
distance_threshold=distance_threshold,
requires_toggled_on=False,
requires_closed=False,
requires_inside=False,
)
self.ignition_temperature = ignition_temperature
@classmethod
def requires_metalink(cls, **kwargs):
# Does not require metalink to be specified
return False
@property
def _default_link(self):
# Fallback to root link
return self.obj.root_link
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(Temperature)
return deps
def _update(self):
# Call super first
super()._update()
# If it's on fire, maintain the fire temperature
if self.get_value():
self.obj.states[Temperature].set_value(self.temperature)
def _get_value(self):
return self.obj.states[Temperature].get_value() >= self.ignition_temperature
def _set_value(self, new_value):
if new_value:
return self.obj.states[Temperature].set_value(self.temperature)
else:
# We'll set the temperature just one degree below ignition.
return self.obj.states[Temperature].set_value(self.ignition_temperature - 1)
# Nothing needs to be done to save/load OnFire
| 3,508 | Python | 37.141304 | 119 | 0.670468 |
StanfordVL/OmniGibson/omnigibson/object_states/heated.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin
from omnigibson.object_states.temperature import Temperature
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.DEFAULT_HEAT_TEMPERATURE = 40
# When an object is set as heated, we will sample it between
# the heat temperature and these offsets.
m.HEATED_SAMPLING_RANGE_MIN = 10.0
m.HEATED_SAMPLING_RANGE_MAX = 20.0
class Heated(AbsoluteObjectState, BooleanStateMixin):
def __init__(self, obj, heat_temperature=m.DEFAULT_HEAT_TEMPERATURE):
super(Heated, self).__init__(obj)
self.heat_temperature = heat_temperature
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(Temperature)
return deps
def _set_value(self, new_value):
if new_value:
temperature = np.random.uniform(
self.heat_temperature + m.HEATED_SAMPLING_RANGE_MIN,
self.heat_temperature + m.HEATED_SAMPLING_RANGE_MAX,
)
return self.obj.states[Temperature].set_value(temperature)
else:
# We'll set the temperature just one degree below heating.
return self.obj.states[Temperature].set_value(self.heat_temperature - 1.0)
def _get_value(self):
return self.obj.states[Temperature].get_value() >= self.heat_temperature
# Nothing needs to be done to save/load Heated since it will happen due to temperature caching.
| 1,587 | Python | 34.288888 | 99 | 0.693132 |
StanfordVL/OmniGibson/omnigibson/object_states/particle_source_or_sink.py | import numpy as np
import omnigibson as og
from omnigibson.macros import create_module_macros
from omnigibson.object_states.particle_modifier import ParticleApplier, ParticleRemover
from omnigibson.systems.system_base import is_physical_particle_system
from omnigibson.utils.constants import ParticleModifyMethod
from omnigibson.utils.python_utils import classproperty
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Metalink naming prefixes
m.SOURCE_LINK_PREFIX = "particlesource"
m.SINK_LINK_PREFIX = "particlesink"
# Default radius and height
m.DEFAULT_SOURCE_RADIUS = 0.0125
m.DEFAULT_SOURCE_HEIGHT = 0.05
m.DEFAULT_SINK_RADIUS = 0.05
m.DEFAULT_SINK_HEIGHT = 0.05
# Maximum number of particles that can be sourced / sunk per step
m.MAX_SOURCE_PARTICLES_PER_STEP = 1000
m.MAX_SINK_PARTICLES_PER_STEP = 1000
# How many steps between sinking particles
m.N_STEPS_PER_SINK = 5
# Upper limit to number of particles that can be sourced / sunk globally by a single object
m.SOURCE_PARTICLES_LIMIT = 1e6
m.SINK_PARTICLES_LIMIT = 1e6
class ParticleSource(ParticleApplier):
"""
ParticleApplier where physical particles are spawned continuously in a cylindrical fashion from the
metalink pose.
Args:
obj (StatefulObject): Object to which this state will be applied
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
source_radius (None or float): Radius of the cylinder representing particles' spawning volume, if specified.
If both @source_radius and @source_height are None, values will be inferred directly from the underlying
object asset, otherwise, it will be set to a default value
source_height (None or float): Height of the cylinder representing particles' spawning volume, if specified.
If both @source_radius and @source_height are None, values will be inferred directly from the underlying
object asset, otherwise, it will be set to a default value
initial_speed (float): The initial speed for generated particles. Note that the
direction of the velocity is inferred from the particle sampling process
"""
def __init__(
self,
obj,
conditions,
source_radius=None,
source_height=None,
initial_speed=0.0,
):
# Initialize variables that will be filled in at runtime
self._n_steps_per_modification = None
# Define projection mesh params based on input kwargs
if source_radius is not None or source_height is not None:
source_radius = m.DEFAULT_SOURCE_RADIUS if source_radius is None else source_radius
source_height = m.DEFAULT_SOURCE_HEIGHT if source_height is None else source_height
projection_mesh_params = {
"type": "Cylinder",
"extents": [source_radius * 2, source_radius * 2, source_height],
}
else:
projection_mesh_params = None
# Convert inputs into arguments to pass to particle applier class
super().__init__(
obj=obj,
conditions=conditions,
method=ParticleModifyMethod.PROJECTION,
projection_mesh_params=projection_mesh_params,
sample_with_raycast=False,
initial_speed=initial_speed,
)
def _initialize(self):
# Run super first
super()._initialize()
# Calculate how many steps we need in between particle cluster spawnings
# This is equivalent to the time it takes for a generated particle to travel @source_height distance
# Note that object state steps are discretized by og.sim.render_step
# Note: t derived from quadratic formula: height = 0.5 g t^2 + v0 t
# Note: height must be considered in the world frame, so we convert the distance from local into world frame
# Extents are in local frame, so we need to convert to world frame using link scale
distance = self.link.scale[2] * self._projection_mesh_params["extents"][2]
t = (-self._initial_speed + np.sqrt(self._initial_speed ** 2 + 2 * og.sim.gravity * distance)) / og.sim.gravity
self._n_steps_per_modification = np.ceil(1 + t / og.sim.get_rendering_dt()).astype(int)
def _get_max_particles_limit_per_step(self, system):
# Check the system
assert is_physical_particle_system(system_name=system.name), \
"ParticleSource only supports PhysicalParticleSystem"
return m.MAX_SOURCE_PARTICLES_PER_STEP
@classmethod
def requires_metalink(cls, **kwargs):
# Always requires metalink since projection is used
return True
@property
def visualize(self):
# Don't visualize this source
return False
@classproperty
def metalink_prefix(cls):
return m.SOURCE_LINK_PREFIX
@property
def n_steps_per_modification(self):
return self._n_steps_per_modification
@property
def physical_particle_modification_limit(self):
return m.SOURCE_PARTICLES_LIMIT
class ParticleSink(ParticleRemover):
"""
ParticleRemover where physical particles are removed continuously within a cylindrical volume located
at the metalink pose.
Args:
obj (StatefulObject): Object to which this state will be applied
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
sink_radius (None or float): Radius of the cylinder representing particles' sinking volume, if specified.
If both @sink_radius and @sink_height are None, values will be inferred directly from the underlying
object asset, otherwise, it will be set to a default value
sink_height (None or float): Height of the cylinder representing particles' sinking volume, if specified.
If both @sink_radius and @sink_height are None, values will be inferred directly from the underlying
object asset, otherwise, it will be set to a default value
default_fluid_conditions (None or list): Condition(s) needed to remove any fluid particles not explicitly
specified in @conditions. If None, then it is assumed that no other physical particles can be removed. If
not None, should be in same format as an entry in @conditions, i.e.: list of (ParticleModifyCondition, val)
2-tuples
default_non_fluid_conditions (None or list): Condition(s) needed to remove any physical (excluding fluid)
particles not explicitly specified in @conditions. If None, then it is assumed that no other physical
particles can be removed. If not None, should be in same format as an entry in @conditions, i.e.: list of
(ParticleModifyCondition, val) 2-tuples
default_visual_conditions (None or list): Condition(s) needed to remove any visual particles not explicitly
specified in @conditions. If None, then it is assumed that no other visual particles can be removed. If
not None, should be in same format as an entry in @conditions, i.e.: list of (ParticleModifyCondition, val)
2-tuples
"""
def __init__(
self,
obj,
conditions,
sink_radius=None,
sink_height=None,
default_fluid_conditions=None,
default_non_fluid_conditions=None,
default_visual_conditions=None,
):
# Initialize variables that will be filled in at runtime
self._n_steps_per_modification = None
# Define projection mesh params based on input kwargs
if sink_radius is not None or sink_height is not None:
sink_radius = m.DEFAULT_SINK_RADIUS if sink_radius is None else sink_radius
sink_height = m.DEFAULT_SINK_HEIGHT if sink_height is None else sink_height
projection_mesh_params = {
"type": "Cylinder",
"extents": [sink_radius * 2, sink_radius * 2, sink_height],
}
else:
projection_mesh_params = None
# Convert inputs into arguments to pass to particle remover class
super().__init__(
obj=obj,
conditions=conditions,
method=ParticleModifyMethod.PROJECTION,
projection_mesh_params=projection_mesh_params,
default_fluid_conditions=default_fluid_conditions,
default_non_fluid_conditions=default_non_fluid_conditions,
default_visual_conditions=default_visual_conditions,
)
def _get_max_particles_limit_per_step(self, system):
# Check the system
assert is_physical_particle_system(system_name=system.name), \
"ParticleSink only supports PhysicalParticleSystem"
return m.MAX_PHYSICAL_PARTICLES_SOURCED_PER_STEP
@property
def requires_overlap(self):
# Not required, always sink particles
return False
@classmethod
def requires_metalink(cls, **kwargs):
# Always requires metalink since projection is used
return True
@classproperty
def metalink_prefix(cls):
return m.SINK_LINK_PREFIX
@property
def n_steps_per_modification(self):
return m.N_STEPS_PER_SINK
@property
def physical_particle_modification_limit(self):
return m.SINK_PARTICLES_LIMIT
| 11,733 | Python | 46.314516 | 136 | 0.67911 |
StanfordVL/OmniGibson/omnigibson/object_states/under.py | import omnigibson as og
from omnigibson.object_states.adjacency import VerticalAdjacency
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.utils.object_state_utils import sample_kinematics
from omnigibson.utils.object_state_utils import m as os_m
from omnigibson.utils.constants import PrimType
class Under(RelativeObjectState, KinematicsMixin, BooleanStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(VerticalAdjacency)
return deps
def _set_value(self, other, new_value, reset_before_sampling=False):
if not new_value:
raise NotImplementedError("Under does not support set_value(False)")
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot set an object under a cloth object.")
state = og.sim.dump_state(serialized=False)
# Possibly reset this object if requested
if reset_before_sampling:
self.obj.reset()
for _ in range(os_m.DEFAULT_HIGH_LEVEL_SAMPLING_ATTEMPTS):
if sample_kinematics("under", self.obj, other) and self.get_value(other):
return True
else:
og.sim.load_state(state, serialized=False)
return False
def _get_value(self, other):
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot detect if an object is under a cloth object.")
adjacency = self.obj.states[VerticalAdjacency].get_value()
other_adjacency = other.states[VerticalAdjacency].get_value()
return other not in adjacency.negative_neighbors and other in adjacency.positive_neighbors and self.obj not in other_adjacency.positive_neighbors
| 1,850 | Python | 40.133332 | 153 | 0.704324 |
StanfordVL/OmniGibson/omnigibson/object_states/contact_particles.py | import omnigibson as og
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import RelativeObjectState
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.systems.system_base import PhysicalParticleSystem, is_physical_particle_system
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Distance tolerance for detecting contact
m.CONTACT_AABB_TOLERANCE = 2.5e-2
m.CONTACT_TOLERANCE = 5e-3
class ContactParticles(RelativeObjectState, KinematicsMixin):
"""
Object state that handles contact checking between rigid bodies and individual particles.
"""
def _get_value(self, system, link=None):
"""
Args:
system (PhysicalParticleSystem): System whose contact particle info should be aggregated
link (None or RigidPrim): If specified, the specific link to check for particles' contact
Returns:
set of int: Set of particle IDs in contact
"""
# Make sure system is valid
assert is_physical_particle_system(system_name=system.name), \
"Can only get ContactParticles for a PhysicalParticleSystem!"
# Variables to update mid-iteration
contacts = set()
idx = 0
# Define callback function to use for omni's overlap_sphere() call
def report_hit(hit):
nonlocal link, idx
link_name = None if link is None else link.prim_path.split("/")[-1]
base, body = "/".join(hit.rigid_body.split("/")[:-1]), hit.rigid_body.split("/")[-1]
continue_traversal = True
# If no links are specified, then we assume checking contact with any link owned by this object
# Otherwise, we check for exact match of link name
if (link is None and base == self.obj.prim_path) or (link is not None and link_name == body):
# Add to contacts and terminate early
contacts.add(idx)
continue_traversal = False
return continue_traversal
# Grab the relaxed AABB of this object or its link for coarse filtering of particles to ignore checking
lower, upper = self.obj.states[AABB].get_value() if link is None else link.visual_aabb
# Add margin for filtering inbound
lower = lower - (system.particle_radius + m.CONTACT_AABB_TOLERANCE)
upper = upper + (system.particle_radius + m.CONTACT_AABB_TOLERANCE)
# Iterate over all particles and aggregate contacts
positions = system.get_particles_position_orientation()[0]
# Only check positions that are within the relaxed AABB of this object
inbound_idxs = ((lower < positions) & (positions < upper)).all(axis=-1).nonzero()[0]
dist = system.particle_contact_radius + m.CONTACT_TOLERANCE
for idx in inbound_idxs:
og.sim.psqi.overlap_sphere(dist, positions[idx], report_hit, False)
# Return contacts
return contacts
def _set_value(self, system, new_value):
raise NotImplementedError("ContactParticles state currently does not support setting.")
def _cache_is_valid(self, get_value_args):
# Cache is never valid since particles always change poses
return False
| 3,360 | Python | 43.813333 | 111 | 0.673214 |
StanfordVL/OmniGibson/omnigibson/object_states/slicer_active.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import BooleanStateMixin
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.tensorized_value_state import TensorizedValueState
import omnigibson as og
from omnigibson.utils.python_utils import classproperty
from omnigibson.utils.usd_utils import RigidContactAPI
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.REACTIVATION_DELAY = 0.5 # number of seconds to wait before reactivating the slicer
class SlicerActive(TensorizedValueState, BooleanStateMixin):
# int: Keep track of how many steps each object is waiting for
STEPS_TO_WAIT = None
# np.ndarray: Keep track of the current delay for a given slicer
DELAY_COUNTER = None
# np.ndarray: Keep track of whether we touched a sliceable in the previous timestep
PREVIOUSLY_TOUCHING = None
# list of list of str: Body prim paths belonging to each slicer obj
SLICER_LINK_PATHS = None
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ContactBodies)
return deps
@classmethod
def global_initialize(cls):
# Call super first
super().global_initialize()
# Initialize other global variables
cls.STEPS_TO_WAIT = max(1, int(np.ceil(m.REACTIVATION_DELAY / og.sim.get_rendering_dt())))
cls.DELAY_COUNTER = np.array([], dtype=int)
cls.PREVIOUSLY_TOUCHING = np.array([], dtype=bool)
cls.SLICER_LINK_PATHS = []
@classmethod
def global_clear(cls):
# Call super first
super().global_clear()
# Clear other internal state
cls.STEPS_TO_WAIT = None
cls.DELAY_COUNTER = None
cls.PREVIOUSLY_TOUCHING = None
cls.SLICER_LINK_PATHS = None
@classmethod
def _add_obj(cls, obj):
# Call super first
super()._add_obj(obj=obj)
# Add to previously touching and delay counter
cls.DELAY_COUNTER = np.concatenate([cls.DELAY_COUNTER, [0]])
cls.PREVIOUSLY_TOUCHING = np.concatenate([cls.PREVIOUSLY_TOUCHING, [False]])
# Add this object's prim paths to slicer paths
cls.SLICER_LINK_PATHS.append([link.prim_path for link in obj.links.values()])
@classmethod
def _remove_obj(cls, obj):
# Grab idx we'll delete before the object is deleted
deleted_idx = cls.OBJ_IDXS[obj.name]
# Remove from all internal tracked arrays
cls.DELAY_COUNTER = np.delete(cls.DELAY_COUNTER, [deleted_idx])
cls.PREVIOUSLY_TOUCHING = np.delete(cls.PREVIOUSLY_TOUCHING, [deleted_idx])
del cls.SLICER_LINK_PATHS[deleted_idx]
# Call super
super()._remove_obj(obj=obj)
@classmethod
def _update_values(cls, values):
# If we were slicing in the past step, deactivate now
previously_touching_idxs = np.nonzero(cls.PREVIOUSLY_TOUCHING)[0]
values[previously_touching_idxs] = False
cls.DELAY_COUNTER[previously_touching_idxs] = 0 # Reset the counter when we stop touching a sliceable object
# Are we currently touching any sliceables?
currently_touching_sliceables = cls._currently_touching_sliceables()
# If any of our values are False, we need to consider reverting back.
if not np.all(values):
not_active_not_touching = ~values & ~currently_touching_sliceables
not_active_is_touching = ~values & currently_touching_sliceables
not_active_not_touching_idxs = np.where(not_active_not_touching)[0]
not_active_is_touching_idxs = np.where(not_active_is_touching)[0]
# If we are not touching any sliceable objects, we increment the delay "cooldown" counter that will
# eventually re-activate the slicer
cls.DELAY_COUNTER[not_active_not_touching_idxs] += 1
# If we are touching a sliceable object, reset the counter
cls.DELAY_COUNTER[not_active_is_touching_idxs] = 0
# If the delay counter is greater than steps to wait, set to True
values = np.where(cls.DELAY_COUNTER >= cls.STEPS_TO_WAIT, True, values)
# Record if we were touching anything previously
cls.PREVIOUSLY_TOUCHING = currently_touching_sliceables
return values
@classmethod
def _currently_touching_sliceables(cls):
# Initialize return value as all falses
currently_touching = np.zeros_like(cls.PREVIOUSLY_TOUCHING)
# Grab all sliceable objects
sliceable_objs = og.sim.scene.object_registry("abilities", "sliceable", [])
# If there's no sliceables, then obviously no slicer is touching any sliceable so immediately return all Falses
if len(sliceable_objs) == 0:
return currently_touching
# Aggregate all link prim path indices
all_slicer_idxs = [[RigidContactAPI.get_body_row_idx(prim_path) for prim_path in link_paths] for link_paths in cls.SLICER_LINK_PATHS]
sliceable_idxs = [RigidContactAPI.get_body_col_idx(link.prim_path) for obj in sliceable_objs for link in obj.links.values()]
impulses = RigidContactAPI.get_all_impulses()
# Batch check each slicer against all sliceables
for i, slicer_idxs in enumerate(all_slicer_idxs):
if np.any(impulses[slicer_idxs][:, sliceable_idxs]):
# We are touching at least one sliceable
currently_touching[i] = True
return currently_touching
@classproperty
def value_name(cls):
return "value"
@classproperty
def value_type(cls):
return bool
def __init__(self, obj):
# Run super first
super(SlicerActive, self).__init__(obj)
# Set value to be default (True)
self._set_value(True)
@property
def state_size(self):
# Call super first
size = super().state_size
# Add additional 2 to keep track of previously touching and delay counter
return size + 2
# For this state, we simply store its value.
def _dump_state(self):
state = super()._dump_state()
state["previously_touching"] = bool(self.PREVIOUSLY_TOUCHING[self.OBJ_IDXS[self.obj.name]])
state["delay_counter"] = int(self.DELAY_COUNTER[self.OBJ_IDXS[self.obj.name]])
return state
def _load_state(self, state):
super()._load_state(state=state)
self.PREVIOUSLY_TOUCHING[self.OBJ_IDXS[self.obj.name]] = state["previously_touching"]
self.DELAY_COUNTER[self.OBJ_IDXS[self.obj.name]] = state["delay_counter"]
def _serialize(self, state):
state_flat = super()._serialize(state=state)
return np.concatenate([
state_flat,
[state["previously_touching"], state["delay_counter"]],
], dtype=float)
def _deserialize(self, state):
state_dict, idx = super()._deserialize(state=state)
state_dict[f"{self.value_name}"] = bool(state_dict[f"{self.value_name}"])
state_dict["previously_touching"] = bool(state[idx])
state_dict["delay_counter"] = int(state[idx + 1])
return state_dict, idx + 2
| 7,258 | Python | 37.407407 | 141 | 0.659686 |
StanfordVL/OmniGibson/omnigibson/object_states/robot_related_states.py | import numpy as np
import omnigibson as og
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin, RelativeObjectState
from omnigibson.sensors import VisionSensor
_IN_REACH_DISTANCE_THRESHOLD = 2.0
_IN_FOV_PIXEL_FRACTION_THRESHOLD = 0.05
class RobotStateMixin:
@property
def robot(self):
from omnigibson.robots.robot_base import BaseRobot
assert isinstance(self.obj, BaseRobot), "This state only works with robots."
return self.obj
class IsGrasping(RelativeObjectState, BooleanStateMixin, RobotStateMixin):
def _get_value(self, obj):
# TODO: Make this work with non-assisted grasping
return any(
self.robot._ag_obj_in_hand[arm] == obj
for arm in self.robot.arm_names
)
# class InReachOfRobot(AbsoluteObjectState, BooleanStateMixin):
# def _compute_value(self):
# robot = _get_robot(self.simulator)
# if not robot:
# return False
# robot_pos = robot.get_position()
# object_pos = self.obj.get_position()
# return np.linalg.norm(object_pos - np.array(robot_pos)) < _IN_REACH_DISTANCE_THRESHOLD
# class InFOVOfRobot(AbsoluteObjectState, BooleanStateMixin):
# @staticmethod
# def get_optional_dependencies():
# return AbsoluteObjectState.get_optional_dependencies() + [ObjectsInFOVOfRobot]
# def _get_value(self):
# robot = _get_robot(self.simulator)
# if not robot:
# return False
# body_ids = set(self.obj.get_body_ids())
# return not body_ids.isdisjoint(robot.states[ObjectsInFOVOfRobot].get_value())
class ObjectsInFOVOfRobot(AbsoluteObjectState, RobotStateMixin):
def _get_value(self):
"""
Gets all objects in the robot's field of view.
Returns:
list: List of objects in the robot's field of view
"""
if not any(isinstance(sensor, VisionSensor) for sensor in self.robot.sensors.values()):
raise ValueError("No vision sensors found on robot.")
obj_names = []
names_to_exclude = set(['background', 'unlabelled'])
for sensor in self.robot.sensors.values():
if isinstance(sensor, VisionSensor):
_, info = sensor.get_obs()
obj_names.extend([name for name in info['seg_instance'].values() if name not in names_to_exclude])
return [x for x in [og.sim.scene.object_registry("name", x) for x in obj_names] if x is not None]
| 2,529 | Python | 34.633802 | 114 | 0.653223 |
StanfordVL/OmniGibson/omnigibson/object_states/__init__.py | from omnigibson.object_states.object_state_base import REGISTERED_OBJECT_STATES
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.adjacency import HorizontalAdjacency, VerticalAdjacency
from omnigibson.object_states.attached_to import AttachedTo
from omnigibson.object_states.burnt import Burnt
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.contact_particles import ContactParticles
from omnigibson.object_states.contains import ContainedParticles, Contains
from omnigibson.object_states.cooked import Cooked
from omnigibson.object_states.covered import Covered
from omnigibson.object_states.frozen import Frozen
from omnigibson.object_states.heat_source_or_sink import HeatSourceOrSink
from omnigibson.object_states.heated import Heated
from omnigibson.object_states.inside import Inside
from omnigibson.object_states.max_temperature import MaxTemperature
from omnigibson.object_states.next_to import NextTo
from omnigibson.object_states.on_fire import OnFire
from omnigibson.object_states.on_top import OnTop
from omnigibson.object_states.open_state import Open
from omnigibson.object_states.overlaid import Overlaid
from omnigibson.object_states.particle_modifier import ParticleRemover, ParticleApplier
from omnigibson.object_states.particle_source_or_sink import ParticleSource, ParticleSink
from omnigibson.object_states.particle import ParticleRequirement
from omnigibson.object_states.pose import Pose
from omnigibson.object_states.robot_related_states import IsGrasping, ObjectsInFOVOfRobot
from omnigibson.object_states.saturated import Saturated
from omnigibson.object_states.slicer_active import SlicerActive
from omnigibson.object_states.sliceable import SliceableRequirement
from omnigibson.object_states.temperature import Temperature
from omnigibson.object_states.toggle import ToggledOn
from omnigibson.object_states.touching import Touching
from omnigibson.object_states.under import Under
from omnigibson.object_states.filled import Filled
from omnigibson.object_states.folded import Folded, Unfolded, FoldedLevel
from omnigibson.object_states.draped import Draped
| 2,161 | Python | 59.055554 | 89 | 0.869968 |
StanfordVL/OmniGibson/omnigibson/object_states/heat_source_or_sink.py | import omnigibson as og
from omnigibson.macros import create_module_macros, macros
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.inside import Inside
from omnigibson.object_states.link_based_state_mixin import LinkBasedStateMixin
from omnigibson.object_states.object_state_base import AbsoluteObjectState
from omnigibson.object_states.open_state import Open
from omnigibson.object_states.toggle import ToggledOn
from omnigibson.object_states.update_state_mixin import UpdateStateMixin
from omnigibson.utils.python_utils import classproperty
from omnigibson.utils.constants import PrimType
import numpy as np
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.HEATSOURCE_LINK_PREFIX = "heatsource"
m.HEATING_ELEMENT_MARKER_SCALE = [1.0] * 3
# TODO: Delete default values for this and make them required.
m.DEFAULT_TEMPERATURE = 200
m.DEFAULT_HEATING_RATE = 0.04
m.DEFAULT_DISTANCE_THRESHOLD = 0.2
class HeatSourceOrSink(AbsoluteObjectState, LinkBasedStateMixin, UpdateStateMixin):
"""
This state indicates the heat source or heat sink state of the object.
Currently, if the object is not an active heat source/sink, this returns (False, None).
Otherwise, it returns True and the position of the heat source element, or (True, None) if the heat source has no
heating element / only checks for Inside.
E.g. on a stove object, True and the coordinates of the heating element will be returned.
on a microwave object, True and None will be returned.
"""
def __init__(
self,
obj,
temperature=m.DEFAULT_TEMPERATURE,
heating_rate=m.DEFAULT_HEATING_RATE,
distance_threshold=m.DEFAULT_DISTANCE_THRESHOLD,
requires_toggled_on=False,
requires_closed=False,
requires_inside=False,
):
"""
Args:
obj (StatefulObject): The object with the heat source ability.
temperature (float): The temperature of the heat source.
heating_rate (float): Fraction in [0, 1] of the temperature difference with the
heat source temperature should be received every step, per second.
distance_threshold (float): The distance threshold which an object needs
to be closer than in order to receive heat from this heat source.
requires_toggled_on (bool): Whether the heat source object needs to be
toggled on to emit heat. Requires toggleable ability if set to True.
requires_closed (bool): Whether the heat source object needs to be
closed (e.g. in terms of the joints) to emit heat. Requires openable
ability if set to True.
requires_inside (bool): Whether an object needs to be `inside` the
heat source to receive heat. See the Inside state for details. This
will mean that the "heating element" link for the object will be
ignored.
"""
super(HeatSourceOrSink, self).__init__(obj)
self._temperature = temperature
self._heating_rate = heating_rate
self.distance_threshold = distance_threshold
# If the heat source needs to be toggled on, we assert the presence
# of that ability.
if requires_toggled_on:
assert ToggledOn in self.obj.states
self.requires_toggled_on = requires_toggled_on
# If the heat source needs to be closed, we assert the presence
# of that ability.
if requires_closed:
assert Open in self.obj.states
self.requires_closed = requires_closed
# If the heat source needs to contain an object inside to heat it,
# we record that for use in the heat transfer process.
self.requires_inside = requires_inside
# Internal state that gets cached
self._affected_objects = None
@classmethod
def is_compatible(cls, obj, **kwargs):
# Run super first
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state has toggledon if required or open if required
for kwarg, state_type in zip(("requires_toggled_on", "requires_closed"), (ToggledOn, Open)):
if kwargs.get(kwarg, False) and state_type not in obj.states:
return False, f"{cls.__name__} has {kwarg} but obj has no {state_type.__name__} state!"
return True, None
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
# Run super first
compatible, reason = super().is_compatible_asset(prim, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state has toggledon if required or open if required
for kwarg, state_type in zip(("requires_toggled_on", "requires_closed"), (ToggledOn, Open)):
if kwargs.get(kwarg, False) and not state_type.is_compatible_asset(prim=prim, **kwargs)[0]:
return False, f"{cls.__name__} has {kwarg} but obj has no {state_type.__name__} state!"
return True, None
@classproperty
def metalink_prefix(cls):
return m.HEATSOURCE_LINK_PREFIX
@classmethod
def requires_metalink(cls, **kwargs):
# No metalink required if inside
return not kwargs.get("requires_inside", False)
@property
def _default_link(self):
# Only supported if we require inside
return self.obj.root_link if self.requires_inside else super()._default_link
@property
def heating_rate(self):
"""
Returns:
float: Temperature changing rate of this heat source / sink
"""
return self._heating_rate
@property
def temperature(self):
"""
Returns:
float: Temperature of this heat source / sink
"""
return self._temperature
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({AABB, Inside})
return deps
@classmethod
def get_optional_dependencies(cls):
deps = super().get_optional_dependencies()
deps.update({ToggledOn, Open})
return deps
def _initialize(self):
# Run super first
super()._initialize()
self.initialize_link_mixin()
def _get_value(self):
# Check the toggle state.
if self.requires_toggled_on and not self.obj.states[ToggledOn].get_value():
return False
# Check the open state.
if self.requires_closed and self.obj.states[Open].get_value():
return False
return True
def affects_obj(self, obj):
"""
Computes whether this heat source or sink object is affecting object @obj
Computes the temperature delta that may be applied to object @obj. NOTE: This value is agnostic to simulation
stepping speed, and should be scaled accordingly
Args:
obj (StatefulObject): Object whose temperature delta should be computed
Returns:
bool: Whether this heat source or sink is currently affecting @obj's temperature
"""
# No change if we're not on
if not self.get_value():
return False
# If the object is not affected, we return False
if obj not in self._affected_objects:
return False
# If all checks pass, we're actively influencing the object!
return True
def _update(self):
# Avoid circular imports
from omnigibson.object_states.temperature import Temperature
from omnigibson.objects.stateful_object import StatefulObject
# Update the internally tracked nearby objects to accelerate filtering for affects_obj
affected_objects = set()
# Only update if we're valid
if self.get_value():
def overlap_callback(hit):
nonlocal affected_objects
# global affected_objects
obj = og.sim.scene.object_registry("prim_path", "/".join(hit.rigid_body.split("/")[:-1]))
if obj is not None:
affected_objects.add(obj)
# Always continue traversal
return True
if self.requires_inside:
# Use overlap_box check to check for objects inside the box!
aabb_lower, aabb_upper = self.obj.states[AABB].get_value()
half_extent = (aabb_upper - aabb_lower) / 2.0
aabb_center = (aabb_upper + aabb_lower) / 2.0
og.sim.psqi.overlap_box(
halfExtent=half_extent,
pos=aabb_center,
rot=np.array([0, 0, 0, 1.0]),
reportFn=overlap_callback,
)
# Cloth isn't subject to overlap checks, so we also have to manually check their poses as well
cloth_objs = tuple(og.sim.scene.object_registry("prim_type", PrimType.CLOTH, []))
n_cloth_objs = len(cloth_objs)
if n_cloth_objs > 0:
cloth_positions = np.zeros((n_cloth_objs, 3))
for i, obj in enumerate(cloth_objs):
cloth_positions[i] = obj.get_position()
for idx in np.where(np.all((aabb_lower.reshape(1, 3) < cloth_positions) & (cloth_positions < aabb_upper.reshape(1, 3)), axis=-1))[0]:
affected_objects.add(cloth_objs[idx])
# Additionally prune objects based on Inside requirement -- cast to avoid in-place operations
for obj in tuple(affected_objects):
if not obj.states[Inside].get_value(self.obj):
affected_objects.remove(obj)
else:
# Position is either the AABB center of the default link or the metalink position itself
heat_source_pos = self.link.aabb_center if self.link == self._default_link else self.link.get_position()
# Use overlap_sphere check!
og.sim.psqi.overlap_sphere(
radius=self.distance_threshold,
pos=heat_source_pos,
reportFn=overlap_callback,
)
# Cloth isn't subject to overlap checks, so we also have to manually check their poses as well
cloth_objs = tuple(og.sim.scene.object_registry("prim_type", PrimType.CLOTH, []))
n_cloth_objs = len(cloth_objs)
if n_cloth_objs > 0:
cloth_positions = np.zeros((n_cloth_objs, 3))
for i, obj in enumerate(cloth_objs):
cloth_positions[i] = obj.get_position()
for idx in np.where(np.linalg.norm(heat_source_pos.reshape(1, 3) - cloth_positions, axis=-1) <= self.distance_threshold)[0]:
affected_objects.add(cloth_objs[idx])
# Remove self (we cannot affect ourselves) and update the internal set of objects, and remove self
if self.obj in affected_objects:
affected_objects.remove(self.obj)
self._affected_objects = {obj for obj in affected_objects if isinstance(obj, StatefulObject) and Temperature in obj.states}
# Propagate the affected objects' temperatures
if len(self._affected_objects) > 0:
Temperature.update_temperature_from_heatsource_or_sink(
objs=self._affected_objects,
temperature=self.temperature,
rate=self.heating_rate,
)
# Nothing needs to be done to save/load HeatSource
| 11,739 | Python | 40.779359 | 153 | 0.620411 |
StanfordVL/OmniGibson/omnigibson/object_states/factory.py | import networkx as nx
from collections import namedtuple
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states import *
# states: list of ObjectBaseState
# requirements: list of ObjectBaseRequirement
AbilityDependencies = namedtuple("AbilityDependencies", ("states", "requirements"))
# Maps ability name to list of Object States and / or Ability Requirements that determine
# whether the given ability can be instantiated for a requested object
_ABILITY_DEPENDENCIES = {
"robot": AbilityDependencies(states=[IsGrasping, ObjectsInFOVOfRobot], requirements=[]),
"attachable": AbilityDependencies(states=[AttachedTo], requirements=[]),
"particleApplier": AbilityDependencies(states=[ParticleApplier], requirements=[ParticleRequirement]),
"particleRemover": AbilityDependencies(states=[ParticleRemover], requirements=[ParticleRequirement]),
"particleSource": AbilityDependencies(states=[ParticleSource], requirements=[ParticleRequirement]),
"particleSink": AbilityDependencies(states=[ParticleSink], requirements=[ParticleRequirement]),
"coldSource": AbilityDependencies(states=[HeatSourceOrSink], requirements=[]),
"cookable": AbilityDependencies(states=[Cooked, Burnt], requirements=[]),
"coverable": AbilityDependencies(states=[Covered], requirements=[]),
"freezable": AbilityDependencies(states=[Frozen], requirements=[]),
"heatable": AbilityDependencies(states=[Heated], requirements=[]),
"heatSource": AbilityDependencies(states=[HeatSourceOrSink], requirements=[]),
"meltable": AbilityDependencies(states=[MaxTemperature], requirements=[]),
"mixingTool": AbilityDependencies(states=[], requirements=[]),
"openable": AbilityDependencies(states=[Open], requirements=[]),
"flammable": AbilityDependencies(states=[OnFire], requirements=[]),
"saturable": AbilityDependencies(states=[Saturated], requirements=[]),
"sliceable": AbilityDependencies(states=[], requirements=[SliceableRequirement]),
"slicer": AbilityDependencies(states=[SlicerActive], requirements=[]),
"toggleable": AbilityDependencies(states=[ToggledOn], requirements=[]),
"cloth": AbilityDependencies(states=[Folded, Unfolded, Overlaid, Draped], requirements=[]),
"fillable": AbilityDependencies(states=[Filled, Contains], requirements=[]),
}
_DEFAULT_STATE_SET = frozenset(
[
Inside,
NextTo,
OnTop,
Touching,
Under,
Covered,
]
)
_KINEMATIC_STATE_SET = frozenset(
[state for state in REGISTERED_OBJECT_STATES.values() if issubclass(state, KinematicsMixin)]
)
_FIRE_STATE_SET = frozenset(
[
HeatSourceOrSink,
OnFire,
]
)
_STEAM_STATE_SET = frozenset(
[
Heated,
]
)
_TEXTURE_CHANGE_STATE_SET = frozenset(
[
Frozen,
Burnt,
Cooked,
Saturated,
ToggledOn,
]
)
_SYSTEM_STATE_SET = frozenset(
[
Covered,
Saturated,
Filled,
Contains,
]
)
_VISUAL_STATE_SET = frozenset(_FIRE_STATE_SET | _STEAM_STATE_SET | _TEXTURE_CHANGE_STATE_SET)
_TEXTURE_CHANGE_PRIORITY = {
Frozen: 4,
Burnt: 3,
Cooked: 2,
Saturated: 1,
ToggledOn: 0,
}
def get_system_states():
return _SYSTEM_STATE_SET
def get_fire_states():
return _FIRE_STATE_SET
def get_steam_states():
return _STEAM_STATE_SET
def get_texture_change_states():
return _TEXTURE_CHANGE_STATE_SET
def get_texture_change_priority():
return _TEXTURE_CHANGE_PRIORITY
def get_visual_states():
return _VISUAL_STATE_SET
def get_default_states():
return _DEFAULT_STATE_SET
def get_state_name(state):
# Get the name of the class.
return state.__name__
def get_states_for_ability(ability):
if ability not in _ABILITY_DEPENDENCIES:
return []
return _ABILITY_DEPENDENCIES[ability].states
def get_requirements_for_ability(ability):
if ability not in _ABILITY_DEPENDENCIES:
return []
return _ABILITY_DEPENDENCIES[ability].requirements
def get_state_dependency_graph(states=None):
"""
Args:
states (None or Iterable): If specified, specific state(s) to sort. Otherwise, will generate dependency graph
over all states
Returns:
nx.DiGraph: State dependency graph of supported object states
"""
states = REGISTERED_OBJECT_STATES.values() if states is None else states
dependencies = {state: set.union(state.get_dependencies(), state.get_optional_dependencies()) for state in states}
return nx.DiGraph(dependencies)
def get_states_by_dependency_order(states=None):
"""
Args:
states (None or Iterable): If specified, specific state(s) to sort. Otherwise, will generate dependency graph
over all states
Returns:
list: all states in topological order of dependency
"""
return list(reversed(list(nx.algorithms.topological_sort(get_state_dependency_graph(states)))))
| 4,984 | Python | 29.582822 | 118 | 0.700241 |
StanfordVL/OmniGibson/omnigibson/object_states/filled.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.contains import ContainedParticles
from omnigibson.object_states.object_state_base import RelativeObjectState, BooleanStateMixin
from omnigibson.systems.system_base import PhysicalParticleSystem, is_physical_particle_system
from omnigibson.systems.macro_particle_system import MacroParticleSystem
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Proportion of object's volume that must be filled for object to be considered filled
m.VOLUME_FILL_PROPORTION = 0.2
m.N_MAX_MACRO_PARTICLE_SAMPLES = 500
m.N_MAX_MICRO_PARTICLE_SAMPLES = 100000
class Filled(RelativeObjectState, BooleanStateMixin):
def _get_value(self, system):
# Sanity check to make sure system is valid
assert is_physical_particle_system(system_name=system.name), \
"Can only get Filled state with a valid PhysicalParticleSystem!"
# Check what volume is filled
if system.n_particles > 0:
# Treat particles as cubes
particle_volume = (system.particle_radius * 2) ** 3
n_particles = self.obj.states[ContainedParticles].get_value(system).n_in_volume
prop_filled = particle_volume * n_particles / self.obj.states[ContainedParticles].volume
# If greater than threshold, then the volume is filled
# Explicit bool cast needed here because the type is bool_ instead of bool which is not JSON-Serializable
# This has to do with numpy, see https://stackoverflow.com/questions/58408054/typeerror-object-of-type-bool-is-not-json-serializable
value = bool(prop_filled > m.VOLUME_FILL_PROPORTION)
else:
# No particles exists, so we're obviously empty
value = False
return value
def _set_value(self, system, new_value):
# Sanity check to make sure system is valid
assert is_physical_particle_system(system_name=system.name), \
"Can only set Filled state with a valid PhysicalParticleSystem!"
# First, check our current state
current_state = self.get_value(system)
# Only do something if we're changing state
if current_state != new_value:
contained_particles_state = self.obj.states[ContainedParticles]
if new_value:
# Going from False --> True, sample volume with particles
system.generate_particles_from_link(
obj=self.obj,
link=contained_particles_state.link,
check_contact=True,
max_samples=m.N_MAX_MACRO_PARTICLE_SAMPLES
if issubclass(system, MacroParticleSystem) else m.N_MAX_MICRO_PARTICLE_SAMPLES
)
else:
# Cannot set False
raise NotImplementedError(f"{self.__class__.__name__} does not support set_value(system, False)")
return True
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ContainedParticles)
return deps
| 3,156 | Python | 43.464788 | 144 | 0.665082 |
StanfordVL/OmniGibson/omnigibson/object_states/draped.py | from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.cloth_mixin import ClothStateMixin
from omnigibson.utils.constants import PrimType
from omnigibson.utils.object_state_utils import sample_cloth_on_rigid
import omnigibson as og
import numpy as np
class Draped(RelativeObjectState, KinematicsMixin, BooleanStateMixin, ClothStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ContactBodies)
return deps
def _set_value(self, other, new_value):
if not new_value:
raise NotImplementedError("DrapedOver does not support set_value(False)")
if not (self.obj.prim_type == PrimType.CLOTH and other.prim_type == PrimType.RIGID):
raise ValueError("DrapedOver state requires obj1 is cloth and obj2 is rigid.")
state = og.sim.dump_state(serialized=False)
if sample_cloth_on_rigid(self.obj, other, randomize_xy=True) and self.get_value(other):
return True
else:
og.sim.load_state(state, serialized=False)
return False
def _get_value(self, other):
"""
Check whether the (cloth) object is draped on the other (rigid) object.
The cloth object should touch the rigid object and its CoM should be below the average position of the contact points.
"""
if not (self.obj.prim_type == PrimType.CLOTH and other.prim_type == PrimType.RIGID):
raise ValueError("Draped state requires obj1 is cloth and obj2 is rigid.")
# Find the links of @other that are in contact with @self.obj
contact_links = self.obj.states[ContactBodies].get_value() & set(other.links.values())
if len(contact_links) == 0:
return False
contact_link_prim_paths = {contact_link.prim_path for contact_link in contact_links}
# Filter the contact points to only include the ones that are on the contact links
contact_positions = []
for contact in self.obj.contact_list():
if len({contact.body0, contact.body1} & contact_link_prim_paths) > 0:
contact_positions.append(contact.position)
# The center of mass of the cloth needs to be below the average position of the contact points
mean_contact_position = np.mean(contact_positions, axis=0)
center_of_mass = np.mean(self.obj.root_link.keypoint_particle_positions, axis=0)
return center_of_mass[2] < mean_contact_position[2]
| 2,692 | Python | 45.431034 | 126 | 0.693908 |
StanfordVL/OmniGibson/omnigibson/object_states/attached_to.py | import numpy as np
from collections import defaultdict
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import create_module_macros
import omnigibson.utils.transform_utils as T
from omnigibson.object_states.contact_subscribed_state_mixin import ContactSubscribedStateMixin
from omnigibson.object_states.joint_break_subscribed_state_mixin import JointBreakSubscribedStateMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.object_states.link_based_state_mixin import LinkBasedStateMixin
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.utils.constants import JointType
from omnigibson.utils.usd_utils import create_joint
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.python_utils import classproperty
from omnigibson.utils.usd_utils import CollisionAPI
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.ATTACHMENT_LINK_PREFIX = "attachment"
m.DEFAULT_POSITION_THRESHOLD = 0.05 # 5cm
m.DEFAULT_ORIENTATION_THRESHOLD = np.deg2rad(5.0) # 5 degrees
m.DEFAULT_JOINT_TYPE = JointType.JOINT_FIXED
m.DEFAULT_BREAK_FORCE = 1000 # Newton
m.DEFAULT_BREAK_TORQUE = 1000 # Newton-Meter
# TODO: Make AttachedTo into a global state that manages all the attachments in the scene.
# When an attachment of a child and a parent is about to happen:
# 1. stop the sim
# 2. remove all existing attachment joints (and save information to restore later)
# 3. disable collision between the child and the parent
# 4. play the sim
# 5. reload the state
# 6. restore all existing attachment joints
# 7. create the joint
class AttachedTo(RelativeObjectState, BooleanStateMixin, ContactSubscribedStateMixin, JointBreakSubscribedStateMixin, LinkBasedStateMixin):
"""
Handles attachment between two rigid objects, by creating a fixed/spherical joint between self.obj (child) and
other (parent). At any given moment, an object can only be attached to at most one other object, i.e.
a parent can have multiple children, but a child can only have one parent.
Note that generally speaking only child.states[AttachedTo].get_value(parent) will return True.
One of the child's male meta links will be attached to one of the parent's female meta links.
Subclasses ContactSubscribedStateMixin, JointBreakSubscribedStateMixin
on_contact function attempts to attach self.obj to other when a CONTACT_FOUND event happens
on_joint_break function breaks the current attachment
"""
# This is to force the __init__ args to be "self" and "obj" only.
# Otherwise, it will inherit from LinkBasedStateMixin and the __init__ args will be "self", "args", "kwargs".
def __init__(self, obj):
# Run super method
super().__init__(obj=obj)
def initialize(self):
super().initialize()
og.sim.add_callback_on_stop(name=f"{self.obj.name}_detach", callback=self._detach)
self.parents_disabled_collisions = set()
def remove(self):
super().remove()
og.sim.remove_callback_on_stop(name=f"{self.obj.name}_detach")
@classproperty
def metalink_prefix(cls):
"""
Returns:
str: Unique keyword that defines the metalink associated with this object state
"""
return m.ATTACHMENT_LINK_PREFIX
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ContactBodies)
return deps
def _initialize(self):
super()._initialize()
self.initialize_link_mixin()
# Reference to the parent object (DatasetObject)
self.parent = None
# Reference to the female meta link of the parent object (RigidPrim)
self.parent_link = None
# Mapping from the female meta link names of self.obj to their children (Dict[str, Optional[DatasetObject] = None])
self.children = {link_name: None for link_name in self.links if link_name.split("_")[1].endswith("F")}
# Cache of parent link candidates for other objects (Dict[DatasetObject, Dict[str, str]])
# @other -> (the male meta link names of @self.obj -> the correspounding female meta link names of @other))
self.parent_link_candidates = dict()
def on_joint_break(self, joint_prim_path):
# Note that when this function is invoked when a joint break event happens, @self.obj is the parent of the
# attachment joint, not the child. We access the child of the broken joint, and call the setter with False
child = self.children[joint_prim_path.split("/")[-2]]
child.states[AttachedTo].set_value(self.obj, False)
# Attempts to attach two objects when a CONTACT_FOUND event happens
def on_contact(self, other, contact_headers, contact_data):
for contact_header in contact_headers:
if contact_header.type == lazy.omni.physx.bindings._physx.ContactEventType.CONTACT_FOUND:
# If it has successfully attached to something, break.
if self.set_value(other, True):
break
def _set_value(self, other, new_value, bypass_alignment_checking=False, check_physics_stability=False, can_joint_break=True):
"""
Args:
other (DatasetObject): parent object to attach to.
new_value (bool): whether to attach or detach.
bypass_alignment_checking (bool): whether to bypass alignment checking when finding attachment links.
Normally when finding attachment links, we check if the child and parent links have aligned positions
or poses. This flag allows users to bypass this check and find attachment links solely based on the
attachment meta link types. Default is False.
check_physics_stability (bool): whether to check if the attachment is stable after attachment.
If True, it will check if the child object is not colliding with other objects except the parent object.
If False, it will not check the stability and simply attach the child to the parent.
Default is False.
can_joint_break (bool): whether the joint can break or not.
Returns:
bool: whether the attachment setting was successful or not.
"""
# Attempt to attach
if new_value:
if self.parent == other:
# Already attached to this object. Do nothing.
return True
elif self.parent is not None:
log.debug(f"Trying to attach object {self.obj.name} to object {other.name},"
f"but it is already attached to object {self.parent.name}. Try detaching first.")
return False
else:
# Find attachment links that satisfy the proximity requirements
child_link, parent_link = self._find_attachment_links(other, bypass_alignment_checking)
if child_link is None:
return False
else:
if check_physics_stability:
state = og.sim.dump_state()
self._attach(other, child_link, parent_link, can_joint_break=can_joint_break)
if not check_physics_stability:
return True
else:
og.sim.step_physics()
# self.obj should not collide with other objects except the parent
success = len(self.obj.states[ContactBodies].get_value(ignore_objs=(other,))) == 0
if success:
return True
else:
self._detach()
og.sim.load_state(state)
return False
# Attempt to detach
else:
if self.parent == other:
self._detach()
# Wake up objects so that passive forces like gravity can be applied.
self.obj.wake()
other.wake()
return True
def _get_value(self, other):
# Simply return if the current parent matches other
return other == self.parent
def _find_attachment_links(self,
other,
bypass_alignment_checking=False,
pos_thresh=m.DEFAULT_POSITION_THRESHOLD,
orn_thresh=m.DEFAULT_ORIENTATION_THRESHOLD):
"""
Args:
other (DatasetObject): parent object to find potential attachment links.
bypass_alignment_checking (bool): whether to bypass alignment checking when finding attachment links.
Normally when finding attachment links, we check if the child and parent links have aligned positions
or poses. This flag allows users to bypass this check and find attachment links solely based on the
attachment meta link types. Default is False.
pos_thresh (float): position difference threshold to activate attachment, in meters.
orn_thresh (float): orientation difference threshold to activate attachment, in radians.
Returns:
2-tuple:
- RigidPrim or None: link belonging to @self.obj that should be aligned to that corresponding link of @other
- RigidPrim or None: the corresponding link of @other
"""
parent_candidates = self._get_parent_candidates(other)
if not parent_candidates:
return None, None
for child_link_name, parent_link_names in parent_candidates.items():
child_link = self.links[child_link_name]
for parent_link_name in parent_link_names:
parent_link = other.states[AttachedTo].links[parent_link_name]
if other.states[AttachedTo].children[parent_link_name] is None:
if bypass_alignment_checking:
return child_link, parent_link
pos_diff = np.linalg.norm(child_link.get_position() - parent_link.get_position())
orn_diff = T.get_orientation_diff_in_radian(child_link.get_orientation(), parent_link.get_orientation())
if pos_diff < pos_thresh and orn_diff < orn_thresh:
return child_link, parent_link
return None, None
def _get_parent_candidates(self, other):
"""
Helper function to return the parent link candidates for @other
Returns:
Dict[str, str] or None: mapping from the male meta link names of self.obj to the correspounding female meta
link names of @other. Returns None if @other does not have the AttachedTo state.
"""
if AttachedTo not in other.states:
return None
if other not in self.parent_link_candidates:
parent_link_names = defaultdict(set)
for child_link_name, child_link in self.links.items():
child_category = child_link_name.split("_")[1]
if child_category.endswith("F"):
continue
assert child_category.endswith("M")
parent_category = child_category[:-1] + "F"
for parent_link_name, parent_link in other.states[AttachedTo].links.items():
if parent_category in parent_link_name:
parent_link_names[child_link_name].add(parent_link_name)
self.parent_link_candidates[other] = parent_link_names
return self.parent_link_candidates[other]
@property
def attachment_joint_prim_path(self):
return f"{self.parent_link.prim_path}/{self.obj.name}_attachment_joint" if self.parent_link is not None else None
def _attach(self, other, child_link, parent_link, joint_type=m.DEFAULT_JOINT_TYPE, can_joint_break=True):
"""
Creates a fixed or spherical joint between a male meta link of self.obj (@child_link) and a female meta link of
@other (@parent_link) with a given @joint_type, @break_force and @break_torque
Args:
other (DatasetObject): parent object to attach to.
child_link (RigidPrim): male meta link of @self.obj.
parent_link (RigidPrim): female meta link of @other.
joint_type (JointType): joint type of the attachment, {JointType.JOINT_FIXED, JointType.JOINT_SPHERICAL}
can_joint_break (bool): whether the joint can break or not.
"""
assert joint_type in {JointType.JOINT_FIXED, JointType.JOINT_SPHERICAL}, f"Unsupported joint type {joint_type}"
# Set pose for self.obj so that child_link and parent_link align (6dof alignment for FixedJoint and 3dof alignment for SphericalJoint)
parent_pos, parent_quat = parent_link.get_position_orientation()
child_pos, child_quat = child_link.get_position_orientation()
child_root_pos, child_root_quat = self.obj.get_position_orientation()
if joint_type == JointType.JOINT_FIXED:
# For FixedJoint: find the relation transformation of the two frames and apply it to self.obj.
rel_pos, rel_quat = T.mat2pose(T.pose2mat((parent_pos, parent_quat)) @ T.pose_inv(T.pose2mat((child_pos, child_quat))))
new_child_root_pos, new_child_root_quat = T.pose_transform(rel_pos, rel_quat, child_root_pos, child_root_quat)
else:
# For SphericalJoint: move the position of self.obj to align the two frames and keep the rotation unchanged.
new_child_root_pos = child_root_pos + (parent_pos - child_pos)
new_child_root_quat = child_root_quat
# Actually move the object and also keep it still for stability purposes.
self.obj.set_position_orientation(new_child_root_pos, new_child_root_quat)
self.obj.keep_still()
other.keep_still()
if joint_type == JointType.JOINT_FIXED:
# FixedJoint: the parent link, the child link and the joint frame all align.
parent_local_quat = np.array([0.0, 0.0, 0.0, 1.0])
else:
# SphericalJoint: the same except that the rotation of the parent link doesn't align with the joint frame.
# The child link and the joint frame still align.
_, parent_local_quat = T.relative_pose_transform([0, 0, 0], child_quat, [0, 0, 0], parent_quat)
# Disable collision between the parent and child objects
self._disable_collision_between_child_and_parent(child=self.obj, parent=other)
# Set the parent references
self.parent = other
self.parent_link = parent_link
# Set the child reference for @other
other.states[AttachedTo].children[parent_link.body_name] = self.obj
kwargs = {"break_force": m.DEFAULT_BREAK_FORCE, "break_torque": m.DEFAULT_BREAK_TORQUE} if can_joint_break else dict()
# Create the joint
create_joint(
prim_path=self.attachment_joint_prim_path,
joint_type=joint_type,
body0=f"{parent_link.prim_path}",
body1=f"{child_link.prim_path}",
joint_frame_in_parent_frame_pos=np.zeros(3),
joint_frame_in_parent_frame_quat=parent_local_quat,
joint_frame_in_child_frame_pos=np.zeros(3),
joint_frame_in_child_frame_quat=np.array([0.0, 0.0, 0.0, 1.0]),
**kwargs
)
def _disable_collision_between_child_and_parent(self, child, parent):
"""
Disables collision between the child and parent objects
"""
if parent in self.parents_disabled_collisions:
return
self.parents_disabled_collisions.add(parent)
was_playing = og.sim.is_playing()
if was_playing:
state = og.sim.dump_state()
og.sim.stop()
for child_link in child.links.values():
for parent_link in parent.links.values():
child_link.add_filtered_collision_pair(parent_link)
if parent.category == "wall_nail":
# Temporary hack to disable collision between the attached child object and all walls/floors so that objects
# attached to the wall_nails do not collide with the walls/floors.
for wall in og.sim.scene.object_registry("category", "walls", set()):
for wall_link in wall.links.values():
for child_link in child.links.values():
child_link.add_filtered_collision_pair(wall_link)
for wall in og.sim.scene.object_registry("category", "floors", set()):
for floor_link in wall.links.values():
for child_link in child.links.values():
child_link.add_filtered_collision_pair(floor_link)
# Temporary hack to disable gravity for the attached child object if the parent is kinematic_only
# Otherwise, the parent metalink will oscillate due to the gravity force of the child.
if parent.kinematic_only:
child.disable_gravity()
if was_playing:
og.sim.play()
og.sim.load_state(state)
def _detach(self):
"""
Removes the current attachment joint
"""
if self.parent_link is not None:
# Remove the attachment joint prim from the stage
og.sim.stage.RemovePrim(self.attachment_joint_prim_path)
# Remove child reference from the parent object
self.parent.states[AttachedTo].children[self.parent_link.body_name] = None
# Remove reference to the parent object and link
self.parent = None
self.parent_link = None
@property
def settable(self):
return True
@property
def state_size(self):
return 1
def _dump_state(self):
return dict(attached_obj_uuid=-1 if self.parent is None else self.parent.uuid)
def _load_state(self, state):
uuid = state["attached_obj_uuid"]
if uuid == -1:
attached_obj = None
else:
attached_obj = og.sim.scene.object_registry("uuid", uuid)
assert attached_obj is not None, "attached_obj_uuid does not match any object in the scene."
if self.parent != attached_obj:
# If it's currently attached to something else, detach.
if self.parent is not None:
self.set_value(self.parent, False)
# assert self.parent is None, "parent reference is not cleared after detachment"
if self.parent is not None:
log.warning(f"parent reference is not cleared after detachment")
# If the loaded state requires attachment, attach.
if attached_obj is not None:
self.set_value(attached_obj, True, bypass_alignment_checking=True, check_physics_stability=False, can_joint_break=True)
# assert self.parent == attached_obj, "parent reference is not updated after attachment"
if self.parent != attached_obj:
log.warning(f"parent reference is not updated after attachment")
def _serialize(self, state):
return np.array([state["attached_obj_uuid"]], dtype=float)
def _deserialize(self, state):
return dict(attached_obj_uuid=int(state[0])), 1
| 19,625 | Python | 47.459259 | 142 | 0.63358 |
StanfordVL/OmniGibson/omnigibson/object_states/contains.py | import numpy as np
from collections import namedtuple
from omnigibson.macros import create_module_macros
from omnigibson.object_states.link_based_state_mixin import LinkBasedStateMixin
from omnigibson.object_states.object_state_base import RelativeObjectState, BooleanStateMixin
from omnigibson.systems.system_base import VisualParticleSystem, PhysicalParticleSystem, is_visual_particle_system, \
is_physical_particle_system
from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function
from omnigibson.utils.python_utils import classproperty
import omnigibson.utils.transform_utils as T
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.CONTAINER_LINK_PREFIX = "container"
m.VISUAL_PARTICLE_OFFSET = 0.01 # Offset to visual particles' poses when checking overlaps with container volume
"""
ContainedParticlesData contains the following fields:
n_in_volume (int): number of particles in the container volume
positions (np.array): (N, 3) array representing the raw global particle positions
in_volume (np.array): (N,) boolean array representing whether each particle is inside the container volume or not
"""
ContainedParticlesData = namedtuple("ContainedParticlesData", ("n_in_volume", "positions", "in_volume"))
class ContainedParticles(RelativeObjectState, LinkBasedStateMixin):
"""
Object state for computing the number of particles of a given system contained in this object's container volume
"""
def __init__(self, obj):
super().__init__(obj)
self.check_in_volume = None # Function to check whether particles are in volume for this container
self._volume = None # Volume of this container
self._compute_info = None # Intermediate computation information to store
@classproperty
def metalink_prefix(cls):
return m.CONTAINER_LINK_PREFIX
def _get_value(self, system):
"""
Args:
system (VisualParticleSystem or PhysicalParticleSystem): System whose number of particles will be checked inside this object's
container volume
Returns:
ContainedParticlesData: namedtuple with the following keys:
- n_in_volume (int): Number of @system's particles inside this object's container volume
- positions (np.array): (N, 3) Particle positions of all @system's particles
- in_volume (np.array): (N,) boolean array, True if the corresponding particle is inside this
object's container volume, else False
"""
# Value is false by default
n_particles_in_volume, raw_positions, checked_positions, particles_in_volume = 0, np.array([]), np.array([]), np.array([])
# Only run additional computations if there are any particles
if system.n_particles > 0:
# First, we check what type of system
# Currently, we support VisualParticleSystems and PhysicalParticleSystems
if is_visual_particle_system(system_name=system.name):
# Grab global particle poses and offset them in the direction of their orientation
raw_positions, quats = system.get_particles_position_orientation()
unit_z = np.zeros((len(raw_positions), 3, 1))
unit_z[:, -1, :] = m.VISUAL_PARTICLE_OFFSET
checked_positions = (T.quat2mat(quats) @ unit_z).reshape(-1, 3) + raw_positions
elif is_physical_particle_system(system_name=system.name):
raw_positions = system.get_particles_position_orientation()[0]
checked_positions = raw_positions
else:
raise ValueError(f"Invalid system {system} received for getting ContainedParticles state!"
f"Currently, only VisualParticleSystems and PhysicalParticleSystems are supported.")
# Only calculate if we have valid positions
if len(checked_positions) > 0:
particles_in_volume = self.check_in_volume(checked_positions)
n_particles_in_volume = particles_in_volume.sum()
return ContainedParticlesData(n_particles_in_volume, raw_positions, particles_in_volume)
def _initialize(self):
super()._initialize()
self.initialize_link_mixin()
# Generate volume checker function for this object
self.check_in_volume, calculate_volume = \
generate_points_in_volume_checker_function(obj=self.obj, volume_link=self.link)
# Calculate volume
self._volume = calculate_volume()
@property
def volume(self):
"""
Returns:
float: Total volume for this container
"""
return self._volume
class Contains(RelativeObjectState, BooleanStateMixin):
def _get_value(self, system):
# Grab value from Contains state; True if value is greater than 0
return self.obj.states[ContainedParticles].get_value(system=system).n_in_volume > 0
def _set_value(self, system, new_value):
if new_value:
# Cannot set contains = True, only False
raise NotImplementedError(f"{self.__class__.__name__} does not support set_value(system, True)")
else:
# Remove all particles from inside the volume
system.remove_particles(idxs=self.obj.states[ContainedParticles].get_value(system).in_volume.nonzero()[0])
return True
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ContainedParticles)
return deps
| 5,642 | Python | 45.254098 | 138 | 0.673166 |
StanfordVL/OmniGibson/omnigibson/object_states/contact_bodies.py | import omnigibson as og
from omnigibson.object_states.object_state_base import AbsoluteObjectState
from omnigibson.utils.sim_utils import prims_to_rigid_prim_set
class ContactBodies(AbsoluteObjectState):
def _get_value(self, ignore_objs=None):
# Compute bodies in contact, minus the self-owned bodies
bodies = set()
for contact in self.obj.contact_list():
bodies.update({contact.body0, contact.body1})
bodies -= set(self.obj.link_prim_paths)
rigid_prims = set()
for body in bodies:
tokens = body.split("/")
obj_prim_path = "/".join(tokens[:-1])
link_name = tokens[-1]
obj = og.sim.scene.object_registry("prim_path", obj_prim_path)
if obj is not None:
rigid_prims.add(obj.links[link_name])
# Ignore_objs should either be None or tuple (CANNOT be list because we need to hash these inputs)
assert ignore_objs is None or isinstance(ignore_objs, tuple), \
"ignore_objs must either be None or a tuple of objects to ignore!"
return rigid_prims if ignore_objs is None else rigid_prims - prims_to_rigid_prim_set(ignore_objs)
| 1,196 | Python | 45.03846 | 106 | 0.648829 |
StanfordVL/OmniGibson/omnigibson/object_states/aabb.py | from omnigibson.object_states.object_state_base import AbsoluteObjectState
class AABB(AbsoluteObjectState):
def _get_value(self):
return self.obj.aabb
# Nothing needs to be done to save/load AABB since it will happen due to pose caching.
| 257 | Python | 27.666664 | 90 | 0.750973 |
StanfordVL/OmniGibson/omnigibson/object_states/saturated.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import RelativeObjectState, BooleanStateMixin
from omnigibson.systems.system_base import UUID_TO_SYSTEMS, REGISTERED_SYSTEMS
from omnigibson.utils.python_utils import get_uuid
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Default saturation limit
m.DEFAULT_SATURATION_LIMIT = 1e6
class ModifiedParticles(RelativeObjectState):
"""
Object state tracking number of modified particles for a given object
"""
def __init__(self, obj):
# Run super first
super().__init__(obj=obj)
# Set internal values
self.particle_counts = None
def _initialize(self):
super()._initialize()
# Set internal variables
self.particle_counts = dict()
def _get_value(self, system):
# If system isn't stored, return 0, otherwise, return the actual value
return self.particle_counts.get(system, 0)
def _set_value(self, system, new_value):
assert new_value >= 0, "Cannot set ModifiedParticles value to be less than 0!"
# Remove the value from the dictionary if we're setting it to zero (save memory)
if new_value == 0 and system in self.particle_counts:
self.particle_counts.pop(system)
else:
self.particle_counts[system] = new_value
def _sync_systems(self, systems):
"""
Helper function for forcing internal systems to be synchronized with external list of @systems.
NOTE: This may override internal state
Args:
systems (list of BaseSystem): List of system(s) that should be actively tracked internally
"""
self.particle_counts = {system: -1 for system in systems}
@property
def state_size(self):
# Two entries per system (name + count) + number of systems
return len(self.particle_counts) * 2 + 1
def _dump_state(self):
state = dict(n_systems=len(self.particle_counts))
for system, val in self.particle_counts.items():
state[system.name] = val
return state
def _load_state(self, state):
self.particle_counts = {REGISTERED_SYSTEMS[system_name]: val for system_name, val in state.items() if system_name != "n_systems" and val > 0}
def _serialize(self, state):
state_flat = np.array([state["n_systems"]], dtype=float)
if state["n_systems"] > 0:
system_names = tuple(state.keys())[1:]
state_flat = np.concatenate(
[state_flat,
np.concatenate([(get_uuid(system_name), state[system_name]) for system_name in system_names])]
).astype(float)
return state_flat
def _deserialize(self, state):
n_systems = int(state[0])
state_shaped = state[1:1 + n_systems * 2].reshape(-1, 2)
state_dict = dict(n_systems=n_systems)
systems = []
for uuid, val in state_shaped:
system = UUID_TO_SYSTEMS[int(uuid)]
state_dict[system.name] = int(val)
systems.append(system)
# Sync systems so that state size sanity check succeeds
self._sync_systems(systems=systems)
return state_dict, n_systems * 2 + 1
class Saturated(RelativeObjectState, BooleanStateMixin):
def __init__(self, obj, default_limit=m.DEFAULT_SATURATION_LIMIT):
# Run super first
super().__init__(obj=obj)
# Limits
self._default_limit = default_limit
self._limits = None
def _initialize(self):
super()._initialize()
# Set internal variables
self._limits = dict()
@property
def limits(self):
"""
Returns:
dict: Maps system to limit count for that system, if it exists
"""
return self._limits
def get_limit(self, system):
"""
Grabs the internal particle limit for @system
Args:
system (BaseSystem): System to limit
Returns:
init: Number of particles representing limit for the given @system
"""
return self._limits.get(system, self._default_limit)
def set_limit(self, system, limit):
"""
Sets internal particle limit @limit for @system
Args:
system (BaseSystem): System to limit
limit (int): Number of particles representing limit for the given @system
"""
self._limits[system] = limit
def _get_value(self, system):
limit = self.get_limit(system=system)
# If requested, run sanity check to make sure we're not over the limit with this system's particles
count = self.obj.states[ModifiedParticles].get_value(system)
assert count <= limit, f"{self.__class__.__name__} should not be over the limit! Max: {limit}, got: {count}"
return count == limit
def _set_value(self, system, new_value):
# Only set the value if it's different than what currently exists
if new_value != self.get_value(system):
self.obj.states[ModifiedParticles].set_value(system, self.get_limit(system=system) if new_value else 0)
return True
def get_texture_change_params(self):
colors = []
for system in self._limits.keys():
if self.get_value(system):
colors.append(system.color)
if len(colors) == 0:
# If no fluid system has Soaked=True, keep the default albedo value
albedo_add = 0.0
diffuse_tint = [1.0, 1.0, 1.0]
else:
albedo_add = 0.1
avg_color = np.mean(colors, axis=0)
# Add a tint of avg_color
# We want diffuse_tint to sum to 2.5 to result in the final RGB to sum to 1.5 on average
# This is because an average RGB color sum to 1.5 (i.e. [0.5, 0.5, 0.5])
# (0.5 [original avg RGB per channel] + 0.1 [albedo_add]) * 2.5 = 1.5
diffuse_tint = np.array([0.5, 0.5, 0.5]) + avg_color / np.sum(avg_color)
diffuse_tint = diffuse_tint.tolist()
return albedo_add, diffuse_tint
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(ModifiedParticles)
return deps
def _sync_systems(self, systems):
"""
Helper function for forcing internal systems to be synchronized with external list of @systems.
NOTE: This may override internal state
Args:
systems (list of BaseSystem): List of system(s) that should be actively tracked internally
"""
self._limits = {system: m.DEFAULT_SATURATION_LIMIT for system in systems}
@property
def state_size(self):
# Limit per entry * 2 (UUID, value) + default limit + n limits
return len(self._limits) * 2 + 2
def _dump_state(self):
state = dict(n_systems=len(self._limits), default_limit=self._default_limit)
for system, limit in self._limits.items():
state[system.name] = limit
return state
def _load_state(self, state):
self._limits = dict()
for k, v in state.items():
if k == "n_systems":
continue
elif k == "default_limit":
self._default_limit = v
# TODO: Make this an else once fresh round of sampling occurs (i.e.: no more outdated systems stored)
elif k in REGISTERED_SYSTEMS:
self._limits[REGISTERED_SYSTEMS[k]] = v
def _serialize(self, state):
state_flat = np.array([state["n_systems"], state["default_limit"]], dtype=float)
if state["n_systems"] > 0:
system_names = tuple(state.keys())[2:]
state_flat = np.concatenate(
[state_flat,
np.concatenate([(get_uuid(system_name), state[system_name]) for system_name in system_names])]
).astype(float)
return state_flat
def _deserialize(self, state):
n_systems = int(state[0])
state_dict = dict(n_systems=n_systems, default_limit=int(state[1]))
state_shaped = state[2:2 + n_systems * 2].reshape(-1, 2)
systems = []
for uuid, val in state_shaped:
system = UUID_TO_SYSTEMS[int(uuid)]
state_dict[system.name] = int(val)
systems.append(system)
# Sync systems so that state size sanity check succeeds
self._sync_systems(systems=systems)
return state_dict, 2 + n_systems * 2
| 8,582 | Python | 34.614108 | 149 | 0.60289 |
StanfordVL/OmniGibson/omnigibson/object_states/link_based_state_mixin.py | import numpy as np
from omnigibson.object_states.object_state_base import BaseObjectState
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.python_utils import classproperty
from omnigibson.prims.cloth_prim import ClothPrim
# Create module logger
log = create_module_logger(module_name=__name__)
class LinkBasedStateMixin(BaseObjectState):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._links = dict()
@classmethod
def is_compatible(cls, obj, **kwargs):
# Run super first
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state requires metalink
if not cls.requires_metalink(**kwargs):
return True, None
metalink_prefix = cls.metalink_prefix
for link in obj.links.values():
if metalink_prefix in link.name:
return True, None
return False, f"LinkBasedStateMixin {cls.__name__} requires metalink with prefix {cls.metalink_prefix} " \
f"for obj {obj.name} but none was found! To get valid compatible object models, please use " \
f"omnigibson.utils.asset_utils.get_all_object_category_models_with_abilities(...)"
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
# Run super first
compatible, reason = super().is_compatible_asset(prim, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state requires metalink
if not cls.requires_metalink(**kwargs):
return True, None
metalink_prefix = cls.metalink_prefix
for child in prim.GetChildren():
if child.GetTypeName() == "Xform":
if metalink_prefix in child.GetName():
return True, None
return False, f"LinkBasedStateMixin {cls.__name__} requires metalink with prefix {cls.metalink_prefix} " \
f"for asset prim {prim.GetName()} but none was found! To get valid compatible object models, " \
f"please use omnigibson.utils.asset_utils.get_all_object_category_models_with_abilities(...)"
@classproperty
def metalink_prefix(cls):
"""
Returns:
str: Unique keyword that defines the metalink associated with this object state
"""
NotImplementedError()
@classmethod
def requires_metalink(cls, **kwargs):
"""
Returns:
Whether an object state instantiated with constructor arguments **kwargs will require a metalink
or not
"""
# True by default
return True
@property
def link(self):
"""
Returns:
None or RigidPrim: The link associated with this link-based state, if it exists
"""
assert self.links, f"LinkBasedStateMixin link not found for {self.obj.name}"
return next(iter(self.links.values()))
@property
def links(self):
"""
Returns:
dict: mapping from link names to links that match the metalink_prefix
"""
return self._links
@property
def _default_link(self):
"""
Returns:
None or RigidPrim: If supported, the fallback link associated with this link-based state if
no valid metalink is found
"""
# No default link by default
return None
def initialize_link_mixin(self):
assert not self._initialized
# TODO: Extend logic to account for multiple instances of the same metalink? e.g: _0, _1, ... suffixes
for name, link in self.obj.links.items():
if self.metalink_prefix in name or (self._default_link is not None and link.name == self._default_link.name):
self._links[name] = link
# Make sure the scale is similar if the link is not a cloth prim
if not isinstance(link, ClothPrim):
assert np.allclose(link.scale, self.obj.scale), \
f"the meta link {name} has a inconsistent scale with the object {self.obj.name}"
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("LinkBasedStateMixin")
return classes
| 4,501 | Python | 36.831932 | 121 | 0.614752 |
StanfordVL/OmniGibson/omnigibson/object_states/pose.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import AbsoluteObjectState
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.POSITIONAL_VALIDATION_EPSILON = 1e-10
m.ORIENTATION_VALIDATION_EPSILON = 0.003 # ~5 degrees error tolerance
class Pose(AbsoluteObjectState):
def _get_value(self):
pos = self.obj.get_position()
orn = self.obj.get_orientation()
return np.array(pos), np.array(orn)
def _has_changed(self, get_value_args, value, info):
# Only changed if the squared distance between old position and current position has
# changed above some threshold
old_pos, old_quat = value
# Get current pose
current_pos, current_quat = self.get_value()
# Check position and orientation -- either changing means we've changed poses
dist_squared = np.sum(np.square(current_pos - old_pos))
if dist_squared > m.POSITIONAL_VALIDATION_EPSILON:
return True
# Calculate quat distance simply as the dot product
# A * B = |A||B|cos(theta)
quat_cos_angle = np.abs(np.dot(old_quat, current_quat))
if (1 - quat_cos_angle) > m.ORIENTATION_VALIDATION_EPSILON:
return True
return False
| 1,341 | Python | 35.270269 | 92 | 0.668158 |
StanfordVL/OmniGibson/omnigibson/object_states/covered.py | from omnigibson.macros import create_module_macros
from omnigibson.object_states import AABB
from omnigibson.object_states.object_state_base import RelativeObjectState, BooleanStateMixin
from omnigibson.object_states.contact_particles import ContactParticles
from omnigibson.systems.system_base import VisualParticleSystem, is_visual_particle_system, is_physical_particle_system
from omnigibson.utils.constants import PrimType
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Number of visual particles needed in order for Covered --> True
m.VISUAL_PARTICLE_THRESHOLD = 1
# Maximum number of visual particles to sample when setting an object to be covered = True
m.MAX_VISUAL_PARTICLES = 20
# Number of physical particles needed in order for Covered --> True
m.PHYSICAL_PARTICLE_THRESHOLD = 1
# Maximum number of physical particles to sample when setting an object to be covered = True
m.MAX_PHYSICAL_PARTICLES = 5000
class Covered(RelativeObjectState, BooleanStateMixin):
def __init__(self, obj):
# Run super first
super().__init__(obj)
# Set internal values
self._visual_particle_group = None
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({AABB, ContactParticles})
return deps
def remove(self):
if self._initialized:
self._clear_attachment_groups()
def _clear_attachment_groups(self):
"""
Utility function to destroy all corresponding attachment groups for this object
"""
for system in VisualParticleSystem.get_active_systems().values():
if self._visual_particle_group in system.groups:
system.remove_attachment_group(self._visual_particle_group)
def _initialize(self):
super()._initialize()
# Grab group name
self._visual_particle_group = VisualParticleSystem.get_group_name(obj=self.obj)
def _get_value(self, system):
# Value is false by default
value = False
# First, we check what type of system
# Currently, we support VisualParticleSystems and PhysicalParticleSystems
if system.n_particles > 0:
if is_visual_particle_system(system_name=system.name):
if self._visual_particle_group in system.groups:
# check whether the current number of particles assigned to the group is greater than the threshold
value = system.num_group_particles(group=self._visual_particle_group) >= m.VISUAL_PARTICLE_THRESHOLD
elif is_physical_particle_system(system_name=system.name):
# Make sure we're not cloth -- not supported yet
assert self.obj.prim_type != PrimType.CLOTH, \
"Cloth objects currently cannot be Covered by physical particles!"
# We've already cached particle contacts, so we merely search through them to see if any particles are
# touching the object and are visible (the non-visible ones are considered already "removed")
n_near_particles = len(self.obj.states[ContactParticles].get_value(system))
# Heuristic: If the number of near particles is above the threshold, we consdier this covered
value = n_near_particles >= m.PHYSICAL_PARTICLE_THRESHOLD
else:
raise ValueError(f"Invalid system {system} received for getting Covered state!"
f"Currently, only VisualParticleSystems and PhysicalParticleSystems are supported.")
return value
def _set_value(self, system, new_value):
# Default success value is True
success = True
# First, we check what type of system
# Currently, we support VisualParticleSystems and PhysicalParticleSystems
if is_visual_particle_system(system_name=system.name):
# Create the group if it doesn't exist already
if self._visual_particle_group not in system.groups:
system.create_attachment_group(obj=self.obj)
# Check current state and only do something if we're changing state
if self.get_value(system) != new_value:
if new_value:
# Generate particles
success = system.generate_group_particles_on_object(
group=self._visual_particle_group,
max_samples=m.MAX_VISUAL_PARTICLES,
min_samples_for_success=m.VISUAL_PARTICLE_THRESHOLD,
)
else:
# We remove all of this group's particles
system.remove_all_group_particles(group=self._visual_particle_group)
elif is_physical_particle_system(system_name=system.name):
# Make sure we're not cloth -- not supported yet
assert self.obj.prim_type != PrimType.CLOTH, \
"Cloth objects currently cannot be Covered by physical particles!"
# Check current state and only do something if we're changing state
if self.get_value(system) != new_value:
if new_value:
# Sample particles on top of the object
success = system.generate_particles_on_object(
obj=self.obj,
max_samples=m.MAX_PHYSICAL_PARTICLES,
min_samples_for_success=m.PHYSICAL_PARTICLE_THRESHOLD,
)
else:
# We remove all particles touching this object
system.remove_particles(idxs=list(self.obj.states[ContactParticles].get_value(system)))
else:
raise ValueError(f"Invalid system {system} received for setting Covered state!"
f"Currently, only VisualParticleSystems and PhysicalParticleSystems are supported.")
return success
| 5,994 | Python | 46.579365 | 120 | 0.639139 |
StanfordVL/OmniGibson/omnigibson/object_states/max_temperature.py | from omnigibson.object_states.temperature import Temperature
from omnigibson.object_states.tensorized_value_state import TensorizedValueState
import numpy as np
from omnigibson.utils.python_utils import classproperty
class MaxTemperature(TensorizedValueState):
"""
This state remembers the highest temperature reached by an object.
"""
# np.ndarray: Array of Temperature.VALUE indices that correspond to the internally tracked MaxTemperature objects
TEMPERATURE_IDXS = None
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(Temperature)
return deps
@classmethod
def global_initialize(cls):
# Call super first
super().global_initialize()
# Initialize other global variables
cls.TEMPERATURE_IDXS = np.array([], dtype=int)
# Add global callback to Temperature state so that temperature idxs will be updated
def _update_temperature_idxs(obj):
# Decrement all remaining temperature idxs -- they're strictly increasing so we can simply
# subtract 1 from all downstream indices
deleted_idx = Temperature.OBJ_IDXS[obj.name]
cls.TEMPERATURE_IDXS = np.where(cls.TEMPERATURE_IDXS >= deleted_idx, cls.TEMPERATURE_IDXS - 1, cls.TEMPERATURE_IDXS)
Temperature.add_callback_on_remove(name="MaxTemperature_temperature_idx_update", callback=_update_temperature_idxs)
@classmethod
def global_clear(cls):
# Call super first
super().global_clear()
# Clear other internal state
cls.TEMPERATURE_IDXS = None
@classmethod
def _add_obj(cls, obj):
# Call super first
super()._add_obj(obj=obj)
# Add to temperature index
cls.TEMPERATURE_IDXS = np.concatenate([cls.TEMPERATURE_IDXS, [Temperature.OBJ_IDXS[obj.name]]])
@classmethod
def _remove_obj(cls, obj):
# Grab idx we'll delete before the object is deleted
deleted_idx = cls.OBJ_IDXS[obj.name]
# Remove from temperature index
cls.TEMPERATURE_IDXS = np.delete(cls.TEMPERATURE_IDXS, [deleted_idx])
# Decrement all remaining temperature idxs -- they're strictly increasing so we can simply
# subtract 1 from all downstream indices
if deleted_idx < len(cls.TEMPERATURE_IDXS):
cls.TEMPERATURE_IDXS[deleted_idx:] -= 1
# Call super
super()._remove_obj(obj=obj)
@classmethod
def _update_values(cls, values):
# Value is max between stored values and current temperature values
return np.maximum(values, Temperature.VALUES[cls.TEMPERATURE_IDXS])
@classproperty
def value_name(cls):
return "max_temperature"
def __init__(self, obj):
super(MaxTemperature, self).__init__(obj)
# Set value to be default
self._set_value(-np.inf)
| 2,897 | Python | 33.5 | 128 | 0.670694 |
StanfordVL/OmniGibson/omnigibson/object_states/next_to.py | import numpy as np
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.adjacency import HorizontalAdjacency, flatten_planes
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
class NextTo(KinematicsMixin, RelativeObjectState, BooleanStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(HorizontalAdjacency)
return deps
def _get_value(self, other):
objA_states = self.obj.states
objB_states = other.states
assert AABB in objA_states
assert AABB in objB_states
objA_aabb = objA_states[AABB].get_value()
objB_aabb = objB_states[AABB].get_value()
objA_lower, objA_upper = objA_aabb
objB_lower, objB_upper = objB_aabb
distance_vec = []
for dim in range(3):
glb = max(objA_lower[dim], objB_lower[dim])
lub = min(objA_upper[dim], objB_upper[dim])
distance_vec.append(max(0, glb - lub))
distance = np.linalg.norm(np.array(distance_vec))
objA_dims = objA_upper - objA_lower
objB_dims = objB_upper - objB_lower
avg_aabb_length = np.mean(objA_dims + objB_dims)
# If the distance is longer than acceptable, return False.
if distance > avg_aabb_length * (1.0 / 6.0):
return False
# Otherwise, check if the other object shows up in the adjacency list.
adjacency_this = self.obj.states[HorizontalAdjacency].get_value()
in_any_horizontal_adjacency_of_this = any(
(
other in adjacency_list.positive_neighbors or
other in adjacency_list.negative_neighbors
)
for adjacency_list in flatten_planes(adjacency_this)
)
if in_any_horizontal_adjacency_of_this:
return True
# If not, check in the adjacency lists of `other`. Maybe it's shorter than us etc.
adjacency_other = other.states[HorizontalAdjacency].get_value()
in_any_horizontal_adjacency_of_other = any(
(
self.obj in adjacency_list.positive_neighbors or
self.obj in adjacency_list.negative_neighbors
)
for adjacency_list in flatten_planes(adjacency_other)
)
return in_any_horizontal_adjacency_of_other
| 2,470 | Python | 36.439393 | 93 | 0.639271 |
StanfordVL/OmniGibson/omnigibson/object_states/folded.py | import numpy as np
from collections import namedtuple
from scipy.spatial import ConvexHull, distance_matrix, QhullError
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import BooleanStateMixin, AbsoluteObjectState
from omnigibson.object_states.cloth_mixin import ClothStateMixin
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Criterion #1: the threshold on the area ratio of the convex hull of the projection on the XY plane
m.FOLDED_AREA_THRESHOLD = 0.75
m.UNFOLDED_AREA_THRESHOLD = 0.9
# Criterion #2: the threshold on the diagonal ratio of the convex hull of the projection on the XY plane
m.FOLDED_DIAGONAL_THRESHOLD = 0.85
m.UNFOLDED_DIAGONAL_THRESHOLD = 0.9
# Criterion #3: the percentage of face normals that need to be close to the z-axis
m.NORMAL_Z_PERCENTAGE = 0.5
# Whether to visualize the convex hull of the projection on the XY plane
m.DEBUG_CLOTH_PROJ_VIS = False
# Angle threshold for checking smoothness of the cloth; surface normals need to be close enough to the z-axis
m.NORMAL_Z_ANGLE_DIFF = np.deg2rad(45.0)
"""
FoldedLevelData contains the following fields:
smoothness (float): percentage of surface normals that are sufficiently close to the z-axis
area (float): the area of the convex hull of the projected points compared to the initial unfolded state
diagonal (float): the diagonal of the convex hull of the projected points compared to the initial unfolded state
"""
FoldedLevelData = namedtuple("FoldedLevelData", ("smoothness", "area", "diagonal"))
class FoldedLevel(AbsoluteObjectState, ClothStateMixin):
"""
State representing the object's folded level.
Value is a FoldedLevelData object.
"""
def _initialize(self):
super()._initialize()
# Assume the initial state is unfolded
self.area_unfolded, self.diagonal_unfolded = self.calculate_projection_area_and_diagonal_maximum()
def _get_value(self):
smoothness = self.calculate_smoothness()
area, diagonal = self.calculate_projection_area_and_diagonal([0, 1])
return FoldedLevelData(smoothness, area / self.area_unfolded, diagonal / self.diagonal_unfolded)
def calculate_smoothness(self):
"""
Calculate the percantage of surface normals that are sufficiently close to the z-axis.
"""
cloth = self.obj.root_link
normals = cloth.compute_face_normals(face_ids=cloth.keyface_idx)
# projection onto the z-axis
proj = np.abs(np.dot(normals, np.array([0.0, 0.0, 1.0])))
percentage = np.mean(proj > np.cos(m.NORMAL_Z_ANGLE_DIFF))
return percentage
def calculate_projection_area_and_diagonal_maximum(self):
"""
Calculate the maximum projection area and the diagonal length along different axes
Returns:
area_max (float): area of the convex hull of the projected points
diagonal_max (float): diagonal of the convex hull of the projected points
"""
# use the largest projection area as the unfolded area
area_max = 0.0
diagonal_max = 0.0
dims_list = [[0, 1], [0, 2], [1, 2]] # x-y plane, x-z plane, y-z plane
for dims in dims_list:
area, diagonal = self.calculate_projection_area_and_diagonal(dims)
if area > area_max:
area_max = area
diagonal_max = diagonal
return area_max, diagonal_max
def calculate_projection_area_and_diagonal(self, dims):
"""
Calculate the projection area and the diagonal length when projecting to the plane defined by the input dims
E.g. if dims is [0, 1], the points will be projected onto the x-y plane.
Args:
dims (2-array): Global axes to project area onto. Options are {0, 1, 2}.
E.g. if dims is [0, 1], project onto the x-y plane.
Returns:
area (float): area of the convex hull of the projected points
diagonal (float): diagonal of the convex hull of the projected points
"""
cloth = self.obj.root_link
points = cloth.keypoint_particle_positions[:, dims]
try:
hull = ConvexHull(points)
# The points may be 2D-degenerate, so catch the error and return 0 if so
except QhullError:
# This is a degenerate hull, so return 0 area and diagonal
return 0.0, 0.0
# When input points are 2-dimensional, this is the area of the convex hull.
# Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
area = hull.volume
diagonal = distance_matrix(points[hull.vertices], points[hull.vertices]).max()
if m.DEBUG_CLOTH_PROJ_VIS:
import matplotlib.pyplot as plt
ax = plt.gca()
ax.set_aspect('equal')
plt.plot(points[:, dims[0]], points[:, dims[1]], 'o')
for simplex in hull.simplices:
plt.plot(points[simplex, dims[0]], points[simplex, dims[1]], 'k-')
plt.plot(points[hull.vertices, dims[0]], points[hull.vertices, dims[1]], 'r--', lw=2)
plt.plot(points[hull.vertices[0], dims[0]], points[hull.vertices[0], dims[1]], 'ro')
plt.show()
return area, diagonal
class Folded(AbsoluteObjectState, BooleanStateMixin, ClothStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(FoldedLevel)
return deps
def _get_value(self):
# Check the smoothness of the cloth
folded_level = self.obj.states[FoldedLevel].get_value()
return folded_level.smoothness >= m.NORMAL_Z_PERCENTAGE and \
folded_level.area < m.FOLDED_AREA_THRESHOLD and \
folded_level.diagonal < m.FOLDED_DIAGONAL_THRESHOLD
def _set_value(self, new_value):
if not new_value:
raise NotImplementedError("Folded does not support set_value(False)")
# TODO (eric): add this support
raise NotImplementedError("Folded does not support set_value(True)")
# We don't need to dump / load anything since the cloth objects should handle it themselves
class Unfolded(AbsoluteObjectState, BooleanStateMixin, ClothStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(FoldedLevel)
return deps
def _get_value(self):
# Check the smoothness of the cloth
folded_level = self.obj.states[FoldedLevel].get_value()
return folded_level.smoothness >= m.NORMAL_Z_PERCENTAGE and \
folded_level.area >= m.UNFOLDED_AREA_THRESHOLD and \
folded_level.diagonal >= m.UNFOLDED_DIAGONAL_THRESHOLD
def _set_value(self, new_value):
if not new_value:
raise NotImplementedError("Unfolded does not support set_value(False)")
self.obj.root_link.reset()
return True
# We don't need to dump / load anything since the cloth objects should handle it themselves
| 7,106 | Python | 39.380682 | 116 | 0.663805 |
StanfordVL/OmniGibson/omnigibson/object_states/toggle.py | import numpy as np
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import create_module_macros
from omnigibson.prims.geom_prim import VisualGeomPrim
from omnigibson.object_states.link_based_state_mixin import LinkBasedStateMixin
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin
from omnigibson.object_states.update_state_mixin import UpdateStateMixin, GlobalUpdateStateMixin
from omnigibson.utils.python_utils import classproperty
from omnigibson.utils.usd_utils import create_primitive_mesh, RigidContactAPI
from omnigibson.utils.constants import PrimType
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.TOGGLE_LINK_PREFIX = "togglebutton"
m.DEFAULT_SCALE = 0.1
m.CAN_TOGGLE_STEPS = 5
class ToggledOn(AbsoluteObjectState, BooleanStateMixin, LinkBasedStateMixin, UpdateStateMixin, GlobalUpdateStateMixin):
# Set of prim paths defining robot finger links belonging to any manipulation robots
_robot_finger_paths = None
# Set of objects that are contacting any manipulation robots
_finger_contact_objs = None
def __init__(self, obj, scale=None):
self.scale = scale
self.value = False
self.robot_can_toggle_steps = 0
self.visual_marker = None
# We also generate the function for checking overlaps at runtime
self._check_overlap = None
super().__init__(obj)
@classmethod
def global_update(cls):
# Avoid circular imports
from omnigibson.robots.manipulation_robot import ManipulationRobot
# Clear finger contact objects since it will be refreshed now
cls._finger_contact_objs = set()
# detect marker and hand interaction
robot_finger_links = set(link
for robot in og.sim.scene.robots if isinstance(robot, ManipulationRobot)
for finger_links in robot.finger_links.values()
for link in finger_links)
cls._robot_finger_paths = set(link.prim_path for link in robot_finger_links)
# If there aren't any valid robot link paths, immediately return
if len(cls._robot_finger_paths) == 0:
return
finger_idxs = [RigidContactAPI.get_body_col_idx(prim_path) for prim_path in cls._robot_finger_paths]
finger_impulses = RigidContactAPI.get_all_impulses()[:, finger_idxs, :]
n_bodies = len(finger_impulses)
touching_bodies = np.any(finger_impulses.reshape(n_bodies, -1), axis=-1)
touching_bodies_idxs = np.where(touching_bodies)[0]
if len(touching_bodies_idxs) > 0:
for idx in touching_bodies_idxs:
body_prim_path = RigidContactAPI.get_row_idx_prim_path(idx=idx)
obj = og.sim.scene.object_registry("prim_path", "/".join(body_prim_path.split("/")[:-1]))
if obj is not None:
cls._finger_contact_objs.add(obj)
@classproperty
def metalink_prefix(cls):
return m.TOGGLE_LINK_PREFIX
def _get_value(self):
return self.value
def _set_value(self, new_value):
self.value = new_value
# Choose which color to apply to the toggle marker
self.visual_marker.color = np.array([0, 1.0, 0]) if self.value else np.array([1.0, 0, 0])
return True
def _initialize(self):
super()._initialize()
self.initialize_link_mixin()
# Make sure this object is not cloth
assert self.obj.prim_type != PrimType.CLOTH, f"Cannot create ToggledOn state for cloth object {self.obj.name}!"
mesh_prim_path = f"{self.link.prim_path}/mesh_0"
pre_existing_mesh = lazy.omni.isaac.core.utils.prims.get_prim_at_path(mesh_prim_path)
# Create a primitive mesh if it doesn't already exist
if not pre_existing_mesh:
self.scale = m.DEFAULT_SCALE if self.scale is None else self.scale
# Note: We have to create a mesh (instead of a sphere shape) because physx complains about non-uniform
# scaling for non-meshes
mesh = create_primitive_mesh(
prim_path=mesh_prim_path,
primitive_type="Sphere",
extents=1.0,
)
else:
# Infer radius from mesh if not specified as an input
lazy.omni.isaac.core.utils.bounds.recompute_extents(prim=pre_existing_mesh)
self.scale = np.array(pre_existing_mesh.GetAttribute("xformOp:scale").Get())
# Create the visual geom instance referencing the generated mesh prim
self.visual_marker = VisualGeomPrim(prim_path=mesh_prim_path, name=f"{self.obj.name}_visual_marker")
self.visual_marker.scale = self.scale
self.visual_marker.initialize()
self.visual_marker.visible = True
# Store the projection mesh's IDs
projection_mesh_ids = lazy.pxr.PhysicsSchemaTools.encodeSdfPath(self.visual_marker.prim_path)
# Define function for checking overlap
valid_hit = False
def overlap_callback(hit):
nonlocal valid_hit
valid_hit = hit.rigid_body in self._robot_finger_paths
# Continue traversal only if we don't have a valid hit yet
return not valid_hit
# Set this value to be False by default
self._set_value(False)
def check_overlap():
nonlocal valid_hit
valid_hit = False
if self.visual_marker.prim.GetTypeName() == "Mesh":
og.sim.psqi.overlap_mesh(*projection_mesh_ids, reportFn=overlap_callback)
else:
og.sim.psqi.overlap_shape(*projection_mesh_ids, reportFn=overlap_callback)
return valid_hit
self._check_overlap = check_overlap
def _update(self):
# If we're not nearby any fingers, we automatically can't toggle
if self.obj not in self._finger_contact_objs:
robot_can_toggle = False
else:
# Check to make sure fingers are actually overlapping the toggle button mesh
robot_can_toggle = self._check_overlap()
if robot_can_toggle:
self.robot_can_toggle_steps += 1
else:
self.robot_can_toggle_steps = 0
if self.robot_can_toggle_steps == m.CAN_TOGGLE_STEPS:
self.set_value(not self.value)
@staticmethod
def get_texture_change_params():
# By default, it keeps the original albedo unchanged.
albedo_add = 0.0
diffuse_tint = (1.0, 1.0, 1.0)
return albedo_add, diffuse_tint
@property
def state_size(self):
return 2
# For this state, we simply store its value and the robot_can_toggle steps.
def _dump_state(self):
return dict(value=self.value, hand_in_marker_steps=self.robot_can_toggle_steps)
def _load_state(self, state):
# Nothing special to do here when initialized vs. uninitialized
self._set_value(state["value"])
self.robot_can_toggle_steps = state["hand_in_marker_steps"]
def _serialize(self, state):
return np.array([state["value"], state["hand_in_marker_steps"]], dtype=float)
def _deserialize(self, state):
return dict(value=bool(state[0]), hand_in_marker_steps=int(state[1])), 2
| 7,349 | Python | 38.72973 | 119 | 0.647027 |
StanfordVL/OmniGibson/omnigibson/object_states/joint_break_subscribed_state_mixin.py | from omnigibson.object_states.object_state_base import BaseObjectState
from abc import abstractmethod
from omnigibson.utils.python_utils import classproperty
class JointBreakSubscribedStateMixin(BaseObjectState):
"""
Handles JOINT_BREAK event.
The subclass should implement its own on_joint_break method
"""
@abstractmethod
def on_joint_break(self, joint_prim_path):
raise NotImplementedError("Subclasses of JointBreakSubscribedStateMixin should implement the on_joint_break method.")
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("JointBreakSubscribedStateMixin")
return classes
| 775 | Python | 34.272726 | 125 | 0.747097 |
StanfordVL/OmniGibson/omnigibson/object_states/particle_modifier.py | from abc import abstractmethod
from collections import defaultdict
import numpy as np
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import create_module_macros, macros, gm
from omnigibson.prims.geom_prim import VisualGeomPrim
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.contact_particles import ContactParticles
from omnigibson.object_states.covered import Covered
from omnigibson.object_states.link_based_state_mixin import LinkBasedStateMixin
from omnigibson.object_states.object_state_base import IntrinsicObjectState
from omnigibson.object_states.saturated import ModifiedParticles, Saturated
from omnigibson.object_states.toggle import ToggledOn
from omnigibson.object_states.update_state_mixin import UpdateStateMixin
from omnigibson.prims.prim_base import BasePrim
from omnigibson.systems.system_base import BaseSystem, VisualParticleSystem, PhysicalParticleSystem, get_system, \
is_visual_particle_system, is_physical_particle_system, is_fluid_system, is_system_active, REGISTERED_SYSTEMS
from omnigibson.utils.constants import ParticleModifyMethod, ParticleModifyCondition, PrimType
from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function, \
get_particle_positions_in_frame, get_particle_positions_from_frame
from omnigibson.utils.python_utils import classproperty
from omnigibson.utils.ui_utils import suppress_omni_log
from omnigibson.utils.usd_utils import create_primitive_mesh, FlatcacheAPI
import omnigibson.utils.transform_utils as T
from omnigibson.utils.sampling_utils import sample_cuboid_on_object
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.APPLICATION_LINK_PREFIX = "particleapplier"
m.REMOVAL_LINK_PREFIX = "particleremover"
# How many samples within the application area to generate per update step
m.MAX_VISUAL_PARTICLES_APPLIED_PER_STEP = 2
m.MAX_PHYSICAL_PARTICLES_APPLIED_PER_STEP = 10
# How many steps between generating particle samples
m.N_STEPS_PER_APPLICATION = 5
m.N_STEPS_PER_REMOVAL = 1
# Application thresholds -- maximum number of particles that can be applied by a ParticleApplier
m.VISUAL_PARTICLES_APPLICATION_LIMIT = 1000000
m.PHYSICAL_PARTICLES_APPLICATION_LIMIT = 1000000
# Saturation thresholds -- maximum number of particles that can be removed ("absorbed") by a ParticleRemover
m.VISUAL_PARTICLES_REMOVAL_LIMIT = 40
m.PHYSICAL_PARTICLES_REMOVAL_LIMIT = 400
# Fallback particle visualization radius for visualizing projected visual particles
m.VISUAL_PARTICLE_PROJECTION_PARTICLE_RADIUS = 0.01
# The margin (> 0) to add to the remover area's AABB when detecting overlaps with other objects
m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN = 0.05
# Settings for determining how the projection particles are visualized as they're projected
m.PROJECTION_VISUALIZATION_CONE_TIP_RADIUS = 0.001
m.PROJECTION_VISUALIZATION_RATE = 200
m.PROJECTION_VISUALIZATION_SPEED = 2.0
m.PROJECTION_VISUALIZATION_ORIENTATION_BIAS = 1e6
m.PROJECTION_VISUALIZATION_SPREAD_FACTOR = 0.8
def create_projection_visualization(
prim_path,
shape,
projection_name,
projection_radius,
projection_height,
particle_radius,
parent_scale,
material=None,
):
"""
Helper function to generate a projection visualization using Omniverse's particle visualization system
Args:
prim_path (str): Stage location for where to generate the projection visualization
shape (str): Shape of the projection to generate. Valid options are: {Sphere, Cone}
projection_name (str): Name associated with this projection visualization. Should be unique!
projection_radius (float): Radius of the generated projection visualization overall volume
(specified in local frame)
projection_height (float): Height of the generated projection visualization overall volume
(specified in local frame)
particle_radius (float): Radius of the particles composing the projection visualization
parent_scale (3-array): If specified, specifies the (x,y,z) scale of the parent Xform prim of the
generated source sphere prim at @prim_path. This will be used to scale the visualization accordingly
material (None or MaterialPrim): If specified, specifies the material to associate with the generated
particles within the projection visualization
Returns:
2-tuple:
- UsdPrim: Generated ParticleSystem (ComputeGraph) prim generated
- UsdPrim: Generated Emitter (ComputeGraph) prim generated
"""
# Create the desired shape which will be used as the source input prim into the generated projection visualization
source = lazy.pxr.UsdGeom.Sphere.Define(og.sim.stage, lazy.pxr.Sdf.Path(prim_path))
# Modify the radius according to the desired @shape (and also infer the desired spread values)
if shape == "Cylinder":
source_radius = projection_radius
spread = np.zeros(3)
elif shape == "Cone":
# Default to close to singular point otherwise
source_radius = m.PROJECTION_VISUALIZATION_CONE_TIP_RADIUS
spread_ratio = projection_radius * 2.0 / projection_height
spread = np.ones(3) * spread_ratio * m.PROJECTION_VISUALIZATION_SPREAD_FACTOR
else:
raise ValueError(f"Invalid shape specified for projection visualization! Valid options are: [Cone, Cylinder], got: {shape}")
# Set the radius
source.GetRadiusAttr().Set(source_radius)
# Also make the prim invisible
lazy.pxr.UsdGeom.Imageable(source.GetPrim()).MakeInvisible()
# Generate the ComputeGraph nodes to render the projection
# Import now to avoid too-eager load of Omni classes due to inheritance
from omnigibson.utils.deprecated_utils import Core
core = Core(lambda val: None, particle_system_name=projection_name)
# Scale radius and height by the parent scale -- projection always points in the negative-z direction of the
# parent frame
# We do this AFTER we create the source sphere because the actual projection is scaled in the world frame, whereas
# the source sphere is already scaled by its own parent frame
# NOTE: The generated projection visualization will NOT match the underlying projection mesh if the parent link is
# scaled non-uniformly!!
projection_radius *= np.mean(parent_scale[:2])
projection_height *= parent_scale[2]
# Suppress omni warnings here -- we don't have control over this API, but omni likes to complain about this
with suppress_omni_log(channels=["omni.graph.core.plugin", "omni.usd", "rtx.neuraylib.plugin"]):
system_path, _, emitter_path, vis_path, instancer_path, sprite_path, mat_path, output_path = \
core.create_particle_system(display="point_instancer", paths=[prim_path])
# Override the prototype with our own sphere with optional material
prototype_path = "/".join(sprite_path.split("/")[:-1]) + "/prototype"
create_primitive_mesh(prototype_path, primitive_type="Sphere")
prototype = VisualGeomPrim(prim_path=prototype_path, name=f"{projection_name}_prototype")
prototype.initialize()
# Set the scale (native scaling --> radius 0.5) and possibly update the material
prototype.scale = particle_radius * 2.0
if material is not None:
prototype.material = material
# Override the prototype used by the instancer
instancer_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(instancer_path)
instancer_prim.GetProperty("inputs:prototypes").SetTargets([prototype_path])
# Destroy the old mat path since we don't use the sprites
lazy.omni.isaac.core.utils.prims.delete_prim(mat_path)
# Modify the settings of the emitter to match the desired shape from inputs
emitter_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(emitter_path)
emitter_prim.GetProperty("inputs:active").Set(True)
emitter_prim.GetProperty("inputs:rate").Set(m.PROJECTION_VISUALIZATION_RATE)
emitter_prim.GetProperty("inputs:lifespan").Set(projection_height / m.PROJECTION_VISUALIZATION_SPEED)
emitter_prim.GetProperty("inputs:speed").Set(m.PROJECTION_VISUALIZATION_SPEED)
emitter_prim.GetProperty("inputs:alongAxis").Set(m.PROJECTION_VISUALIZATION_ORIENTATION_BIAS)
emitter_prim.GetProperty("inputs:scale").Set(lazy.pxr.Gf.Vec3f(1.0, 1.0, 1.0))
emitter_prim.GetProperty("inputs:directionRandom").Set(lazy.pxr.Gf.Vec3f(*spread))
emitter_prim.GetProperty("inputs:addSourceVelocity").Set(1.0)
# Make sure we render 4 times to fully propagate changes (validated empirically)
# Omni likes to complain here again, but we have no control over the low-level information, so we suppress warnings
with suppress_omni_log(channels=["omni.particle.system.core.plugin", "omni.hydra.scene_delegate.plugin", "omni.usd"]):
for i in range(4):
og.sim.render()
# Return the particle system prim which "owns" everything
return lazy.omni.isaac.core.utils.prims.get_prim_at_path(system_path), emitter_prim
class ParticleModifier(IntrinsicObjectState, LinkBasedStateMixin, UpdateStateMixin):
"""
Object state representing an object that has the ability to modify visual and / or physical particles within the
active simulation.
Args:
obj (StatefulObject): Object to which this state will be applied
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
method (ParticleModifyMethod): Method to modify particles. Current options supported are ADJACENCY (i.e.:
"touching" particles) or PROJECTION (i.e.: "spraying" particles)
projection_mesh_params (None or dict): If specified and @method is ParticleModifyMethod.PROJECTION,
manually overrides any data inferred directly from this object to infer what projection volume to generate
for this particle modifier. Expected entries are as follows:
"type": (str), one of {"Cylinder", "Cone", "Cube", "Sphere"}
"extents": (3-array), the (x,y,z) extents of the generated volume (specified in local link frame!)
If None, information found from @obj.metadata will be used instead.
NOTE: x-direction should align with the projection mesh's height (i.e.: z) parameter in @extents!
"""
def __init__(self, obj, conditions, method=ParticleModifyMethod.ADJACENCY, projection_mesh_params=None):
# Store internal variables
self.method = method
self.projection_source_sphere = None
self.projection_mesh = None
self._check_in_mesh = None
self._check_overlap = None
self._link_prim_paths = None
self._current_step = None
self._projection_mesh_params = projection_mesh_params
# Parse conditions
self._conditions = self._parse_conditions(conditions=conditions)
# Run super method
super().__init__(obj)
@property
def conditions(self):
"""
dict: Dictionary mapping the names of ParticleSystem (str) to a list of function calls that must evaluate to
True in order for this particle modifier to be able to modify particles belonging to @ParticleSystem.
The list of functions at least contains the limit condition, which is a function that checks whether the
applier has applied or the remover has removed the maximum number of particles allowed. If the systen name is
not in the dictionary, then the modifier cannot modify particles of that system.
"""
return self._conditions
@classmethod
def is_compatible(cls, obj, **kwargs):
# Run super first
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state has toggledon if required or saturated if required for any condition
conditions = kwargs.get("conditions", dict())
cond_types = {cond[0] for _, conds in conditions.items() if conds is not None for cond in conds}
for cond_type, state_type in zip((ParticleModifyCondition.TOGGLEDON,), (ToggledOn,)):
if cond_type in cond_types and state_type not in obj.states:
return False, f"{cls.__name__} requires {state_type.__name__} state!"
return True, None
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
# Run super first
compatible, reason = super().is_compatible_asset(prim, **kwargs)
if not compatible:
return compatible, reason
# Check whether this state has toggledon if required or saturated if required for any condition
conditions = kwargs.get("conditions", dict())
cond_types = {cond[0] for _, conds in conditions.items() if conds is not None for cond in conds}
for cond_type, state_type in zip((ParticleModifyCondition.TOGGLEDON,), (ToggledOn,)):
if cond_type in cond_types and not state_type.is_compatible_asset(prim=prim, **kwargs):
return False, f"{cls.__name__} requires {state_type.__name__} state!"
return True, None
@classmethod
def postprocess_ability_params(cls, params):
"""
Post-processes ability parameters to ensure the system names (rather than synsets) are used for conditions.
"""
# Import here to avoid circular imports
from omnigibson.utils.bddl_utils import get_system_name_by_synset
for sys in list(params["conditions"].keys()):
# The original key can be either a system name or a system synset. If it's a synset, we need to convert it.
system_name = sys if sys in REGISTERED_SYSTEMS.keys() else get_system_name_by_synset(sys)
params["conditions"][system_name] = params["conditions"].pop(sys)
conds = params["conditions"][system_name]
if conds is None:
continue
for cond in conds:
cond_type, cond_sys = cond
if cond_type == ParticleModifyCondition.SATURATED:
cond[1] = cond_sys if cond_sys in REGISTERED_SYSTEMS.keys() else get_system_name_by_synset(cond_sys)
return params
def _initialize(self):
super()._initialize()
# Run link initialization
self.initialize_link_mixin()
# Sanity check scale if requested
if self.requires_overlap:
# Run sanity check to make sure compatibility with omniverse physx
if self.method == ParticleModifyMethod.PROJECTION and not np.isclose(self.obj.scale.max(), self.obj.scale.min(), atol=1e-04):
raise ValueError(f"{self.__class__.__name__} for obj {self.obj.name} using PROJECTION method cannot be "
f"created with non-uniform scale and requires_overlap! Got scale: {self.obj.scale}")
# Initialize internal variables
self._current_step = 0
# Grab link prim paths and potentially update projection mesh params
self._link_prim_paths = set(self.obj.link_prim_paths)
# Define callback used during overlap method
# We want to ignore any hits that are with this object itself
valid_hit = False
def overlap_callback(hit):
nonlocal valid_hit
valid_hit = hit.rigid_body not in self._link_prim_paths
# Continue traversal only if we don't have a valid hit yet
return not valid_hit
# Possibly create a projection volume if we're using the projection method
if self.method == ParticleModifyMethod.PROJECTION:
# Construct naming prefix to apply to generated prims
name_prefix = f"{self.obj.name}_{self.__class__.__name__}"
shape_defaults = {
"radius": 0.5,
"height": 1.0,
"size": 1.0,
}
mesh_prim_path = f"{self.link.prim_path}/mesh_0"
# Create a primitive shape if it doesn't already exist
pre_existing_mesh = lazy.omni.isaac.core.utils.prims.get_prim_at_path(mesh_prim_path)
if not pre_existing_mesh:
# Projection mesh params must be specified in order to determine scalings
assert self._projection_mesh_params is not None, \
f"Must specify projection_mesh_params for {self.obj.name}'s {self.__class__.__name__} " \
f"since it has no pre-existing projection mesh!"
mesh = getattr(lazy.pxr.UsdGeom, self._projection_mesh_params["type"]).Define(og.sim.stage, mesh_prim_path).GetPrim()
property_names = set(mesh.GetPropertyNames())
for shape_attr, default_val in shape_defaults.items():
if shape_attr in property_names:
mesh.GetAttribute(shape_attr).Set(default_val)
else:
# Potentially populate projection mesh params if the prim exists
mesh_type = pre_existing_mesh.GetTypeName()
if self._projection_mesh_params is None:
self._projection_mesh_params = {
"type": mesh_type,
"extents": np.array(pre_existing_mesh.GetAttribute("xformOp:scale").Get()),
}
# Otherwise, make sure we don't have a mismatch between the pre-existing shape type and the
# desired type since we can't delete the original mesh
else:
assert self._projection_mesh_params["type"] == mesh_type, \
f"Got mismatch in requested projection mesh type ({self._projection_mesh_params['type']}) and " \
f"pre-existing mesh type ({mesh_type})"
# Create the visual geom instance referencing the generated mesh prim, and then hide it
self.projection_mesh = VisualGeomPrim(prim_path=mesh_prim_path, name=f"{name_prefix}_projection_mesh")
self.projection_mesh.initialize()
self.projection_mesh.visible = False
# Make sure the shape-based attributes are not set, and only the scaling is set
property_names = set(self.projection_mesh.prim.GetPropertyNames())
for shape_attr, default_val in shape_defaults.items():
if shape_attr in property_names:
val = self.projection_mesh.get_attribute(shape_attr)
assert val == default_val, \
f"Projection mesh should have shape-based attribute {shape_attr} == {default_val}! Got: {val}"
# Set the scale based on projection mesh params
self.projection_mesh.scale = np.array(self._projection_mesh_params["extents"])
# Make sure the object updates its meshes, and assert that there's only a single visual mesh
self.link.update_meshes()
assert len(self.link.visual_meshes) == 1, \
f"Expected only a single projection mesh for {self.link}, got: {len(self.link.visual_meshes)}"
# Make sure the mesh is translated so that its tip lies at the metalink origin, and rotated so the vector
# from tip to tail faces the positive x axis
z_offset = 0.0 if self._projection_mesh_params["type"] == "Sphere" else self._projection_mesh_params["extents"][2] / 2
self.projection_mesh.set_local_pose(
position=np.array([0, 0, -z_offset]),
orientation=T.euler2quat([0, 0, 0]),
)
# Generate the function for checking whether points are within the projection mesh
self._check_in_mesh, _ = generate_points_in_volume_checker_function(obj=self.obj, volume_link=self.link)
# Store the projection mesh's IDs
projection_mesh_ids = lazy.pxr.PhysicsSchemaTools.encodeSdfPath(self.projection_mesh.prim_path)
# We also generate the function for checking overlaps at runtime
def check_overlap():
nonlocal valid_hit
valid_hit = False
og.sim.psqi.overlap_shape(*projection_mesh_ids, reportFn=overlap_callback)
return valid_hit
elif self.method == ParticleModifyMethod.ADJACENCY:
# Define the function for checking whether points are within the adjacency mesh
def check_in_adjacency_mesh(particle_positions):
# Define the AABB bounds
lower, upper = self.link.visual_aabb
# Add the margin
lower -= m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN
upper += m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN
return ((lower < particle_positions) & (particle_positions < upper)).all(axis=-1)
self._check_in_mesh = check_in_adjacency_mesh
# Define the function for checking overlaps at runtime
def check_overlap():
nonlocal valid_hit
valid_hit = False
aabb = self.link.visual_aabb
og.sim.psqi.overlap_box(
halfExtent=(aabb[1] - aabb[0]) / 2.0 + m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN,
pos=(aabb[1] + aabb[0]) / 2.0,
rot=np.array([0, 0, 0, 1.0]),
reportFn=overlap_callback,
)
return valid_hit
else:
raise ValueError(f"Unsupported ParticleModifyMethod: {self.method}!")
# Store check overlap function
self._check_overlap = check_overlap
# We abuse the Saturated state to store the limit for particle modifier (including both applier and remover)
for system_name in self.conditions.keys():
system = get_system(system_name, force_active=False)
limit = self.visual_particle_modification_limit \
if is_visual_particle_system(system_name=system.name) \
else self.physical_particle_modification_limit
self.obj.states[Saturated].set_limit(system=system, limit=limit)
def _generate_condition(self, condition_type, value):
"""
Generates a valid condition function given @condition_type and its corresponding @value
Args:
condition_type (ParticleModifyCondition): Type of condition to generate
value (any): Corresponding value whose type depends on @condition_type:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
Returns:
function: Condition function whose signature is identical to FUNCTION listed above
"""
# Avoid circular imports
from omnigibson.object_states.saturated import Saturated
if condition_type == ParticleModifyCondition.FUNCTION:
cond = value
elif condition_type == ParticleModifyCondition.SATURATED:
cond = lambda obj: is_system_active(value) and obj.states[Saturated].get_value(get_system(value))
elif condition_type == ParticleModifyCondition.TOGGLEDON:
cond = lambda obj: obj.states[ToggledOn].get_value() == value
elif condition_type == ParticleModifyCondition.GRAVITY:
# Particles spawn in negative z-axis direction, so check positive dot product of link frame with global
cond = lambda obj: (np.dot(T.quat2mat(obj.states[self.__class__].link.get_orientation()) @ np.array([0, 0, 1]), np.array([0, 0, 1])) > 0) == value
else:
raise ValueError(f"Got invalid ParticleModifyCondition: {condition_type}")
return cond
def _parse_conditions(self, conditions):
"""
Parse conditions and store them internally
Args:
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
Returns:
dict: Dictionary mapping the names of ParticleSystem (str) to list of condition functions
"""
parsed_conditions = dict()
# Standardize the conditions (make sure every system has at least one condition, which to make sure
# the particle modifier isn't already limited with the specific number of particles)
for system_name, conds in conditions.items():
# Make sure the system is supported
assert is_visual_particle_system(system_name) or is_physical_particle_system(system_name), \
f"Unsupported system for ParticleModifier: {system_name}"
# Make sure conds isn't empty and is a list
if conds is None:
continue
assert type(conds) == list, f"Expected list of conditions for system {system_name}, got {conds}"
system_conditions = []
for cond_type, cond_val in conds:
cond = self._generate_condition(condition_type=cond_type, value=cond_val)
system_conditions.append(cond)
# Always add limit condition at the end
system_conditions.append(self._generate_limit_condition(system_name))
parsed_conditions[system_name] = system_conditions
return parsed_conditions
@abstractmethod
def _modify_particles(self, system):
"""
Helper function to modify any particles belonging to @system.
NOTE: This should handle both cases for @self.method:
ParticleModifyMethod.ADJACENCY: modify any particles that are overlapping within the relaxed AABB
defining adjacency to this object's modification link.
ParticleModifyMethod.PROJECTION: modify any particles that are overlapping within the projection mesh.
Must be implemented by subclass.
Args:
system (BaseSystem): Particle system whose corresponding particles will be checked for modification
"""
raise NotImplementedError()
def _generate_limit_condition(self, system_name):
"""
Generates a limit function condition for specific system of name @system_name
Args:
system_name (str): Name of the particle system for which to generate a limit checker function
Returns:
function: Limit checker function, with signature condition(obj) --> bool, where @obj is the specific object
that this ParticleModifier state belongs to
"""
system = get_system(system_name, force_active=False)
def condition(obj):
return not self.obj.states[Saturated].get_value(system=system)
return condition
def supports_system(self, system_name):
"""
Checks whether this particle modifier supports adding/removing a particle from the specified
system, e.g. whether there exists any configuration (toggled on, etc.) in which this modifier
can be used to interact with any particles of this system.
Args:
system_name (str): Name of the particle system to check
Returns:
bool: Whether this particle modifier can add or remove a particle from the specified system
"""
return system_name in self.conditions
def check_conditions_for_system(self, system_name):
"""
Checks whether this particle modifier can add or remove a particle from the specified system
in its current configuration, e.g. all of the conditions for addition/removal other than
physical position are met.
Args:
system_name (str): Name of the particle system to check
Returns:
bool: Whether this particle modifier can add or remove a particle from the specified system
"""
if not self.supports_system(system_name):
return False
return all(condition(self.obj) for condition in self.conditions[system_name])
def _update(self):
# If we're using projection method and flatcache, we need to manually update this object's transforms on the USD
# so the corresponding visualization and overlap meshes are updated properly
# This is expensive, so only do it if the object is not a fixed object and we have an active projection
if (
self.method == ParticleModifyMethod.PROJECTION
and gm.ENABLE_FLATCACHE
and not self.obj.fixed_base
and self.projection_is_active
):
FlatcacheAPI.sync_raw_object_transforms_in_usd(prim=self.obj)
# Check if there's any overlap and if we're at the correct step
if self._current_step == 0:
# Iterate over all systems to check
for system_name in self.systems_to_check:
if system_name in self.conditions:
# Check if all conditions are met
if self.check_conditions_for_system(system_name):
system = get_system(system_name)
# Sanity check to see if the modifier has reached its limit for this system
if self.obj.states[Saturated].get_value(system=system):
continue
# Potentially modify particles within the volume
self._modify_particles(system=system)
# Update the current step
self._current_step = (self._current_step + 1) % self.n_steps_per_modification
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({AABB, Saturated, ModifiedParticles})
return deps
@classmethod
def get_optional_dependencies(cls):
deps = super().get_optional_dependencies()
deps.update({Covered, ToggledOn, ContactBodies, ContactParticles})
return deps
@classproperty
def requires_overlap(self):
"""
Returns:
bool: Whether overlap checks should be executed as a guard condition against modifying particles
"""
raise NotImplementedError()
@classproperty
def supported_active_systems(cls):
"""
Returns:
dict: Maps system names to corresponding systems used in this state that are active, dynamic across time
"""
return dict(**VisualParticleSystem.get_active_systems(), **PhysicalParticleSystem.get_active_systems())
@property
def systems_to_check(self):
"""
Returns:
tuple of str: System names that should be actively checked for particle modification at the current timestep
"""
# Default is all supported active systems
return tuple(self.supported_active_systems.keys())
@property
def projection_is_active(self):
"""
Returns:
bool: If using ParticleModifyMethod.PROJECTION, should return whether the projection mesh is currently
active or not (e.g.: whether all conditions are met for a projection modification to potentially occur)
"""
# Return True by default
return True
@property
def n_steps_per_modification(self):
"""
Returns:
int: How many steps to take in between potentially modifying particles within the simulation
"""
raise NotImplementedError()
@property
def visual_particle_modification_limit(self):
"""
Returns:
int: Maximum number of visual particles from a specific system that can be modified by this object
"""
raise NotImplementedError()
@property
def physical_particle_modification_limit(self):
"""
Returns:
int: Maximum number of physical particles from a specific system that can be modified by this object
"""
raise NotImplementedError()
@property
def state_size(self):
# Only store the current_step
return 1
def _dump_state(self):
return dict(current_step=int(self._current_step))
def _load_state(self, state):
self._current_step = state["current_step"]
def _serialize(self, state):
return np.array([state["current_step"]], dtype=float)
def _deserialize(self, state):
current_step = int(state[0])
state_dict = dict(current_step=current_step)
return state_dict, 1
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ParticleModifier")
return classes
class ParticleRemover(ParticleModifier):
"""
ParticleModifier where the modification results in potentially removing particles from the simulation.
Args:
obj (StatefulObject): Object to which this state will be applied
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
method (ParticleModifyMethod): Method to modify particles. Current options supported are ADJACENCY (i.e.:
"touching" particles) or PROJECTION (i.e.: "spraying" particles)
projection_mesh_params (None or dict): If specified and @method is ParticleModifyMethod.PROJECTION,
manually overrides any data inferred directly from this object to infer what projection volume to generate
for this particle modifier. Expected entries are as follows:
"type": (str), one of {"Cylinder", "Cone", "Cube", "Sphere"}
"extents": (3-array), the (x,y,z) extents of the generated volume (specified in local link frame!)
If None, information found from @obj.metadata will be used instead.
NOTE: x-direction should align with the projection mesh's height (i.e.: z) parameter in @extents!
default_fluid_conditions (None or list): Condition(s) needed to remove any fluid particles not explicitly
specified in @conditions. If None, then it is assumed that no other physical particles can be removed. If
not None, should be in same format as an entry in @conditions, i.e.: list of (ParticleModifyCondition, val)
2-tuples
default_non_fluid_conditions (None or list): Condition(s) needed to remove any physical (excluding fluid)
particles not explicitly specified in @conditions. If None, then it is assumed that no other physical
particles can be removed. If not None, should be in same format as an entry in @conditions, i.e.: list of
(ParticleModifyCondition, val) 2-tuples
default_visual_conditions (None or list): Condition(s) needed to remove any visual particles not explicitly
specified in @conditions. If None, then it is assumed that no other visual particles can be removed. If
not None, should be in same format as an entry in @conditions, i.e.: list of (ParticleModifyCondition, val)
2-tuples
"""
def __init__(
self,
obj,
conditions,
method=ParticleModifyMethod.ADJACENCY,
projection_mesh_params=None,
default_fluid_conditions=None,
default_non_fluid_conditions=None,
default_visual_conditions=None,
):
# Store values
self._default_fluid_conditions = default_fluid_conditions if default_fluid_conditions is None else \
[self._generate_condition(cond_type, cond_val) for cond_type, cond_val in default_fluid_conditions]
self._default_non_fluid_conditions = default_non_fluid_conditions if default_non_fluid_conditions is None else \
[self._generate_condition(cond_type, cond_val) for cond_type, cond_val in default_non_fluid_conditions]
self._default_visual_conditions = default_visual_conditions if default_visual_conditions is None else \
[self._generate_condition(cond_type, cond_val) for cond_type, cond_val in default_visual_conditions]
# Run super
super().__init__(obj=obj, conditions=conditions, method=method, projection_mesh_params=projection_mesh_params)
def _parse_conditions(self, conditions):
# Run super first
parsed_conditions = super()._parse_conditions(conditions=conditions)
# Create set of default system to condition mappings based on settings
all_conditions = dict()
for system_name in REGISTERED_SYSTEMS.keys():
# If the system is already explicitly specified in conditions, continue
if system_name in conditions:
continue
# Since fluid system is a subclass of physical system, we need to check for fluid first
elif is_fluid_system(system_name):
default_system_conditions = self._default_fluid_conditions
elif is_physical_particle_system(system_name):
default_system_conditions = self._default_non_fluid_conditions
elif is_visual_particle_system(system_name):
default_system_conditions = self._default_visual_conditions
else:
# Don't process any other systems, continue
continue
if default_system_conditions is not None:
# Always make sure to add on condition for checking count of particles (can't remove any particles if
# there are 0 particles of the given system!)
all_conditions[system_name] = (
[self._generate_nonempty_system_condition(system_name),
self._generate_limit_condition(system_name)] +
default_system_conditions
)
# Overwrite conditions based on manually-specified ones
all_conditions.update(parsed_conditions)
return all_conditions
def _modify_particles(self, system):
# If the system has no particles, return
if system.n_particles == 0:
return
# Check the system
if is_visual_particle_system(system_name=system.name):
# Iterate over all particles and remove any that are within the relaxed AABB of the remover volume
particle_positions = system.get_particles_position_orientation()[0]
inbound_idxs = self._check_in_mesh(particle_positions).nonzero()[0]
modification_limit = self.visual_particle_modification_limit
# Physical system
else:
# If the object is a cloth, we have to use check_in_mesh with the relaxed AABB since we can't detect
# collisions via scene query interface. Alternatively, if we're using the projection method,
# we also need to use check_in_mesh to check for overlap with the projection mesh.
inbound_idxs = self._check_in_mesh(system.get_particles_position_orientation()[0]).nonzero()[0] \
if self.obj.prim_type == PrimType.CLOTH or self.method == ParticleModifyMethod.PROJECTION else \
np.array(list(self.obj.states[ContactParticles].get_value(system, self.link)))
modification_limit = self.physical_particle_modification_limit
n_modified_particles = self.obj.states[ModifiedParticles].get_value(system)
n_particles_absorbed = min(len(inbound_idxs), modification_limit - n_modified_particles)
system.remove_particles(inbound_idxs[:n_particles_absorbed])
self.obj.states[ModifiedParticles].set_value(system, n_modified_particles + n_particles_absorbed)
def _generate_nonempty_system_condition(self, system_name):
"""
Internal helper function to programatically generate a condition checker to make sure that at least one
particle exists in a given system
Args:
system_name (str): Name of the system
Returns:
function: Generated condition function with signature fcn(obj) --> bool, returning True if there is at least
one particle in the given system @system_name
"""
system = get_system(system_name, force_active=False)
return lambda obj: system.initialized and system.n_particles > 0
@property
def requires_overlap(self):
# No overlap check needed for particle removers
return False
@classproperty
def metalink_prefix(cls):
return m.REMOVAL_LINK_PREFIX
@classmethod
def requires_metalink(cls, **kwargs):
# No metalink required for adjacency
return kwargs.get("method", ParticleModifyMethod.ADJACENCY) != ParticleModifyMethod.ADJACENCY
@property
def _default_link(self):
# Only supported for adjacency, NOT projection
return self.obj.root_link if self.method == ParticleModifyMethod.ADJACENCY else None
@property
def n_steps_per_modification(self):
return m.N_STEPS_PER_REMOVAL
@property
def visual_particle_modification_limit(self):
return m.VISUAL_PARTICLES_REMOVAL_LIMIT
@property
def physical_particle_modification_limit(self):
return m.PHYSICAL_PARTICLES_REMOVAL_LIMIT
class ParticleApplier(ParticleModifier):
"""
ParticleModifier where the modification results in potentially adding particles into the simulation.
Args:
obj (StatefulObject): Object to which this state will be applied
conditions (dict): Dictionary mapping the names of ParticleSystem (str) to None or list of 2-tuples, where
None represents "never", empty list represents "always", or each 2-tuple is interpreted as a single condition in the form of
(ParticleModifyCondition, value) necessary in order for this particle modifier to be
able to modify particles belonging to @ParticleSystem. Expected types of val are as follows:
SATURATED: string name of the desired system that this modifier must be saturated by, e.g., "water"
TOGGLEDON: boolean T/F; whether this modifier must be toggled on or not
GRAVITY: boolean T/F; whether this modifier must be pointing downwards (T) or upwards (F)
FUNCTION: a function, whose signature is as follows:
def condition(obj) --> bool
Where @obj is the specific object that this ParticleModifier state belongs to.
For a given ParticleSystem, the list of 2-tuples will be converted into a list of function calls of the
form above -- if all of its conditions evaluate to True and particles are detected within
this particle modifier area, then we potentially modify those particles
method (ParticleModifyMethod): Method to modify particles. Current options supported are ADJACENCY (i.e.:
"touching" particles) or PROJECTION (i.e.: "spraying" particles)
projection_mesh_params (None or dict): If specified and @method is ParticleModifyMethod.PROJECTION,
manually overrides any data inferred directly from this object to infer what projection volume to generate
for this particle modifier. Expected entries are as follows:
"type": (str), one of {"Cylinder", "Cone", "Cube", "Sphere"}
"extents": (3-array), the (x,y,z) extents of the generated volume (specified in local link frame!)
If None, information found from @obj.metadata will be used instead.
sample_with_raycast (bool): If True, will only sample particles at raycast hits. Otherwise, will bypass sampling
and immediately sample particles at the sampled particle locations. Note that this will only work
for PhysicalParticleSystem-based ParticleAppliers that use the Projection method!
initial_speed (float): For physical particles, the initial speed for generated particles. Note that the
direction of the velocity is inferred from the particle sampling process.
"""
def __init__(
self,
obj,
conditions,
method=ParticleModifyMethod.ADJACENCY,
projection_mesh_params=None,
sample_with_raycast=True,
initial_speed=0.0,
):
# Store internal value
self._sample_particle_locations = None
self._sample_with_raycast = sample_with_raycast
self._initial_speed = initial_speed
# Pre-cached values for where particles should be spawned, and in what direction, when this state is
# initialized so we can quickly spawn them at runtime
self._in_mesh_local_particle_positions = None
self._in_mesh_local_particle_directions = None
self.projection_system = None
self.projection_system_prim = None
self.projection_emitter = None
# Run super
super().__init__(obj=obj, method=method, conditions=conditions, projection_mesh_params=projection_mesh_params)
def _initialize(self):
# Run super
super()._initialize()
system_name = list(self.conditions.keys())[0]
# get_system will initialize the system if it's not initialized already.
system = get_system(system_name)
if self.visualize:
assert self._projection_mesh_params["type"] in {"Cylinder", "Cone"}, \
f"{self.__class__.__name__} visualization only supports Cylinder and Cone types!"
radius, height = np.mean(self._projection_mesh_params["extents"][:2]) / 2.0, self._projection_mesh_params["extents"][2]
# Generate the projection visualization
particle_radius = m.VISUAL_PARTICLE_PROJECTION_PARTICLE_RADIUS if \
is_visual_particle_system(system_name=system.name) else system.particle_radius
name_prefix = f"{self.obj.name}_{self.__class__.__name__}"
# Create the projection visualization if it doesn't already exist, otherwise we reference it directly
projection_name = f"{name_prefix}_projection_visualization"
projection_path = f"/OmniGraph/{projection_name}"
projection_visualization_path = f"{self.link.prim_path}/projection_visualization"
if lazy.omni.isaac.core.utils.prims.is_prim_path_valid(projection_path):
self.projection_system = lazy.omni.isaac.core.utils.prims.get_prim_at_path(projection_path)
self.projection_emitter = lazy.omni.isaac.core.utils.prims.get_prim_at_path(f"{projection_path}/emitter")
else:
self.projection_system, self.projection_emitter = create_projection_visualization(
prim_path=projection_visualization_path,
shape=self._projection_mesh_params["type"],
projection_name=projection_name,
projection_radius=radius,
projection_height=height,
particle_radius=particle_radius,
parent_scale=self.link.scale,
material=system.material,
)
self.projection_system_prim = BasePrim(prim_path=self.projection_system.GetPrimPath().pathString,
name=projection_name)
# Create the visual geom instance referencing the generated source mesh prim, and then hide it
self.projection_source_sphere = VisualGeomPrim(prim_path=projection_visualization_path, name=f"{name_prefix}_projection_source_sphere")
self.projection_source_sphere.initialize()
self.projection_source_sphere.visible = False
# Rotate by 90 degrees in y-axis so that the projection visualization aligns with the projection mesh
self.projection_source_sphere.set_local_pose(orientation=T.euler2quat([0, np.pi / 2, 0]))
# Make sure the meta mesh is aligned with the meta link if visualizing
# This corresponds to checking (a) position of tip of projection mesh should align with origin of
# metalink, and (b) zero relative orientation between the metalink and the projection mesh
local_pos, local_quat = self.projection_mesh.get_local_pose()
assert np.all(np.isclose(local_pos + np.array([0, 0, height / 2.0]), 0.0)), \
"Projection mesh tip should align with metalink position!"
assert np.all(np.isclose(T.quat2euler(local_quat), 0.0)), \
"Projection mesh orientation should align with metalink orientation!"
# Store which method to use for sampling particle locations
if self._sample_with_raycast:
if self.method == ParticleModifyMethod.PROJECTION:
self._sample_particle_locations = self._sample_particle_locations_from_projection_volume
elif self.method == ParticleModifyMethod.ADJACENCY:
self._sample_particle_locations = self._sample_particle_locations_from_adjacency_area
else:
raise ValueError(f"Unsupported ParticleModifyMethod: {self.method}!")
else:
# Make sure we're only using a physical particle system and the projection method
assert issubclass(system, PhysicalParticleSystem), \
"If not sampling with raycast, ParticleApplier only supports PhysicalParticleSystems!"
assert self.method == ParticleModifyMethod.PROJECTION, \
"If not sampling with raycast, ParticleApplier only supports ParticleModifyMethod.PROJECTION method!"
# Compute particle spawning information once
self._compute_particle_spawn_information(system=system)
def _parse_conditions(self, conditions):
# Run super first
parsed_conditions = super()._parse_conditions(conditions=conditions)
# sanity check to make sure only one system is being applied, since unlike a ParticleRemover, which
# can potentially remove multiple types of particles, a ParticleApplier should only apply one type of particle
assert len(parsed_conditions) == 1, f"A ParticleApplier can only have a single ParticleSystem associated " \
f"with it! Got: {[system_name for system_name in self.conditions.keys()]}"
# Append an additional condition for checking overlaps if required
if self.requires_overlap:
system_name = next(iter(parsed_conditions))
parsed_conditions[system_name].append(lambda obj: self._check_overlap())
return parsed_conditions
def _compute_particle_spawn_information(self, system):
"""
Helper function to compute where particles should be spawned. This is to save computation time at runtime
if @self._sample_with_raycast is False, meaning that we were deterministically sample particles.
Args:
system (BaseSystem): Particle system whose particles will be spawned from this ParticleApplier
"""
# We now pre-compute local particle positions that are within the projection mesh used to infer spawn pos
# We sample over the entire object AABB, assuming most will be filtered out
sampling_distance = 2 * system.particle_radius
extent = np.array(self._projection_mesh_params["extents"])
h = extent[2]
low, high = self.obj.aabb
n_particles_per_axis = ((high - low) / sampling_distance).astype(int)
assert np.all(n_particles_per_axis), f"link {self.link.name} is too small to sample any particle of radius {system.particle_radius}."
# 1e-10 is added because the extent might be an exact multiple of particle radius
arrs = [np.arange(l + system.particle_radius, h - system.particle_radius + 1e-10, system.particle_radius * 2)
for l, h, n in zip(low, high, n_particles_per_axis)]
# Generate 3D-rectangular grid of points, and only keep the ones inside the mesh
points = np.stack([arr.flatten() for arr in np.meshgrid(*arrs)]).T
pos, quat = self.link.get_position_orientation()
points = points[np.where(self._check_in_mesh(points))[0]]
# Convert the points into local frame
points_in_local_frame = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=self.obj.scale,
particle_positions=points,
)
n_max_particles = self._get_max_particles_limit_per_step(system=system)
# Potentially sub-sample points based on max particle limit per step
self._in_mesh_local_particle_positions = points_in_local_frame if n_max_particles > len(points) else \
points_in_local_frame[np.random.choice(len(points_in_local_frame), n_max_particles, replace=False)]
# Also programmatically compute the directions of each particle position -- this is the normalized
# vector pointing from source to the particle
projection_type = self._projection_mesh_params["type"]
if projection_type == "Cone":
# Particles point from source ([0, 0, 0]) to point location
directions = np.copy(self._in_mesh_local_particle_positions)
elif projection_type == "Cylinder":
# All particle points in the same parallel direction towards the -z direction
directions = np.zeros_like(self._in_mesh_local_particle_positions)
directions[:, 2] = -h
else:
raise ValueError(
"If not sampling with raycast, ParticleApplier only supports `Cone` or `Cylinder` projection types!")
self._in_mesh_local_particle_directions = directions / np.linalg.norm(directions, axis=-1).reshape(-1, 1)
def _update(self):
# If we're about to check for modification, update whether it the visualization should be active or not
if self.visualize and self._current_step == 0:
# Only one system in our conditions, so next(iter()) suffices
# is_active = bool(np.all([condition(self.obj) for condition in next(iter(self.conditions.values()))]))
is_active = all(condition(self.obj) for condition in next(iter(self.conditions.values())))
self.projection_emitter.GetProperty("inputs:active").Set(is_active)
# Run super
super()._update()
def remove(self):
# We need to remove the projection visualization if it exists
if self.projection_system_prim is not None:
og.sim.remove_prim(self.projection_system_prim)
def _modify_particles(self, system):
if self._sample_with_raycast:
# Sample potential locations to apply particles, and then apply them
start_points, end_points = self._sample_particle_locations(system=system)
n_samples = len(start_points)
is_visual = is_visual_particle_system(system_name=system.name)
if is_visual:
group = system.get_group_name(obj=self.obj)
# Create an attachment group if necessary
if group not in system.groups:
system.create_attachment_group(obj=self.obj)
avg_scale = np.cbrt(np.product(self.obj.scale))
scales = system.sample_scales_by_group(group=group, n=len(start_points))
cuboid_dimensions = scales * system.particle_object.aabb_extent.reshape(1, 3) * avg_scale
else:
scales = None
cuboid_dimensions = np.zeros(3)
# Sample the rays to see where particle can be generated
results = sample_cuboid_on_object(
obj=None,
start_points=start_points.reshape(n_samples, 1, 3),
end_points=end_points.reshape(n_samples, 1, 3),
cuboid_dimensions=cuboid_dimensions,
ignore_objs=[self.obj],
hit_proportion=0.0, # We want all hits
cuboid_bottom_padding=macros.utils.sampling_utils.DEFAULT_CUBOID_BOTTOM_PADDING if
is_visual else system.particle_radius,
undo_cuboid_bottom_padding=is_visual, # micro particles have zero cuboid dimensions so we need to maintain padding
verify_cuboid_empty=False,
)
hits = [result for result in results if result[0] is not None]
scales = [scale for scale, result in zip(scales, results) if result[0] is not None] if scales is not None else scales
self._apply_particles_at_raycast_hits(system=system, hits=hits, scales=scales)
else:
self._apply_particles_in_projection_volume(system=system)
def _apply_particles_at_raycast_hits(self, system, hits, scales=None):
"""
Helper function to apply particles from system @system given raycast hits @hits,
which are the filtered results from omnigibson.utils.sampling_utils.raytest_batch that include only
the results with a valid hit
Args:
system (BaseSystem): System to apply particles from
hits (list of dict): Valid hit results from a batched raycast representing locations for sampling particles
scales (list of numpy arrays or None): None or scales of the particles that should be sampled, same length as hits
"""
assert system.name in self.conditions, f"System {system.name} is not defined in the conditions."
# Check the system
n_modified_particles = self.obj.states[ModifiedParticles].get_value(system)
if is_visual_particle_system(system_name=system.name):
assert scales is not None, "applying visual particles at raycast hits requires scales."
assert len(hits) == len(scales), "length of hits and scales are different when spawning visual particles."
# Sample potential application points
z_up = np.zeros(3)
z_up[-1] = 1.0
n_particles = min(len(hits), m.VISUAL_PARTICLES_APPLICATION_LIMIT - n_modified_particles)
# Generate particle info -- maps group name to particle info for that group,
# i.e.: positions, orientations, and link_prim_paths
particles_info = defaultdict(lambda: defaultdict(lambda: []))
modifier_avg_scale = np.cbrt(np.product(self.obj.scale))
for hit, scale in zip(hits[:n_particles], scales[:n_particles]):
# Infer which object was hit
hit_obj = og.sim.scene.object_registry("prim_path", "/".join(hit[3].split("/")[:-1]), None)
if hit_obj is not None:
# Create an attachment group if necessary
group = system.get_group_name(obj=hit_obj)
if group not in system.groups:
system.create_attachment_group(obj=hit_obj)
# Add to info
particles_info[group]["positions"].append(hit[0])
particles_info[group]["orientations"].append(hit[2])
# Since particles' scales are sampled with respect to the modifier object, but are being placed
# (in the USD hierarchy) underneath the in_contact object, we need to compensate for the relative
# scale differences between the two objects, so that "moving" the particle to the new object won't
# cause it to unexpectedly shrink / grow based on that parent's (potentially) different scale
particles_info[group]["scales"].append(scale * modifier_avg_scale / np.cbrt(np.product(hit_obj.scale)))
particles_info[group]["link_prim_paths"].append(hit[3])
# Generate all the particles for each group
for group, particle_info in particles_info.items():
# Generate particles for this group
system.generate_group_particles(
group=group,
positions=np.array(particle_info["positions"]),
orientations=np.array(particle_info["orientations"]),
scales=np.array(particles_info[group]["scales"]),
link_prim_paths=particle_info["link_prim_paths"],
)
# Update our particle count
self.obj.states[ModifiedParticles].set_value(system, n_modified_particles + len(particle_info["link_prim_paths"]))
# Physical system
else:
# Compile the particle poses to generate and sample the particles
n_particles = min(len(hits), m.PHYSICAL_PARTICLES_APPLICATION_LIMIT - n_modified_particles)
# Generate particles
if n_particles > 0:
velocities = None if self._initial_speed == 0 else -self._initial_speed * np.array([hit[1] for hit in hits[:n_particles]])
system.generate_particles(
positions=np.array([hit[0] for hit in hits[:n_particles]]),
velocities=velocities,
)
# Update our particle count
self.obj.states[ModifiedParticles].set_value(system, n_modified_particles + n_particles)
def _apply_particles_in_projection_volume(self, system):
"""
Helper function to apply particles form system @system within the projection volume owned by this
ParticleApplier.
NOTE: This function only supports PhysicalParticleSystems and ParticleModifyMethod.PROJECTION method, which
should have been asserted during this ParticleApplier's initialize() call
Args:
system (BaseSystem): System to apply particles from
"""
assert self.method == ParticleModifyMethod.PROJECTION, \
"Can only apply particles within projection volume if ParticleModifyMethod.PROJECTION method is used!"
assert is_physical_particle_system(system_name=system.name), \
"Can only apply particles within projection volume if system is PhysicalParticleSystem!"
# Transform pre-cached particle positions into the world frame
pos, quat = self.link.get_position_orientation()
points = get_particle_positions_from_frame(
pos=pos,
quat=quat,
scale=self.obj.scale,
particle_positions=self._in_mesh_local_particle_positions,
)
directions = self._in_mesh_local_particle_directions @ T.quat2mat(quat).T
# Compile the particle poses to generate and sample the particles
n_modified_particles = self.obj.states[ModifiedParticles].get_value(system)
n_particles = min(len(points), m.PHYSICAL_PARTICLES_APPLICATION_LIMIT - n_modified_particles)
# Generate particles
if n_particles > 0:
velocities = None if self._initial_speed == 0 else self._initial_speed * directions[:n_particles]
system.generate_particles(
positions=points[:n_particles],
velocities=velocities,
)
# Update our particle count
self.obj.states[ModifiedParticles].set_value(system, n_modified_particles + n_particles)
def _sample_particle_locations_from_projection_volume(self, system):
"""
Helper function for generating potential particle locations from projection volume
Args:
system (BaseSystem): System to sample potential particle positions for
Returns:
2-tuple:
- (n, 3) array: Ray start points to sample
- (n, 3) array: Ray end points to sample
"""
# Randomly sample end points from the base of the cone / cylinder
n_samples = self._get_max_particles_limit_per_step(system=system)
r, h = self._projection_mesh_params["extents"][0] / 2, self._projection_mesh_params["extents"][2]
sampled_r_theta = np.random.rand(n_samples, 2)
sampled_r_theta = sampled_r_theta * np.array([r, np.pi * 2]).reshape(1, 2)
# Get start, end points in local link frame, start points to end points along the -z direction
end_points = np.stack([
sampled_r_theta[:, 0] * np.cos(sampled_r_theta[:, 1]),
sampled_r_theta[:, 0] * np.sin(sampled_r_theta[:, 1]),
-h * np.ones(n_samples),
], axis=1)
projection_type = self._projection_mesh_params["type"]
if projection_type == "Cone":
# All start points are the cone tip, which is the local link origin
start_points = np.zeros((n_samples, 3))
elif projection_type == "Cylinder":
# All start points are the parallel point for their corresponding end point
# i.e.: (x, y, 0)
start_points = end_points + np.array([0, 0, h]).reshape(1, 3)
else:
# Other types not supported
raise ValueError(f"Unsupported projection mesh type: {projection_type}!")
# Convert sampled normalized radius and angle into 3D points
# We convert r, theta --> 3D point in local link frame --> 3D point in global world frame
# We also combine start and end points for efficiency when doing the transform, then split them up again
points = np.concatenate([start_points, end_points], axis=0)
pos, quat = self.link.get_position_orientation()
points = get_particle_positions_from_frame(
pos=pos,
quat=quat,
scale=self.obj.scale,
particle_positions=points,
)
return points[:n_samples, :], points[n_samples:, :]
def _sample_particle_locations_from_adjacency_area(self, system):
"""
Helper function for generating potential particle locations from adjacency area
Args:
system (BaseSystem): System to sample potential particle positions for
Returns:
2-tuple:
- (n, 3) array: Ray start points to sample
- (n, 3) array: Ray end points to sample
"""
# Randomly sample end points from within the object's AABB
n_samples = self._get_max_particles_limit_per_step(system=system)
lower, upper = self.link.visual_aabb
lower = lower.reshape(1, 3) - m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN
upper = upper.reshape(1, 3) + m.PARTICLE_MODIFIER_ADJACENCY_AREA_MARGIN
lower_upper = np.concatenate([lower, upper], axis=0)
# Sample in all directions, shooting from the center of the link / object frame
pos = self.link.get_position()
start_points = np.ones((n_samples, 3)) * pos.reshape(1, 3)
end_points = np.random.uniform(low=lower, high=upper, size=(n_samples, 3))
sides, axes = np.random.randint(2, size=(n_samples,)), np.random.randint(3, size=(n_samples,))
end_points[np.arange(n_samples), axes] = lower_upper[sides, axes]
return start_points, end_points
def _get_max_particles_limit_per_step(self, system):
"""
Helper function for grabbing the maximum particle limit per step
Args:
system (BaseSystem): System for which to get max particle limit per step
Returns:
int: Maximum particles to apply per step for the given system @system
"""
assert system.name in self.conditions, f"System {system.name} is not defined in the conditions."
return m.MAX_VISUAL_PARTICLES_APPLIED_PER_STEP if is_visual_particle_system(system_name=system.name) else \
m.MAX_PHYSICAL_PARTICLES_APPLIED_PER_STEP
@property
def requires_overlap(self):
# Overlap required only if sampling with raycast
return self._sample_with_raycast
@property
def visualize(self):
"""
Returns:
bool: Whether this Applier should be visualized or not
"""
# Visualize if projection method is used
return self.method == ParticleModifyMethod.PROJECTION
@property
def systems_to_check(self):
# Only should check the systems in the owned conditions
return tuple(self.conditions.keys())
@property
def projection_is_active(self):
# Only active if the projection mesh is enabled
return self.projection_emitter.GetProperty("inputs:active").Get()
@classproperty
def metalink_prefix(cls):
return m.APPLICATION_LINK_PREFIX
@classmethod
def requires_metalink(cls, **kwargs):
# No metalink required for adjacency
return kwargs.get("method", ParticleModifyMethod.ADJACENCY) != ParticleModifyMethod.ADJACENCY
@classmethod
def is_compatible(cls, obj, **kwargs):
# Run super first
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check whether GPU dynamics are enabled (necessary for this object state)
if not gm.USE_GPU_DYNAMICS:
return False, f"gm.USE_GPU_DYNAMICS must be True in order to use object state {cls.__name__}."
return True, None
@property
def _default_link(self):
# Only supported for adjacency, NOT projection
return self.obj.root_link if self.method == ParticleModifyMethod.ADJACENCY else None
@property
def n_steps_per_modification(self):
return m.N_STEPS_PER_APPLICATION
@property
def visual_particle_modification_limit(self):
return m.VISUAL_PARTICLES_APPLICATION_LIMIT
@property
def physical_particle_modification_limit(self):
return m.PHYSICAL_PARTICLES_APPLICATION_LIMIT
| 73,493 | Python | 51.123404 | 158 | 0.655899 |
StanfordVL/OmniGibson/omnigibson/object_states/open_state.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.object_state_base import BooleanStateMixin, AbsoluteObjectState
from omnigibson.utils.constants import JointType
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Joint position threshold before a joint is considered open.
# Should be a number in the range [0, 1] which will be transformed
# to a position in the joint's min-max range.
m.JOINT_THRESHOLD_BY_TYPE = {
JointType.JOINT_REVOLUTE: 0.05,
JointType.JOINT_PRISMATIC: 0.05,
}
m.OPEN_SAMPLING_ATTEMPTS = 5
m.METADATA_FIELD = "openable_joint_ids"
m.BOTH_SIDES_METADATA_FIELD = "openable_both_sides"
def _compute_joint_threshold(joint, joint_direction):
"""
Computes the joint threshold for opening and closing
Args:
joint (JointPrim): Joint to calculate threshold for
joint_direction (int): If 1, assumes opening direction is positive angle change. Otherwise,
assumes opening direction is negative angle change.
Returns:
3-tuple:
- float: Joint value at which closed <--> open
- float: Extreme joint value for being opened
- float: Extreme joint value for being closed
"""
global m
# Convert fractional threshold to actual joint position.
f = m.JOINT_THRESHOLD_BY_TYPE[joint.joint_type]
closed_end = joint.lower_limit if joint_direction == 1 else joint.upper_limit
open_end = joint.upper_limit if joint_direction == 1 else joint.lower_limit
threshold = (1 - f) * closed_end + f * open_end
return threshold, open_end, closed_end
def _is_in_range(position, threshold, range_end):
"""
Calculates whether a joint's position @position is in its opening / closing range
Args:
position (float): Joint value
threshold (float): Joint value at which closed <--> open
range_end (float): Extreme joint value for being opened / closed
Returns:
bool: Whether the joint position is past @threshold in the direction of @range_end
"""
# Note that we are unable to do an actual range check here because the joint positions can actually go
# slightly further than the denoted joint limits.
return position > threshold if range_end > threshold else position < threshold
def _get_relevant_joints(obj):
"""
Grabs the relevant joints for object @obj
Args:
obj (StatefulObject): Object to grab relevant joints for
Returns:
3-tuple:
- bool: If True, check open/closed state for objects whose joints can switch positions
- list of JointPrim: Relevant joints for determining whether @obj is open or closed
- list of int: Joint directions for each corresponding relevant joint
"""
global m
default_both_sides = False
default_relevant_joints = list(obj.joints.values())
# 1 means the open direction corresponds to positive joint angle change and -1 means the opposite
default_joint_directions = [1] * len(default_relevant_joints)
if not hasattr(obj, "metadata") or obj.metadata is None:
log.debug("No openable joint metadata found for object %s" % obj.name)
return default_both_sides, default_relevant_joints, default_joint_directions
# Get joint IDs and names from metadata annotation. If not, return default values.
if m.METADATA_FIELD not in obj.metadata or len(obj.metadata[m.METADATA_FIELD]) == 0:
log.debug(f"No openable joint metadata found for object {obj.name}")
return default_both_sides, default_relevant_joints, default_joint_directions
both_sides = obj.metadata[m.BOTH_SIDES_METADATA_FIELD] if m.BOTH_SIDES_METADATA_FIELD in obj.metadata else False
joint_metadata = obj.metadata[m.METADATA_FIELD].items()
# The joint metadata is in the format of [(joint_id, joint_name), ...] for legacy annotations and
# [(joint_id, joint_name, joint_direction), ...] for direction-annotated objects.
joint_names = [m[1] for m in joint_metadata]
joint_directions = [m[2] if len(m) > 2 else 1 for m in joint_metadata]
relevant_joints = []
for key in joint_names:
assert key in obj.joints, f"Unexpected joint name from Open metadata for object {obj.name}: {key}"
relevant_joints.append(obj.joints[key])
assert all(joint.joint_type in m.JOINT_THRESHOLD_BY_TYPE.keys() for joint in relevant_joints)
return both_sides, relevant_joints, joint_directions
class Open(AbsoluteObjectState, BooleanStateMixin):
def __init__(self, obj):
self.relevant_joints_info = None
# Run super method
super().__init__(obj=obj)
def _initialize(self):
# Run super first
super()._initialize()
# Check the metadata info to get relevant joints information
self.relevant_joints_info = _get_relevant_joints(self.obj)
assert self.relevant_joints_info[1], f"No relevant joints for Open state found for object {self.obj.name}"
@classmethod
def is_compatible(cls, obj, **kwargs):
# Run super first
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check whether this object has any openable joints
return (True, None) if obj.n_joints > 0 else \
(False, f"No relevant joints for Open state found for object {obj.name}")
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
# Run super first
compatible, reason = super().is_compatible_asset(prim, **kwargs)
if not compatible:
return compatible, reason
def _find_articulated_joints(prim):
for child in prim.GetChildren():
child_type = child.GetTypeName().lower()
if "joint" in child_type and "fixed" not in child_type:
return True
for gchild in child.GetChildren():
gchild_type = gchild.GetTypeName().lower()
if "joint" in gchild_type and "fixed" not in gchild_type:
return True
return False
# Check whether this object has any openable joints
return (True, None) if _find_articulated_joints(prim=prim) else \
(False, f"No relevant joints for Open state found for asset prim {prim.GetName()}")
def _get_value(self):
both_sides, relevant_joints, joint_directions = self.relevant_joints_info
if not relevant_joints:
return False
# The "sides" variable is used to check open/closed state for objects whose joints can switch
# positions. These objects are annotated with the both_sides annotation and the idea is that switching
# the directions of *all* of the joints results in a similarly valid checkable state. As a result, to check
# each "side", we multiply *all* of the joint directions with the coefficient belonging to that side, which
# may be 1 or -1.
sides = [1, -1] if both_sides else [1]
sides_openness = []
for side in sides:
# Compute a boolean openness state for each joint by comparing positions to thresholds.
joint_thresholds = (
_compute_joint_threshold(joint, joint_direction * side)
for joint, joint_direction in zip(relevant_joints, joint_directions)
)
joint_positions = [joint.get_state()[0] for joint in relevant_joints]
joint_openness = (
_is_in_range(position, threshold, open_end)
for position, (threshold, open_end, closed_end) in zip(joint_positions, joint_thresholds)
)
# Looking from this side, the object is open if any of its joints is open.
sides_openness.append(any(joint_openness))
# The object is open only if it's open from all of its sides.
return all(sides_openness)
def _set_value(self, new_value, fully=False):
"""
Set the openness state, either to a random joint position satisfying the new value, or fully open/closed.
Args:
new_value (bool): The new value for the openness state of the object.
fully (bool): Whether the object should be fully opened/closed (e.g. all relevant joints to 0/1).
Returns:
bool: A boolean indicating the success of the setter. Failure may happen due to unannotated objects.
"""
both_sides, relevant_joints, joint_directions = self.relevant_joints_info
if not relevant_joints:
return False
# The "sides" variable is used to check open/closed state for objects whose joints can switch
# positions. These objects are annotated with the both_sides annotation and the idea is that switching
# the directions of *all* of the joints results in a similarly valid checkable state. We want our object to be
# open from *both* of the two sides, and I was too lazy to implement the logic for this without rejection
# sampling, so that's what we do.
# TODO: Implement a sampling method that's guaranteed to be correct, ditch the rejection method.
sides = [1, -1] if both_sides else [1]
for _ in range(m.OPEN_SAMPLING_ATTEMPTS):
side = np.random.choice(sides)
# All joints are relevant if we are closing, but if we are opening let's sample a subset.
if new_value and not fully:
num_to_open = np.random.randint(1, len(relevant_joints) + 1)
random_indices = np.random.choice(range(len(relevant_joints)), size=num_to_open, replace=False)
relevant_joints = [relevant_joints[i] for i in random_indices]
joint_directions = [joint_directions[i] for i in random_indices]
# Go through the relevant joints & set random positions.
for joint, joint_direction in zip(relevant_joints, joint_directions):
threshold, open_end, closed_end = _compute_joint_threshold(joint, joint_direction * side)
# Get the range
if new_value:
joint_range = (threshold, open_end)
else:
joint_range = (threshold, closed_end)
if fully:
joint_pos = joint_range[1]
else:
# Convert the range to the format numpy accepts.
low = min(joint_range)
high = max(joint_range)
# Sample a position.
joint_pos = np.random.uniform(low, high)
# Save sampled position.
joint.set_pos(joint_pos)
# If we succeeded, return now.
if self._get_value() == new_value:
return True
# We exhausted our attempts and could not find a working sample.
return False
# We don't need to load / save anything since the joints are saved elsewhere
| 11,225 | Python | 42.343629 | 118 | 0.646325 |
StanfordVL/OmniGibson/omnigibson/object_states/update_state_mixin.py | from omnigibson.object_states.object_state_base import BaseObjectState
from omnigibson.utils.python_utils import classproperty
class UpdateStateMixin(BaseObjectState):
"""
A state-mixin that allows for per-sim-step updates via the update() call
"""
def update(self):
"""
Updates the object state. This function will be called for every simulator step
"""
assert self._initialized, "Cannot update uninitialized state."
return self._update()
def _update(self):
"""
This function will be called once for every simulator step. Must be implemented by subclass.
"""
# Explicitly raise not implemented error to avoid silent bugs -- update should never be called otherwise
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("UpdateStateMixin")
return classes
class GlobalUpdateStateMixin(BaseObjectState):
"""
A state-mixin that allows for per-sim-step global updates via the global_update() call
"""
@classmethod
def global_initialize(cls):
"""
Executes a global initialization sequence for this state. Default is no-op
"""
pass
@classmethod
def global_update(cls):
"""
Executes a global update for this object state. Default is no-op
"""
pass
@classmethod
def global_clear(cls):
"""
Executes a global clear sequence for this object state. Default is no-op
"""
pass
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("GlobalUpdateStateMixin")
return classes
| 1,926 | Python | 30.080645 | 112 | 0.65109 |
StanfordVL/OmniGibson/omnigibson/object_states/kinematics_mixin.py | from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.object_state_base import BaseObjectState
from omnigibson.object_states.pose import Pose
from omnigibson.utils.python_utils import classproperty
class KinematicsMixin(BaseObjectState):
"""
This class is a subclass of BaseObjectState that adds dependencies
on the default kinematics states.
"""
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({Pose, AABB, ContactBodies})
return deps
def cache_info(self, get_value_args):
# Import here to avoid circular imports
from omnigibson.objects.stateful_object import StatefulObject
# Run super first
info = super().cache_info(get_value_args=get_value_args)
# Store this object as well as any other objects from @get_value_args
info[self.obj] = self.obj.states[Pose].get_value()
for arg in get_value_args:
if isinstance(arg, StatefulObject):
info[arg] = arg.states[Pose].get_value()
return info
def _cache_is_valid(self, get_value_args):
# Import here to avoid circular imports
from omnigibson.objects.stateful_object import StatefulObject
# Cache is valid if and only if all of our cached objects have not changed
t = self._cache[get_value_args]["t"]
for obj, pose in self._cache[get_value_args]["info"].items():
if isinstance(obj, StatefulObject):
if obj.states[Pose].has_changed(get_value_args=(), value=pose, info={}, t=t):
return False
return True
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("KinematicsMixin")
return classes
| 1,966 | Python | 36.113207 | 93 | 0.667345 |
StanfordVL/OmniGibson/omnigibson/object_states/contact_subscribed_state_mixin.py | from abc import abstractmethod
from omnigibson.object_states.object_state_base import BaseObjectState
from omnigibson.utils.python_utils import classproperty
class ContactSubscribedStateMixin(BaseObjectState):
"""
Handles contact events (including CONTACT_FOUND, CONTACT_PERSIST, and CONTACT_LOST).
The subclass should implement its own on_contact method
"""
@abstractmethod
def on_contact(self, other, contact_headers, contact_data):
raise NotImplementedError("Subclasses of ContactSubscribedStateMixin should implement the on_contact method.")
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ContactSubscribedStateMixin")
return classes
| 832 | Python | 38.666665 | 118 | 0.751202 |
StanfordVL/OmniGibson/omnigibson/object_states/particle.py | import numpy as np
from omnigibson.object_states.object_state_base import BaseObjectRequirement
class ParticleRequirement(BaseObjectRequirement):
"""
Class for sanity checking objects that requires particle systems
"""
@classmethod
def is_compatible(cls, obj, **kwargs):
from omnigibson.macros import gm
if not gm.USE_GPU_DYNAMICS:
return False, f"Particle systems are not enabled when GPU dynamics is off."
return True, None
| 486 | Python | 27.647057 | 87 | 0.709877 |
StanfordVL/OmniGibson/omnigibson/object_states/touching.py | from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.utils.constants import PrimType
from omnigibson.utils.usd_utils import RigidContactAPI
class Touching(KinematicsMixin, RelativeObjectState, BooleanStateMixin):
@staticmethod
def _check_contact(obj_a, obj_b):
return len(set(obj_a.links.values()) & obj_b.states[ContactBodies].get_value()) > 0
def _get_value(self, other):
if self.obj.prim_type == PrimType.CLOTH and other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot detect contact between two cloth objects.")
# If one of the objects is the cloth object, the contact will be asymmetrical.
# The rigid object will appear in the ContactBodies of the cloth object, but not the other way around.
elif self.obj.prim_type == PrimType.CLOTH:
return self._check_contact(other, self.obj)
elif other.prim_type == PrimType.CLOTH:
return self._check_contact(self.obj, other)
# elif not self.obj.kinematic_only and not other.kinematic_only:
# # Use optimized check for rigid bodies
# # TODO: Use once NVIDIA fixes their absolutely broken API
# return RigidContactAPI.in_contact(
# prim_paths_a=[link.prim_path for link in self.obj.links.values()],
# prim_paths_b=[link.prim_path for link in other.links.values()],
# )
else:
return self._check_contact(other, self.obj) and self._check_contact(self.obj, other)
| 1,709 | Python | 52.437498 | 110 | 0.691047 |
StanfordVL/OmniGibson/omnigibson/object_states/on_top.py | import omnigibson as og
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.adjacency import VerticalAdjacency
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.object_states.touching import Touching
from omnigibson.utils.object_state_utils import sample_kinematics
from omnigibson.utils.object_state_utils import m as os_m
from omnigibson.utils.constants import PrimType
class OnTop(KinematicsMixin, RelativeObjectState, BooleanStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({Touching, VerticalAdjacency})
return deps
def _set_value(self, other, new_value, reset_before_sampling=False):
if not new_value:
raise NotImplementedError("OnTop does not support set_value(False)")
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot set an object on top of a cloth object.")
state = og.sim.dump_state(serialized=False)
# Possibly reset this object if requested
if reset_before_sampling:
self.obj.reset()
for _ in range(os_m.DEFAULT_HIGH_LEVEL_SAMPLING_ATTEMPTS):
if sample_kinematics("onTop", self.obj, other) and self.get_value(other):
return True
else:
og.sim.load_state(state, serialized=False)
return False
def _get_value(self, other):
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot detect if an object is on top of a cloth object.")
touching = self.obj.states[Touching].get_value(other)
if not touching:
return False
adjacency = self.obj.states[VerticalAdjacency].get_value()
return other in adjacency.negative_neighbors and other not in adjacency.positive_neighbors
| 1,917 | Python | 37.359999 | 98 | 0.696922 |
StanfordVL/OmniGibson/omnigibson/object_states/cloth_mixin.py | from omnigibson.macros import gm
from omnigibson.object_states.object_state_base import BaseObjectState
from omnigibson.utils.constants import PrimType
from omnigibson.utils.python_utils import classproperty
class ClothStateMixin(BaseObjectState):
"""
This class is a subclass of BaseObjectState that adds dependencies assuming the owned object is PrimType.CLOTH
"""
@classmethod
def is_compatible(cls, obj, **kwargs):
# Only compatible with cloth objects
compatible, reason = super().is_compatible(obj, **kwargs)
if not compatible:
return compatible, reason
# Check for cloth type
if obj.prim_type != PrimType.CLOTH:
return False, f"Cannot use ClothStateMixin {cls.__name__} with rigid object, make sure object is created " \
f"with prim_type=PrimType.CLOTH!"
# Check for GPU dynamics
if not gm.USE_GPU_DYNAMICS:
return False, f"gm.USE_GPU_DYNAMICS must be True in order to use object state {cls.__name__}."
return True, None
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ClothStateMixin")
return classes
| 1,319 | Python | 35.666666 | 120 | 0.670963 |
StanfordVL/OmniGibson/omnigibson/object_states/object_state_base.py | from abc import ABC
import inspect
import omnigibson as og
from omnigibson.utils.python_utils import classproperty, Serializable, Registerable, Recreatable
# Global dicts that will contain mappings
REGISTERED_OBJECT_STATES = dict()
class BaseObjectRequirement:
"""
Base ObjectRequirement class. This allows for sanity checking a given asset / BaseObject to check whether a set
of conditions are met or not. This can be useful for sanity checking dependencies for properties such as requested
abilities or object states.
"""
@classmethod
def is_compatible(cls, obj, **kwargs):
"""
Determines whether this requirement is compatible with object @obj or not (i.e.: whether this requirement is
satisfied by @obj given other constructor arguments **kwargs).
NOTE: Must be implemented by subclass.
Args:
obj (StatefulObject): Object whose compatibility with this state should be checked
Returns:
2-tuple:
- bool: Whether the given object is compatible with this requirement or not
- None or str: If not compatible, the reason why it is not compatible. Otherwise, None
"""
raise NotImplementedError
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
"""
Determines whether this requirement is compatible with prim @prim or not (i.e.: whether this requirement is
satisfied by @prim given other constructor arguments **kwargs).
This is a useful check to evaluate an object's USD that hasn't been explicitly imported into OmniGibson yet.
NOTE: Must be implemented by subclass
Args:
prim (Usd.Prim): Object prim whose compatibility with this requirement should be checked
Returns:
2-tuple:
- bool: Whether the given prim is compatible with this requirement or not
- None or str: If not compatible, the reason why it is not compatible. Otherwise, None
"""
raise NotImplementedError
class BaseObjectState(BaseObjectRequirement, Serializable, Registerable, Recreatable, ABC):
"""
Base ObjectState class. Do NOT inherit from this class directly - use either AbsoluteObjectState or
RelativeObjectState.
"""
@classmethod
def get_dependencies(cls):
"""
Get the dependency states for this state, e.g. states that need to be explicitly enabled on the current object
before the current state is usable. States listed here will be enabled for all objects that have this current
state, and all dependency states will be processed on *all* objects prior to this state being processed on
*any* object.
Returns:
set of str: Set of strings corresponding to state keys.
"""
return set()
@classmethod
def get_optional_dependencies(cls):
"""
Get states that should be processed prior to this state if they are already enabled. These states will not be
enabled because of this state's dependency on them, but if they are already enabled for another reason (e.g.
because of an ability or another state's dependency etc.), they will be processed on *all* objects prior to this
state being processed on *any* object.
Returns:
set of str: Set of strings corresponding to state keys.
"""
return set()
def __init__(self, obj):
super().__init__()
self.obj = obj
self._initialized = False
self._cache = None
self._changed = None
self._last_t_updated = -1 # Last timestep when this state was updated
@classmethod
def is_compatible(cls, obj, **kwargs):
# Make sure all required dependencies are included in this object's state dictionary
for dep in cls.get_dependencies():
if dep not in obj.states:
return False, f"Missing required dependency state {dep.__name__}"
# Make sure all required kwargs are specified
default_kwargs = inspect.signature(cls.__init__).parameters
for kwarg, val in default_kwargs.items():
if val.default == inspect._empty and kwarg not in kwargs and kwarg not in {"obj", "self", "args", "kwargs"}:
return False, f"Missing required kwarg '{kwarg}'"
# Default is True if all kwargs are met
return True, None
@classmethod
def is_compatible_asset(cls, prim, **kwargs):
# Make sure all required kwargs are specified
default_kwargs = inspect.signature(cls.__init__).parameters
for kwarg, val in default_kwargs.items():
if val.default == inspect._empty and kwarg not in kwargs and kwarg not in {"obj", "self"}:
return False, f"Missing required kwarg '{kwarg}'"
# Default is True if all kwargs are met
return True, None
@classmethod
def postprocess_ability_params(cls, params):
"""
Post-processes ability parameters if needed. The default implementation is a simple passthrough.
"""
return params
@property
def stateful(self):
"""
Returns:
bool: True if this object has a state that can be directly dumped / loaded via dump_state() and
load_state(), otherwise, returns False. Note that any sub object states that are NOT stateful do
not need to implement any of _dump_state(), _load_state(), _serialize(), or _deserialize()!
"""
# Default is whether state size > 0
return self.state_size > 0
@property
def state_size(self):
return 0
@property
def cache(self):
"""
Returns:
dict: Dictionary mapping specific argument combinations from @self.get_value() to cached values and
information stored for that specific combination
"""
return self._cache
def _initialize(self):
"""
This function will be called once; should be used for any object state-related objects have been loaded.
"""
pass
def initialize(self):
"""
Initialize this object state
"""
assert not self._initialized, "State is already initialized."
# Validate compatibility with the created object
init_args = {k: v for k, v in self.get_init_info()["args"].items() if k != "obj"}
assert self.is_compatible(obj=self.obj, **init_args), \
f"ObjectState {self.__class__.__name__} is not compatible with object {self.obj.name}."
# Clear cache
self.clear_cache()
self._initialize()
self._initialized = True
def clear_cache(self):
"""
Clears the internal cache
"""
# Clear all entries
self._cache = dict()
self._changed = dict()
self._last_t_updated = -1
def update_cache(self, get_value_args):
"""
Updates the internal cached value based on the evaluation of @self._get_value(*get_value_args)
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value / @self._get_value
"""
t = og.sim.current_time_step_index
# Compute value and update cache
val = self._get_value(*get_value_args)
self._cache[get_value_args] = dict(value=val, info=self.cache_info(get_value_args=get_value_args), t=t)
def cache_info(self, get_value_args):
"""
Helper function to cache relevant information at the current timestep.
Stores it under @self._cache[<KEY>]["info"]
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value whose caching information should be computed
Returns:
dict: Any caching information to include at the current timestep when this state's value is computed
"""
# Default is an empty dictionary
return dict()
def cache_is_valid(self, get_value_args):
"""
Helper function to check whether the current cached value is valid or not at the current timestep.
Default is False unless we're at the current timestep.
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value whose cached values should be validated
Returns:
bool: True if the cache is valid, else False
"""
# If t == the current timestep, then our cache is obviously valid otherwise we assume it isn't
return True if self._cache[get_value_args]["t"] == og.sim.current_time_step_index else \
self._cache_is_valid(get_value_args=get_value_args)
def _cache_is_valid(self, get_value_args):
"""
Helper function to check whether the current cached value is valid or not at the current timestep.
Default is False. Subclasses should implement special logic otherwise.
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value whose cached values should be validated
Returns:
bool: True if the cache is valid, else False
"""
return False
def has_changed(self, get_value_args, value, info, t):
"""
A helper function to query whether this object state has changed between the current timestep and an arbitrary
previous timestep @t with the corresponding cached value @value and cache information @info
Note that this may require some non-trivial compute, so we leverage @t, in addition to @get_value_args,
as a unique key into an internal dictionary, such that specific @t will result in a computation conducted
exactly once.
This is done for performance reasons; so that multiple states relying on the same state dependency can all
query whether that state has changed between the same timesteps with only a single computation.
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value
value (any): Cached value computed at timestep @t for this object state
info (dict): Information calculated at timestep @t when computing this state's value
t (int): Initial timestep to compare against. This should be an index of the steps taken,
i.e. a value queried from og.sim.current_time_step_index at some point in time. It is assumed @value
and @info were computed at this timestep
Returns:
bool: Whether this object state has changed between @t and the current timestep index for the specific
@get_value_args
"""
# Check current sim step index; if it doesn't match the internal value, we need to clear the changed history
current_t = og.sim.current_time_step_index
if self._last_t_updated != current_t:
self._changed = dict()
self._last_t_updated = current_t
# Compile t, args, and kwargs deterministically
history_key = (t, *get_value_args)
# If t == the current timestep, then we obviously haven't changed so our value is False
if t == current_t:
val = False
# Otherwise, check if it already exists in our has changed dictionary; we return that value if so
elif history_key in self._changed:
val = self._changed[history_key]
# Otherwise, we calculate the value and store it in our changed dictionary
else:
val = self._has_changed(get_value_args=get_value_args, value=value, info=info)
self._changed[history_key] = val
return val
def _has_changed(self, get_value_args, value, info):
"""
Checks whether the previous value evaluated at time @t has changed with the current timestep.
By default, it returns True.
Any custom checks should be overridden by subclass.
Args:
get_value_args (tuple): Specific argument combinations (usually tuple of objects) passed into
@self.get_value
value (any): Cached value computed at timestep @t for this object state
info (dict): Information calculated at timestep @t when computing this state's value
Returns:
bool: Whether the value has changed between @value and @info and the coresponding value and info computed
at the current timestep
"""
return True
def get_value(self, *args, **kwargs):
"""
Get this state's value
Returns:
any: Object state value given input @args and @kwargs
"""
assert self._initialized
# Compile args and kwargs deterministically
key = (*args, *tuple(kwargs.values()))
# We need to see if we need to update our cache -- we do so if and only if one of the following conditions are met:
# (a) key is NOT in the cache
# (b) Our cache is not valid
if key not in self._cache or not self.cache_is_valid(get_value_args=key):
# Update the cache
self.update_cache(get_value_args=key)
# Value is the cached value
val = self._cache[key]["value"]
return val
def _get_value(self, *args, **kwargs):
raise NotImplementedError(f"_get_value not implemented for {self.__class__.__name__} state.")
def set_value(self, *args, **kwargs):
"""
Set this state's value
Returns:
bool: True if setting the value was successful, otherwise False
"""
assert self._initialized
# Clear cache because the state may be changed
self.clear_cache()
# Set the value
val = self._set_value(*args, **kwargs)
return val
def _set_value(self, *args, **kwargs):
raise NotImplementedError(f"_set_value not implemented for {self.__class__.__name__} state.")
def remove(self):
"""
Any cleanup functionality to deploy when @self.obj is removed from the simulator
"""
pass
def dump_state(self, serialized=False):
assert self._initialized
assert self.stateful
return super().dump_state(serialized=serialized)
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("BaseObjectState")
return classes
@classproperty
def _cls_registry(cls):
# Global registry
global REGISTERED_OBJECT_STATES
return REGISTERED_OBJECT_STATES
class AbsoluteObjectState(BaseObjectState):
"""
This class is used to track object states that are absolute, e.g. do not require a second object to compute
the value.
"""
def _get_value(self):
raise NotImplementedError(f"_get_value not implemented for {self.__class__.__name__} state.")
def _set_value(self, new_value):
raise NotImplementedError(f"_set_value not implemented for {self.__class__.__name__} state.")
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("AbsoluteObjectState")
return classes
class RelativeObjectState(BaseObjectState):
"""
This class is used to track object states that are relative, e.g. require two objects to compute a value.
Note that subclasses will typically compute values on-the-fly.
"""
def _get_value(self, other):
raise NotImplementedError(f"_get_value not implemented for {self.__class__.__name__} state.")
def _set_value(self, other, new_value):
raise NotImplementedError(f"_set_value not implemented for {self.__class__.__name__} state.")
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("RelativeObjectState")
return classes
class IntrinsicObjectState(BaseObjectState):
"""
This class is used to track object states that should NOT have getters / setters implemented, since the associated
ability / state is intrinsic to the state
"""
def _get_value(self):
raise NotImplementedError(f"_get_value not implemented for IntrinsicObjectState {self.__class__.__name__} state.")
def _set_value(self, new_value):
raise NotImplementedError(f"_set_value not implemented for IntrinsicObjectState {self.__class__.__name__} state.")
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("IntrinsicObjectState")
return classes
class BooleanStateMixin(BaseObjectState):
"""
This class is a mixin used to indicate that a state has a boolean value.
"""
pass
| 17,376 | Python | 38.673516 | 123 | 0.640021 |
StanfordVL/OmniGibson/omnigibson/object_states/overlaid.py | from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.object_states.touching import Touching
from omnigibson.utils.constants import PrimType
import omnigibson.utils.transform_utils as T
from omnigibson.utils.object_state_utils import sample_cloth_on_rigid
from omnigibson.macros import create_module_macros
import omnigibson as og
from scipy.spatial import ConvexHull, HalfspaceIntersection, QhullError
import numpy as np
import trimesh
import itertools
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Percentage of xy-plane of the object's base aligned bbox that needs to covered by the cloth
m.OVERLAP_AREA_PERCENTAGE = 0.5
# z-offset for sampling
m.SAMPLING_Z_OFFSET = 0.01
class Overlaid(KinematicsMixin, RelativeObjectState, BooleanStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(Touching)
return deps
def _set_value(self, other, new_value):
if not new_value:
raise NotImplementedError("Overlaid does not support set_value(False)")
state = og.sim.dump_state(serialized=False)
if sample_cloth_on_rigid(self.obj, other, randomize_xy=False) and self.get_value(other):
return True
else:
og.sim.load_state(state, serialized=False)
return False
def _get_value(self, other):
"""
Check whether the (cloth) object is overlaid on the other (rigid) object.
First, the cloth object needs to be touching the rigid object.
Then, the convex hull of the particles of the cloth object needs to cover a decent percentage of the
base aligned bounding box of the other rigid object.
"""
if not (self.obj.prim_type == PrimType.CLOTH and other.prim_type == PrimType.RIGID):
raise ValueError("Overlaid state requires obj1 is cloth and obj2 is rigid.")
if not self.obj.states[Touching].get_value(other):
return False
# Compute the convex hull of the particles of the cloth object.
points = self.obj.root_link.keypoint_particle_positions[:, :2]
cloth_hull = ConvexHull(points)
# Compute the base aligned bounding box of the rigid object.
bbox_center, bbox_orn, bbox_extent, _ = other.get_base_aligned_bbox(xy_aligned=True)
vertices_local = np.array(list(itertools.product((1, -1), repeat=3))) * (bbox_extent / 2)
vertices = trimesh.transformations.transform_points(vertices_local, T.pose2mat((bbox_center, bbox_orn)))
rigid_hull = ConvexHull(vertices[:, :2])
# The goal is to find the intersection of the convex hull and the bounding box.
# We can do so with HalfspaceIntersection, which takes as input a list of equations that define the half spaces,
# and an interior point. We assume the center of the bounding box is an interior point.
interior_pt = vertices.mean(axis=0)[:2]
half_spaces = np.vstack((cloth_hull.equations, rigid_hull.equations))
try:
half_space_intersection = HalfspaceIntersection(half_spaces, interior_pt)
except QhullError:
# The bbox center of the rigid body does not lie in the intersection, return False.
return False
# Compute the ratio between the intersection area and the bounding box area in the x-y plane.
# When input points are 2-dimensional, this is the area of the convex hull.
# Ref: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
intersection_area = ConvexHull(half_space_intersection.intersections).volume
rigid_xy_area = bbox_extent[0] * bbox_extent[1]
return (intersection_area / rigid_xy_area) > m.OVERLAP_AREA_PERCENTAGE
| 3,916 | Python | 44.022988 | 120 | 0.701992 |
StanfordVL/OmniGibson/omnigibson/object_states/tensorized_value_state.py | from omnigibson.object_states.object_state_base import AbsoluteObjectState
from omnigibson.object_states.update_state_mixin import GlobalUpdateStateMixin
from omnigibson.utils.python_utils import classproperty
import numpy as np
class TensorizedValueState(AbsoluteObjectState, GlobalUpdateStateMixin):
"""
A state-mixin that implements optimized global value updates across all object state instances
of this type, i.e.: all values across all object state instances are updated at once, rather than per
individual instance update() call.
"""
# Numpy array of raw internally tracked values
# Shape is (N, ...), where the ith entry in the first dimension corresponds to the ith object state instance's value
VALUES = None
# Dictionary mapping object name to index in VALUES
OBJ_IDXS = None
# Dict of callbacks that can be added to when an object is removed
CALLBACKS_ON_REMOVE = None
@classmethod
def global_initialize(cls):
# Call super first
super().global_initialize()
# Initialize the global variables
cls.VALUES = np.array([], dtype=cls.value_type).reshape(0, *cls.value_shape)
cls.OBJ_IDXS = dict()
cls.CALLBACKS_ON_REMOVE = dict()
@classmethod
def global_update(cls):
# Call super first
super().global_update()
# This should be globally update all values. If there are no values, we skip by default since there is nothing
# being tracked currently
if len(cls.VALUES) == 0:
return
cls.VALUES = cls._update_values(values=cls.VALUES)
@classmethod
def global_clear(cls):
# Call super first
super().global_clear()
# Clear internal state
cls.VALUES = None
cls.OBJ_IDXS = None
cls.CALLBACKS_ON_REMOVE = None
@classmethod
def _update_values(cls, values):
"""
Updates all internally tracked @values for this object state. Should be implemented by subclass.
Args:
values (np.array): Tensorized value array
Returns:
np.array: Updated tensorized value array
"""
raise NotImplementedError
@classmethod
def _add_obj(cls, obj):
"""
Adds object @obj to be tracked internally in @VALUES array.
Args:
obj (StatefulObject): Object to add
"""
assert obj.name not in cls.OBJ_IDXS, \
f"Tried to add object {obj.name} to the global tensorized value array but the object already exists!"
# Add this object to the tracked global state
cls.OBJ_IDXS[obj.name] = len(cls.VALUES)
cls.VALUES = np.concatenate([cls.VALUES, np.zeros((1, *cls.value_shape), dtype=cls.value_type)], axis=0)
@classmethod
def _remove_obj(cls, obj):
"""
Removes object @obj from the internally tracked @VALUES array.
This also removes the corresponding tracking idx in @OBJ_IDXS
Args:
obj (StatefulObject): Object to remove
"""
# Removes this tracked object from the global value array
assert obj.name in cls.OBJ_IDXS, \
f"Tried to remove object {obj.name} from the global tensorized value array but the object does not exist!"
deleted_idx = cls.OBJ_IDXS.pop(obj.name)
# Re-standardize the indices
for i, name in enumerate(cls.OBJ_IDXS.keys()):
cls.OBJ_IDXS[name] = i
cls.VALUES = np.delete(cls.VALUES, [deleted_idx])
@classmethod
def add_callback_on_remove(cls, name, callback):
"""
Adds a callback that will be triggered when @self.remove is called
Args:
name (str): Name of the callback to trigger
callback (function): Function to execute. Should have signature callback(obj: BaseObject) --> None
"""
cls.CALLBACKS_ON_REMOVE[name] = callback
@classmethod
def remove_callback_on_remove(cls, name):
"""
Removes callback with name @name from the internal set of callbacks
Args:
name (str): Name of the callback to remove
"""
cls.CALLBACKS_ON_REMOVE.pop(name)
@classproperty
def value_shape(cls):
"""
Returns:
tuple: Expected shape of the per-object state instance value. If empty (), this assumes
that each entry is a single (non-array) value. Default is ()
"""
return ()
@classproperty
def value_type(cls):
"""
Returns:
type: Type of the internal value array, e.g., bool, np.uint, float, etc. Default is float
"""
return float
@classproperty
def value_name(cls):
"""
Returns:
str: Name of the value key to assign when dumping / loading the state. Should be implemented by subclass
"""
raise NotImplementedError
def __init__(self, *args, **kwargs):
# Run super first
super().__init__(*args, **kwargs)
self._add_obj(obj=self.obj)
def remove(self):
# Execute all callbacks
for callback in self.CALLBACKS_ON_REMOVE.values():
callback(self.obj)
# Removes this tracked object from the global value array
self._remove_obj(obj=self.obj)
def _get_value(self):
# Directly access value from global register
return self.value_type(self.VALUES[self.OBJ_IDXS[self.obj.name]])
def _set_value(self, new_value):
# Directly set value in global register
self.VALUES[self.OBJ_IDXS[self.obj.name]] = new_value
return True
@property
def state_size(self):
# This is the flattened size of @self.value_shape
# Note that np.product(()) returns 1, which is also correct for a non-arrayed value
return int(np.product(self.value_shape))
# For this state, we simply store its value.
def _dump_state(self):
return {self.value_name: self._get_value()}
def _load_state(self, state):
self._set_value(state[self.value_name])
def _serialize(self, state):
# If the state value is not an iterable, wrap it in a numpy array
val = state[self.value_name] if isinstance(state[self.value_name], np.ndarray) else np.array([state[self.value_name]])
return val.flatten().astype(float)
def _deserialize(self, state):
value_length = int(np.product(self.value_shape))
value = state[:value_length].reshape(self.value_shape) if len(self.value_shape) > 0 else state[0]
return {self.value_name: value}, value_length
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("TensorizedValueState")
return classes
| 6,878 | Python | 33.395 | 126 | 0.631288 |
StanfordVL/OmniGibson/omnigibson/object_states/inside.py | import numpy as np
import omnigibson as og
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.adjacency import HorizontalAdjacency, VerticalAdjacency, flatten_planes
from omnigibson.object_states.kinematics_mixin import KinematicsMixin
from omnigibson.object_states.object_state_base import BooleanStateMixin, RelativeObjectState
from omnigibson.utils.object_state_utils import sample_kinematics
from omnigibson.utils.constants import PrimType
from omnigibson.utils.object_state_utils import m as os_m
class Inside(RelativeObjectState, KinematicsMixin, BooleanStateMixin):
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.update({AABB, HorizontalAdjacency, VerticalAdjacency})
return deps
def _set_value(self, other, new_value, reset_before_sampling=False):
if not new_value:
raise NotImplementedError("Inside does not support set_value(False)")
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot set an object inside a cloth object.")
state = og.sim.dump_state(serialized=False)
# Possibly reset this object if requested
if reset_before_sampling:
self.obj.reset()
for _ in range(os_m.DEFAULT_HIGH_LEVEL_SAMPLING_ATTEMPTS):
if sample_kinematics("inside", self.obj, other) and self.get_value(other):
return True
else:
og.sim.load_state(state, serialized=False)
return False
def _get_value(self, other):
if other.prim_type == PrimType.CLOTH:
raise ValueError("Cannot detect if an object is inside a cloth object.")
# First check that the inner object's position is inside the outer's AABB.
# Since we usually check for a small set of outer objects, this is cheap
aabb_lower, aabb_upper = self.obj.states[AABB].get_value()
inner_object_pos = (aabb_lower + aabb_upper) / 2.0
outer_object_aabb_lo, outer_object_aabb_hi = other.states[AABB].get_value()
if not (np.less_equal(outer_object_aabb_lo, inner_object_pos).all() and np.less_equal(inner_object_pos, outer_object_aabb_hi).all()):
return False
# Our definition of inside: an object A is inside an object B if there
# exists a 3-D coordinate space in which object B can be found on both
# sides of object A in at least 2 out of 3 of the coordinate axes. To
# check this, we sample a bunch of coordinate systems (for the sake of
# simplicity, all have their 3rd axes aligned with the Z axis but the
# 1st and 2nd axes are free.
vertical_adjacency = self.obj.states[VerticalAdjacency].get_value()
horizontal_adjacency = self.obj.states[HorizontalAdjacency].get_value()
# First, check if the body can be found on both sides in Z
on_both_sides_Z = other in vertical_adjacency.negative_neighbors and other in vertical_adjacency.positive_neighbors
if on_both_sides_Z:
# If the object is on both sides of Z, we already found 1 axis, so just
# find another axis where the object is on both sides.
on_both_sides_in_any_axis = any(
other in adjacency_list.positive_neighbors and
other in adjacency_list.negative_neighbors
for adjacency_list in flatten_planes(horizontal_adjacency)
)
return on_both_sides_in_any_axis
# If the object was not on both sides of Z, then we need to look at each
# plane and try to find one where the object is on both sides of both
# axes in that plane.
on_both_sides_of_both_axes_in_any_plane = any(
other in adjacency_list_by_axis[0].positive_neighbors and
other in adjacency_list_by_axis[0].negative_neighbors and
other in adjacency_list_by_axis[1].positive_neighbors and
other in adjacency_list_by_axis[1].negative_neighbors
for adjacency_list_by_axis in horizontal_adjacency
)
return on_both_sides_of_both_axes_in_any_plane
| 4,157 | Python | 47.917646 | 141 | 0.674044 |
StanfordVL/OmniGibson/omnigibson/object_states/temperature.py | import numpy as np
from omnigibson.macros import create_module_macros
from omnigibson.object_states.heat_source_or_sink import HeatSourceOrSink
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.tensorized_value_state import TensorizedValueState
import omnigibson as og
from omnigibson.utils.python_utils import classproperty
# Create settings for this module
m = create_module_macros(module_path=__file__)
# TODO: Consider sourcing default temperature from scene
# Default ambient temperature.
m.DEFAULT_TEMPERATURE = 23.0 # degrees Celsius
# What fraction of the temperature difference with the default temperature should be decayed every step.
m.TEMPERATURE_DECAY_SPEED = 0.02 # per second. We'll do the conversion to steps later.
class Temperature(TensorizedValueState):
def __init__(self, obj):
# Run super first
super(Temperature, self).__init__(obj)
# Set value to be default
self._set_value(m.DEFAULT_TEMPERATURE)
@classmethod
def update_temperature_from_heatsource_or_sink(cls, objs, temperature, rate):
"""
Updates @objs' internal temperatures based on @temperature and @rate
Args:
objs (Iterable of StatefulObject): Objects whose temperatures should be updated
temperature (float): Heat source / sink temperature
rate (float): Heating rate of the source / sink
"""
# Get idxs for objs
idxs = [cls.OBJ_IDXS[obj.name] for obj in objs]
cls.VALUES[idxs] += (temperature - cls.VALUES[idxs]) * rate * og.sim.get_rendering_dt()
@classmethod
def get_dependencies(cls):
deps = super().get_dependencies()
deps.add(AABB)
return deps
@classmethod
def get_optional_dependencies(cls):
deps = super().get_optional_dependencies()
deps.add(HeatSourceOrSink)
return deps
@classmethod
def _update_values(cls, values):
# Apply temperature decay
return values + (m.DEFAULT_TEMPERATURE - values) * m.TEMPERATURE_DECAY_SPEED * og.sim.get_rendering_dt()
@classproperty
def value_name(cls):
return "temperature"
| 2,179 | Python | 33.603174 | 112 | 0.692061 |
StanfordVL/OmniGibson/omnigibson/objects/usd_object.py | import os
import tempfile
import omnigibson as og
from omnigibson.objects.stateful_object import StatefulObject
from omnigibson.utils.constants import PrimType
from omnigibson.utils.usd_utils import add_asset_to_stage
from omnigibson.utils.asset_utils import decrypt_file
class USDObject(StatefulObject):
"""
USDObjects are instantiated from a USD file. They can be composed of one
or more links and joints. They may or may not be passive.
"""
def __init__(
self,
name,
usd_path,
encrypted=False,
prim_path=None,
category="object",
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
kinematic_only=None,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
abilities=None,
include_default_states=True,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
usd_path (str): global path to the USD file to load
encrypted (bool): whether this file is encrypted (and should therefore be decrypted) or not
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
kinematic_only (None or bool): Whether this object should be kinematic only (and not get affected by any
collisions). If None, then this value will be set to True if @fixed_base is True and some other criteria
are satisfied (see object_base.py post_load function), else False.
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
include_default_states (bool): whether to include the default object states from @get_default_states
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
Note that this base object does NOT pass kwargs down into the Prim-type super() classes, and we assume
that kwargs are only shared between all SUBclasses (children), not SUPERclasses (parents).
"""
self._usd_path = usd_path
self._encrypted = encrypted
super().__init__(
prim_path=prim_path,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
kinematic_only=kinematic_only,
self_collisions=self_collisions,
prim_type=prim_type,
include_default_states=include_default_states,
load_config=load_config,
abilities=abilities,
**kwargs,
)
def _load(self):
"""
Load the object into pybullet and set it to the correct pose
"""
usd_path = self._usd_path
if self._encrypted:
# Create a temporary file to store the decrytped asset, load it, and then delete it
encrypted_filename = self._usd_path.replace(".usd", ".encrypted.usd")
usd_path = self._usd_path.replace(".usd", f".{self.uuid}.usd")
decrypt_file(encrypted_filename, usd_path)
prim = add_asset_to_stage(asset_path=usd_path, prim_path=self._prim_path)
if self._encrypted:
# On Windows, Isaac Sim won't let go of the file until the prim is removed, so we can't delete it.
if os.name == "posix":
os.remove(usd_path)
return prim
def _create_prim_with_same_kwargs(self, prim_path, name, load_config):
# Add additional kwargs
return self.__class__(
prim_path=prim_path,
usd_path=self._usd_path,
name=name,
category=self.category,
scale=self.scale,
visible=self.visible,
fixed_base=self.fixed_base,
visual_only=self._visual_only,
prim_type=self._prim_type,
load_config=load_config,
abilities=self._abilities,
)
@property
def usd_path(self):
"""
Returns:
str: absolute path to this model's USD file. By default, this is the loaded usd path
passed in as an argument
"""
return self._usd_path
| 5,930 | Python | 43.593985 | 120 | 0.615683 |
StanfordVL/OmniGibson/omnigibson/objects/stateful_object.py | import sys
from collections import defaultdict
import numpy as np
from bddl.object_taxonomy import ObjectTaxonomy
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import create_module_macros, gm
from omnigibson.object_states.factory import (
get_default_states,
get_state_name,
get_requirements_for_ability,
get_states_for_ability,
get_states_by_dependency_order,
get_texture_change_states,
get_fire_states,
get_steam_states,
get_visual_states,
get_texture_change_priority,
)
from omnigibson.object_states.object_state_base import REGISTERED_OBJECT_STATES
from omnigibson.object_states.heat_source_or_sink import HeatSourceOrSink
from omnigibson.object_states.on_fire import OnFire
from omnigibson.object_states.particle_modifier import ParticleRemover
from omnigibson.objects.object_base import BaseObject
from omnigibson.renderer_settings.renderer_settings import RendererSettings
from omnigibson.utils.constants import PrimType, EmitterType
from omnigibson.utils.python_utils import classproperty, extract_class_init_kwargs_from_dict
from omnigibson.object_states import Saturated
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
OBJECT_TAXONOMY = ObjectTaxonomy()
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.STEAM_EMITTER_SIZE_RATIO = [0.8, 0.8, 0.4] # (x,y,z) scale of generated steam relative to its object, range [0, inf)
m.STEAM_EMITTER_DENSITY_CELL_RATIO = 0.1 # scale of steam density relative to its object, range [0, inf)
m.STEAM_EMITTER_HEIGHT_RATIO = 0.6 # z-height of generated steam relative to its object's native height, range [0, inf)
m.FIRE_EMITTER_HEIGHT_RATIO = 0.4 # z-height of generated fire relative to its object's native height, range [0, inf)
class FlowEmitterLayerRegistry:
"""
Registry for flow emitter layers. This is used to ensure that all flow emitters are placed on unique layers, so that
they do not interfere with each other.
"""
def __init__(self):
self._layer = 0
def __call__(self):
self._layer += 1
return self._layer
LAYER_REGISTRY = FlowEmitterLayerRegistry()
class StatefulObject(BaseObject):
"""Objects that support object states."""
def __init__(
self,
name,
prim_path=None,
category="object",
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
kinematic_only=None,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
abilities=None,
include_default_states=True,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
kinematic_only (None or bool): Whether this object should be kinematic only (and not get affected by any
collisions). If None, then this value will be set to True if @fixed_base is True and some other criteria
are satisfied (see object_base.py post_load function), else False.
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
include_default_states (bool): whether to include the default object states from @get_default_states
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Values that will be filled later
self._states = None
self._emitters = dict()
self._visual_states = None
self._current_texture_state = None
self._include_default_states = include_default_states
# Load abilities from taxonomy if needed & possible
if abilities is None:
abilities = {}
taxonomy_class = OBJECT_TAXONOMY.get_synset_from_category(category)
if taxonomy_class is not None:
abilities = OBJECT_TAXONOMY.get_abilities(taxonomy_class)
assert isinstance(abilities, dict), "Object abilities must be in dictionary form."
self._abilities = abilities
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
kinematic_only=kinematic_only,
self_collisions=self_collisions,
prim_type=prim_type,
load_config=load_config,
**kwargs,
)
def _post_load(self):
# Run super first
super()._post_load()
# Prepare the object states
self._states = {}
self.prepare_object_states()
def _initialize(self):
# Run super first
super()._initialize()
# Initialize all states
for state in self._states.values():
state.initialize()
# Check whether this object requires any visual updates
states_set = set(self.states)
self._visual_states = states_set & get_visual_states()
# If we require visual updates, possibly create additional APIs
if len(self._visual_states) > 0:
if len(states_set & get_steam_states()) > 0:
self._create_emitter_apis(EmitterType.STEAM)
if len(states_set & get_fire_states()) > 0:
self._create_emitter_apis(EmitterType.FIRE)
def add_state(self, state):
"""
Adds state @state with name @name to self.states.
Args:
state (ObjectStateBase): Object state instance to add to this object
"""
assert self._states is not None, "Cannot add state since states have not been initialized yet!"
assert state.__class__ not in self._states, f"State {state.__class__.__name__} " \
f"has already been added to this object!"
self._states[state.__class__] = state
@property
def states(self):
"""
Get the current states of this object.
Returns:
dict: Keyword-mapped states for this object
"""
return self._states
@property
def abilities(self):
"""
Returns:
dict: Dictionary mapping ability name to ability arguments for this object
"""
return self._abilities
def prepare_object_states(self):
"""
Prepare the state dictionary for an object by generating the appropriate
object state instances.
This uses the abilities of the object and the state dependency graph to
find & instantiate all relevant states.
"""
states_info = {state_type: {"ability": None, "params": dict()} for state_type in get_default_states()} if \
self._include_default_states else dict()
# Map the state type (class) to ability name and params
if gm.ENABLE_OBJECT_STATES:
for ability in tuple(self._abilities.keys()):
# First, sanity check all ability requirements
compatible = True
for requirement in get_requirements_for_ability(ability):
compatible, reason = requirement.is_compatible(obj=self)
if not compatible:
# Print out warning and pop ability
log.warning(f"Ability '{ability}' is incompatible with obj {self.name}, "
f"because requirement {requirement.__name__} was not met. Reason: {reason}")
self._abilities.pop(ability)
break
if compatible:
params = self._abilities[ability]
for state_type in get_states_for_ability(ability):
states_info[state_type] = {"ability": ability,
"params": state_type.postprocess_ability_params(params)}
# Add the dependencies into the list, too, and sort based on the dependency chain
# Must iterate over explicit tuple since dictionary changes size mid-iteration
for state_type in tuple(states_info.keys()):
# Add each state's dependencies, too. Note that only required dependencies are explicitly added, but both
# required AND optional dependencies are checked / sorted
for dependency in state_type.get_dependencies():
if dependency not in states_info:
states_info[dependency] = {"ability": None, "params": dict()}
# Iterate over all sorted state types, generating the states in topological order.
self._states = dict()
for state_type in get_states_by_dependency_order(states=states_info):
# Skip over any types that are not in our info dict -- these correspond to optional dependencies
if state_type not in states_info:
continue
relevant_params = extract_class_init_kwargs_from_dict(cls=state_type, dic=states_info[state_type]["params"], copy=False)
compatible, reason = state_type.is_compatible(obj=self, **relevant_params)
if compatible:
self._states[state_type] = state_type(obj=self, **relevant_params)
else:
log.warning(f"State {state_type.__name__} is incompatible with obj {self.name}. Reason: {reason}")
# Remove the ability if it exists
# Note that the object may still have some of the states related to the desired ability. In this way,
# we guarantee that the existence of a certain ability in self.abilities means at ALL corresponding
# object state dependencies are met by the underlying object asset
ability = states_info[state_type]["ability"]
if ability in self._abilities:
self._abilities.pop(ability)
def _create_emitter_apis(self, emitter_type):
"""
Create necessary prims and apis for steam effects.
Args:
emitter_type (EmitterType): Emitter to create
"""
# Make sure that flow setting is enabled.
renderer_setting = RendererSettings()
renderer_setting.common_settings.flow_settings.enable()
# Specify emitter config.
emitter_config = {}
bbox_extent_local = self.native_bbox if hasattr(self, "native_bbox") else self.aabb_extent / self.scale
if emitter_type == EmitterType.FIRE:
fire_at_metalink = True
if OnFire in self.states:
# Note whether the heat source link is explicitly set
link = self.states[OnFire].link
fire_at_metalink = link != self.root_link
elif HeatSourceOrSink in self.states:
# Only apply fire to non-root-link (i.e.: explicitly specified) heat source links
# Otherwise, immediately return
link = self.states[HeatSourceOrSink].link
if link == self.root_link:
return
else:
raise ValueError("Unknown fire state")
emitter_config["name"] = "flowEmitterSphere"
emitter_config["type"] = "FlowEmitterSphere"
emitter_config["position"] = (0.0, 0.0, 0.0) if fire_at_metalink \
else (0.0, 0.0, bbox_extent_local[2] * m.FIRE_EMITTER_HEIGHT_RATIO)
emitter_config["fuel"] = 0.6
emitter_config["coupleRateFuel"] = 1.2
emitter_config["buoyancyPerTemp"] = 0.04
emitter_config["burnPerTemp"] = 4
emitter_config["gravity"] = (0, 0, -60.0)
emitter_config["constantMask"] = 5.0
emitter_config["attenuation"] = 0.5
elif emitter_type == EmitterType.STEAM:
link = self.root_link
emitter_config["name"] = "flowEmitterBox"
emitter_config["type"] = "FlowEmitterBox"
emitter_config["position"] = (0.0, 0.0, bbox_extent_local[2] * m.STEAM_EMITTER_HEIGHT_RATIO)
emitter_config["fuel"] = 1.0
emitter_config["coupleRateFuel"] = 0.5
emitter_config["buoyancyPerTemp"] = 0.05
emitter_config["burnPerTemp"] = 0.5
emitter_config["gravity"] = (0, 0, -50.0)
emitter_config["constantMask"] = 10.0
emitter_config["attenuation"] = 1.5
else:
raise ValueError("Currently, only EmitterTypes FIRE and STEAM are supported!")
# Define prim paths.
# The flow system is created under the root link so that it automatically updates its pose as the object moves
flowEmitter_prim_path = f"{link.prim_path}/{emitter_config['name']}"
flowSimulate_prim_path = f"{link.prim_path}/flowSimulate"
flowOffscreen_prim_path = f"{link.prim_path}/flowOffscreen"
flowRender_prim_path = f"{link.prim_path}/flowRender"
# Define prims.
stage = og.sim.stage
emitter = stage.DefinePrim(flowEmitter_prim_path, emitter_config["type"])
simulate = stage.DefinePrim(flowSimulate_prim_path, "FlowSimulate")
offscreen = stage.DefinePrim(flowOffscreen_prim_path, "FlowOffscreen")
renderer = stage.DefinePrim(flowRender_prim_path, "FlowRender")
advection = stage.DefinePrim(flowSimulate_prim_path + "/advection", "FlowAdvectionCombustionParams")
smoke = stage.DefinePrim(flowSimulate_prim_path + "/advection/smoke", "FlowAdvectionCombustionParams")
vorticity = stage.DefinePrim(flowSimulate_prim_path + "/vorticity", "FlowVorticityParams")
rayMarch = stage.DefinePrim(flowRender_prim_path + "/rayMarch", "FlowRayMarchParams")
colormap = stage.DefinePrim(flowOffscreen_prim_path + "/colormap", "FlowRayMarchColormapParams")
self._emitters[emitter_type] = emitter
layer_number = LAYER_REGISTRY()
# Update emitter general settings.
emitter.CreateAttribute("enabled", lazy.pxr.Sdf.ValueTypeNames.Bool, False).Set(False)
emitter.CreateAttribute("position", lazy.pxr.Sdf.ValueTypeNames.Float3, False).Set(emitter_config["position"])
emitter.CreateAttribute("fuel", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["fuel"])
emitter.CreateAttribute("coupleRateFuel", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["coupleRateFuel"])
emitter.CreateAttribute("coupleRateVelocity", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(2.0)
emitter.CreateAttribute("velocity", lazy.pxr.Sdf.ValueTypeNames.Float3, False).Set((0, 0, 0))
emitter.CreateAttribute("layer", lazy.pxr.Sdf.ValueTypeNames.Int, False).Set(layer_number)
simulate.CreateAttribute("layer", lazy.pxr.Sdf.ValueTypeNames.Int, False).Set(layer_number)
offscreen.CreateAttribute("layer", lazy.pxr.Sdf.ValueTypeNames.Int, False).Set(layer_number)
renderer.CreateAttribute("layer", lazy.pxr.Sdf.ValueTypeNames.Int, False).Set(layer_number)
advection.CreateAttribute("buoyancyPerTemp", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["buoyancyPerTemp"])
advection.CreateAttribute("burnPerTemp", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["burnPerTemp"])
advection.CreateAttribute("gravity", lazy.pxr.Sdf.ValueTypeNames.Float3, False).Set(emitter_config["gravity"])
vorticity.CreateAttribute("constantMask", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["constantMask"])
rayMarch.CreateAttribute("attenuation", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(emitter_config["attenuation"])
# Update emitter unique settings.
if emitter_type == EmitterType.FIRE:
# Radius is in the absolute world coordinate even though the fire is under the link frame.
# In other words, scaling the object doesn't change the fire radius.
if fire_at_metalink:
# TODO: get radius of heat_source_link from metadata.
radius = 0.05
else:
bbox_extent_world = self.native_bbox * self.scale if hasattr(self, "native_bbox") else self.aabb_extent
# Radius is the average x-y half-extent of the object
radius = float(np.mean(bbox_extent_world[:2]) / 2.0)
emitter.CreateAttribute("radius", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(radius)
simulate.CreateAttribute("densityCellSize", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(radius*0.2)
smoke.CreateAttribute("fade", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(2.0)
# Set fire colormap.
rgbaPoints = []
rgbaPoints.append(lazy.pxr.Gf.Vec4f(0.0154, 0.0177, 0.0154, 0.004902))
rgbaPoints.append(lazy.pxr.Gf.Vec4f(0.03575, 0.03575, 0.03575, 0.504902))
rgbaPoints.append(lazy.pxr.Gf.Vec4f(0.03575, 0.03575, 0.03575, 0.504902))
rgbaPoints.append(lazy.pxr.Gf.Vec4f(1, 0.1594, 0.0134, 0.8))
rgbaPoints.append(lazy.pxr.Gf.Vec4f(13.53, 2.99, 0.12599, 0.8))
rgbaPoints.append(lazy.pxr.Gf.Vec4f(78, 39, 6.1, 0.7))
colormap.CreateAttribute("rgbaPoints", lazy.pxr.Sdf.ValueTypeNames.Float4Array, False).Set(rgbaPoints)
elif emitter_type == EmitterType.STEAM:
emitter.CreateAttribute("halfSize", lazy.pxr.Sdf.ValueTypeNames.Float3, False).Set(
tuple(bbox_extent_local * np.array(m.STEAM_EMITTER_SIZE_RATIO) / 2.0))
simulate.CreateAttribute("densityCellSize", lazy.pxr.Sdf.ValueTypeNames.Float, False).Set(bbox_extent_local[2] * m.STEAM_EMITTER_DENSITY_CELL_RATIO)
def set_emitter_enabled(self, emitter_type, value):
"""
Enable/disable the emitter prim for fire/steam effect.
Args:
emitter_type (EmitterType): Emitter to set
value (bool): Value to set
"""
if emitter_type not in self._emitters:
return
if value != self._emitters[emitter_type].GetAttribute("enabled").Get():
self._emitters[emitter_type].GetAttribute("enabled").Set(value)
def get_textures(self):
"""
Gets prim's texture files.
Returns:
list of str: List of texture file paths
"""
return [material.diffuse_texture for material in self.materials if material.diffuse_texture is not None]
def update_visuals(self):
"""
Update the prim's visuals (texture change, steam/fire effects, etc).
Should be called after all the states are updated.
"""
if len(self._visual_states) > 0:
texture_change_states = []
emitter_enabled = defaultdict(bool)
for state_type in self._visual_states:
state = self.states[state_type]
if state_type in get_texture_change_states():
if state_type == Saturated:
for particle_system in ParticleRemover.supported_active_systems.values():
if state.get_value(particle_system):
texture_change_states.append(state)
# Only need to do this once, since soaked handles all fluid systems
break
elif state.get_value():
texture_change_states.append(state)
if state_type in get_steam_states():
emitter_enabled[EmitterType.STEAM] |= state.get_value()
if state_type in get_fire_states():
emitter_enabled[EmitterType.FIRE] |= state.get_value()
for emitter_type in emitter_enabled:
self.set_emitter_enabled(emitter_type, emitter_enabled[emitter_type])
texture_change_states.sort(key=lambda s: get_texture_change_priority()[s.__class__])
object_state = texture_change_states[-1] if len(texture_change_states) > 0 else None
# Only update our texture change if it's a different object state than the one we already have
if object_state != self._current_texture_state:
self._update_texture_change(object_state)
self._current_texture_state = object_state
def _update_texture_change(self, object_state):
"""
Update the texture based on the given object_state. E.g. if object_state is Frozen, update the diffuse color
to match the frozen state. If object_state is None, update the diffuse color to the default value. It modifies
the current albedo map by adding and scaling the values. See @self._update_albedo_value for details.
Args:
object_state (BooleanStateMixin or None): the object state that the diffuse color should match to
"""
for material in self.materials:
self._update_albedo_value(object_state, material)
@staticmethod
def _update_albedo_value(object_state, material):
"""
Update the albedo value based on the given object_state. The final albedo value is
albedo_value = diffuse_tint * (albedo_value + albedo_add)
Args:
object_state (BooleanStateMixin or None): the object state that the diffuse color should match to
material (MaterialPrim): the material to use to update the albedo value
"""
if object_state is None:
# This restore the albedo map to its original value
albedo_add = 0.0
diffuse_tint = (1.0, 1.0, 1.0)
else:
# Query the object state for the parameters
albedo_add, diffuse_tint = object_state.get_texture_change_params()
if material.is_glass:
if not np.allclose(material.glass_color, diffuse_tint):
material.glass_color = diffuse_tint
else:
if material.albedo_add != albedo_add:
material.albedo_add = albedo_add
if not np.allclose(material.diffuse_tint, diffuse_tint):
material.diffuse_tint = diffuse_tint
def remove(self):
# Run super
super().remove()
# Iterate over all states and run their remove call
for state_instance in self._states.values():
state_instance.remove()
def _dump_state(self):
# Grab state from super class
state = super()._dump_state()
# Also add non-kinematic states
non_kin_states = dict()
for state_type, state_instance in self._states.items():
if state_instance.stateful:
non_kin_states[get_state_name(state_type)] = state_instance.dump_state(serialized=False)
state["non_kin"] = non_kin_states
return state
def _load_state(self, state):
# Call super method first
super()._load_state(state=state)
# Load non-kinematic states
self.load_non_kin_state(state)
def load_non_kin_state(self, state):
# Load all states that are stateful
for state_type, state_instance in self._states.items():
state_name = get_state_name(state_type)
if state_instance.stateful:
if state_name in state["non_kin"]:
state_instance.load_state(state=state["non_kin"][state_name], serialized=False)
else:
log.warning(f"Missing object state [{state_name}] in the state dump for obj {self.name}")
# Clear cache after loading state
self.clear_states_cache()
def _serialize(self, state):
# Call super method first
state_flat = super()._serialize(state=state)
# Iterate over all states and serialize them individually
non_kin_state_flat = np.concatenate([
self._states[REGISTERED_OBJECT_STATES[state_name]].serialize(state_dict)
for state_name, state_dict in state["non_kin"].items()
]) if len(state["non_kin"]) > 0 else np.array([])
# Combine these two arrays
return np.concatenate([state_flat, non_kin_state_flat]).astype(float)
def _deserialize(self, state):
# Call super method first
state_dic, idx = super()._deserialize(state=state)
# Iterate over all states and deserialize their states if they're stateful
non_kin_state_dic = dict()
for state_type, state_instance in self._states.items():
state_name = get_state_name(state_type)
if state_instance.stateful:
non_kin_state_dic[state_name] = state_instance.deserialize(state[idx:idx+state_instance.state_size])
idx += state_instance.state_size
state_dic["non_kin"] = non_kin_state_dic
return state_dic, idx
def clear_states_cache(self):
"""
Clears the internal cache from all owned states
"""
# Check self._states just in case states have not been initialized yet.
if not self._states:
return
for _, obj_state in self._states.items():
obj_state.clear_cache()
def set_position_orientation(self, position=None, orientation=None):
super().set_position_orientation(position=position, orientation=orientation)
self.clear_states_cache()
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("StatefulObject")
return classes
| 27,486 | Python | 46.970332 | 160 | 0.625446 |
StanfordVL/OmniGibson/omnigibson/objects/light_object.py | import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.objects.stateful_object import StatefulObject
from omnigibson.prims.xform_prim import XFormPrim
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.constants import PrimType
from omnigibson.utils.ui_utils import create_module_logger
import numpy as np
# Create module logger
log = create_module_logger(module_name=__name__)
class LightObject(StatefulObject):
"""
LightObjects are objects that generate light in the simulation
"""
LIGHT_TYPES = {
"Cylinder",
"Disk",
"Distant",
"Dome",
"Geometry",
"Rect",
"Sphere",
}
def __init__(
self,
name,
light_type,
prim_path=None,
category="light",
uuid=None,
scale=None,
fixed_base=False,
load_config=None,
abilities=None,
include_default_states=True,
radius=1.0,
intensity=50000.0,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
light_type (str): Type of light to create. Valid options are LIGHT_TYPES
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
fixed_base (bool): whether to fix the base of this object or not
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
include_default_states (bool): whether to include the default object states from @get_default_states
radius (float): Radius for this light.
intensity (float): Intensity for this light.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Compose load config and add rgba values
load_config = dict() if load_config is None else load_config
load_config["scale"] = scale
load_config["intensity"] = intensity
load_config["radius"] = radius if light_type in {"Cylinder", "Disk", "Sphere"} else None
# Make sure primitive type is valid
assert_valid_key(key=light_type, valid_keys=self.LIGHT_TYPES, name="light_type")
self.light_type = light_type
# Other attributes to be filled in at runtime
self._light_link = None
# Run super method
super().__init__(
prim_path=prim_path,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=True,
fixed_base=fixed_base,
visual_only=True,
self_collisions=False,
prim_type=PrimType.RIGID,
include_default_states=include_default_states,
load_config=load_config,
abilities=abilities,
**kwargs,
)
def _load(self):
# Define XForm and base link for this light
prim = og.sim.stage.DefinePrim(self._prim_path, "Xform")
base_link = og.sim.stage.DefinePrim(f"{self._prim_path}/base_link", "Xform")
# Define the actual light link
light_prim = getattr(lazy.pxr.UsdLux, f"{self.light_type}Light").Define(og.sim.stage, f"{self._prim_path}/base_link/light").GetPrim()
return prim
def _post_load(self):
# run super first
super()._post_load()
# Grab reference to light link
self._light_link = XFormPrim(prim_path=f"{self._prim_path}/base_link/light", name=f"{self.name}:light_link")
# Apply Shaping API and set default cone angle attribute
shaping_api = lazy.pxr.UsdLux.ShapingAPI.Apply(self._light_link.prim).GetShapingConeAngleAttr().Set(180.0)
# Optionally set the intensity
if self._load_config.get("intensity", None) is not None:
self.intensity = self._load_config["intensity"]
# Optionally set the radius
if self._load_config.get("radius", None) is not None:
self.radius = self._load_config["radius"]
def _initialize(self):
# Run super
super()._initialize()
# Initialize light link
self._light_link.initialize()
@property
def aabb(self):
# This is a virtual object (with no associated visual mesh), so omni returns an invalid AABB.
# Therefore we instead return a hardcoded small value
return np.ones(3) * -0.001, np.ones(3) * 0.001
@property
def light_link(self):
"""
Returns:
XFormPrim: Link corresponding to the light prim itself
"""
return self._light_link
@property
def radius(self):
"""
Gets this light's radius
Returns:
float: radius for this light
"""
return self._light_link.get_attribute("inputs:radius")
@radius.setter
def radius(self, radius):
"""
Sets this light's radius
Args:
radius (float): radius to set
"""
self._light_link.set_attribute("inputs:radius", radius)
@property
def intensity(self):
"""
Gets this light's intensity
Returns:
float: intensity for this light
"""
return self._light_link.get_attribute("inputs:intensity")
@intensity.setter
def intensity(self, intensity):
"""
Sets this light's intensity
Args:
intensity (float): intensity to set
"""
self._light_link.set_attribute(
"inputs:intensity",
intensity)
@property
def color(self):
"""
Gets this light's color
Returns:
float: color for this light
"""
return tuple(float(x) for x in self._light_link.get_attribute("inputs:color"))
@color.setter
def color(self, color):
"""
Sets this light's color
Args:
color ([float, float, float]): color to set, each value in range [0, 1]
"""
self._light_link.set_attribute(
"inputs:color",
lazy.pxr.Gf.Vec3f(color))
@property
def texture_file_path(self):
"""
Gets this light's texture file path. Only valid for dome lights.
Returns:
str: texture file path for this light
"""
return str(self._light_link.get_attribute("inputs:texture:file"))
@texture_file_path.setter
def texture_file_path(self, texture_file_path):
"""
Sets this light's texture file path. Only valid for dome lights.
Args:
texture_file_path (str): path of texture file that should be used for this light
"""
self._light_link.set_attribute(
"inputs:texture:file",
lazy.pxr.Sdf.AssetPath(texture_file_path))
def _create_prim_with_same_kwargs(self, prim_path, name, load_config):
# Add additional kwargs (bounding_box is already captured in load_config)
return self.__class__(
prim_path=prim_path,
light_type=self.light_type,
name=name,
intensity=self.intensity,
load_config=load_config,
)
| 8,319 | Python | 32.821138 | 141 | 0.597548 |
StanfordVL/OmniGibson/omnigibson/objects/object_base.py | from abc import ABCMeta
import numpy as np
from collections.abc import Iterable
import trimesh
from scipy.spatial.transform import Rotation
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import create_module_macros, gm
from omnigibson.utils.usd_utils import create_joint, CollisionAPI
from omnigibson.prims.entity_prim import EntityPrim
from omnigibson.utils.python_utils import Registerable, classproperty, get_uuid
from omnigibson.utils.constants import PrimType, semantic_class_name_to_id
from omnigibson.utils.ui_utils import create_module_logger, suppress_omni_log
import omnigibson.utils.transform_utils as T
# Global dicts that will contain mappings
REGISTERED_OBJECTS = dict()
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Settings for highlighting objects
m.HIGHLIGHT_RGB = [1.0, 0.1, 0.92] # Default highlighting (R,G,B) color when highlighting objects
m.HIGHLIGHT_INTENSITY = 10000.0 # Highlight intensity to apply, range [0, 10000)
# Physics settings for objects -- see https://nvidia-omniverse.github.io/PhysX/physx/5.3.1/docs/RigidBodyDynamics.html?highlight=velocity%20iteration#solver-iterations
m.DEFAULT_SOLVER_POSITION_ITERATIONS = 32
m.DEFAULT_SOLVER_VELOCITY_ITERATIONS = 1
class BaseObject(EntityPrim, Registerable, metaclass=ABCMeta):
"""This is the interface that all OmniGibson objects must implement."""
def __init__(
self,
name,
prim_path=None,
category="object",
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
kinematic_only=None,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
kinematic_only (None or bool): Whether this object should be kinematic only (and not get affected by any
collisions). If None, then this value will be set to True if @fixed_base is True and some other criteria
are satisfied (see object_base.py post_load function), else False.
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
Note that this base object does NOT pass kwargs down into the Prim-type super() classes, and we assume
that kwargs are only shared between all SUBclasses (children), not SUPERclasses (parents).
"""
# Generate default prim path if none is specified
prim_path = f"/World/{name}" if prim_path is None else prim_path
# Store values
self.uuid = get_uuid(name) if uuid is None else uuid
assert len(str(self.uuid)) <= 8, f"UUID for this object must be at max 8-digits, got: {self.uuid}"
self.category = category
self.fixed_base = fixed_base
# Values to be created at runtime
self._highlight_cached_values = None
self._highlighted = None
# Create load config from inputs
load_config = dict() if load_config is None else load_config
load_config["scale"] = np.array(scale) if isinstance(scale, Iterable) else scale
load_config["visible"] = visible
load_config["visual_only"] = visual_only
load_config["kinematic_only"] = kinematic_only
load_config["self_collisions"] = self_collisions
load_config["prim_type"] = prim_type
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
load_config=load_config,
)
# TODO: Super hacky, think of a better way to preserve this info
# Update init info for this
self._init_info["args"]["name"] = self.name
self._init_info["args"]["uuid"] = self.uuid
def load(self):
# Run super method ONLY if we're not loaded yet
if self.loaded:
prim = self._prim
else:
prim = super().load()
log.info(f"Loaded {self.name} at {self.prim_path}")
return prim
def remove(self):
# Run super first
super().remove()
# Notify user that the object was removed
log.info(f"Removed {self.name} from {self.prim_path}")
def _post_load(self):
# Add fixed joint or make object kinematic only if we're fixing the base
kinematic_only = False
if self.fixed_base:
# For optimization purposes, if we only have a single rigid body that has either
# (no custom scaling OR no fixed joints), we assume this is not an articulated object so we
# merely set this to be a static collider, i.e.: kinematic-only
# The custom scaling / fixed joints requirement is needed because omniverse complains about scaling that
# occurs with respect to fixed joints, as omni will "snap" bodies together otherwise
scale = np.ones(3) if self._load_config["scale"] is None else np.array(self._load_config["scale"])
if self.n_joints == 0 and (np.all(np.isclose(scale, 1.0, atol=1e-3)) or self.n_fixed_joints == 0) and (self._load_config["kinematic_only"] != False) and not self.has_attachment_points:
kinematic_only = True
# Validate that we didn't make a kinematic-only decision that does not match
assert self._load_config["kinematic_only"] is None or kinematic_only == self._load_config["kinematic_only"], \
f"Kinematic only decision does not match! Got: {kinematic_only}, expected: {self._load_config['kinematic_only']}"
# Actually apply the kinematic-only decision
self._load_config["kinematic_only"] = kinematic_only
# Run super first
super()._post_load()
# If the object is fixed_base but kinematic only is false, create the joint
if self.fixed_base and not self.kinematic_only:
# Create fixed joint, and set Body0 to be this object's root prim
# This renders, which causes a material lookup error since we're creating a temp file, so we suppress
# the error explicitly here
with suppress_omni_log(channels=["omni.hydra"]):
create_joint(
prim_path=f"{self._prim_path}/rootJoint",
joint_type="FixedJoint",
body1=f"{self._prim_path}/{self._root_link_name}",
)
# Delete n_fixed_joints cached property if it exists since the number of fixed joints has now changed
# See https://stackoverflow.com/questions/59899732/python-cached-property-how-to-delete and
# https://docs.python.org/3/library/functools.html#functools.cached_property
if "n_fixed_joints" in self.__dict__:
del self.n_fixed_joints
# Set visibility
if "visible" in self._load_config and self._load_config["visible"] is not None:
self.visible = self._load_config["visible"]
# First, remove any articulation root API that already exists at the object-level or root link level prim
if self._prim.HasAPI(lazy.pxr.UsdPhysics.ArticulationRootAPI):
self._prim.RemoveAPI(lazy.pxr.UsdPhysics.ArticulationRootAPI)
self._prim.RemoveAPI(lazy.pxr.PhysxSchema.PhysxArticulationAPI)
if self.root_prim.HasAPI(lazy.pxr.UsdPhysics.ArticulationRootAPI):
self.root_prim.RemoveAPI(lazy.pxr.UsdPhysics.ArticulationRootAPI)
self.root_prim.RemoveAPI(lazy.pxr.PhysxSchema.PhysxArticulationAPI)
# Potentially add articulation root APIs and also set self collisions
root_prim = None if self.articulation_root_path is None else lazy.omni.isaac.core.utils.prims.get_prim_at_path(self.articulation_root_path)
if root_prim is not None:
lazy.pxr.UsdPhysics.ArticulationRootAPI.Apply(root_prim)
lazy.pxr.PhysxSchema.PhysxArticulationAPI.Apply(root_prim)
self.self_collisions = self._load_config["self_collisions"]
# Set position / velocity solver iterations if we're not cloth
if self._prim_type != PrimType.CLOTH:
self.solver_position_iteration_count = m.DEFAULT_SOLVER_POSITION_ITERATIONS
self.solver_velocity_iteration_count = m.DEFAULT_SOLVER_VELOCITY_ITERATIONS
# Add semantics
lazy.omni.isaac.core.utils.semantics.add_update_semantics(
prim=self._prim,
semantic_label=self.category,
type_label="class",
)
def _initialize(self):
# Run super first
super()._initialize()
# Iterate over all links and grab their relevant material info for highlighting (i.e.: emissivity info)
self._highlighted = False
self._highlight_cached_values = dict()
for material in self.materials:
self._highlight_cached_values[material] = {
"enable_emission": material.enable_emission,
"emissive_color": material.emissive_color,
"emissive_intensity": material.emissive_intensity,
}
@property
def articulation_root_path(self):
has_articulated_joints, has_fixed_joints = self.n_joints > 0, self.n_fixed_joints > 0
if self.kinematic_only or ((not has_articulated_joints) and (not has_fixed_joints)):
# Kinematic only, or non-jointed single body objects
return None
elif not self.fixed_base and has_articulated_joints:
# This is all remaining non-fixed objects
# This is a bit hacky because omniverse is buggy
# Articulation roots mess up the joint order if it's on a non-fixed base robot, e.g. a
# mobile manipulator. So if we have to move it to the actual root link of the robot instead.
# See https://forums.developer.nvidia.com/t/inconsistent-values-from-isaacsims-dc-get-joint-parent-child-body/201452/2
# for more info
return f"{self._prim_path}/{self.root_link_name}"
else:
# Fixed objects that are not kinematic only, or non-fixed objects that have no articulated joints but do
# have fixed joints
return self._prim_path
@property
def mass(self):
"""
Returns:
float: Cumulative mass of this potentially articulated object.
"""
mass = 0.0
for link in self._links.values():
mass += link.mass
return mass
@mass.setter
def mass(self, mass):
raise NotImplementedError("Cannot set mass directly for an object!")
@property
def volume(self):
"""
Returns:
float: Cumulative volume of this potentially articulated object.
"""
return sum(link.volume for link in self._links.values())
@volume.setter
def volume(self, volume):
raise NotImplementedError("Cannot set volume directly for an object!")
@property
def scale(self):
# Just super call
return super().scale
@scale.setter
def scale(self, scale):
# call super first
# A bit esoteric -- see https://gist.github.com/Susensio/979259559e2bebcd0273f1a95d7c1e79
super(BaseObject, type(self)).scale.fset(self, scale)
# Update init info for scale
self._init_info["args"]["scale"] = scale
@property
def link_prim_paths(self):
return [link.prim_path for link in self._links.values()]
@property
def highlighted(self):
"""
Returns:
bool: Whether the object is highlighted or not
"""
return self._highlighted
@highlighted.setter
def highlighted(self, enabled):
"""
Iterates over all owned links, and modifies their materials with emissive colors so that the object is
highlighted (magenta by default)
Args:
enabled (bool): whether the object should be highlighted or not
"""
# Return early if the set value matches the internal value
if enabled == self._highlighted:
return
for material in self.materials:
if enabled:
# Store values before swapping
self._highlight_cached_values[material] = {
"enable_emission": material.enable_emission,
"emissive_color": material.emissive_color,
"emissive_intensity": material.emissive_intensity,
}
material.enable_emission = True if enabled else self._highlight_cached_values[material]["enable_emission"]
material.emissive_color = m.HIGHLIGHT_RGB if enabled else self._highlight_cached_values[material]["emissive_color"]
material.emissive_intensity = m.HIGHLIGHT_INTENSITY if enabled else self._highlight_cached_values[material]["emissive_intensity"]
# Update internal value
self._highlighted = enabled
def get_base_aligned_bbox(self, link_name=None, visual=False, xy_aligned=False):
"""
Get a bounding box for this object that's axis-aligned in the object's base frame.
Args:
link_name (None or str): If specified, only get the bbox for the given link
visual (bool): Whether to aggregate the bounding boxes from the visual meshes. Otherwise, will use
collision meshes
xy_aligned (bool): Whether to align the bounding box to the global XY-plane
Returns:
4-tuple:
- 3-array: (x,y,z) bbox center position in world frame
- 3-array: (x,y,z,w) bbox quaternion orientation in world frame
- 3-array: (x,y,z) bbox extent in desired frame
- 3-array: (x,y,z) bbox center in desired frame
"""
# Get the base position transform.
pos, orn = self.get_position_orientation()
base_frame_to_world = T.pose2mat((pos, orn))
# Prepare the desired frame.
if xy_aligned:
# If the user requested an XY-plane aligned bbox, convert everything to that frame.
# The desired frame is same as the base_com frame with its X/Y rotations removed.
translate = trimesh.transformations.translation_from_matrix(base_frame_to_world)
# To find the rotation that this transform does around the Z axis, we rotate the [1, 0, 0] vector by it
# and then take the arctangent of its projection onto the XY plane.
rotated_X_axis = base_frame_to_world[:3, 0]
rotation_around_Z_axis = np.arctan2(rotated_X_axis[1], rotated_X_axis[0])
xy_aligned_base_com_to_world = trimesh.transformations.compose_matrix(
translate=translate, angles=[0, 0, rotation_around_Z_axis]
)
# Finally update our desired frame.
desired_frame_to_world = xy_aligned_base_com_to_world
else:
# Default desired frame is base CoM frame.
desired_frame_to_world = base_frame_to_world
# Compute the world-to-base frame transform.
world_to_desired_frame = np.linalg.inv(desired_frame_to_world)
# Grab all the world-frame points corresponding to the object's visual or collision hulls.
points_in_world = []
if self.prim_type == PrimType.CLOTH:
particle_contact_offset = self.root_link.cloth_system.particle_contact_offset
particle_positions = self.root_link.compute_particle_positions()
particles_in_world_frame = np.concatenate([
particle_positions - particle_contact_offset,
particle_positions + particle_contact_offset
], axis=0)
points_in_world.extend(particles_in_world_frame)
else:
links = {link_name: self._links[link_name]} if link_name is not None else self._links
for link_name, link in links.items():
if visual:
hull_points = link.visual_boundary_points_world
else:
hull_points = link.collision_boundary_points_world
if hull_points is not None:
points_in_world.extend(hull_points)
# Move the points to the desired frame
points = trimesh.transformations.transform_points(points_in_world, world_to_desired_frame)
# All points are now in the desired frame: either the base CoM or the xy-plane-aligned base CoM.
# Now fit a bounding box to all the points by taking the minimum/maximum in the desired frame.
aabb_min_in_desired_frame = np.amin(points, axis=0)
aabb_max_in_desired_frame = np.amax(points, axis=0)
bbox_center_in_desired_frame = (aabb_min_in_desired_frame + aabb_max_in_desired_frame) / 2
bbox_extent_in_desired_frame = aabb_max_in_desired_frame - aabb_min_in_desired_frame
# Transform the center to the world frame.
bbox_center_in_world = trimesh.transformations.transform_points(
[bbox_center_in_desired_frame], desired_frame_to_world
)[0]
bbox_orn_in_world = Rotation.from_matrix(desired_frame_to_world[:3, :3]).as_quat()
return bbox_center_in_world, bbox_orn_in_world, bbox_extent_in_desired_frame, bbox_center_in_desired_frame
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("BaseObject")
return classes
@classproperty
def _cls_registry(cls):
# Global robot registry
global REGISTERED_OBJECTS
return REGISTERED_OBJECTS
| 19,397 | Python | 45.742169 | 196 | 0.637985 |
StanfordVL/OmniGibson/omnigibson/objects/__init__.py | from omnigibson.objects.object_base import REGISTERED_OBJECTS, BaseObject
from omnigibson.objects.controllable_object import ControllableObject
from omnigibson.objects.dataset_object import DatasetObject
from omnigibson.objects.light_object import LightObject
from omnigibson.objects.primitive_object import PrimitiveObject
from omnigibson.objects.stateful_object import StatefulObject
from omnigibson.objects.usd_object import USDObject
| 439 | Python | 47.888884 | 73 | 0.879271 |
StanfordVL/OmniGibson/omnigibson/objects/primitive_object.py | import numpy as np
from omnigibson.objects.stateful_object import StatefulObject
from omnigibson.utils.python_utils import assert_valid_key
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.utils.constants import PrimType, PRIMITIVE_MESH_TYPES
from omnigibson.utils.usd_utils import create_primitive_mesh
from omnigibson.utils.render_utils import create_pbr_material
from omnigibson.utils.physx_utils import bind_material
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Define valid objects that can be created
VALID_RADIUS_OBJECTS = {"Cone", "Cylinder", "Disk", "Sphere"}
VALID_HEIGHT_OBJECTS = {"Cone", "Cylinder"}
VALID_SIZE_OBJECTS = {"Cube", "Torus"}
class PrimitiveObject(StatefulObject):
"""
PrimitiveObjects are objects defined by a single geom, e.g: sphere, mesh, cube, etc.
"""
def __init__(
self,
name,
primitive_type,
prim_path=None,
category="object",
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
kinematic_only=None,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
abilities=None,
include_default_states=True,
rgba=(0.5, 0.5, 0.5, 1.0),
radius=None,
height=None,
size=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
primitive_type (str): type of primitive object to create. Should be one of:
{"Cone", "Cube", "Cylinder", "Disk", "Plane", "Sphere", "Torus"}
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
kinematic_only (None or bool): Whether this object should be kinematic only (and not get affected by any
collisions). If None, then this value will be set to True if @fixed_base is True and some other criteria
are satisfied (see object_base.py post_load function), else False.
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.rgba (4-array): (R, G, B, A) values to set for this object
include_default_states (bool): whether to include the default object states from @get_default_states
radius (None or float): If specified, sets the radius for this object. This value is scaled by @scale
Note: Should only be specified if the @primitive_type is one of {"Cone", "Cylinder", "Disk", "Sphere"}
height (None or float): If specified, sets the height for this object. This value is scaled by @scale
Note: Should only be specified if the @primitive_type is one of {"Cone", "Cylinder"}
size (None or float): If specified, sets the size for this object. This value is scaled by @scale
Note: Should only be specified if the @primitive_type is one of {"Cube", "Torus"}
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Compose load config and add rgba values
load_config = dict() if load_config is None else load_config
load_config["color"] = np.array(rgba[:3])
load_config["opacity"] = rgba[3]
load_config["radius"] = radius
load_config["height"] = height
load_config["size"] = size
# Initialize other internal variables
self._vis_geom = None
self._col_geom = None
self._extents = np.ones(3) # (x,y,z extents)
# Make sure primitive type is valid
assert_valid_key(key=primitive_type, valid_keys=PRIMITIVE_MESH_TYPES, name="primitive mesh type")
self._primitive_type = primitive_type
super().__init__(
prim_path=prim_path,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
kinematic_only=kinematic_only,
self_collisions=self_collisions,
prim_type=prim_type,
include_default_states=include_default_states,
load_config=load_config,
abilities=abilities,
**kwargs,
)
def _load(self):
# Define an Xform at the specified path
prim = og.sim.stage.DefinePrim(self._prim_path, "Xform")
# Define a nested mesh corresponding to the root link for this prim
base_link = og.sim.stage.DefinePrim(f"{self._prim_path}/base_link", "Xform")
self._vis_geom = create_primitive_mesh(prim_path=f"{self._prim_path}/base_link/visuals", primitive_type=self._primitive_type)
self._col_geom = create_primitive_mesh(prim_path=f"{self._prim_path}/base_link/collisions", primitive_type=self._primitive_type)
# Add collision API to collision geom
lazy.pxr.UsdPhysics.CollisionAPI.Apply(self._col_geom.GetPrim())
lazy.pxr.UsdPhysics.MeshCollisionAPI.Apply(self._col_geom.GetPrim())
lazy.pxr.PhysxSchema.PhysxCollisionAPI.Apply(self._col_geom.GetPrim())
# Create a material for this object for the base link
og.sim.stage.DefinePrim(f"{self._prim_path}/Looks", "Scope")
mat_path = f"{self._prim_path}/Looks/default"
mat = create_pbr_material(prim_path=mat_path)
bind_material(prim_path=self._vis_geom.GetPrim().GetPrimPath().pathString, material_path=mat_path)
return prim
def _post_load(self):
# Possibly set scalings (only if the scale value is not set)
if self._load_config["scale"] is not None:
log.warning("Custom scale specified for primitive object, so ignoring radius, height, and size arguments!")
else:
if self._load_config["radius"] is not None:
self.radius = self._load_config["radius"]
if self._load_config["height"] is not None:
self.height = self._load_config["height"]
if self._load_config["size"] is not None:
self.size = self._load_config["size"]
# This step might will perform cloth remeshing if self._prim_type == PrimType.CLOTH.
# Therefore, we need to apply size, radius, and height before this to scale the points properly.
super()._post_load()
# Cloth primitive does not have collision meshes
if self._prim_type != PrimType.CLOTH:
# Set the collision approximation appropriately
if self._primitive_type == "Sphere":
col_approximation = "boundingSphere"
elif self._primitive_type == "Cube":
col_approximation = "boundingCube"
else:
col_approximation = "convexHull"
self.root_link.collision_meshes["collisions"].set_collision_approximation(col_approximation)
def _initialize(self):
# Run super first
super()._initialize()
# Set color and opacity
if self._prim_type == PrimType.RIGID:
visual_geom_prim = list(self.root_link.visual_meshes.values())[0]
elif self._prim_type == PrimType.CLOTH:
visual_geom_prim = self.root_link
else:
raise ValueError("Prim type must either be PrimType.RIGID or PrimType.CLOTH for loading a primitive object")
visual_geom_prim.color = self._load_config["color"]
visual_geom_prim.opacity = self._load_config["opacity"]
@property
def radius(self):
"""
Gets this object's radius, if it exists.
Note: Can only be called if the primitive type is one of {"Cone", "Cylinder", "Disk", "Sphere"}
Returns:
float: radius for this object
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_RADIUS_OBJECTS, name="primitive object with radius")
return self._extents[0] / 2.0
@radius.setter
def radius(self, radius):
"""
Sets this object's radius
Note: Can only be called if the primitive type is one of {"Cone", "Cylinder", "Disk", "Sphere"}
Args:
radius (float): radius to set
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_RADIUS_OBJECTS, name="primitive object with radius")
# Update the extents variable
original_extent = np.array(self._extents)
self._extents = np.ones(3) * radius * 2.0 if self._primitive_type == "Sphere" else \
np.array([radius * 2.0, radius * 2.0, self._extents[2]])
attr_pairs = []
for geom in self._vis_geom, self._col_geom:
if geom is not None:
for attr in (geom.GetPointsAttr(), geom.GetNormalsAttr()):
vals = np.array(attr.Get()).astype(np.float64)
attr_pairs.append([attr, vals])
geom.GetExtentAttr().Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*(-self._extents / 2.0)), lazy.pxr.Gf.Vec3f(*(self._extents / 2.0))]))
# Calculate how much to scale extents by and then modify the points / normals accordingly
scaling_factor = 2.0 * radius / original_extent[0]
for attr, vals in attr_pairs:
# If this is a sphere, modify all 3 axes
if self._primitive_type == "Sphere":
vals = vals * scaling_factor
# Otherwise, just modify the first two dimensions
else:
vals[:, :2] = vals[:, :2] * scaling_factor
# Set the value
attr.Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*v) for v in vals]))
@property
def height(self):
"""
Gets this object's height, if it exists.
Note: Can only be called if the primitive type is one of {"Cone", "Cylinder"}
Returns:
float: height for this object
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_HEIGHT_OBJECTS, name="primitive object with height")
return self._extents[2]
@height.setter
def height(self, height):
"""
Sets this object's height
Note: Can only be called if the primitive type is one of {"Cone", "Cylinder"}
Args:
height (float): height to set
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_HEIGHT_OBJECTS, name="primitive object with height")
# Update the extents variable
original_extent = np.array(self._extents)
self._extents[2] = height
# Calculate the correct scaling factor and scale the points and normals appropriately
scaling_factor = height / original_extent[2]
for geom in self._vis_geom, self._col_geom:
if geom is not None:
for attr in (geom.GetPointsAttr(), geom.GetNormalsAttr()):
vals = np.array(attr.Get()).astype(np.float64)
# Scale the z axis by the scaling factor
vals[:, 2] = vals[:, 2] * scaling_factor
attr.Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*v) for v in vals]))
geom.GetExtentAttr().Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*(-self._extents / 2.0)), lazy.pxr.Gf.Vec3f(*(self._extents / 2.0))]))
@property
def size(self):
"""
Gets this object's size, if it exists.
Note: Can only be called if the primitive type is one of {"Cube", "Torus"}
Returns:
float: size for this object
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_SIZE_OBJECTS, name="primitive object with size")
return self._extents[0]
@size.setter
def size(self, size):
"""
Sets this object's size
Note: Can only be called if the primitive type is one of {"Cube", "Torus"}
Args:
size (float): size to set
"""
assert_valid_key(key=self._primitive_type, valid_keys=VALID_SIZE_OBJECTS, name="primitive object with size")
# Update the extents variable
original_extent = np.array(self._extents)
self._extents = np.ones(3) * size
# Calculate the correct scaling factor and scale the points and normals appropriately
scaling_factor = size / original_extent[0]
for geom in self._vis_geom, self._col_geom:
if geom is not None:
for attr in (geom.GetPointsAttr(), geom.GetNormalsAttr()):
# Scale all three axes by the scaling factor
vals = np.array(attr.Get()).astype(np.float64) * scaling_factor
attr.Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*v) for v in vals]))
geom.GetExtentAttr().Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*(-self._extents / 2.0)), lazy.pxr.Gf.Vec3f(*(self._extents / 2.0))]))
def _create_prim_with_same_kwargs(self, prim_path, name, load_config):
# Add additional kwargs (bounding_box is already captured in load_config)
return self.__class__(
prim_path=prim_path,
primitive_type=self._primitive_type,
name=name,
category=self.category,
scale=self.scale,
visible=self.visible,
fixed_base=self.fixed_base,
prim_type=self._prim_type,
load_config=load_config,
abilities=self._abilities,
visual_only=self._visual_only,
)
def _dump_state(self):
state = super()._dump_state()
# state["extents"] = self._extents
state["radius"] = self.radius if self._primitive_type in VALID_RADIUS_OBJECTS else -1
state["height"] = self.height if self._primitive_type in VALID_HEIGHT_OBJECTS else -1
state["size"] = self.size if self._primitive_type in VALID_SIZE_OBJECTS else -1
return state
def _load_state(self, state):
super()._load_state(state=state)
# self._extents = np.array(state["extents"])
if self._primitive_type in VALID_RADIUS_OBJECTS:
self.radius = state["radius"]
if self._primitive_type in VALID_HEIGHT_OBJECTS:
self.height = state["height"]
if self._primitive_type in VALID_SIZE_OBJECTS:
self.size = state["size"]
def _deserialize(self, state):
state_dict, idx = super()._deserialize(state=state)
# state_dict["extents"] = state[idx: idx + 3]
state_dict["radius"] = state[idx]
state_dict["height"] = state[idx + 1]
state_dict["size"] = state[idx + 2]
return state_dict, idx + 3
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
return np.concatenate([
state_flat,
np.array([state["radius"], state["height"], state["size"]]),
]).astype(float)
| 16,539 | Python | 44.690608 | 153 | 0.612673 |
StanfordVL/OmniGibson/omnigibson/objects/dataset_object.py | import math
import os
import numpy as np
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import gm
from omnigibson.objects.usd_object import USDObject
from omnigibson.utils.constants import AVERAGE_CATEGORY_SPECS, DEFAULT_JOINT_FRICTION, SPECIAL_JOINT_FRICTIONS, JointType
import omnigibson.utils.transform_utils as T
from omnigibson.utils.asset_utils import get_all_object_category_models
from omnigibson.utils.constants import PrimType
from omnigibson.macros import gm, create_module_macros
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
# A lower bound is needed in order to consistently trigger contacts
m.MIN_OBJ_MASS = 0.4
class DatasetObject(USDObject):
"""
DatasetObjects are instantiated from a USD file. It is an object that is assumed to come from an iG-supported
dataset. These objects should contain additional metadata, including aggregate statistics across the
object's category, e.g., avg dims, bounding boxes, masses, etc.
"""
def __init__(
self,
name,
prim_path=None,
category="object",
model=None,
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
kinematic_only=None,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
abilities=None,
include_default_states=True,
bounding_box=None,
in_rooms=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
model (None or str): If specified, this is used in conjunction with
@category to infer the usd filepath to load for this object, which evaluates to the following:
{og_dataset_path}/objects/{category}/{model}/usd/{model}.usd
Otherwise, will randomly sample a model given @category
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
kinematic_only (None or bool): Whether this object should be kinematic only (and not get affected by any
collisions). If None, then this value will be set to True if @fixed_base is True and some other criteria
are satisfied (see object_base.py post_load function), else False.
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
include_default_states (bool): whether to include the default object states from @get_default_states
bounding_box (None or 3-array): If specified, will scale this object such that it fits in the desired
(x,y,z) object-aligned bounding box. Note that EITHER @bounding_box or @scale may be specified
-- not both!
in_rooms (None or str or list): If specified, sets the room(s) that this object should belong to. Either
a list of room type(s) or a single room type
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store variables
if isinstance(in_rooms, str):
assert "," not in in_rooms
self._in_rooms = [in_rooms] if isinstance(in_rooms, str) else in_rooms
# Make sure only one of bounding_box and scale are specified
if bounding_box is not None and scale is not None:
raise Exception("You cannot define both scale and bounding box size for an DatasetObject")
# Add info to load config
load_config = dict() if load_config is None else load_config
load_config["bounding_box"] = bounding_box
# Infer the correct usd path to use
if model is None:
available_models = get_all_object_category_models(category=category)
assert len(available_models) > 0, f"No available models found for category {category}!"
model = np.random.choice(available_models)
# If the model is in BAD_CLOTH_MODELS, raise an error for now -- this is a model that's unstable and needs to be fixed
# TODO: Remove this once the asset is fixed!
from omnigibson.utils.bddl_utils import BAD_CLOTH_MODELS
if prim_type == PrimType.CLOTH and model in BAD_CLOTH_MODELS.get(category, dict()):
raise ValueError(f"Cannot create cloth object category: {category}, model: {model} because it is "
f"currently broken ): This will be fixed in the next release!")
self._model = model
usd_path = self.get_usd_path(category=category, model=model)
# Run super init
super().__init__(
prim_path=prim_path,
usd_path=usd_path,
encrypted=True,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
kinematic_only=kinematic_only,
self_collisions=self_collisions,
prim_type=prim_type,
include_default_states=include_default_states,
load_config=load_config,
abilities=abilities,
**kwargs,
)
@classmethod
def get_usd_path(cls, category, model):
"""
Grabs the USD path for a DatasetObject corresponding to @category and @model.
NOTE: This is the unencrypted path, NOT the encrypted path
Args:
category (str): Category for the object
model (str): Specific model ID of the object
Returns:
str: Absolute filepath to the corresponding USD asset file
"""
return os.path.join(gm.DATASET_PATH, "objects", category, model, "usd", f"{model}.usd")
def sample_orientation(self):
"""
Samples an orientation in quaternion (x,y,z,w) form
Returns:
4-array: (x,y,z,w) sampled quaternion orientation for this object, based on self.orientations
"""
if self.orientations is None:
raise ValueError("No orientation probabilities set")
if len(self.orientations) == 0:
# Set default value
chosen_orientation = np.array([0, 0, 0, 1.0])
else:
probabilities = [o["prob"] for o in self.orientations.values()]
probabilities = np.array(probabilities) / np.sum(probabilities)
chosen_orientation = np.array(np.random.choice(list(self.orientations.values()), p=probabilities)["rotation"])
# Randomize yaw from -pi to pi
rot_num = np.random.uniform(-1, 1)
rot_matrix = np.array(
[
[math.cos(math.pi * rot_num), -math.sin(math.pi * rot_num), 0.0],
[math.sin(math.pi * rot_num), math.cos(math.pi * rot_num), 0.0],
[0.0, 0.0, 1.0],
]
)
rotated_quat = T.mat2quat(rot_matrix @ T.quat2mat(chosen_orientation))
return rotated_quat
def _initialize(self):
# Run super method first
super()._initialize()
# Apply any forced light intensity updates.
if gm.FORCE_LIGHT_INTENSITY is not None:
def recursive_light_update(child_prim):
if "Light" in child_prim.GetPrimTypeInfo().GetTypeName():
child_prim.GetAttribute("inputs:intensity").Set(gm.FORCE_LIGHT_INTENSITY)
for child_child_prim in child_prim.GetChildren():
recursive_light_update(child_child_prim)
recursive_light_update(self._prim)
# Apply any forced roughness updates
for material in self.materials:
if ("reflection_roughness_texture_influence" in material.shader_input_names and
"reflection_roughness_constant" in material.shader_input_names):
material.reflection_roughness_texture_influence = 0.0
material.reflection_roughness_constant = gm.FORCE_ROUGHNESS
# Set the joint frictions based on category
friction = SPECIAL_JOINT_FRICTIONS.get(self.category, DEFAULT_JOINT_FRICTION)
for joint in self._joints.values():
if joint.joint_type != JointType.JOINT_FIXED:
joint.friction = friction
def _post_load(self):
# If manual bounding box is specified, scale based on ratio between that and the native bbox
if self._load_config["bounding_box"] is not None:
scale = np.ones(3)
valid_idxes = self.native_bbox > 1e-4
scale[valid_idxes] = np.array(self._load_config["bounding_box"])[valid_idxes] / self.native_bbox[valid_idxes]
else:
scale = np.ones(3) if self._load_config["scale"] is None else np.array(self._load_config["scale"])
# Assert that the scale does not have too small dimensions
assert np.all(scale > 1e-4), f"Scale of {self.name} is too small: {scale}"
# Set this scale in the load config -- it will automatically scale the object during self.initialize()
self._load_config["scale"] = scale
# Run super last
super()._post_load()
# The loaded USD is from an already-deleted temporary file, so the asset paths for texture maps are wrong.
# We explicitly provide the root_path to update all the asset paths: the asset paths are relative to the
# original USD folder, i.e. <category>/<model>/usd.
root_path = os.path.dirname(self._usd_path)
for material in self.materials:
material.shader_update_asset_paths_with_root_path(root_path)
# Assign realistic density and mass based on average object category spec, or fall back to a default value
if self.avg_obj_dims is not None and self.avg_obj_dims["density"] is not None:
density = self.avg_obj_dims["density"]
else:
density = 1000.0
if self._prim_type == PrimType.RIGID:
for link in self._links.values():
# If not a meta (virtual) link, set the density based on avg_obj_dims and a zero mass (ignored)
if link.has_collision_meshes:
link.mass = 0.0
link.density = density
elif self._prim_type == PrimType.CLOTH:
self.root_link.mass = density * self.root_link.volume
def _update_texture_change(self, object_state):
"""
Update the texture based on the given object_state. E.g. if object_state is Frozen, update the diffuse color
to match the frozen state. If object_state is None, update the diffuse color to the default value. It attempts
to load the cached texture map named DIFFUSE/albedo_[STATE_NAME].png. If the cached texture map does not exist,
it modifies the current albedo map by adding and scaling the values. See @self._update_albedo_value for details.
Args:
object_state (BooleanStateMixin or None): the object state that the diffuse color should match to
"""
# TODO: uncomment these once our dataset has the object state-conditioned texture maps
# DEFAULT_ALBEDO_MAP_SUFFIX = frozenset({"DIFFUSE", "COMBINED", "albedo"})
# state_name = object_state.__class__.__name__ if object_state is not None else None
for material in self.materials:
# texture_path = material.diffuse_texture
# assert texture_path is not None, f"DatasetObject [{self.prim_path}] has invalid diffuse texture map."
#
# # Get updated texture file path for state.
# texture_path_split = texture_path.split("/")
# filedir, filename = "/".join(texture_path_split[:-1]), texture_path_split[-1]
# assert filename[-4:] == ".png", f"Texture file {filename} does not end with .png"
#
# filename_split = filename[:-4].split("_")
# # Check all three file names for backward compatibility.
# if len(filename_split) > 0 and filename_split[-1] not in DEFAULT_ALBEDO_MAP_SUFFIX:
# filename_split.pop()
# target_texture_path = f"{filedir}/{'_'.join(filename_split)}"
# target_texture_path += f"_{state_name}.png" if state_name is not None else ".png"
#
# if os.path.exists(target_texture_path):
# # Since we are loading a pre-cached texture map, we need to reset the albedo value to the default
# self._update_albedo_value(None, material)
# if material.diffuse_texture != target_texture_path:
# material.diffuse_texture = target_texture_path
# else:
# print(f"Warning: DatasetObject [{self.prim_path}] does not have texture map: "
# f"[{target_texture_path}]. Falling back to directly updating albedo value.")
self._update_albedo_value(object_state, material)
def set_bbox_center_position_orientation(self, position=None, orientation=None):
"""
Sets the center of the object's bounding box with respect to the world's frame.
Args:
position (None or 3-array): The desired global (x,y,z) position. None means it will not be changed
orientation (None or 4-array): The desired global (x,y,z,w) quaternion orientation.
None means it will not be changed
"""
if orientation is None:
orientation = self.get_orientation()
if position is not None:
rotated_offset = T.pose_transform([0, 0, 0], orientation,
self.scaled_bbox_center_in_base_frame, [0, 0, 0, 1])[0]
position = position + rotated_offset
self.set_position_orientation(position, orientation)
@property
def model(self):
"""
Returns:
str: Unique model ID for this object
"""
return self._model
@property
def in_rooms(self):
"""
Returns:
None or list of str: If specified, room(s) that this object should belong to
"""
return self._in_rooms
@in_rooms.setter
def in_rooms(self, rooms):
"""
Sets which room(s) this object should belong to. If no rooms, then should set to None
Args:
rooms (None or list of str): If specified, the room(s) this object should belong to
"""
# Store the value to the internal variable and also update the init kwargs accordingly
self._init_info["args"]["in_rooms"] = rooms
self._in_rooms = rooms
@property
def native_bbox(self):
"""
Get this object's native bounding box
Returns:
3-array: (x,y,z) bounding box
"""
assert "ig:nativeBB" in self.property_names, \
f"This dataset object '{self.name}' is expected to have native_bbox specified, but found none!"
return np.array(self.get_attribute(attr="ig:nativeBB"))
@property
def base_link_offset(self):
"""
Get this object's native base link offset
Returns:
3-array: (x,y,z) base link offset if it exists
"""
return np.array(self.get_attribute(attr="ig:offsetBaseLink"))
@property
def metadata(self):
"""
Gets this object's metadata, if it exists
Returns:
None or dict: Nested dictionary of object's metadata if it exists, else None
"""
return self.get_custom_data().get("metadata", None)
@property
def orientations(self):
"""
Returns:
None or dict: Possible orientation information for this object, if it exists. Otherwise, returns None
"""
metadata = self.metadata
return None if metadata is None else metadata.get("orientations", None)
@property
def scale(self):
# Just super call
return super().scale
@scale.setter
def scale(self, scale):
# call super first
# A bit esoteric -- see https://gist.github.com/Susensio/979259559e2bebcd0273f1a95d7c1e79
super(DatasetObject, type(self)).scale.fset(self, scale)
# Remove bounding_box from scale if it's in our args
if "bounding_box" in self._init_info["args"]:
self._init_info["args"].pop("bounding_box")
@property
def scaled_bbox_center_in_base_frame(self):
"""
where the base_link origin is wrt. the bounding box center. This allows us to place the model correctly
since the joint transformations given in the scene USD are wrt. the bounding box center.
We need to scale this offset as well.
Returns:
3-array: (x,y,z) location of bounding box, with respet to the base link's coordinate frame
"""
return -self.scale * self.base_link_offset
@property
def scales_in_link_frame(self):
"""
Returns:
dict: Keyword-mapped relative scales for each link of this object
"""
scales = {self.root_link.body_name: self.scale}
# We iterate through all links in this object, and check for any joint prims that exist
# We traverse manually this way instead of accessing the self._joints dictionary, because
# the dictionary only includes articulated joints and not fixed joints!
for link in self._links.values():
for prim in link.prim.GetChildren():
if "joint" in prim.GetTypeName().lower():
# Grab relevant joint information
parent_name = prim.GetProperty("physics:body0").GetTargets()[0].pathString.split("/")[-1]
child_name = prim.GetProperty("physics:body1").GetTargets()[0].pathString.split("/")[-1]
if parent_name in scales and child_name not in scales:
scale_in_parent_lf = scales[parent_name]
# The location of the joint frame is scaled using the scale in the parent frame
quat0 = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(prim.GetAttribute("physics:localRot0").Get())[[1, 2, 3, 0]]
quat1 = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(prim.GetAttribute("physics:localRot1").Get())[[1, 2, 3, 0]]
# Invert the child link relationship, and multiply the two rotations together to get the final rotation
local_ori = T.quat_multiply(quaternion1=T.quat_inverse(quat1), quaternion0=quat0)
jnt_frame_rot = T.quat2mat(local_ori)
scale_in_child_lf = np.absolute(jnt_frame_rot.T @ np.array(scale_in_parent_lf))
scales[child_name] = scale_in_child_lf
return scales
@property
def avg_obj_dims(self):
"""
Get the average object dimensions for this object, based on its category
Returns:
None or dict: Average object information based on its category
"""
return AVERAGE_CATEGORY_SPECS.get(self.category, None)
def _create_prim_with_same_kwargs(self, prim_path, name, load_config):
# Add additional kwargs (bounding_box is already captured in load_config)
return self.__class__(
prim_path=prim_path,
name=name,
category=self.category,
scale=self.scale,
visible=self.visible,
fixed_base=self.fixed_base,
visual_only=self._visual_only,
prim_type=self._prim_type,
load_config=load_config,
abilities=self._abilities,
in_rooms=self.in_rooms,
)
| 21,486 | Python | 45.109442 | 148 | 0.618356 |
StanfordVL/OmniGibson/omnigibson/objects/controllable_object.py | from abc import abstractmethod
from copy import deepcopy
import numpy as np
import gym
import omnigibson as og
from omnigibson.objects.object_base import BaseObject
from omnigibson.controllers import create_controller
from omnigibson.controllers.controller_base import ControlType
from omnigibson.utils.python_utils import assert_valid_key, merge_nested_dicts, CachedFunctions
from omnigibson.utils.constants import PrimType
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
class ControllableObject(BaseObject):
"""
Simple class that extends object functionality for controlling joints -- this assumes that at least some joints
are motorized (i.e.: non-zero low-level simulator joint motor gains) and intended to be controlled,
e.g.: a conveyor belt or a robot agent
"""
def __init__(
self,
name,
prim_path=None,
category="object",
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
self_collisions=False,
prim_type=PrimType.RIGID,
load_config=None,
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the object with a different rese joint position.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store inputs
self._control_freq = control_freq
self._controller_config = controller_config
self._reset_joint_pos = None if reset_joint_pos is None else np.array(reset_joint_pos)
# Make sure action type is valid, and also save
assert_valid_key(key=action_type, valid_keys={"discrete", "continuous"}, name="action type")
self._action_type = action_type
self._action_normalize = action_normalize
# Store internal placeholders that will be filled in later
self._dof_to_joints = None # dict that will map DOF indices to JointPrims
self._last_action = None
self._controllers = None
self.dof_names_ordered = None
self._control_enabled = True
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
category=category,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
prim_type=prim_type,
load_config=load_config,
**kwargs,
)
def _initialize(self):
# Run super first
super()._initialize()
# Fill in the DOF to joint mapping
self._dof_to_joints = dict()
idx = 0
for joint in self._joints.values():
for _ in range(joint.n_dof):
self._dof_to_joints[idx] = joint
idx += 1
# Update the reset joint pos
if self._reset_joint_pos is None:
self._reset_joint_pos = self._default_joint_pos
# Load controllers
self._load_controllers()
# Setup action space
self._action_space = self._create_discrete_action_space() if self._action_type == "discrete" \
else self._create_continuous_action_space()
# Reset the object and keep all joints still after loading
self.reset()
self.keep_still()
# If we haven't already created a physics callback, do so now so control gets updated every sim step
callback_name = f"{self.name}_controller_callback"
if not og.sim.physics_callback_exists(callback_name=callback_name):
og.sim.add_physics_callback(
callback_name=callback_name,
callback_fn=lambda x: self.step(),
)
def load(self):
# Run super first
prim = super().load()
# Set the control frequency if one was not provided.
expected_control_freq = 1.0 / og.sim.get_rendering_dt()
if self._control_freq is None:
log.info(
"Control frequency is None - being set to default of render_frequency: %.4f", expected_control_freq
)
self._control_freq = expected_control_freq
else:
assert np.isclose(
expected_control_freq, self._control_freq
), "Stored control frequency does not match environment's render timestep."
return prim
def _load_controllers(self):
"""
Loads controller(s) to map inputted actions into executable (pos, vel, and / or effort) signals on this object.
Stores created controllers as dictionary mapping controller names to specific controller
instances used by this object.
"""
# Generate the controller config
self._controller_config = self._generate_controller_config(custom_config=self._controller_config)
# Store dof idx mapping to dof name
self.dof_names_ordered = list(self._joints.keys())
# Initialize controllers to create
self._controllers = dict()
# Loop over all controllers, in the order corresponding to @action dim
for name in self.controller_order:
assert_valid_key(key=name, valid_keys=self._controller_config, name="controller name")
cfg = self._controller_config[name]
# If we're using normalized action space, override the inputs for all controllers
if self._action_normalize:
cfg["command_input_limits"] = "default" # default is normalized (-1, 1)
# Create the controller
controller = create_controller(**cfg)
# Verify the controller's DOFs can all be driven
for idx in controller.dof_idx:
assert self._joints[self.dof_names_ordered[idx]].driven, "Controllers should only control driveable joints!"
self._controllers[name] = controller
self.update_controller_mode()
def update_controller_mode(self):
"""
Helper function to force the joints to use the internal specified control mode and gains
"""
# Update the control modes of each joint based on the outputted control from the controllers
for name in self._controllers:
for dof in self._controllers[name].dof_idx:
control_type = self._controllers[name].control_type
self._joints[self.dof_names_ordered[dof]].set_control_type(
control_type=control_type,
kp=self.default_kp if control_type == ControlType.POSITION else None,
kd=self.default_kd if control_type == ControlType.VELOCITY else None,
)
def _generate_controller_config(self, custom_config=None):
"""
Generates a fully-populated controller config, overriding any default values with the corresponding values
specified in @custom_config
Args:
custom_config (None or Dict[str, ...]): nested dictionary mapping controller name(s) to specific custom
controller configurations for this object. This will override any default values specified by this class
Returns:
dict: Fully-populated nested dictionary mapping controller name(s) to specific controller configurations for
this object
"""
controller_config = {} if custom_config is None else deepcopy(custom_config)
# Update the configs
for group in self.controller_order:
group_controller_name = (
controller_config[group]["name"]
if group in controller_config and "name" in controller_config[group]
else self._default_controllers[group]
)
controller_config[group] = merge_nested_dicts(
base_dict=self._default_controller_config[group][group_controller_name],
extra_dict=controller_config.get(group, {}),
)
return controller_config
def reload_controllers(self, controller_config=None):
"""
Reloads controllers based on the specified new @controller_config
Args:
controller_config (None or Dict[str, ...]): nested dictionary mapping controller name(s) to specific
controller configurations for this object. This will override any default values specified by this class.
"""
self._controller_config = {} if controller_config is None else controller_config
# (Re-)load controllers
self._load_controllers()
# (Re-)create the action space
self._action_space = self._create_discrete_action_space() if self._action_type == "discrete" \
else self._create_continuous_action_space()
def reset(self):
# Call super first
super().reset()
# Override the reset joint state based on reset values
self.set_joint_positions(positions=self._reset_joint_pos, drive=False)
@abstractmethod
def _create_discrete_action_space(self):
"""
Create a discrete action space for this object. Should be implemented by the subclass (if a subclass does not
support this type of action space, it should raise an error).
Returns:
gym.space: Object-specific discrete action space
"""
raise NotImplementedError
def _create_continuous_action_space(self):
"""
Create a continuous action space for this object. By default, this loops over all controllers and
appends their respective input command limits to set the action space.
Any custom behavior should be implemented by the subclass (e.g.: if a subclass does not
support this type of action space, it should raise an error).
Returns:
gym.space.Box: Object-specific continuous action space
"""
# Action space is ordered according to the order in _default_controller_config control
low, high = [], []
for controller in self._controllers.values():
limits = controller.command_input_limits
low.append(np.array([-np.inf] * controller.command_dim) if limits is None else limits[0])
high.append(np.array([np.inf] * controller.command_dim) if limits is None else limits[1])
return gym.spaces.Box(shape=(self.action_dim,), low=np.concatenate(low), high=np.concatenate(high), dtype=float)
def apply_action(self, action):
"""
Converts inputted actions into low-level control signals
NOTE: This does NOT deploy control on the object. Use self.step() instead.
Args:
action (n-array): n-DOF length array of actions to apply to this object's internal controllers
"""
# Store last action as the current action being applied
self._last_action = action
# If we're using discrete action space, we grab the specific action and use that to convert to control
if self._action_type == "discrete":
action = np.array(self.discrete_action_list[action])
# Check if the input action's length matches the action dimension
assert len(action) == self.action_dim, "Action must be dimension {}, got dim {} instead.".format(
self.action_dim, len(action)
)
# First, loop over all controllers, and update the desired command
idx = 0
for name, controller in self._controllers.items():
# Set command, then take a controller step
controller.update_goal(command=action[idx : idx + controller.command_dim], control_dict=self.get_control_dict())
# Update idx
idx += controller.command_dim
@property
def control_enabled(self):
return self._control_enabled
@control_enabled.setter
def control_enabled(self, value):
self._control_enabled = value
def step(self):
"""
Takes a controller step across all controllers and deploys the computed control signals onto the object.
"""
# Skip if we don't have control enabled
if not self.control_enabled:
return
# Skip this step if our articulation view is not valid
if self._articulation_view_direct is None or not self._articulation_view_direct.initialized:
return
# First, loop over all controllers, and calculate the computed control
control = dict()
idx = 0
# Compose control_dict
control_dict = self.get_control_dict()
for name, controller in self._controllers.items():
control[name] = {
"value": controller.step(control_dict=control_dict),
"type": controller.control_type,
}
# Update idx
idx += controller.command_dim
# Compose controls
u_vec = np.zeros(self.n_dof)
# By default, the control type is None and the control value is 0 (np.zeros) - i.e. no control applied
u_type_vec = np.array([ControlType.NONE] * self.n_dof)
for group, ctrl in control.items():
idx = self._controllers[group].dof_idx
u_vec[idx] = ctrl["value"]
u_type_vec[idx] = ctrl["type"]
u_vec, u_type_vec = self._postprocess_control(control=u_vec, control_type=u_type_vec)
# Deploy control signals
self.deploy_control(control=u_vec, control_type=u_type_vec, indices=None, normalized=False)
def _postprocess_control(self, control, control_type):
"""
Runs any postprocessing on @control with corresponding @control_type on this entity. Default is no-op.
Deploys control signals @control with corresponding @control_type on this entity.
Args:
control (k- or n-array): control signals to deploy. This should be n-DOF length if all joints are being set,
or k-length (k < n) if specific indices are being set. In this case, the length of @control must
be the same length as @indices!
control_type (k- or n-array): control types for each DOF. Each entry should be one of ControlType.
This should be n-DOF length if all joints are being set, or k-length (k < n) if specific
indices are being set. In this case, the length of @control must be the same length as @indices!
Returns:
2-tuple:
- n-array: raw control signals to send to the object's joints
- list: control types for each joint
"""
return control, control_type
def deploy_control(self, control, control_type, indices=None, normalized=False):
"""
Deploys control signals @control with corresponding @control_type on this entity.
Note: This is DIFFERENT than self.set_joint_positions/velocities/efforts, because in this case we are only
setting target values (i.e.: we subject this entity to physical dynamics in order to reach the desired
@control setpoints), compared to set_joint_XXXX which manually sets the actual state of the joints.
This function is intended to be used with motorized entities, e.g.: robot agents or machines (e.g.: a
conveyor belt) to simulation physical control of these entities.
In contrast, use set_joint_XXXX for simulation-specific logic, such as simulator resetting or "magic"
action implementations.
Args:
control (k- or n-array): control signals to deploy. This should be n-DOF length if all joints are being set,
or k-length (k < n) if specific indices are being set. In this case, the length of @control must
be the same length as @indices!
control_type (k- or n-array): control types for each DOF. Each entry should be one of ControlType.
This should be n-DOF length if all joints are being set, or k-length (k < n) if specific
indices are being set. In this case, the length of @control must be the same length as @indices!
indices (None or k-array): If specified, should be k (k < n) length array of specific DOF controls to deploy.
Default is None, which assumes that all joints are being set.
normalized (bool): Whether the inputted joint controls should be interpreted as normalized
values. Expects a single bool for the entire @control. Default is False.
"""
# Run sanity check
if indices is None:
assert len(control) == len(control_type) == self.n_dof, (
"Control signals, control types, and number of DOF should all be the same!"
"Got {}, {}, and {} respectively.".format(len(control), len(control_type), self.n_dof)
)
# Set indices manually so that we're standardized
indices = np.arange(self.n_dof)
else:
assert len(control) == len(control_type) == len(indices), (
"Control signals, control types, and indices should all be the same!"
"Got {}, {}, and {} respectively.".format(len(control), len(control_type), len(indices))
)
# Standardize normalized input
n_indices = len(indices)
# Loop through controls and deploy
# We have to use delicate logic to account for the edge cases where a single joint may contain > 1 DOF
# (e.g.: spherical joint)
pos_vec, pos_idxs, using_pos = [], [], False
vel_vec, vel_idxs, using_vel = [], [], False
eff_vec, eff_idxs, using_eff = [], [], False
cur_indices_idx = 0
while cur_indices_idx != n_indices:
# Grab the current DOF index we're controlling and find the corresponding joint
joint = self._dof_to_joints[indices[cur_indices_idx]]
cur_ctrl_idx = indices[cur_indices_idx]
joint_dof = joint.n_dof
if joint_dof > 1:
# Run additional sanity checks since the joint has more than one DOF to make sure our controls,
# control types, and indices all match as expected
# Make sure the indices are mapped correctly
assert indices[cur_indices_idx + joint_dof] == cur_ctrl_idx + joint_dof, \
"Got mismatched control indices for a single joint!"
# Check to make sure all joints, control_types, and normalized as all the same over n-DOF for the joint
for group_name, group in zip(
("joints", "control_types", "normalized"),
(self._dof_to_joints, control_type, normalized),
):
assert len({group[indices[cur_indices_idx + i]] for i in range(joint_dof)}) == 1, \
f"Not all {group_name} were the same when trying to deploy control for a single joint!"
# Assuming this all passes, we grab the control subvector, type, and normalized value accordingly
ctrl = control[cur_ctrl_idx: cur_ctrl_idx + joint_dof]
else:
# Grab specific control. No need to do checks since this is a single value
ctrl = control[cur_ctrl_idx]
# Deploy control based on type
ctrl_type = control_type[cur_ctrl_idx] # In multi-DOF joint case all values were already checked to be the same
if ctrl_type == ControlType.EFFORT:
eff_vec.append(ctrl)
eff_idxs.append(cur_ctrl_idx)
using_eff = True
elif ctrl_type == ControlType.VELOCITY:
vel_vec.append(ctrl)
vel_idxs.append(cur_ctrl_idx)
using_vel = True
elif ctrl_type == ControlType.POSITION:
pos_vec.append(ctrl)
pos_idxs.append(cur_ctrl_idx)
using_pos = True
elif ctrl_type == ControlType.NONE:
# Set zero efforts
eff_vec.append(0)
eff_idxs.append(cur_ctrl_idx)
using_eff = True
else:
raise ValueError("Invalid control type specified: {}".format(ctrl_type))
# Finally, increment the current index based on how many DOFs were just controlled
cur_indices_idx += joint_dof
# set the targets for joints
if using_pos:
self.set_joint_positions(positions=np.array(pos_vec), indices=np.array(pos_idxs), drive=True, normalized=normalized)
if using_vel:
self.set_joint_velocities(velocities=np.array(vel_vec), indices=np.array(vel_idxs), drive=True, normalized=normalized)
if using_eff:
self.set_joint_efforts(efforts=np.array(eff_vec), indices=np.array(eff_idxs), normalized=normalized)
def get_control_dict(self):
"""
Grabs all relevant information that should be passed to each controller during each controller step. This
automatically caches information
Returns:
CachedFunctions: Keyword-mapped control values for this object, mapping names to n-arrays.
By default, returns the following (can be queried via [] or get()):
- joint_position: (n_dof,) joint positions
- joint_velocity: (n_dof,) joint velocities
- joint_effort: (n_dof,) joint efforts
- root_pos: (3,) (x,y,z) global cartesian position of the object's root link
- root_quat: (4,) (x,y,z,w) global cartesian orientation of ths object's root link
- mass_matrix: (n_dof, n_dof) mass matrix
- gravity_force: (n_dof,) per-joint generalized gravity forces
- cc_force: (n_dof,) per-joint centripetal and centrifugal forces
"""
fcns = CachedFunctions()
fcns["_root_pos_quat"] = self.get_position_orientation
fcns["root_pos"] = lambda: fcns["_root_pos_quat"][0]
fcns["root_quat"] = lambda: fcns["_root_pos_quat"][1]
fcns["root_lin_vel"] = self.get_linear_velocity
fcns["root_ang_vel"] = self.get_angular_velocity
fcns["root_rel_lin_vel"] = self.get_relative_linear_velocity
fcns["root_rel_ang_vel"] = self.get_relative_angular_velocity
fcns["joint_position"] = lambda: self.get_joint_positions(normalized=False)
fcns["joint_velocity"] = lambda: self.get_joint_velocities(normalized=False)
fcns["joint_effort"] = lambda: self.get_joint_efforts(normalized=False)
fcns["mass_matrix"] = lambda: self.get_mass_matrix(clone=False)
fcns["gravity_force"] = lambda: self.get_generalized_gravity_forces(clone=False)
fcns["cc_force"] = lambda: self.get_coriolis_and_centrifugal_forces(clone=False)
return fcns
def dump_action(self):
"""
Dump the last action applied to this object. For use in demo collection.
"""
return self._last_action
def set_joint_positions(self, positions, indices=None, normalized=False, drive=False):
# Call super first
super().set_joint_positions(positions=positions, indices=indices, normalized=normalized, drive=drive)
# If we're not driving the joints, reset the controllers so that the goals are updated wrt to the new state
if not drive:
for controller in self._controllers.values():
controller.reset()
def _dump_state(self):
# Grab super state
state = super()._dump_state()
# Add in controller states
controller_states = dict()
for controller_name, controller in self._controllers.items():
controller_states[controller_name] = controller.dump_state()
state["controllers"] = controller_states
return state
def _load_state(self, state):
# Run super first
super()._load_state(state=state)
# Load controller states
controller_states = state["controllers"]
for controller_name, controller in self._controllers.items():
controller.load_state(state=controller_states[controller_name])
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
# Serialize the controller states sequentially
controller_states_flat = np.concatenate([
c.serialize(state=state["controllers"][c_name]) for c_name, c in self._controllers.items()
])
# Concatenate and return
return np.concatenate([state_flat, controller_states_flat]).astype(float)
def _deserialize(self, state):
# Run super first
state_dict, idx = super()._deserialize(state=state)
# Deserialize the controller states sequentially
controller_states = dict()
for c_name, c in self._controllers.items():
state_size = c.state_size
controller_states[c_name] = c.deserialize(state=state[idx: idx + state_size])
idx += state_size
state_dict["controllers"] = controller_states
return state_dict, idx
@property
def action_dim(self):
"""
Returns:
int: Dimension of action space for this object. By default,
is the sum over all controller action dimensions
"""
return sum([controller.command_dim for controller in self._controllers.values()])
@property
def action_space(self):
"""
Action space for this object.
Returns:
gym.space: Action space, either discrete (Discrete) or continuous (Box)
"""
return deepcopy(self._action_space)
@property
def discrete_action_list(self):
"""
Discrete choices for actions for this object. Only needs to be implemented if the object supports discrete
actions.
Returns:
dict: Mapping from single action identifier (e.g.: a string, or a number) to array of continuous
actions to deploy via this object's controllers.
"""
raise NotImplementedError()
@property
def controllers(self):
"""
Returns:
dict: Controllers owned by this object, mapping controller name to controller object
"""
return self._controllers
@property
@abstractmethod
def controller_order(self):
"""
Returns:
list: Ordering of the actions, corresponding to the controllers. e.g., ["base", "arm", "gripper"],
to denote that the action vector should be interpreted as first the base action, then arm command, then
gripper command
"""
raise NotImplementedError
@property
def controller_action_idx(self):
"""
Returns:
dict: Mapping from controller names (e.g.: head, base, arm, etc.) to corresponding
indices (list) in the action vector
"""
dic = {}
idx = 0
for controller in self.controller_order:
cmd_dim = self._controllers[controller].command_dim
dic[controller] = np.arange(idx, idx + cmd_dim)
idx += cmd_dim
return dic
@property
def controller_joint_idx(self):
"""
Returns:
dict: Mapping from controller names (e.g.: head, base, arm, etc.) to corresponding
indices (list) of the joint state vector controlled by each controller
"""
dic = {}
for controller in self.controller_order:
dic[controller] = self._controllers[controller].dof_idx
return dic
@property
def control_limits(self):
"""
Returns:
dict: Keyword-mapped limits for this object. Dict contains:
position: (min, max) joint limits, where min and max are N-DOF arrays
velocity: (min, max) joint velocity limits, where min and max are N-DOF arrays
effort: (min, max) joint effort limits, where min and max are N-DOF arrays
has_limit: (n_dof,) array where each element is True if that corresponding joint has a position limit
(otherwise, joint is assumed to be limitless)
"""
return {
"position": (self.joint_lower_limits, self.joint_upper_limits),
"velocity": (-self.max_joint_velocities, self.max_joint_velocities),
"effort": (-self.max_joint_efforts, self.max_joint_efforts),
"has_limit": self.joint_has_limits,
}
@property
def default_kp(self):
"""
Returns:
float: Default kp gain to apply to any DOF when switching control modes (e.g.: switching from a
velocity control mode to a position control mode)
"""
return 1e7
@property
def default_kd(self):
"""
Returns:
float: Default kd gain to apply to any DOF when switching control modes (e.g.: switching from a
position control mode to a velocity control mode)
"""
return 1e5
@property
def reset_joint_pos(self):
"""
Returns:
n-array: reset joint positions for this robot
"""
return self._reset_joint_pos
@reset_joint_pos.setter
def reset_joint_pos(self, value):
"""
Args:
value: the new reset joint positions for this robot
"""
self._reset_joint_pos = value
@property
@abstractmethod
def _default_joint_pos(self):
"""
Returns:
n-array: Default joint positions for this robot
"""
raise NotImplementedError
@property
@abstractmethod
def _default_controller_config(self):
"""
Returns:
dict: default nested dictionary mapping controller name(s) to specific controller
configurations for this object. Note that the order specifies the sequence of actions to be received
from the environment.
Expected structure is as follows:
group1:
controller_name1:
controller_name1_params
...
controller_name2:
...
group2:
...
The @group keys specify the control type for various aspects of the object,
e.g.: "head", "arm", "base", etc. @controller_name keys specify the supported controllers for
that group. A default specification MUST be specified for each controller_name.
e.g.: IKController, DifferentialDriveController, JointController, etc.
"""
return {}
@property
@abstractmethod
def _default_controllers(self):
"""
Returns:
dict: Maps object group (e.g. base, arm, etc.) to default controller class name to use
(e.g. IKController, JointController, etc.)
"""
return {}
| 34,103 | Python | 43.522193 | 130 | 0.614052 |
StanfordVL/OmniGibson/omnigibson/utils/deprecated_utils.py | """
A set of utility functions slated to be deprecated once Omniverse bugs are fixed
"""
import carb
from typing import List, Optional, Tuple, Union, Callable
import omni.usd as ou
from omni.particle.system.core.scripts.core import Core as OmniCore
from omni.particle.system.core.scripts.utils import Utils as OmniUtils
from pxr import Sdf, UsdShade, PhysxSchema, Usd, UsdGeom, UsdPhysics
import omni
import omni.graph.core as ogc
from omni.kit.primitive.mesh.command import _get_all_evaluators
from omni.kit.primitive.mesh.command import CreateMeshPrimWithDefaultXformCommand as CMPWDXC
import omni.timeline
from omni.isaac.core.utils.prims import get_prim_at_path
import numpy as np
import torch
import warp as wp
import math
from omni.isaac.core.articulations import ArticulationView as _ArticulationView
from omni.isaac.core.prims import RigidPrimView as _RigidPrimView
from PIL import Image, ImageDraw
from omni.replicator.core import random_colours
DEG2RAD = math.pi / 180.0
class CreateMeshPrimWithDefaultXformCommand(CMPWDXC):
def __init__(self, prim_type: str, **kwargs):
"""
Creates primitive.
Args:
prim_type (str): It supports Plane/Sphere/Cone/Cylinder/Disk/Torus/Cube.
kwargs:
object_origin (Gf.Vec3f): Position of mesh center in stage units.
u_patches (int): The number of patches to tessellate U direction.
v_patches (int): The number of patches to tessellate V direction.
w_patches (int): The number of patches to tessellate W direction.
It only works for Cone/Cylinder/Cube.
half_scale (float): Half size of mesh in centimeters. Default is None, which means it's controlled by settings.
u_verts_scale (int): Tessellation Level of U. It's a multiplier of u_patches.
v_verts_scale (int): Tessellation Level of V. It's a multiplier of v_patches.
w_verts_scale (int): Tessellation Level of W. It's a multiplier of w_patches.
It only works for Cone/Cylinder/Cube.
For Cone/Cylinder, it's to tessellate the caps.
For Cube, it's to tessellate along z-axis.
above_ground (bool): It will offset the center of mesh above the ground plane if it's True,
False otherwise. It's False by default. This param only works when param object_origin is not given.
Otherwise, it will be ignored.
stage (Usd.Stage): If specified, stage to create prim on
"""
self._prim_type = prim_type[0:1].upper() + prim_type[1:].lower()
self._usd_context = omni.usd.get_context()
self._selection = self._usd_context.get_selection()
self._stage = kwargs.get("stage", self._usd_context.get_stage())
self._settings = carb.settings.get_settings()
self._default_path = kwargs.get("prim_path", None)
self._select_new_prim = kwargs.get("select_new_prim", True)
self._prepend_default_prim = kwargs.get("prepend_default_prim", True)
self._above_round = kwargs.get("above_ground", False)
self._attributes = {**kwargs}
# Supported mesh types should have an associated evaluator class
self._evaluator_class = _get_all_evaluators()[prim_type]
assert isinstance(self._evaluator_class, type)
class Utils(OmniUtils):
def create_material(self, name):
material_url = carb.settings.get_settings().get("/exts/omni.particle.system.core/material")
# TODO: THIS IS THE ONLY LINE WE CHANGE! "/" SHOULD BE ""
material_path = ""
default_prim = self.stage.GetDefaultPrim()
if default_prim:
material_path = default_prim.GetPath().pathString
if not self.stage.GetPrimAtPath(material_path + "/Looks"):
self.stage.DefinePrim(material_path + "/Looks", "Scope")
material_path += "/Looks/" + name
material_path = ou.get_stage_next_free_path(
self.stage, material_path, False
)
prim = self.stage.DefinePrim(material_path, "Material")
if material_url:
prim.GetReferences().AddReference(material_url)
else:
carb.log_error("Failed to find material URL in settings")
return [material_path]
class Core(OmniCore):
"""
Subclass that overrides a specific function within Omni's Core class to fix a bug
"""
def __init__(self, popup_callback: Callable[[str], None], particle_system_name: str):
self._popup_callback = popup_callback
self.utils = Utils()
self.context = ou.get_context()
self.stage = self.context.get_stage()
self.selection = self.context.get_selection()
self.particle_system_name = particle_system_name
self.sub_stage_update = self.context.get_stage_event_stream().create_subscription_to_pop(self.on_stage_update)
self.on_stage_update()
def get_compute_graph(self, selected_paths, create_new_graph=True, created_paths=None):
"""
Returns the first ComputeGraph found in selected_paths.
If no graph is found and create_new_graph is true, a new graph will be created and its
path appended to created_paths (if provided).
"""
graph = None
graph_paths = [path for path in selected_paths
if self.stage.GetPrimAtPath(path).GetTypeName() in ["ComputeGraph", "OmniGraph"] ]
if len(graph_paths) > 0:
graph = ogc.get_graph_by_path(graph_paths[0])
if len(graph_paths) > 1:
carb.log_warn(f"Multiple ComputeGraph prims selected. Only the first will be used: {graph.get_path_to_graph()}")
elif create_new_graph:
# If no graph was found in the selected prims, we'll make a new graph.
# TODO: THIS IS THE ONLY LINE THAT WE CHANGE! ONCE FIXED, REMOVE THIS
graph_path = Sdf.Path(f"/OmniGraph/{self.particle_system_name}").MakeAbsolutePath(Sdf.Path.absoluteRootPath)
graph_path = ou.get_stage_next_free_path(self.stage, graph_path, True)
# prim = self.stage.GetDefaultPrim()
# path = str(prim.GetPath()) if prim else ""
self.stage.DefinePrim("/OmniGraph", "Scope")
container_graphs = ogc.get_global_container_graphs()
# FIXME: container_graphs[0] should be the simulation orchestration graph, but this may change in the future.
container_graph = container_graphs[0]
result, wrapper_node = ogc.cmds.CreateGraphAsNode(
graph=container_graph,
node_name=Sdf.Path(graph_path).name,
graph_path=graph_path,
evaluator_name="push",
is_global_graph=True,
backed_by_usd=True,
fc_backing_type=ogc.GraphBackingType.GRAPH_BACKING_TYPE_FLATCACHE_SHARED,
pipeline_stage=ogc.GraphPipelineStage.GRAPH_PIPELINE_STAGE_SIMULATION
)
graph = wrapper_node.get_wrapped_graph()
if created_paths is not None:
created_paths.append(graph.get_path_to_graph())
carb.log_info(f"No ComputeGraph selected. A new graph has been created at {graph.get_path_to_graph()}")
return graph
class ArticulationView(_ArticulationView):
"""ArticulationView with some additional functionality implemented."""
def set_joint_limits(
self,
values: Union[np.ndarray, torch.Tensor],
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
) -> None:
"""Sets joint limits for articulation joints in the view.
Args:
values (Union[np.ndarray, torch.Tensor, wp.array]): joint limits for articulations in the view. shape (M, K, 2).
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indicies to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indicies to specify which joints
to manipulate. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, "cpu")
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, "cpu")
new_values = self._physics_view.get_dof_limits()
values = self._backend_utils.move_data(values, device="cpu")
new_values = self._backend_utils.assign(
values,
new_values,
[self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices],
)
self._physics_view.set_dof_limits(new_values, indices)
else:
indices = self._backend_utils.to_list(
self._backend_utils.resolve_indices(indices, self.count, self._device)
)
dof_types = self._backend_utils.to_list(self.get_dof_types())
joint_indices = self._backend_utils.to_list(
self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
)
values = self._backend_utils.to_list(values)
articulation_read_idx = 0
for i in indices:
dof_read_idx = 0
for dof_index in joint_indices:
dof_val = values[articulation_read_idx][dof_read_idx]
if dof_types[dof_index] == omni.physics.tensors.DofType.Rotation:
dof_val /= DEG2RAD
prim = get_prim_at_path(self._dof_paths[i][dof_index])
prim.GetAttribute("physics:lowerLimit").Set(dof_val[0])
prim.GetAttribute("physics:upperLimit").Set(dof_val[1])
dof_read_idx += 1
articulation_read_idx += 1
return
def get_joint_limits(
self,
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
clone: bool = True,
) -> Union[np.ndarray, torch.Tensor, wp.array]:
"""Gets joint limits for articulation in the view.
Args:
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indicies to specify which prims
to query. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indicies to specify which joints
to query. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
clone (Optional[bool]): True to return a clone of the internal buffer. Otherwise False. Defaults to True.
Returns:
Union[np.ndarray, torch.Tensor, wp.indexedarray]: joint limits for articulations in the view. shape (M, K).
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return None
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
values = self._backend_utils.move_data(self._physics_view.get_dof_limits(), self._device)
if clone:
values = self._backend_utils.clone_tensor(values, device=self._device)
result = values[
self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices
]
return result
else:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
dof_types = self._backend_utils.to_list(self.get_dof_types())
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
values = np.zeros(shape=(indices.shape[0], joint_indices.shape[0], 2), dtype="float32")
articulation_write_idx = 0
indices = self._backend_utils.to_list(indices)
joint_indices = self._backend_utils.to_list(joint_indices)
for i in indices:
dof_write_idx = 0
for dof_index in joint_indices:
prim = get_prim_at_path(self._dof_paths[i][dof_index])
values[articulation_write_idx][dof_write_idx][0] = prim.GetAttribute("physics:lowerLimit").Get()
values[articulation_write_idx][dof_write_idx][1] = prim.GetAttribute("physics:upperLimit").Get()
if dof_types[dof_index] == omni.physics.tensors.DofType.Rotation:
values[articulation_write_idx][dof_write_idx] = values[articulation_write_idx][dof_write_idx] * DEG2RAD
dof_write_idx += 1
articulation_write_idx += 1
values = self._backend_utils.convert(values, dtype="float32", device=self._device, indexed=True)
return values
def set_max_velocities(
self,
values: Union[np.ndarray, torch.Tensor, wp.array],
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
) -> None:
"""Sets maximum velocities for articulation in the view.
Args:
values (Union[np.ndarray, torch.Tensor, wp.array]): maximum velocities for articulations in the view. shape (M, K).
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indicies to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indicies to specify which joints
to manipulate. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, "cpu")
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, "cpu")
new_values = self._physics_view.get_dof_max_velocities()
new_values = self._backend_utils.assign(
self._backend_utils.move_data(values, device="cpu"),
new_values,
[self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices],
)
self._physics_view.set_dof_max_velocities(new_values, indices)
else:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
articulation_read_idx = 0
indices = self._backend_utils.to_list(indices)
joint_indices = self._backend_utils.to_list(joint_indices)
values = self._backend_utils.to_list(values)
for i in indices:
dof_read_idx = 0
for dof_index in joint_indices:
prim = PhysxSchema.PhysxJointAPI(get_prim_at_path(self._dof_paths[i][dof_index]))
if not prim.GetMaxJointVelocityAttr():
prim.CreateMaxJointVelocityAttr().Set(values[articulation_read_idx][dof_read_idx])
else:
prim.GetMaxJointVelocityAttr().Set(values[articulation_read_idx][dof_read_idx])
dof_read_idx += 1
articulation_read_idx += 1
return
def get_max_velocities(
self,
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
clone: bool = True,
) -> Union[np.ndarray, torch.Tensor, wp.indexedarray]:
"""Gets maximum velocities for articulation in the view.
Args:
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indicies to specify which prims
to query. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indicies to specify which joints
to query. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
clone (Optional[bool]): True to return a clone of the internal buffer. Otherwise False. Defaults to True.
Returns:
Union[np.ndarray, torch.Tensor, wp.indexedarray]: maximum velocities for articulations in the view. shape (M, K).
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return None
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, "cpu")
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, "cpu")
max_velocities = self._physics_view.get_dof_max_velocities()
if clone:
max_velocities = self._backend_utils.clone_tensor(max_velocities, device="cpu")
result = self._backend_utils.move_data(
max_velocities[
self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices
],
device=self._device,
)
return result
else:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
max_velocities = np.zeros(shape=(indices.shape[0], joint_indices.shape[0]), dtype="float32")
indices = self._backend_utils.to_list(indices)
joint_indices = self._backend_utils.to_list(joint_indices)
articulation_write_idx = 0
for i in indices:
dof_write_idx = 0
for dof_index in joint_indices:
prim = PhysxSchema.PhysxJointAPI(get_prim_at_path(self._dof_paths[i][dof_index]))
max_velocities[articulation_write_idx][dof_write_idx] = prim.GetMaxJointVelocityAttr().Get()
dof_write_idx += 1
articulation_write_idx += 1
max_velocities = self._backend_utils.convert(max_velocities, dtype="float32", device=self._device, indexed=True)
return max_velocities
def set_joint_positions(
self,
positions: Optional[Union[np.ndarray, torch.Tensor, wp.array]],
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
) -> None:
"""Set the joint positions of articulations in the view
.. warning::
This method will immediately set (teleport) the affected joints to the indicated value.
Use the ``set_joint_position_targets`` or the ``apply_action`` methods to control the articulation joints.
Args:
positions (Optional[Union[np.ndarray, torch.Tensor, wp.array]]): joint positions of articulations in the view to be set to in the next frame.
shape is (M, K).
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indices to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indices to specify which joints
to manipulate. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
.. hint::
This method belongs to the methods used to set the articulation kinematic states:
``set_velocities`` (``set_linear_velocities``, ``set_angular_velocities``),
``set_joint_positions``, ``set_joint_velocities``, ``set_joint_efforts``
Example:
.. code-block:: python
>>> # set all the articulation joints.
>>> # Since there are 5 envs, the joint positions are repeated 5 times
>>> positions = np.tile(np.array([0.0, -1.0, 0.0, -2.2, 0.0, 2.4, 0.8, 0.04, 0.04]), (num_envs, 1))
>>> prims.set_joint_positions(positions)
>>>
>>> # set only the fingers in closed position: panda_finger_joint1 (7) and panda_finger_joint2 (8) to 0.0
>>> # for the first, middle and last of the 5 envs
>>> positions = np.tile(np.array([0.0, 0.0]), (3, 1))
>>> prims.set_joint_positions(positions, indices=np.array([0, 2, 4]), joint_indices=np.array([7, 8]))
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
new_dof_pos = self._physics_view.get_dof_positions()
new_dof_pos = self._backend_utils.assign(
self._backend_utils.move_data(positions, device=self._device),
new_dof_pos,
[self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices],
)
self._physics_view.set_dof_positions(new_dof_pos, indices)
# THIS IS THE FIX: COMMENT OUT THE BELOW LINE AND SET TARGETS INSTEAD
# self._physics_view.set_dof_position_targets(new_dof_pos, indices)
self.set_joint_position_targets(positions, indices, joint_indices)
else:
carb.log_warn("Physics Simulation View is not created yet in order to use set_joint_positions")
def set_joint_velocities(
self,
velocities: Optional[Union[np.ndarray, torch.Tensor, wp.array]],
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
) -> None:
"""Set the joint velocities of articulations in the view
.. warning::
This method will immediately set the affected joints to the indicated value.
Use the ``set_joint_velocity_targets`` or the ``apply_action`` methods to control the articulation joints.
Args:
velocities (Optional[Union[np.ndarray, torch.Tensor, wp.array]]): joint velocities of articulations in the view to be set to in the next frame.
shape is (M, K).
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indices to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indices to specify which joints
to manipulate. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
.. hint::
This method belongs to the methods used to set the articulation kinematic states:
``set_velocities`` (``set_linear_velocities``, ``set_angular_velocities``),
``set_joint_positions``, ``set_joint_velocities``, ``set_joint_efforts``
Example:
.. code-block:: python
>>> # set the velocities for all the articulation joints to the indicated values.
>>> # Since there are 5 envs, the joint velocities are repeated 5 times
>>> velocities = np.tile(np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]), (num_envs, 1))
>>> prims.set_joint_velocities(velocities)
>>>
>>> # set the fingers velocities: panda_finger_joint1 (7) and panda_finger_joint2 (8) to -0.1
>>> # for the first, middle and last of the 5 envs
>>> velocities = np.tile(np.array([-0.1, -0.1]), (3, 1))
>>> prims.set_joint_velocities(velocities, indices=np.array([0, 2, 4]), joint_indices=np.array([7, 8]))
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
new_dof_vel = self._physics_view.get_dof_velocities()
new_dof_vel = self._backend_utils.assign(
self._backend_utils.move_data(velocities, device=self._device),
new_dof_vel,
[self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices],
)
self._physics_view.set_dof_velocities(new_dof_vel, indices)
# THIS IS THE FIX: COMMENT OUT THE BELOW LINE AND SET TARGETS INSTEAD
# self._physics_view.set_dof_velocity_targets(new_dof_vel, indices)
self.set_joint_velocity_targets(velocities, indices, joint_indices)
else:
carb.log_warn("Physics Simulation View is not created yet in order to use set_joint_velocities")
return
def set_joint_efforts(
self,
efforts: Optional[Union[np.ndarray, torch.Tensor, wp.array]],
indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
joint_indices: Optional[Union[np.ndarray, List, torch.Tensor, wp.array]] = None,
) -> None:
"""Set the joint efforts of articulations in the view
.. note::
This method can be used for effort control. For this purpose, there must be no joint drive
or the stiffness and damping must be set to zero.
Args:
efforts (Optional[Union[np.ndarray, torch.Tensor, wp.array]]): efforts of articulations in the view to be set to in the next frame.
shape is (M, K).
indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): indices to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
joint_indices (Optional[Union[np.ndarray, List, torch.Tensor, wp.array]], optional): joint indices to specify which joints
to manipulate. Shape (K,).
Where K <= num of dofs.
Defaults to None (i.e: all dofs).
.. hint::
This method belongs to the methods used to set the articulation kinematic states:
``set_velocities`` (``set_linear_velocities``, ``set_angular_velocities``),
``set_joint_positions``, ``set_joint_velocities``, ``set_joint_efforts``
Example:
.. code-block:: python
>>> # set the efforts for all the articulation joints to the indicated values.
>>> # Since there are 5 envs, the joint efforts are repeated 5 times
>>> efforts = np.tile(np.array([10, 20, 30, 40, 50, 60, 70, 80, 90]), (num_envs, 1))
>>> prims.set_joint_efforts(efforts)
>>>
>>> # set the fingers efforts: panda_finger_joint1 (7) and panda_finger_joint2 (8) to 10
>>> # for the first, middle and last of the 5 envs
>>> efforts = np.tile(np.array([10, 10]), (3, 1))
>>> prims.set_joint_efforts(efforts, indices=np.array([0, 2, 4]), joint_indices=np.array([7, 8]))
"""
if not self._is_initialized:
carb.log_warn("ArticulationView needs to be initialized.")
return
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
joint_indices = self._backend_utils.resolve_indices(joint_indices, self.num_dof, self._device)
# THIS IS THE FIX: COMMENT OUT THE BELOW LINE AND USE ACTUATION FORCES INSTEAD
# new_dof_efforts = self._backend_utils.create_zeros_tensor(
# shape=[self.count, self.num_dof], dtype="float32", device=self._device
# )
new_dof_efforts = self._physics_view.get_dof_actuation_forces()
new_dof_efforts = self._backend_utils.assign(
self._backend_utils.move_data(efforts, device=self._device),
new_dof_efforts,
[self._backend_utils.expand_dims(indices, 1) if self._backend != "warp" else indices, joint_indices],
)
self._physics_view.set_dof_actuation_forces(new_dof_efforts, indices)
else:
carb.log_warn("Physics Simulation View is not created yet in order to use set_joint_efforts")
return
def _invalidate_physics_handle_callback(self, event):
# Overwrite super method, add additional de-initialization
if event.type == int(omni.timeline.TimelineEventType.STOP):
self._physics_view = None
self._invalidate_physics_handle_event = None
self._is_initialized = False
class RigidPrimView(_RigidPrimView):
def enable_gravities(self, indices: Optional[Union[np.ndarray, list, torch.Tensor, wp.array]] = None) -> None:
"""Enable gravity on rigid bodies (enabled by default).
Args:
indices (Optional[Union[np.ndarray, list, torch.Tensor, wp.array]], optional): indicies to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
"""
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
indices = self._backend_utils.resolve_indices(indices, self.count, "cpu")
data = self._physics_view.get_disable_gravities().reshape(self._count)
data = self._backend_utils.assign(
self._backend_utils.create_tensor_from_list([False] * len(indices), dtype="uint8"), data, indices
)
self._physics_view.set_disable_gravities(data, indices)
else:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
indices = self._backend_utils.to_list(indices)
for i in indices:
if self._physx_rigid_body_apis[i] is None:
if self._prims[i].HasAPI(PhysxSchema.PhysxRigidBodyAPI):
rigid_api = PhysxSchema.PhysxRigidBodyAPI(self._prims[i])
else:
rigid_api = PhysxSchema.PhysxRigidBodyAPI.Apply(self._prims[i])
self._physx_rigid_body_apis[i] = rigid_api
self._physx_rigid_body_apis[i].GetDisableGravityAttr().Set(False)
def disable_gravities(self, indices: Optional[Union[np.ndarray, list, torch.Tensor, wp.array]] = None) -> None:
"""Disable gravity on rigid bodies (enabled by default).
Args:
indices (Optional[Union[np.ndarray, list, torch.Tensor, wp.array]], optional): indicies to specify which prims
to manipulate. Shape (M,).
Where M <= size of the encapsulated prims in the view.
Defaults to None (i.e: all prims in the view).
"""
indices = self._backend_utils.resolve_indices(indices, self.count, "cpu")
if not omni.timeline.get_timeline_interface().is_stopped() and self._physics_view is not None:
data = self._physics_view.get_disable_gravities().reshape(self._count)
data = self._backend_utils.assign(
self._backend_utils.create_tensor_from_list([True] * len(indices), dtype="uint8"), data, indices
)
self._physics_view.set_disable_gravities(data, indices)
else:
indices = self._backend_utils.resolve_indices(indices, self.count, self._device)
indices = self._backend_utils.to_list(indices)
for i in indices:
if self._physx_rigid_body_apis[i] is None:
if self._prims[i].HasAPI(PhysxSchema.PhysxRigidBodyAPI):
rigid_api = PhysxSchema.PhysxRigidBodyAPI(self._prims[i])
else:
rigid_api = PhysxSchema.PhysxRigidBodyAPI.Apply(self._prims[i])
self._physx_rigid_body_apis[i] = rigid_api
self._physx_rigid_body_apis[i].GetDisableGravityAttr().Set(True)
return
def colorize_bboxes(bboxes_2d_data, bboxes_2d_rgb, num_channels=3):
"""Colorizes 2D bounding box data for visualization.
We are overriding the replicator native version of this function to fix a bug.
In their version of this function, the ordering of the rectangle corners is incorrect and we fix it here.
Args:
bboxes_2d_data (numpy.ndarray): 2D bounding box data from the sensor.
bboxes_2d_rgb (numpy.ndarray): RGB data from the sensor to embed bounding box.
num_channels (int): Specify number of channels i.e. 3 or 4.
"""
semantic_id_list = []
bbox_2d_list = []
rgb_img = Image.fromarray(bboxes_2d_rgb)
rgb_img_draw = ImageDraw.Draw(rgb_img)
for bbox_2d in bboxes_2d_data:
semantic_id_list.append(bbox_2d['semanticId'])
bbox_2d_list.append(bbox_2d)
semantic_id_list_np = np.unique(np.array(semantic_id_list))
color_list = random_colours(len(semantic_id_list_np.tolist()), True, num_channels)
for bbox_2d in bbox_2d_list:
index = np.where(semantic_id_list_np == bbox_2d['semanticId'])[0][0]
bbox_color = color_list[index]
outline = (bbox_color[0], bbox_color[1], bbox_color[2])
if num_channels == 4:
outline = (
bbox_color[0],
bbox_color[1],
bbox_color[2],
bbox_color[3],
)
rgb_img_draw.rectangle([(bbox_2d['x_min'], bbox_2d['y_min']), (bbox_2d['x_max'], bbox_2d['y_max'])], outline=outline, width=2)
bboxes_2d_rgb = np.array(rgb_img)
return bboxes_2d_rgb
| 39,722 | Python | 56.65312 | 155 | 0.557474 |
StanfordVL/OmniGibson/omnigibson/utils/profiling_utils.py | import gym
import omnigibson as og
import os
import psutil
from pynvml.smi import nvidia_smi
from time import time
class ProfilingEnv(og.Environment):
def step(self, action):
try:
start = time()
# If the action is not a dictionary, convert into a dictionary
if not isinstance(action, dict) and not isinstance(action, gym.spaces.Dict):
action_dict = dict()
idx = 0
for robot in self.robots:
action_dim = robot.action_dim
action_dict[robot.name] = action[idx: idx + action_dim]
idx += action_dim
else:
# Our inputted action is the action dictionary
action_dict = action
# Iterate over all robots and apply actions
for robot in self.robots:
robot.apply_action(action_dict[robot.name])
# Run simulation step
sim_start = time()
if len(og.sim._objects_to_initialize) > 0:
og.sim.render()
super(type(og.sim), og.sim).step(render=True)
omni_time = (time() - sim_start) * 1e3
# Additionally run non physics things
og.sim._non_physics_step()
# Grab observations
obs, obs_info = self.get_obs()
# Step the scene graph builder if necessary
if self._scene_graph_builder is not None:
self._scene_graph_builder.step(self.scene)
# Grab reward, done, and info, and populate with internal info
reward, done, info = self.task.step(self, action)
self._populate_info(info)
if done and self._automatic_reset:
# Add lost observation to our information dict, and reset
info["last_observation"] = obs
info["last_observation_info"] = obs_info
obs, obs_info = self.reset()
# Increment step
self._current_step += 1
# collect profiling data
total_frame_time = (time() - start) * 1e3
og_time = total_frame_time - omni_time
# memory usage in GB
memory_usage = psutil.Process(os.getpid()).memory_info().rss / 1024 ** 3
# VRAM usage in GB
for gpu in nvidia_smi.getInstance().DeviceQuery()['gpu']:
found = False
for process in gpu['processes']:
if process['pid'] == os.getpid():
vram_usage = process['used_memory'] / 1024
found = True
break
if found:
break
ret = [total_frame_time, omni_time, og_time, memory_usage, vram_usage]
if self._current_step % 100 == 0:
print("total time: {:.3f} ms, Omni time: {:.3f} ms, OG time: {:.3f} ms, memory: {:.3f} GB, vram: {:.3f} GB.".format(*ret))
return obs, reward, done, info, ret
except:
raise ValueError(f"Failed to execute environment step {self._current_step} in episode {self._current_episode}")
| 3,191 | Python | 37.926829 | 138 | 0.525541 |
StanfordVL/OmniGibson/omnigibson/utils/python_utils.py | """
A set of utility functions for general python usage
"""
import inspect
import re
from abc import ABCMeta
from copy import deepcopy
from collections.abc import Iterable
from functools import wraps, cache
from importlib import import_module
import numpy as np
# Global dictionary storing all unique names
NAMES = set()
CLASS_NAMES = set()
class classproperty:
def __init__(self, fget):
self.fget = fget
def __get__(self, owner_self, owner_cls):
return self.fget(owner_cls)
def subclass_factory(name, base_classes, __init__=None, **kwargs):
"""
Programmatically generates a new class type with name @name, subclassing from base classes @base_classes, with
corresponding __init__ call @__init__.
NOTE: If __init__ is None (default), the __init__ call from @base_classes will be used instead.
cf. https://stackoverflow.com/questions/15247075/how-can-i-dynamically-create-derived-classes-from-a-base-class
Args:
name (str): Generated class name
base_classes (type, or list of type): Base class(es) to use for generating the subclass
__init__ (None or function): Init call to use for the base class when it is instantiated. If None if specified,
the newly generated class will automatically inherit the __init__ call from @base_classes
**kwargs (any): keyword-mapped parameters to override / set in the child class, where the keys represent
the class / instance attribute to modify and the values represent the functions / value to set
"""
# Standardize base_classes
base_classes = tuple(base_classes if isinstance(base_classes, Iterable) else [base_classes])
# Generate the new class
if __init__ is not None:
kwargs["__init__"] = __init__
return type(name, base_classes, kwargs)
def save_init_info(func):
"""
Decorator to save the init info of an object to object._init_info.
_init_info contains class name and class constructor's input args.
"""
sig = inspect.signature(func)
@wraps(func) # preserve func name, docstring, arguments list, etc.
def wrapper(self, *args, **kwargs):
values = sig.bind(self, *args, **kwargs)
# Prevent args of super init from being saved.
if hasattr(self, "_init_info"):
func(*values.args, **values.kwargs)
return
# Initialize class's self._init_info.
self._init_info = {}
self._init_info["class_module"] = self.__class__.__module__
self._init_info["class_name"] = self.__class__.__name__
self._init_info["args"] = {}
# Populate class's self._init_info.
for k, p in sig.parameters.items():
if k == 'self':
continue
if k in values.arguments:
val = values.arguments[k]
if p.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY):
self._init_info["args"][k] = val
elif p.kind == inspect.Parameter.VAR_KEYWORD:
for kwarg_k, kwarg_val in values.arguments[k].items():
self._init_info["args"][kwarg_k] = kwarg_val
# Call the original function.
func(*values.args, **values.kwargs)
return wrapper
class RecreatableMeta(type):
"""
Simple metaclass that automatically saves __init__ args of the instances it creates.
"""
def __new__(cls, clsname, bases, clsdict):
if "__init__" in clsdict:
clsdict["__init__"] = save_init_info(clsdict["__init__"])
return super().__new__(cls, clsname, bases, clsdict)
class RecreatableAbcMeta(RecreatableMeta, ABCMeta):
"""
A composite metaclass of both RecreatableMeta and ABCMeta.
Adding in ABCMeta to resolve metadata conflicts.
"""
pass
class Recreatable(metaclass=RecreatableAbcMeta):
"""
Simple class that provides an abstract interface automatically saving __init__ args of
the classes inheriting it.
"""
def get_init_info(self):
"""
Grabs relevant initialization information for this class instance. Useful for directly
reloading an object from this information, using @create_object_from_init_info.
Returns:
dict: Nested dictionary that contains this object's initialization information
"""
# Note: self._init_info is procedurally generated via @save_init_info called in metaclass
return self._init_info
def create_object_from_init_info(init_info):
"""
Create a new object based on given init info.
Args:
init_info (dict): Nested dictionary that contains an object's init information.
Returns:
any: Newly created object.
"""
module = import_module(init_info["class_module"])
cls = getattr(module, init_info["class_name"])
return cls(**init_info["args"], **init_info.get("kwargs", {}))
def merge_nested_dicts(base_dict, extra_dict, inplace=False, verbose=False):
"""
Iteratively updates @base_dict with values from @extra_dict. Note: This generates a new dictionary!
Args:
base_dict (dict): Nested base dictionary, which should be updated with all values from @extra_dict
extra_dict (dict): Nested extra dictionary, whose values will overwrite corresponding ones in @base_dict
inplace (bool): Whether to modify @base_dict in place or not
verbose (bool): If True, will print when keys are mismatched
Returns:
dict: Updated dictionary
"""
# Loop through all keys in @extra_dict and update the corresponding values in @base_dict
base_dict = base_dict if inplace else deepcopy(base_dict)
for k, v in extra_dict.items():
if k not in base_dict:
base_dict[k] = v
else:
if isinstance(v, dict) and isinstance(base_dict[k], dict):
base_dict[k] = merge_nested_dicts(base_dict[k], v)
else:
not_equal = base_dict[k] != v
if isinstance(not_equal, np.ndarray):
not_equal = not_equal.any()
if not_equal and verbose:
print(f"Different values for key {k}: {base_dict[k]}, {v}\n")
base_dict[k] = np.array(v) if isinstance(v, list) else v
# Return new dict
return base_dict
def get_class_init_kwargs(cls):
"""
Helper function to return a list of all valid keyword arguments (excluding "self") for the given @cls class.
Args:
cls (object): Class from which to grab __init__ kwargs
Returns:
list: All keyword arguments (excluding "self") specified by @cls __init__ constructor method
"""
return list(inspect.signature(cls.__init__).parameters.keys())[1:]
def extract_subset_dict(dic, keys, copy=False):
"""
Helper function to extract a subset of dictionary key-values from a current dictionary. Optionally (deep)copies
the values extracted from the original @dic if @copy is True.
Args:
dic (dict): Dictionary containing multiple key-values
keys (Iterable): Specific keys to extract from @dic. If the key doesn't exist in @dic, then the key is skipped
copy (bool): If True, will deepcopy all values corresponding to the specified @keys
Returns:
dict: Extracted subset dictionary containing only the specified @keys and their corresponding values
"""
subset = {k: dic[k] for k in keys if k in dic}
return deepcopy(subset) if copy else subset
def extract_class_init_kwargs_from_dict(cls, dic, copy=False):
"""
Helper function to return a dictionary of key-values that specifically correspond to @cls class's __init__
constructor method, from @dic which may or may not contain additional, irrelevant kwargs.
Note that @dic may possibly be missing certain kwargs as specified by cls.__init__. No error will be raised.
Args:
cls (object): Class from which to grab __init__ kwargs that will be be used as filtering keys for @dic
dic (dict): Dictionary containing multiple key-values
copy (bool): If True, will deepcopy all values corresponding to the specified @keys
Returns:
dict: Extracted subset dictionary possibly containing only the specified keys from cls.__init__ and their
corresponding values
"""
# extract only relevant kwargs for this specific backbone
return extract_subset_dict(
dic=dic,
keys=get_class_init_kwargs(cls),
copy=copy,
)
def assert_valid_key(key, valid_keys, name=None):
"""
Helper function that asserts that @key is in dictionary @valid_keys keys. If not, it will raise an error.
Args:
key (any): key to check for in dictionary @dic's keys
valid_keys (Iterable): contains keys should be checked with @key
name (str or None): if specified, is the name associated with the key that will be printed out if the
key is not found. If None, default is "value"
"""
if name is None:
name = "value"
assert key in valid_keys, "Invalid {} received! Valid options are: {}, got: {}".format(
name, valid_keys.keys() if isinstance(valid_keys, dict) else valid_keys, key)
def create_class_from_registry_and_config(cls_name, cls_registry, cfg, cls_type_descriptor):
"""
Helper function to create a class with str type @cls_name, which should be a valid entry in @cls_registry, using
kwargs in dictionary form @cfg to pass to the constructor, with @cls_type_name specified for debugging
Args:
cls_name (str): Name of the class to create. This should correspond to the actual class type, in string form
cls_registry (dict): Class registry. This should map string names of valid classes to create to the
actual class type itself
cfg (dict): Any keyword arguments to pass to the class constructor
cls_type_descriptor (str): Description of the class type being created. This can be any string and is used
solely for debugging purposes
Returns:
any: Created class instance
"""
# Make sure the requested class type is valid
assert_valid_key(key=cls_name, valid_keys=cls_registry, name=f"{cls_type_descriptor} type")
# Grab the kwargs relevant for the specific class
cls = cls_registry[cls_name]
cls_kwargs = extract_class_init_kwargs_from_dict(cls=cls, dic=cfg, copy=False)
# Create the class
return cls(**cls_kwargs)
def get_uuid(name, n_digits=8):
"""
Helper function to create a unique @n_digits uuid given a unique @name
Args:
name (str): Name of the object or class
n_digits (int): Number of digits of the uuid, default is 8
Returns:
int: uuid
"""
return abs(hash(name)) % (10 ** n_digits)
def camel_case_to_snake_case(camel_case_text):
"""
Helper function to convert a camel case text to snake case, e.g. "StrawberrySmoothie" -> "strawberry_smoothie"
Args:
camel_case_text (str): Text in camel case
Returns:
str: snake case text
"""
return re.sub(r'(?<!^)(?=[A-Z])', '_', camel_case_text).lower()
def snake_case_to_camel_case(snake_case_text):
"""
Helper function to convert a snake case text to camel case, e.g. "strawberry_smoothie" -> "StrawberrySmoothie"
Args:
snake_case_text (str): Text in snake case
Returns:
str: camel case text
"""
return ''.join(item.title() for item in snake_case_text.split('_'))
def meets_minimum_version(test_version, minimum_version):
"""
Verify that @test_version meets the @minimum_version
Args:
test_version (str): Python package version. Should be, e.g., 0.26.1
minimum_version (str): Python package version to test against. Should be, e.g., 0.27.2
Returns:
bool: Whether @test_version meets @minimum_version
"""
test_nums = [int(num) for num in test_version.split(".")]
minimum_nums = [int(num) for num in minimum_version.split(".")]
assert len(test_nums) == 3
assert len(minimum_nums) == 3
for test_num, minimum_num in zip(test_nums, minimum_nums):
if test_num > minimum_num:
return True
elif test_num < minimum_num:
return False
# Otherwise, we continue through all sub-versions
# If we get here, that means test_version == threshold_version, so this is a success
return True
class UniquelyNamed:
"""
Simple class that implements a name property, that must be implemented by a subclass. Note that any @Named
entity must be UNIQUE!
"""
def __init__(self, *args, **kwargs):
global NAMES
# Register this object, making sure it's name is unique
assert self.name not in NAMES, \
f"UniquelyNamed object with name {self.name} already exists!"
NAMES.add(self.name)
def remove_names(self):
"""
Checks if self.name exists in the global NAMES registry, and deletes it if so. Possibly also iterates through
all owned member variables and checks for their corresponding names if @include_all_owned is True.
Args:
include_all_owned (bool): If True, will iterate through all owned members of this instance and remove their
names as well, if they are UniquelyNamed
skip_ids (None or set of int): If specified, will skip over any ids in the specified set that are matched
to any attributes found (this compares id(attr) to @skip_ids).
"""
# Check for this name, possibly remove it if it exists
if self.name in NAMES:
NAMES.remove(self.name)
@property
def name(self):
"""
Returns:
str: Name of this instance. Must be unique!
"""
raise NotImplementedError
class UniquelyNamedNonInstance:
"""
Identical to UniquelyNamed, but intended for non-instanceable classes
"""
def __init_subclass__(cls, **kwargs):
global CLASS_NAMES
# Register this object, making sure it's name is unique
assert cls.name not in CLASS_NAMES, \
f"UniquelyNamed class with name {cls.name} already exists!"
CLASS_NAMES.add(cls.name)
@classproperty
def name(cls):
"""
Returns:
str: Name of this instance. Must be unique!
"""
raise NotImplementedError
class Registerable:
"""
Simple class template that provides an abstract interface for registering classes.
"""
def __init_subclass__(cls, **kwargs):
"""
Registers all subclasses as part of this registry. This is useful to decouple internal codebase from external
user additions. This way, users can add their custom subclasses by simply extending this class,
and it will automatically be registered internally. This allows users to then specify their classes
directly in string-form in e.g., their config files, without having to manually set the str-to-class mapping
in our code.
"""
cls._register_cls()
@classmethod
def _register_cls(cls):
"""
Register this class. Can be extended by subclass.
"""
# print(f"registering: {cls.__name__}")
# print(f"registry: {cls._cls_registry}", cls.__name__ not in cls._cls_registry)
# print(f"do not register: {cls._do_not_register_classes}", cls.__name__ not in cls._do_not_register_classes)
# input()
if cls.__name__ not in cls._cls_registry and cls.__name__ not in cls._do_not_register_classes:
cls._cls_registry[cls.__name__] = cls
@classproperty
def _do_not_register_classes(cls):
"""
Returns:
set of str: Name(s) of classes that should not be registered. Default is empty set.
Subclasses that shouldn't be added should call super() and then add their own class name to the set
"""
return set()
@classproperty
def _cls_registry(cls):
"""
Returns:
dict: Mapping from all registered class names to their classes. This should be a REFERENCE
to some external, global dictionary that will be filled-in at runtime.
"""
raise NotImplementedError()
class Serializable:
"""
Simple class that provides an abstract interface to dump / load states, optionally with serialized functionality
as well.
"""
@property
def state_size(self):
"""
Returns:
int: Size of this object's serialized state
"""
raise NotImplementedError()
def _dump_state(self):
"""
Dumps the state of this object in dictionary form (can be empty). Should be implemented by subclass.
Returns:
dict: Keyword-mapped states of this object
"""
raise NotImplementedError()
def dump_state(self, serialized=False):
"""
Dumps the state of this object in either dictionary of flattened numerical form.
Args:
serialized (bool): If True, will return the state of this object as a 1D numpy array. Otherewise, will return
a (potentially nested) dictionary of states for this object
Returns:
dict or n-array: Either:
- Keyword-mapped states of this object, or
- encoded + serialized, 1D numerical np.array capturing this object's state, where n is @self.state_size
"""
state = self._dump_state()
return self.serialize(state=state) if serialized else state
def _load_state(self, state):
"""
Load the internal state to this object as specified by @state. Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to set
"""
raise NotImplementedError()
def load_state(self, state, serialized=False):
"""
Deserializes and loads this object's state based on @state
Args:
state (dict or n-array): Either:
- Keyword-mapped states of this object, or
- encoded + serialized, 1D numerical np.array capturing this object's state, where n is @self.state_size
serialized (bool): If True, will interpret @state as a 1D numpy array. Otherewise, will assume the input is
a (potentially nested) dictionary of states for this object
"""
state = self.deserialize(state=state) if serialized else state
self._load_state(state=state)
def _serialize(self, state):
"""
Serializes nested dictionary state @state into a flattened 1D numpy array for encoding efficiency.
Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to encode. Should match structure of output from
self._dump_state()
Returns:
n-array: encoded + serialized, 1D numerical np.array capturing this object's state
"""
raise NotImplementedError()
def serialize(self, state):
"""
Serializes nested dictionary state @state into a flattened 1D numpy array for encoding efficiency.
Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to encode. Should match structure of output from
self._dump_state()
Returns:
n-array: encoded + serialized, 1D numerical np.array capturing this object's state
"""
# Simply returns self._serialize() for now. this is for future proofing
return self._serialize(state=state)
def _deserialize(self, state):
"""
De-serializes flattened 1D numpy array @state into nested dictionary state.
Should be implemented by subclass.
Args:
state (n-array): encoded + serialized, 1D numerical np.array capturing this object's state
Returns:
2-tuple:
- dict: Keyword-mapped states of this object. Should match structure of output from
self._dump_state()
- int: current index of the flattened state vector that is left off. This is helpful for subclasses
that inherit partial deserializations from parent classes, and need to know where the
deserialization left off before continuing.
"""
raise NotImplementedError
def deserialize(self, state):
"""
De-serializes flattened 1D numpy array @state into nested dictionary state.
Should be implemented by subclass.
Args:
state (n-array): encoded + serialized, 1D numerical np.array capturing this object's state
Returns:
dict: Keyword-mapped states of this object. Should match structure of output from
self._dump_state()
"""
# Sanity check the idx with the expected state size
state_dict, idx = self._deserialize(state=state)
assert idx == self.state_size, f"Invalid state deserialization occurred! Expected {self.state_size} total " \
f"values to be deserialized, only {idx} were."
return state_dict
class SerializableNonInstance:
"""
Identical to Serializable, but intended for non-instanceable classes
"""
@classproperty
def state_size(cls):
"""
Returns:
int: Size of this object's serialized state
"""
raise NotImplementedError()
@classmethod
def _dump_state(cls):
"""
Dumps the state of this object in dictionary form (can be empty). Should be implemented by subclass.
Returns:
dict: Keyword-mapped states of this object
"""
raise NotImplementedError()
@classmethod
def dump_state(cls, serialized=False):
"""
Dumps the state of this object in either dictionary of flattened numerical form.
Args:
serialized (bool): If True, will return the state of this object as a 1D numpy array. Otherewise, will return
a (potentially nested) dictionary of states for this object
Returns:
dict or n-array: Either:
- Keyword-mapped states of this object, or
- encoded + serialized, 1D numerical np.array capturing this object's state, where n is @self.state_size
"""
state = cls._dump_state()
return cls.serialize(state=state) if serialized else state
@classmethod
def _load_state(cls, state):
"""
Load the internal state to this object as specified by @state. Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to set
"""
raise NotImplementedError()
@classmethod
def load_state(cls, state, serialized=False):
"""
Deserializes and loads this object's state based on @state
Args:
state (dict or n-array): Either:
- Keyword-mapped states of this object, or
- encoded + serialized, 1D numerical np.array capturing this object's state, where n is @self.state_size
serialized (bool): If True, will interpret @state as a 1D numpy array. Otherewise, will assume the input is
a (potentially nested) dictionary of states for this object
"""
state = cls.deserialize(state=state) if serialized else state
cls._load_state(state=state)
@classmethod
def _serialize(cls, state):
"""
Serializes nested dictionary state @state into a flattened 1D numpy array for encoding efficiency.
Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to encode. Should match structure of output from
self._dump_state()
Returns:
n-array: encoded + serialized, 1D numerical np.array capturing this object's state
"""
raise NotImplementedError()
@classmethod
def serialize(cls, state):
"""
Serializes nested dictionary state @state into a flattened 1D numpy array for encoding efficiency.
Should be implemented by subclass.
Args:
state (dict): Keyword-mapped states of this object to encode. Should match structure of output from
self._dump_state()
Returns:
n-array: encoded + serialized, 1D numerical np.array capturing this object's state
"""
# Simply returns self._serialize() for now. this is for future proofing
return cls._serialize(state=state)
@classmethod
def _deserialize(cls, state):
"""
De-serializes flattened 1D numpy array @state into nested dictionary state.
Should be implemented by subclass.
Args:
state (n-array): encoded + serialized, 1D numerical np.array capturing this object's state
Returns:
2-tuple:
- dict: Keyword-mapped states of this object. Should match structure of output from
self._dump_state()
- int: current index of the flattened state vector that is left off. This is helpful for subclasses
that inherit partial deserializations from parent classes, and need to know where the
deserialization left off before continuing.
"""
raise NotImplementedError
@classmethod
def deserialize(cls, state):
"""
De-serializes flattened 1D numpy array @state into nested dictionary state.
Should be implemented by subclass.
Args:
state (n-array): encoded + serialized, 1D numerical np.array capturing this object's state
Returns:
dict: Keyword-mapped states of this object. Should match structure of output from
self._dump_state()
"""
# Sanity check the idx with the expected state size
state_dict, idx = cls._deserialize(state=state)
assert idx == cls.state_size, f"Invalid state deserialization occurred! Expected {cls.state_size} total " \
f"values to be deserialized, only {idx} were."
return state_dict
class CachedFunctions:
"""
Thin object which owns a dictionary in which each entry should be a function -- when a key is queried via get()
and it exists, it will call the function exactly once, and cache the value so that subsequent calls will refer
to the cached value.
This allows the dictionary to be created with potentially expensive operations, but only queried up to exaclty once
as needed.
"""
def __init__(self, **kwargs):
# Create internal dict to store functions
self._fcns = dict()
for kwarg in kwargs:
self._fcns[kwarg] = kwargs[kwarg]
def __getitem__(self, item):
return self.get(name=item)
def __setitem__(self, key, value):
self.add_fcn(name=key, fcn=value)
@cache
def get(self, name, *args, **kwargs):
"""
Computes the function referenced by @name with the corresponding @args and @kwargs. Note that for a unique
set of arguments, this value will be internally cached
Args:
name (str): The name of the function to call
*args (tuple): Positional arguments to pass into the function call
**kwargs (tuple): Keyword arguments to pass into the function call
Returns:
any: Output of the function referenced by @name
"""
return self._fcns[name](*args, **kwargs)
def get_fcn(self, name):
"""
Gets the raw stored function referenced by @name
Args:
name (str): The name of the function to grab
Returns:
function: The stored function
"""
return self._fcns[name]
def get_fcn_names(self):
"""
Get all stored function names
Returns:
tuple of str: Names of stored functions
"""
return tuple(self._fcns.keys())
def add_fcn(self, name, fcn):
"""
Adds a function to the internal registry.
Args:
name (str): Name of the function. This is the name that should be queried with self.get()
fcn (function): Function to add. Can be an arbitrary signature
"""
assert callable(fcn), "Only functions can be added via add_fcn!"
self._fcns[name] = fcn
class Wrapper:
"""
Base class for all wrappers in OmniGibson
Args:
obj (any): Arbitrary python object instance to wrap
"""
def __init__(self, obj):
# Set the internal attributes -- store wrapped obj
self.wrapped_obj = obj
@classmethod
def class_name(cls):
return cls.__name__
def _warn_double_wrap(self):
"""
Utility function that checks if we're accidentally trying to double wrap an env
Raises:
Exception: [Double wrapping env]
"""
obj = self.wrapped_obj
while True:
if isinstance(obj, Wrapper):
if obj.class_name() == self.class_name():
raise Exception("Attempted to double wrap with Wrapper: {}".format(self.__class__.__name__))
obj = obj.wrapped_obj
else:
break
@property
def unwrapped(self):
"""
Grabs unwrapped object
Returns:
any: The unwrapped object instance
"""
return self.wrapped_obj.unwrapped if hasattr(self.wrapped_obj, "unwrapped") else self.wrapped_obj
# this method is a fallback option on any methods the original env might support
def __getattr__(self, attr):
# If we're querying wrapped_obj, raise an error
if attr == "wrapped_obj":
raise AttributeError("wrapped_obj attribute not initialized yet!")
# Sanity check to make sure wrapped obj is not None -- if so, raise error
assert self.wrapped_obj is not None, f"Cannot access attribute {attr} since wrapped_obj is None!"
# using getattr ensures that both __getattribute__ and __getattr__ (fallback) get called
# (see https://stackoverflow.com/questions/3278077/difference-between-getattr-vs-getattribute)
orig_attr = getattr(self.wrapped_obj, attr)
if callable(orig_attr):
def hooked(*args, **kwargs):
result = orig_attr(*args, **kwargs)
# prevent wrapped_class from becoming unwrapped
if id(result) == id(self.wrapped_obj):
return self
return result
return hooked
else:
return orig_attr
def __setattr__(self, key, value):
# Call setattr on wrapped obj if it has the attribute, otherwise, operate on this object
if hasattr(self, "wrapped_obj") and self.wrapped_obj is not None and hasattr(self.wrapped_obj, key):
setattr(self.wrapped_obj, key, value)
else:
super().__setattr__(key, value)
def nums2array(nums, dim, dtype=float):
"""
Converts input @nums into numpy array of length @dim. If @nums is a single number, broadcasts input to
corresponding dimension size @dim before converting into numpy array
Args:
nums (float or array): Numbers to map to numpy array
dim (int): Size of array to broadcast input to
Returns:
torch.Tensor: Mapped input numbers
"""
# Make sure the inputted nums isn't a string
assert not isinstance(nums, str), "Only numeric types are supported for this operation!"
out = np.array(nums, dtype=dtype) if isinstance(nums, Iterable) else np.ones(dim, dtype=dtype) * nums
return out
def clear():
"""
Clear state tied to singleton classes
"""
NAMES.clear()
CLASS_NAMES.clear()
| 32,190 | Python | 35.580682 | 121 | 0.629605 |
StanfordVL/OmniGibson/omnigibson/utils/object_state_utils.py | import cv2
import numpy as np
from IPython import embed
from scipy.spatial.transform import Rotation as R
from scipy.spatial import ConvexHull, distance_matrix
import omnigibson as og
from omnigibson.macros import create_module_macros, Dict, macros
from omnigibson.object_states.aabb import AABB
from omnigibson.object_states.contact_bodies import ContactBodies
from omnigibson.utils import sampling_utils
from omnigibson.utils.constants import PrimType
from omnigibson.utils.ui_utils import debug_breakpoint
import omnigibson.utils.transform_utils as T
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.DEFAULT_HIGH_LEVEL_SAMPLING_ATTEMPTS = 10
m.DEFAULT_LOW_LEVEL_SAMPLING_ATTEMPTS = 10
m.ON_TOP_RAY_CASTING_SAMPLING_PARAMS = Dict({
"bimodal_stdev_fraction": 1e-6,
"bimodal_mean_fraction": 1.0,
"aabb_offset_fraction": 0.02,
"max_sampling_attempts": 50,
})
m.INSIDE_RAY_CASTING_SAMPLING_PARAMS = Dict({
"bimodal_stdev_fraction": 0.4,
"bimodal_mean_fraction": 0.5,
"aabb_offset_fraction": -0.02,
"max_sampling_attempts": 100,
})
m.UNDER_RAY_CASTING_SAMPLING_PARAMS = Dict({
"bimodal_stdev_fraction": 1e-6,
"bimodal_mean_fraction": 0.5,
"aabb_offset_fraction": 0.02,
"max_sampling_attempts": 50,
})
def sample_cuboid_for_predicate(predicate, on_obj, bbox_extent):
if predicate == "onTop":
params = m.ON_TOP_RAY_CASTING_SAMPLING_PARAMS
elif predicate == "inside":
params = m.INSIDE_RAY_CASTING_SAMPLING_PARAMS
elif predicate == "under":
params = m.UNDER_RAY_CASTING_SAMPLING_PARAMS
else:
raise ValueError(f"predicate must be onTop, under or inside in order to use ray casting-based "
f"kinematic sampling, but instead got: {predicate}")
if predicate == "under":
start_points, end_points = sampling_utils.sample_raytest_start_end_symmetric_bimodal_distribution(
obj=on_obj,
num_samples=1,
axis_probabilities=[0, 0, 1],
**params,
)
return sampling_utils.sample_cuboid_on_object(
obj=None,
start_points=start_points,
end_points=end_points,
ignore_objs=[on_obj],
cuboid_dimensions=bbox_extent,
refuse_downwards=True,
undo_cuboid_bottom_padding=True,
max_angle_with_z_axis=0.17,
hit_proportion=0.0, # rays will NOT hit the object itself, but the surface below it.
)
else:
return sampling_utils.sample_cuboid_on_object_symmetric_bimodal_distribution(
on_obj,
num_samples=1,
axis_probabilities=[0, 0, 1],
cuboid_dimensions=bbox_extent,
refuse_downwards=True,
undo_cuboid_bottom_padding=True,
max_angle_with_z_axis=0.17,
**params,
)
def sample_kinematics(
predicate,
objA,
objB,
max_trials=m.DEFAULT_LOW_LEVEL_SAMPLING_ATTEMPTS,
z_offset=0.05,
skip_falling=False,
):
"""
Samples the given @predicate kinematic state for @objA with respect to @objB
Args:
predicate (str): Name of the predicate to sample, e.g.: "onTop"
objA (StatefulObject): Object whose state should be sampled. e.g.: for sampling a microwave
on a cabinet, @objA is the microwave
objB (StatefulObject): Object who is the reference point for @objA's state. e.g.: for sampling
a microwave on a cabinet, @objB is the cabinet
max_trials (int): Number of attempts for sampling
z_offset (float): Z-offset to apply to the sampled pose
skip_falling (bool): Whether to let @objA fall after its position is sampled or not
Returns:
bool: True if successfully sampled, else False
"""
assert z_offset > 0.5 * 9.81 * (og.sim.get_physics_dt() ** 2) + 0.02,\
f"z_offset {z_offset} is too small for the current physics_dt {og.sim.get_physics_dt()}"
# Wake objects accordingly and make sure both are kept still
objA.wake()
objB.wake()
objA.keep_still()
objB.keep_still()
# Save the state of the simulator
state = og.sim.dump_state()
# Attempt sampling
for i in range(max_trials):
pos = None
if hasattr(objA, "orientations") and objA.orientations is not None:
orientation = objA.sample_orientation()
else:
orientation = np.array([0, 0, 0, 1.0])
# Orientation needs to be set for stable_z_on_aabb to work correctly
# Position needs to be set to be very far away because the object's
# original position might be blocking rays (use_ray_casting_method=True)
old_pos = np.array([100, 100, 10])
objA.set_position_orientation(old_pos, orientation)
objA.keep_still()
# We also need to step physics to make sure the pose propagates downstream (e.g.: to Bounding Box computations)
og.sim.step_physics()
# This would slightly change because of the step_physics call.
old_pos, orientation = objA.get_position_orientation()
# Run import here to avoid circular imports
from omnigibson.objects.dataset_object import DatasetObject
if isinstance(objA, DatasetObject) and objA.prim_type == PrimType.RIGID:
# Retrieve base CoM frame-aligned bounding box parallel to the XY plane
parallel_bbox_center, parallel_bbox_orn, parallel_bbox_extents, _ = objA.get_base_aligned_bbox(
xy_aligned=True
)
else:
aabb_lower, aabb_upper = objA.states[AABB].get_value()
parallel_bbox_center = (aabb_lower + aabb_upper) / 2.0
parallel_bbox_orn = np.array([0.0, 0.0, 0.0, 1.0])
parallel_bbox_extents = aabb_upper - aabb_lower
sampling_results = sample_cuboid_for_predicate(predicate, objB, parallel_bbox_extents)
sampled_vector = sampling_results[0][0]
sampled_quaternion = sampling_results[0][2]
sampling_success = sampled_vector is not None
if sampling_success:
# Move the object from the original parallel bbox to the sampled bbox
parallel_bbox_rotation = R.from_quat(parallel_bbox_orn)
sample_rotation = R.from_quat(sampled_quaternion)
original_rotation = R.from_quat(orientation)
# The additional orientation to be applied should be the delta orientation
# between the parallel bbox orientation and the sample orientation
additional_rotation = sample_rotation * parallel_bbox_rotation.inv()
combined_rotation = additional_rotation * original_rotation
orientation = combined_rotation.as_quat()
# The delta vector between the base CoM frame and the parallel bbox center needs to be rotated
# by the same additional orientation
diff = old_pos - parallel_bbox_center
rotated_diff = additional_rotation.apply(diff)
pos = sampled_vector + rotated_diff
if pos is None:
success = False
else:
pos[2] += z_offset
objA.set_position_orientation(pos, orientation)
objA.keep_still()
og.sim.step_physics()
objA.keep_still()
success = len(objA.states[ContactBodies].get_value()) == 0
if macros.utils.sampling_utils.DEBUG_SAMPLING:
debug_breakpoint(f"sample_kinematics: {success}")
if success:
break
else:
og.sim.load_state(state)
# If we didn't succeed, try last-ditch effort
if not success and predicate in {"onTop", "inside"}:
og.sim.step_physics()
# Place objA at center of objB's AABB, offset in z direction such that their AABBs are "stacked", and let fall
# until it settles
aabb_lower_a, aabb_upper_a = objA.states[AABB].get_value()
aabb_lower_b, aabb_upper_b = objB.states[AABB].get_value()
bbox_to_obj = objA.get_position() - (aabb_lower_a + aabb_upper_a) / 2.0
desired_bbox_pos = (aabb_lower_b + aabb_upper_b) / 2.0
desired_bbox_pos[2] = aabb_upper_b[2] + (aabb_upper_a[2] - aabb_lower_a[2]) / 2.0
pos = desired_bbox_pos + bbox_to_obj
success = True
if success and not skip_falling:
objA.set_position_orientation(pos, orientation)
objA.keep_still()
# Step until either (a) max steps is reached (total of 0.5 second in sim time) or (b) contact is made, then
# step until (a) max steps is reached (restarted from 0) or (b) velocity is below some threshold
n_steps_max = int(0.5 / og.sim.get_physics_dt())
i = 0
while len(objA.states[ContactBodies].get_value()) == 0 and i < n_steps_max:
og.sim.step_physics()
i += 1
objA.keep_still()
objB.keep_still()
# Step a few times so velocity can become non-zero if the objects are moving
for i in range(5):
og.sim.step_physics()
i = 0
while np.linalg.norm(objA.get_linear_velocity()) > 1e-3 and i < n_steps_max:
og.sim.step_physics()
i += 1
# Render at the end
og.sim.render()
return success
def sample_cloth_on_rigid(obj, other, max_trials=40, z_offset=0.05, randomize_xy=True):
"""
Samples the cloth object @obj on the rigid object @other
Args:
obj (StatefulObject): Object whose state should be sampled. e.g.: for sampling a bed sheet on a rack,
@obj is the bed sheet
other (StatefulObject): Object who is the reference point for @obj's state. e.g.: for sampling a bed sheet
on a rack, @other is the rack
max_trials (int): Number of attempts for sampling
z_offset (float): Z-offset to apply to the sampled pose
randomize_xy (bool): Whether to randomize the XY position of the sampled pose. If False, the center of @other
will always be used.
Returns:
bool: True if successfully sampled, else False
"""
assert z_offset > 0.5 * 9.81 * (og.sim.get_physics_dt() ** 2) + 0.02,\
f"z_offset {z_offset} is too small for the current physics_dt {og.sim.get_physics_dt()}"
if not (obj.prim_type == PrimType.CLOTH and other.prim_type == PrimType.RIGID):
raise ValueError("sample_cloth_on_rigid requires obj1 is cloth and obj2 is rigid.")
state = og.sim.dump_state(serialized=False)
# Reset the cloth
obj.root_link.reset()
obj_aabb_low, obj_aabb_high = obj.states[AABB].get_value()
other_aabb_low, other_aabb_high = other.states[AABB].get_value()
# z value is always the same: the top-z of the other object + half the height of the object to be placed + offset
z_value = other_aabb_high[2] + (obj_aabb_high[2] - obj_aabb_low[2]) / 2.0 + z_offset
if randomize_xy:
# Sample a random position in the x-y plane within the other object's AABB
low = np.array([other_aabb_low[0], other_aabb_low[1], z_value])
high = np.array([other_aabb_high[0], other_aabb_high[1], z_value])
else:
# Always sample the center of the other object's AABB
low = np.array([(other_aabb_low[0] + other_aabb_high[0]) / 2.0,
(other_aabb_low[1] + other_aabb_high[1]) / 2.0,
z_value])
high = low
for _ in range(max_trials):
# Sample a random position
pos = np.random.uniform(low, high)
# Sample a random orientation in the z-axis
orn = T.euler2quat(np.array([0., 0., np.random.uniform(0, np.pi * 2)]))
obj.set_position_orientation(pos, orn)
obj.root_link.reset()
obj.keep_still()
og.sim.step_physics()
success = len(obj.states[ContactBodies].get_value()) == 0
if success:
break
else:
og.sim.load_state(state)
if success:
# Let it fall for 0.2 second always to let the cloth settle
for _ in range(int(0.2 / og.sim.get_physics_dt())):
og.sim.step_physics()
obj.keep_still()
# Render at the end
og.sim.render()
return success
| 12,251 | Python | 38.019108 | 119 | 0.625173 |
StanfordVL/OmniGibson/omnigibson/utils/physx_utils.py | import numpy as np
from omnigibson.macros import gm, create_module_macros
from omnigibson.utils.ui_utils import suppress_omni_log
import omnigibson as og
import omnigibson.lazy as lazy
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.PROTOTYPE_GRAVEYARD_POS = (100.0, 100.0, 100.0)
def create_physx_particle_system(
prim_path,
physics_scene_path,
particle_contact_offset,
visual_only=False,
smoothing=True,
anisotropy=True,
isosurface=True,
):
"""
Creates an Omniverse physx particle system at @prim_path. For post-processing visualization effects (anisotropy,
smoothing, isosurface), see the Omniverse documentation
(https://docs.omniverse.nvidia.com/app_create/prod_extensions/ext_physics.html?highlight=isosurface#post-processing-for-fluid-rendering)
for more info
Args:
prim_path (str): Stage path to where particle system should be created
physics_scene_path (str): Stage path to where active physicsScene prim is defined
particle_contact_offset (float): Distance between particles which triggers a collision (m)
visual_only (bool): If True, will disable collisions between particles and non-particles,
as well as self-collisions
smoothing (bool): Whether to smooth particle positions or not
anisotropy (bool): Whether to apply anisotropy post-processing when visualizing particles. Stretches generated
particles in order to make the particle cluster surface appear smoother. Useful for fluids
isosurface (bool): Whether to apply isosurface mesh to visualize particles. Uses a monolithic surface that
can have materials attached to it, useful for visualizing fluids
Returns:
UsdGeom.PhysxParticleSystem: Generated particle system prim
"""
# TODO: Add sanity check to make sure GPU dynamics are enabled
# Create particle system
stage = lazy.omni.isaac.core.utils.stage.get_current_stage()
particle_system = lazy.pxr.PhysxSchema.PhysxParticleSystem.Define(stage, prim_path)
particle_system.CreateSimulationOwnerRel().SetTargets([physics_scene_path])
# Use a smaller particle size for nicer fluid, and let the sim figure out the other offsets
particle_system.CreateParticleContactOffsetAttr().Set(particle_contact_offset)
# Possibly disable collisions if we're only visual
if visual_only:
particle_system.GetGlobalSelfCollisionEnabledAttr().Set(False)
particle_system.GetNonParticleCollisionEnabledAttr().Set(False)
if anisotropy:
# apply api and use all defaults
lazy.pxr.PhysxSchema.PhysxParticleAnisotropyAPI.Apply(particle_system.GetPrim())
if smoothing:
# apply api and use all defaults
lazy.pxr.PhysxSchema.PhysxParticleSmoothingAPI.Apply(particle_system.GetPrim())
if isosurface:
# apply api and use all defaults
lazy.pxr.PhysxSchema.PhysxParticleIsosurfaceAPI.Apply(particle_system.GetPrim())
# Make sure we're not casting shadows
primVarsApi = lazy.pxr.UsdGeom.PrimvarsAPI(particle_system.GetPrim())
primVarsApi.CreatePrimvar("doNotCastShadows", lazy.pxr.Sdf.ValueTypeNames.Bool).Set(True)
# tweak anisotropy min, max, and scale to work better with isosurface:
if anisotropy:
ani_api = lazy.pxr.PhysxSchema.PhysxParticleAnisotropyAPI.Apply(particle_system.GetPrim())
ani_api.CreateScaleAttr().Set(5.0)
ani_api.CreateMinAttr().Set(1.0) # avoids gaps in surface
ani_api.CreateMaxAttr().Set(2.0)
return particle_system
def bind_material(prim_path, material_path):
"""
Binds material located at @material_path to the prim located at @prim_path.
Args:
prim_path (str): Stage path to prim to bind material to
material_path (str): Stage path to material to be bound
"""
lazy.omni.kit.commands.execute(
"BindMaterialCommand",
prim_path=prim_path,
material_path=material_path,
strength=None,
)
def create_physx_particleset_pointinstancer(
name,
particle_system_path,
physx_particle_system_path,
prototype_prim_paths,
particle_group,
positions,
self_collision=True,
fluid=False,
particle_mass=None,
particle_density=None,
orientations=None,
velocities=None,
angular_velocities=None,
scales=None,
prototype_indices=None,
enabled=True,
):
"""
Creates a particle set instancer based on a UsdGeom.PointInstancer at @prim_path on the current stage, with
the specified parameters.
Args:
name (str): Name for this point instancer
particle_system_path (str): Stage path to particle system (Scope)
physx_particle_system_path (str): Stage path to physx particle system (PhysxParticleSystem)
prototype_prim_paths (list of str): Stage path(s) to the prototypes to reference for this particle set.
particle_group (int): ID for this particle set. Particles from different groups will automatically collide
with each other. Particles in the same group will have collision behavior dictated by @self_collision
positions (list of 3-tuple or np.array): Particle (x,y,z) positions either as a list or a (N, 3) numpy array
self_collision (bool): Whether to enable particle-particle collision within the set
(as defined by @particle_group) or not
fluid (bool): Whether to simulated the particle set as fluid or not
particle_mass (None or float): If specified, should be per-particle mass. Otherwise, will be
inferred from @density. Note: Either @particle_mass or @particle_density must be specified!
particle_density (None or float): If specified, should be per-particle density and is used to compute total
point set mass. Otherwise, will be inferred from @density. Note: Either @particle_mass or
@particle_density must be specified!
orientations (None or list of 4-array or np.array): Particle (x,y,z,w) quaternion orientations, either as a
list or a (N, 4) numpy array. If not specified, all will be set to canonical orientation (0, 0, 0, 1)
velocities (None or list of 3-array or np.array): Particle (x,y,z) velocities either as a list or a (N, 3)
numpy array. If not specified, all will be set to 0
angular_velocities (None or list of 3-array or np.array): Particle (x,y,z) angular velocities either as a
list or a (N, 3) numpy array. If not specified, all will be set to 0
scales (None or list of 3-array or np.array): Particle (x,y,z) scales either as a list or a (N, 3)
numpy array. If not specified, all will be set to 1.0
prototype_indices (None or list of int): If specified, should specify which prototype should be used for
each particle. If None, will use all 0s (i.e.: the first prototype created)
enabled (bool): Whether to enable this particle instancer. If not enabled, then no physics will be used
Returns:
UsdGeom.PointInstancer: Created point instancer prim
"""
stage = og.sim.stage
n_particles = len(positions)
particle_system = lazy.omni.isaac.core.utils.prims.get_prim_at_path(physx_particle_system_path)
# Create point instancer scope
prim_path = f"{particle_system_path}/{name}"
assert not stage.GetPrimAtPath(prim_path), f"Cannot create an instancer scope, scope already exists at {prim_path}!"
stage.DefinePrim(prim_path, "Scope")
# Create point instancer
instancer_prim_path = f"{prim_path}/instancer"
assert not stage.GetPrimAtPath(instancer_prim_path), f"Cannot create a PointInstancer prim, prim already exists at {instancer_prim_path}!"
instancer = lazy.pxr.UsdGeom.PointInstancer.Define(stage, instancer_prim_path)
is_isosurface = particle_system.HasAPI(lazy.pxr.PhysxSchema.PhysxParticleIsosurfaceAPI) and \
particle_system.GetAttribute("physxParticleIsosurface:isosurfaceEnabled").Get()
# Add prototype mesh prim paths to the prototypes relationship attribute for this point set
# We need to make copies of prototypes for each instancer currently because particles won't render properly
# if multiple instancers share the same prototypes for some reason
mesh_list = instancer.GetPrototypesRel()
prototype_prims = []
for i, original_path in enumerate(prototype_prim_paths):
prototype_prim_path = f"{prim_path}/prototype{i}"
lazy.omni.kit.commands.execute("CopyPrim", path_from=original_path, path_to=prototype_prim_path)
prototype_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prototype_prim_path)
# Make sure this prim is invisible if we're using isosurface, and vice versa.
imageable = lazy.pxr.UsdGeom.Imageable(prototype_prim)
if is_isosurface:
imageable.MakeInvisible()
else:
imageable.MakeVisible()
# Move the prototype to the graveyard position so that it won't be visible to the agent
# We can't directly hide the prototype because it will also hide all the generated particles (if not isosurface)
prototype_prim.GetAttribute("xformOp:translate").Set(m.PROTOTYPE_GRAVEYARD_POS)
mesh_list.AddTarget(lazy.pxr.Sdf.Path(prototype_prim_path))
prototype_prims.append(prototype_prim)
# Set particle instance default data
prototype_indices = [0] * n_particles if prototype_indices is None else prototype_indices
if orientations is None:
orientations = np.zeros((n_particles, 4))
orientations[:, -1] = 1.0
orientations = np.array(orientations)[:, [3, 0, 1, 2]] # x,y,z,w --> w,x,y,z
velocities = np.zeros((n_particles, 3)) if velocities is None else velocities
angular_velocities = np.zeros((n_particles, 3)) if angular_velocities is None else angular_velocities
scales = np.ones((n_particles, 3)) if scales is None else scales
assert particle_mass is not None or particle_density is not None, \
"Either particle mass or particle density must be specified when creating particle instancer!"
particle_mass = 0.0 if particle_mass is None else particle_mass
particle_density = 0.0 if particle_density is None else particle_density
# Set particle states
instancer.GetProtoIndicesAttr().Set(prototype_indices)
instancer.GetPositionsAttr().Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(positions))
instancer.GetOrientationsAttr().Set(lazy.pxr.Vt.QuathArray.FromNumpy(orientations))
instancer.GetVelocitiesAttr().Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(velocities))
instancer.GetAngularVelocitiesAttr().Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(angular_velocities))
instancer.GetScalesAttr().Set(lazy.pxr.Vt.Vec3fArray.FromNumpy(scales))
# Take a render step to "lock" the visuals of the prototypes at the graveyard position
# This needs to happen AFTER setting particle states
# We suppress a known warning that we have no control over where omni complains about a prototype
# not being populated yet
with suppress_omni_log(channels=["omni.hydra.scene_delegate.plugin"]):
og.sim.render()
# Then we move the prototypes back to zero offset because otherwise all the generated particles will be offset by
# the graveyard position. At this point, the prototypes themselves no longer appear at the zero offset (locked at
# the graveyard position), which is desirable because we don't want the agent to see the prototypes themselves.
for prototype_prim in prototype_prims:
prototype_prim.GetAttribute("xformOp:translate").Set((0.0, 0.0, 0.0))
instancer_prim = instancer.GetPrim()
lazy.omni.physx.scripts.particleUtils.configure_particle_set(
instancer_prim,
physx_particle_system_path,
self_collision,
fluid,
particle_group,
particle_mass * n_particles,
particle_density,
)
# Set whether the instancer is enabled or not
instancer_prim.GetAttribute("physxParticle:particleEnabled").Set(enabled)
# Render three more times to fully propagate changes
# Omni always complains about a low-level USD thing we have no control over
# so we suppress the warnings
with suppress_omni_log(channels=["omni.usd"]):
for i in range(3):
og.sim.render()
# Isosurfaces require an additional physics timestep before they're actually rendered
if is_isosurface:
og.log.warning(f"Creating an instancer that uses isosurface {instancer_prim_path}. "
f"The rendering of these particles will have a delay of one timestep.")
return instancer_prim
def apply_force_at_pos(prim, force, pos):
prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(prim.prim_path)
og.sim.psi.apply_force_at_pos(og.sim.stage_id, prim_id, force, pos)
def apply_torque(prim, foward_vect, roll_torque_scalar):
prim_id = lazy.pxr.PhysicsSchemaTools.sdfPathToInt(prim.prim_path)
og.sim.psi.apply_torque(og.sim.stage_id, prim_id, foward_vect * roll_torque_scalar) | 13,178 | Python | 49.688461 | 142 | 0.711716 |
StanfordVL/OmniGibson/omnigibson/utils/sampling_utils.py | import itertools
from collections import Counter, defaultdict
import numpy as np
import time
import trimesh
from scipy.spatial.transform import Rotation as R
from scipy.stats import truncnorm
import omnigibson as og
from omnigibson.macros import create_module_macros, gm
import omnigibson.utils.transform_utils as T
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.DEBUG_SAMPLING = False
m.DEFAULT_AABB_OFFSET_FRACTION = 0.02
m.DEFAULT_PARALLEL_RAY_NORMAL_ANGLE_TOLERANCE = 1.0 # Around 60 degrees
m.DEFAULT_HIT_TO_PLANE_THRESHOLD = 0.05
m.DEFAULT_MAX_ANGLE_WITH_Z_AXIS = 3 * np.pi / 4
m.DEFAULT_MAX_SAMPLING_ATTEMPTS = 10
m.DEFAULT_CUBOID_BOTTOM_PADDING = 0.005
# We will cast an additional parallel ray for each additional this much distance.
m.DEFAULT_NEW_RAY_PER_HORIZONTAL_DISTANCE = 0.1
m.DEFAULT_HIT_PROPORTION = 0.8
def fit_plane(points, refusal_log):
"""
Fits a plane to the given 3D points.
Copied from https://stackoverflow.com/a/18968498
Args:
points ((k, 3)-array): np.array of shape (k, 3)
refusal_log (dict): Debugging dictionary to add error messages to
Returns:
2-tuple:
- 3-array: (x,y,z) points' centroid
- 3-array: (x,y,z) normal of the fitted plane
"""
if points.shape[0] < points.shape[1]:
if m.DEBUG_SAMPLING:
refusal_log.append(f"insufficient points to fit a 3D plane: needs 3, has {points.shape[0]}.")
return None, None
ctr = points.mean(axis=0)
x = points - ctr
normal = np.linalg.svd(np.dot(x.T, x))[0][:, -1]
normal /= np.linalg.norm(normal)
return ctr, normal
def check_distance_to_plane(points, plane_centroid, plane_normal, hit_to_plane_threshold, refusal_log):
"""
Calculates whether points are within @hit_to_plane_threshold distance to plane defined by @plane_centroid
and @plane_normal
Args:
points ((k, 3)-array): np.array of shape (k, 3)
plane_centroid (3-array): (x,y,z) points' centroid
plane_normal (3-array): (x,y,z) normal of the fitted plane
hit_to_plane_threshold (float): Threshold distance to check between @points and plane
refusal_log (dict): Debugging dictionary to add error messages to
Returns:
bool: True if all points are within @hit_to_plane_threshold distance to plane, otherwise False
"""
distances = get_distance_to_plane(points, plane_centroid, plane_normal)
if np.any(distances > hit_to_plane_threshold):
if m.DEBUG_SAMPLING:
refusal_log.append("distances to plane: %r" % distances)
return False
return True
def get_distance_to_plane(points, plane_centroid, plane_normal):
"""
Computes distance from @points to plane defined by @plane_centroid and @plane_normal
Args:
points ((k, 3)-array): np.array of shape (k, 3)
plane_centroid (3-array): (x,y,z) points' centroid
plane_normal (3-array): (x,y,z) normal of the fitted plane
Returns:
k-array: Absolute distances from each point to the plane
"""
return np.abs(np.dot(points - plane_centroid, plane_normal))
def get_projection_onto_plane(points, plane_centroid, plane_normal):
"""
Computes @points' projection onto the plane defined by @plane_centroid and @plane_normal
Args:
points ((k, 3)-array): np.array of shape (k, 3)
plane_centroid (3-array): (x,y,z) points' centroid
plane_normal (3-array): (x,y,z) normal of the fitted plane
Returns:
(k,3)-array: Points' positions projected onto the plane
"""
distances_to_plane = get_distance_to_plane(points, plane_centroid, plane_normal)
return points - np.outer(distances_to_plane, plane_normal)
def draw_debug_markers(hit_positions, radius=0.01):
"""
Helper method to generate and place debug markers at @hit_positions
Args:
hit_positions ((n, 3)-array): Desired positions to place markers at
radius (float): Radius of the generated virtual marker
"""
# Import here to avoid circular imports
from omnigibson.objects.primitive_object import PrimitiveObject
color = np.concatenate([np.random.rand(3), [1]])
for vec in hit_positions:
time_str = str(time.time())
cur_time = time_str[(time_str.index(".") + 1):]
obj = PrimitiveObject(
prim_path=f"/World/debug_marker_{cur_time}",
name=f"debug_marker_{cur_time}",
primitive_type="Sphere",
visual_only=True,
rgba=color,
radius=radius,
)
og.sim.import_object(obj)
obj.set_position(vec)
def get_parallel_rays(
source, destination, offset, new_ray_per_horizontal_distance
):
"""
Given an input ray described by a source and a destination, sample parallel rays around it as the center.
The parallel rays start at the corners of a square of edge length `offset` centered on `source`, with the square
orthogonal to the ray direction. That is, the cast rays are the height edges of a square-base cuboid with bases
centered on `source` and `destination`.
Args:
source (3-array): (x,y,z) source of the ray to sample parallel rays of.
destination (3-array): Source of the ray to sample parallel rays of.
offset (float): Orthogonal distance of parallel rays from input ray.
new_ray_per_horizontal_distance (float): Step in offset beyond which an additional split will be applied in the
parallel ray grid (which at minimum is 3x3 at the AABB corners & center).
Returns:
3-tuple:
- list: generated sources from the original ray
- list: generated destinations from the original ray
- (W, H, 3)-array: unflattened, untransformed grid of parallel rays in object coordinates
"""
ray_direction = destination - source
# Get an orthogonal vector using a random vector.
random_vector = np.random.rand(3)
orthogonal_vector_1 = np.cross(ray_direction, random_vector)
orthogonal_vector_1 /= np.linalg.norm(orthogonal_vector_1)
# Get a second vector orthogonal to both the ray and the first vector.
orthogonal_vector_2 = -np.cross(ray_direction, orthogonal_vector_1)
orthogonal_vector_2 /= np.linalg.norm(orthogonal_vector_2)
orthogonal_vectors = np.array([orthogonal_vector_1, orthogonal_vector_2])
assert np.all(np.isfinite(orthogonal_vectors))
# Convert the offset into a 2-vector if it already isn't one.
offset = np.array([1, 1]) * offset
# Compute the grid of rays
steps = (offset / new_ray_per_horizontal_distance).astype(int) * 2 + 1
steps = np.maximum(steps, 3)
x_range = np.linspace(-offset[0], offset[0], steps[0])
y_range = np.linspace(-offset[1], offset[1], steps[1])
ray_grid = np.dstack(np.meshgrid(x_range, y_range, indexing="ij"))
ray_grid_flattened = ray_grid.reshape(-1, 2)
# Apply the grid onto the orthogonal vectors to obtain the rays in the world frame.
sources = [source + np.dot(offsets, orthogonal_vectors) for offsets in ray_grid_flattened]
destinations = [destination + np.dot(offsets, orthogonal_vectors) for offsets in ray_grid_flattened]
return sources, destinations, ray_grid
def sample_origin_positions(mins, maxes, count, bimodal_mean_fraction, bimodal_stdev_fraction, axis_probabilities):
"""
Sample ray casting origin positions with a given distribution.
The way the sampling works is that for each particle, it will sample two coordinates uniformly and one
using a symmetric, bimodal truncated normal distribution. This way, the particles will mostly be close to the faces
of the AABB (given a correctly parameterized bimodal truncated normal) and will be spread across each face,
but there will still be a small number of particles spawned inside the object if it has an interior.
Args:
mins (3-array): the minimum coordinate along each axis.
maxes (3-array): the maximum coordinate along each axis.
count (int): Number of origins to sample.
bimodal_mean_fraction (float): the mean of one side of the symmetric bimodal distribution as a fraction of the
min-max range.
bimodal_stdev_fraction (float): the standard deviation of one side of the symmetric bimodal distribution as a
fraction of the min-max range.
axis_probabilities (3-array): the probability of ray casting along each axis.
Returns:
list: List where each element is (ray cast axis index, bool whether the axis was sampled from the top side,
[x, y, z]) tuples.
"""
assert len(mins.shape) == 1
assert mins.shape == maxes.shape
results = []
for i in range(count):
# Get the uniform sample first.
position = np.random.rand(3)
# Sample the bimodal normal.
bottom = (0 - bimodal_mean_fraction) / bimodal_stdev_fraction
top = (1 - bimodal_mean_fraction) / bimodal_stdev_fraction
bimodal_sample = truncnorm.rvs(bottom, top, loc=bimodal_mean_fraction, scale=bimodal_stdev_fraction)
# Pick which axis the bimodal normal sample should go to.
bimodal_axis = np.random.choice([0, 1, 2], p=axis_probabilities)
# Choose which side of the axis to sample from. We only sample from the top for the Z axis.
if bimodal_axis == 2:
bimodal_axis_top_side = True
else:
bimodal_axis_top_side = np.random.choice([True, False])
# Move sample based on chosen side.
position[bimodal_axis] = bimodal_sample if bimodal_axis_top_side else 1 - bimodal_sample
# Scale the position from the standard normal range to the min-max range.
scaled_position = mins + (maxes - mins) * position
# Save the result.
results.append((bimodal_axis, bimodal_axis_top_side, scaled_position))
return results
def raytest_batch(start_points, end_points, only_closest=True, ignore_bodies=None, ignore_collisions=None, callback=None):
"""
Computes raytest collisions for a set of rays cast from @start_points to @end_points.
Args:
start_points (list of 3-array): Array of start locations to cast rays, where each is (x,y,z) global
start location of the ray
end_points (list of 3-array): Array of end locations to cast rays, where each is (x,y,z) global
end location of the ray
only_closest (bool): Whether we report the first (closest) hit from the ray or grab all hits
ignore_bodies (None or list of str): If specified, specifies absolute USD paths to rigid bodies
whose collisions should be ignored
ignore_collisions (None or list of str): If specified, specifies absolute USD paths to collision geoms
whose collisions should be ignored
callback (None or function): If specified and @only_closest is False, the custom callback to use per-hit.
This can be efficient if raytests are meant to terminate early. If None, no custom callback will be used.
Expected signature is callback(hit) -> bool, which returns True if the raycast should continue or not
Returns:
list of dict or list of list of dict: Results for all rays, where each entry corresponds to the result for the
ith ray cast. If @only_closest=True, each entry in the list is the closest hit. Otherwise, each entry is
its own (unordered) list of hits for that ray. Each dict is composed of:
"hit" (bool): Whether an object was hit or not
"position" (3-array): Location of the hit position
"normal" (3-array): normal vector of the face hit
"distance" (float): distance from @start_point the hit occurred
"collision" (str): absolute USD path to the collision body hit
"rigidBody" (str): absolute USD path to the associated rigid body hit
Note that only "hit" = False exists in the dict if no hit was found
"""
# For now, we do a naive for loop over individual raytests until a better API comes out
results = []
for start_point, end_point in zip(start_points, end_points):
results.append(raytest(
start_point=start_point,
end_point=end_point,
only_closest=only_closest,
ignore_bodies=ignore_bodies,
ignore_collisions=ignore_collisions,
callback=callback,
))
return results
def raytest(
start_point,
end_point,
only_closest=True,
ignore_bodies=None,
ignore_collisions=None,
callback=None,
):
"""
Computes raytest collision for ray cast from @start_point to @end_point
Args:
start_point (3-array): (x,y,z) global start location of the ray
end_point (3-array): (x,y,z) global end location of the ray
only_closest (bool): Whether we report the first (closest) hit from the ray or grab all hits
ignore_bodies (None or list of str): If specified, specifies absolute USD paths to rigid bodies
whose collisions should be ignored
ignore_collisions (None or list of str): If specified, specifies absolute USD paths to collision geoms
whose collisions should be ignored
callback (None or function): If specified and @only_closest is False, the custom callback to use per-hit.
This can be efficient if raytests are meant to terminate early. If None, no custom callback will be used.
Expected signature is callback(hit) -> bool, which returns True if the raycast should continue or not
Returns:
dict or list of dict: Results for this raytest. If @only_closest=True, then we only return the information from
the closest hit. Otherwise, we return an (unordered) list of information for all hits encountered.
Each dict is composed of:
"hit" (bool): Whether an object was hit or not
"position" (3-array): Location of the hit position
"normal" (3-array): normal vector of the face hit
"distance" (float): distance from @start_point the hit occurred
"collision" (str): absolute USD path to the collision body hit
"rigidBody" (str): absolute USD path to the associated rigid body hit
Note that only "hit" = False exists in the dict if no hit was found
"""
# Make sure start point, end point are numpy arrays
start_point, end_point = np.array(start_point), np.array(end_point)
point_diff = end_point - start_point
distance = np.linalg.norm(point_diff)
direction = point_diff / distance
# For efficiency's sake, we handle special case of no ignore_bodies, ignore_collisions, and closest_hit
if only_closest and ignore_bodies is None and ignore_collisions is None:
return og.sim.psqi.raycast_closest(
origin=start_point,
dir=direction,
distance=distance,
)
else:
# Compose callback function for finding raycasts
hits = []
ignore_bodies = set() if ignore_bodies is None else set(ignore_bodies)
ignore_collisions = set() if ignore_collisions is None else set(ignore_collisions)
def hit_callback(hit):
# Only add to hits if we're not ignoring this body or collision
if hit.rigid_body not in ignore_bodies and hit.collision not in ignore_collisions:
hits.append({
"hit": True,
"position": np.array(hit.position),
"normal": np.array(hit.normal),
"distance": hit.distance,
"collision": hit.collision,
"rigidBody": hit.rigid_body,
})
# We always want to continue traversing to collect all hits
return True if callback is None else callback(hit)
# Grab all collisions
og.sim.psqi.raycast_all(
origin=start_point,
dir=direction,
distance=distance,
reportFn=hit_callback,
)
# If we only want the closest, we need to sort these hits, otherwise we return them all
if only_closest:
# Return the empty hit dictionary if our ray did not hit anything, otherwise we return the closest
return {"hit": False} if len(hits) == 0 else sorted(hits, key=lambda hit: hit["distance"])[0]
else:
# Return all hits (list)
return hits
def sample_raytest_start_end_symmetric_bimodal_distribution(
obj,
num_samples,
bimodal_mean_fraction,
bimodal_stdev_fraction,
axis_probabilities,
aabb_offset=None,
aabb_offset_fraction=m.DEFAULT_AABB_OFFSET_FRACTION,
max_sampling_attempts=m.DEFAULT_MAX_SAMPLING_ATTEMPTS,
):
"""
Sample the start points and end points around a given object by a symmetric bimodal distribution
obj (DatasetObject): The object to sample points on.
num_samples (int): the number of points to try to sample.
bimodal_mean_fraction (float): the mean of one side of the symmetric bimodal distribution as a fraction of the
min-max range.
bimodal_stdev_fraction (float): the standard deviation of one side of the symmetric bimodal distribution as a
fraction of the min-max range.
axis_probabilities (3-array): probability of ray casting along each axis.
aabb_offset (None or float or 3-array): padding for AABB to initiate ray-testing, in absolute units. If specified,
will override @aabb_offset_fraction
aabb_offset_fraction (float or 3-array): padding for AABB to initiate ray-testing, as a fraction of overall AABB.
max_sampling_attempts (int): how many times sampling will be attempted for each requested point.
Returns:
2-tuple:
- (n, s, 3)-array: (num_samples, max_sampling_attempts, 3) shaped array representing the start points for
raycasting defined in the world frame
- (n, s, 3)-array: (num_samples, max_sampling_attempts, 3) shaped array representing the end points for
raycasting defined in the world frame
"""
bbox_center, bbox_orn, bbox_bf_extent, _ = obj.get_base_aligned_bbox(xy_aligned=True)
aabb_offset = aabb_offset_fraction * bbox_bf_extent if aabb_offset is None else aabb_offset
half_extent_with_offset = (bbox_bf_extent / 2) + aabb_offset
start_points = np.zeros((num_samples, max_sampling_attempts, 3))
end_points = np.zeros((num_samples, max_sampling_attempts, 3))
for i in range(num_samples):
# Sample the starting positions in advance.
# TODO: Narrow down the sampling domain so that we don't sample scenarios where the center is in-domain but the
# full extent isn't. Currently a lot of samples are being wasted because of this.
samples = sample_origin_positions(
-half_extent_with_offset,
half_extent_with_offset,
max_sampling_attempts,
bimodal_mean_fraction,
bimodal_stdev_fraction,
axis_probabilities,
)
# Try each sampled position in the AABB.
for j, (axis, is_top, start_point) in enumerate(samples):
# Compute the ray's destination using the sampling & AABB information.
end_point = compute_ray_destination(
axis, is_top, start_point, -half_extent_with_offset, half_extent_with_offset
)
start_points[i][j] = start_point
end_points[i][j] = end_point
# Convert the points into the world frame
orig_shape = start_points.shape
to_wf_transform = T.pose2mat((bbox_center, bbox_orn))
start_points = trimesh.transformations.transform_points(start_points.reshape(-1, 3), to_wf_transform).reshape(orig_shape)
end_points = trimesh.transformations.transform_points(end_points.reshape(-1, 3), to_wf_transform).reshape(orig_shape)
return start_points, end_points
def sample_raytest_start_end_full_grid_topdown(
obj,
ray_spacing,
aabb_offset=None,
aabb_offset_fraction=m.DEFAULT_AABB_OFFSET_FRACTION,
):
"""
Sample the start points and end points around a given object by a dense grid from top down.
Args:
obj (DatasetObject): The object to sample points on.
ray_spacing (float): spacing between the rays, or equivalently, size of the grid cell
aabb_offset (None or float or 3-array): padding for AABB to initiate ray-testing, in absolute units. If specified,
will override @aabb_offset_fraction
aabb_offset_fraction (float or 3-array): padding for AABB to initiate ray-testing, as a fraction of overall AABB.
Returns:
2-tuple:
- (n, s, 3)-array: (num_samples, max_sampling_attempts, 3) shaped array representing the start points for
raycasting defined in the world frame
- (n, s, 3)-array: (num_samples, max_sampling_attempts, 3) shaped array representing the end points for
raycasting defined in the world frame
"""
bbox_center, bbox_orn, bbox_bf_extent, _ = obj.get_base_aligned_bbox(xy_aligned=True)
aabb_offset = aabb_offset_fraction * bbox_bf_extent if aabb_offset is None else aabb_offset
half_extent_with_offset = (bbox_bf_extent / 2) + aabb_offset
x = np.linspace(-half_extent_with_offset[0], half_extent_with_offset[0], int(half_extent_with_offset[0] * 2 / ray_spacing) + 1)
y = np.linspace(-half_extent_with_offset[1], half_extent_with_offset[1], int(half_extent_with_offset[1] * 2 / ray_spacing) + 1)
n_rays = len(x) * len(y)
start_points = np.stack([
np.tile(x, len(y)),
np.repeat(y, len(x)),
np.ones(n_rays) * half_extent_with_offset[2],
]).T
end_points = np.copy(start_points)
end_points[:, 2] = -half_extent_with_offset[2]
# Convert the points into the world frame
to_wf_transform = T.pose2mat((bbox_center, bbox_orn))
start_points = trimesh.transformations.transform_points(start_points, to_wf_transform)
end_points = trimesh.transformations.transform_points(end_points, to_wf_transform)
start_points = np.expand_dims(start_points, axis=1)
end_points = np.expand_dims(end_points, axis=1)
return start_points, end_points
def sample_cuboid_on_object_symmetric_bimodal_distribution(
obj,
num_samples,
cuboid_dimensions,
bimodal_mean_fraction,
bimodal_stdev_fraction,
axis_probabilities,
new_ray_per_horizontal_distance=m.DEFAULT_NEW_RAY_PER_HORIZONTAL_DISTANCE,
hit_proportion=m.DEFAULT_HIT_PROPORTION,
aabb_offset=None,
aabb_offset_fraction=m.DEFAULT_AABB_OFFSET_FRACTION,
max_sampling_attempts=m.DEFAULT_MAX_SAMPLING_ATTEMPTS,
max_angle_with_z_axis=m.DEFAULT_MAX_ANGLE_WITH_Z_AXIS,
parallel_ray_normal_angle_tolerance=m.DEFAULT_PARALLEL_RAY_NORMAL_ANGLE_TOLERANCE,
hit_to_plane_threshold=m.DEFAULT_HIT_TO_PLANE_THRESHOLD,
cuboid_bottom_padding=m.DEFAULT_CUBOID_BOTTOM_PADDING,
undo_cuboid_bottom_padding=True,
verify_cuboid_empty=True,
refuse_downwards=False,
):
"""
Samples points on an object's surface using ray casting.
Rays are sampled with a symmetric bimodal distribution.
Args:
obj (DatasetObject): The object to sample points on.
num_samples (int): the number of points to try to sample.
cuboid_dimensions ((n, 3)-array): Float sequence of len 3, the size of the empty cuboid we are trying to sample.
Can also provide list of cuboid dimension triplets in which case each i'th sample will be sampled using
the i'th triplet. Alternatively, cuboid_dimensions can be set to be all zeros if the user just want to
sample points (instead of cuboids) for significantly better performance. This applies when the user wants
to sample very small particles.
bimodal_mean_fraction (float): the mean of one side of the symmetric bimodal distribution as a fraction of the
min-max range.
bimodal_stdev_fraction (float): the standard deviation of one side of the symmetric bimodal distribution as a
fraction of the min-max range.
axis_probabilities (3-array): the probability of ray casting along each axis.
new_ray_per_horizontal_distance (float): per this distance of the cuboid dimension, increase the grid size of
the parallel ray-testing by 1. This controls how fine-grained the grid ray-casting should be with respect to
the size of the sampled cuboid.
hit_proportion (float): the minimum percentage of the hits required across the grid.
aabb_offset (None or float or 3-array): padding for AABB to initiate ray-testing, in absolute units. If specified,
will override @aabb_offset_fraction
aabb_offset_fraction (float or 3-array): padding for AABB to initiate ray-testing, as a fraction of overall AABB.
max_sampling_attempts (int): how many times sampling will be attempted for each requested point.
max_angle_with_z_axis (float): maximum angle between hit normal and positive Z axis allowed. Can be used to
disallow downward-facing hits when refuse_downwards=True.
parallel_ray_normal_angle_tolerance (float): maximum angle difference between the normal of the center hit
and the normal of other hits allowed.
hit_to_plane_threshold (float): how far any given hit position can be from the least-squares fit plane to
all of the hit positions before the sample is rejected.
cuboid_bottom_padding (float): additional padding applied to the bottom of the cuboid. This is needed for the
emptiness check (@check_cuboid_empty) within the cuboid. un_padding=True can be set if the user wants to remove
the padding after the emptiness check.
undo_cuboid_bottom_padding (bool): Whether the bottom padding that's applied to the cuboid should be removed before return.
Useful when the cuboid needs to be flush with the surface for whatever reason. Note that the padding will still
be applied initially (since it's not possible to do the cuboid emptiness check without doing this - otherwise
the rays will hit the sampled-on object), so the emptiness check still checks a padded cuboid. This flag will
simply make the sampler undo the padding prior to returning.
verify_cuboid_empty (bool): Whether to filter out sampled cuboid locations that are not collision-free. Note
that this check will only potentially occur if nonzero cuboid dimensions are specified.
refuse_downwards (bool): whether downward-facing hits (as defined by max_angle_with_z_axis) are allowed.
Returns:
list of tuple: list of length num_samples elements where each element is a tuple in the form of
(cuboid_centroid, cuboid_up_vector, cuboid_rotation, {refusal_reason: [refusal_details...]}). Cuboid positions
are set to None when no successful sampling happens within the max number of attempts. Refusal details are only
filled if the m.DEBUG_SAMPLING flag is globally set to True.
"""
start_points, end_points = sample_raytest_start_end_symmetric_bimodal_distribution(
obj,
num_samples,
bimodal_mean_fraction,
bimodal_stdev_fraction,
axis_probabilities,
aabb_offset=aabb_offset,
aabb_offset_fraction=aabb_offset_fraction,
max_sampling_attempts=max_sampling_attempts,
)
return sample_cuboid_on_object(
obj,
start_points,
end_points,
cuboid_dimensions,
new_ray_per_horizontal_distance=new_ray_per_horizontal_distance,
hit_proportion=hit_proportion,
max_angle_with_z_axis=max_angle_with_z_axis,
parallel_ray_normal_angle_tolerance=parallel_ray_normal_angle_tolerance,
hit_to_plane_threshold=hit_to_plane_threshold,
cuboid_bottom_padding=cuboid_bottom_padding,
undo_cuboid_bottom_padding=undo_cuboid_bottom_padding,
verify_cuboid_empty=verify_cuboid_empty,
refuse_downwards=refuse_downwards,
)
def sample_cuboid_on_object_full_grid_topdown(
obj,
ray_spacing,
cuboid_dimensions,
new_ray_per_horizontal_distance=m.DEFAULT_NEW_RAY_PER_HORIZONTAL_DISTANCE,
hit_proportion=m.DEFAULT_HIT_PROPORTION,
aabb_offset=None,
aabb_offset_fraction=m.DEFAULT_AABB_OFFSET_FRACTION,
max_angle_with_z_axis=m.DEFAULT_MAX_ANGLE_WITH_Z_AXIS,
parallel_ray_normal_angle_tolerance=m.DEFAULT_PARALLEL_RAY_NORMAL_ANGLE_TOLERANCE,
hit_to_plane_threshold=m.DEFAULT_HIT_TO_PLANE_THRESHOLD,
cuboid_bottom_padding=m.DEFAULT_CUBOID_BOTTOM_PADDING,
undo_cuboid_bottom_padding=True,
verify_cuboid_empty=True,
refuse_downwards=False,
):
"""
Samples points on an object's surface using ray casting.
Rays are sampled with a dense grid from top down.
Args:
obj (DatasetObject): The object to sample points on.
ray_spacing (float): spacing between the rays, or equivalently, size of the grid cell, when sampling the
start and end points. This implicitly determines the number of cuboids that will be sampled.
cuboid_dimensions ((n, 3)-array): Float sequence of len 3, the size of the empty cuboid we are trying to sample.
Can also provide list of cuboid dimension triplets in which case each i'th sample will be sampled using
the i'th triplet. Alternatively, cuboid_dimensions can be set to be all zeros if the user just want to
sample points (instead of cuboids) for significantly better performance. This applies when the user wants
to sample very small particles.
new_ray_per_horizontal_distance (float): per this distance of the cuboid dimension, increase the grid size of
the parallel ray-testing by 1. This controls how fine-grained the grid ray-casting should be with respect to
the size of the sampled cuboid.
hit_proportion (float): the minimum percentage of the hits required across the grid.
aabb_offset (None or float or 3-array): padding for AABB to initiate ray-testing, in absolute units. If specified,
will override @aabb_offset_fraction
aabb_offset_fraction (float or 3-array): padding for AABB to initiate ray-testing, as a fraction of overall AABB.
max_angle_with_z_axis (float): maximum angle between hit normal and positive Z axis allowed. Can be used to
disallow downward-facing hits when refuse_downwards=True.
parallel_ray_normal_angle_tolerance (float): maximum angle difference between the normal of the center hit
and the normal of other hits allowed.
hit_to_plane_threshold (float): how far any given hit position can be from the least-squares fit plane to
all of the hit positions before the sample is rejected.
cuboid_bottom_padding (float): additional padding applied to the bottom of the cuboid. This is needed for the
emptiness check (@check_cuboid_empty) within the cuboid. un_padding=True can be set if the user wants to remove
the padding after the emptiness check.
undo_cuboid_bottom_padding (bool): Whether the bottom padding that's applied to the cuboid should be removed before return.
Useful when the cuboid needs to be flush with the surface for whatever reason. Note that the padding will still
be applied initially (since it's not possible to do the cuboid emptiness check without doing this - otherwise
the rays will hit the sampled-on object), so the emptiness check still checks a padded cuboid. This flag will
simply make the sampler undo the padding prior to returning.
verify_cuboid_empty (bool): Whether to filter out sampled cuboid locations that are not collision-free. Note
that this check will only potentially occur if nonzero cuboid dimensions are specified.
refuse_downwards (bool): whether downward-facing hits (as defined by max_angle_with_z_axis) are allowed.
Returns:
list of tuple: list of length num_samples elements where each element is a tuple in the form of
(cuboid_centroid, cuboid_up_vector, cuboid_rotation, {refusal_reason: [refusal_details...]}). Cuboid positions
are set to None when no successful sampling happens within the max number of attempts. Refusal details are only
filled if the m.DEBUG_SAMPLING flag is globally set to True.
"""
start_points, end_points = sample_raytest_start_end_full_grid_topdown(
obj,
ray_spacing,
aabb_offset=aabb_offset,
aabb_offset_fraction=aabb_offset_fraction,
)
return sample_cuboid_on_object(
obj,
start_points,
end_points,
cuboid_dimensions,
new_ray_per_horizontal_distance=new_ray_per_horizontal_distance,
hit_proportion=hit_proportion,
max_angle_with_z_axis=max_angle_with_z_axis,
parallel_ray_normal_angle_tolerance=parallel_ray_normal_angle_tolerance,
hit_to_plane_threshold=hit_to_plane_threshold,
cuboid_bottom_padding=cuboid_bottom_padding,
undo_cuboid_bottom_padding=undo_cuboid_bottom_padding,
verify_cuboid_empty=verify_cuboid_empty,
refuse_downwards=refuse_downwards,
)
def sample_cuboid_on_object(
obj,
start_points,
end_points,
cuboid_dimensions,
ignore_objs=None,
new_ray_per_horizontal_distance=m.DEFAULT_NEW_RAY_PER_HORIZONTAL_DISTANCE,
hit_proportion=m.DEFAULT_HIT_PROPORTION,
max_angle_with_z_axis=m.DEFAULT_MAX_ANGLE_WITH_Z_AXIS,
parallel_ray_normal_angle_tolerance=m.DEFAULT_PARALLEL_RAY_NORMAL_ANGLE_TOLERANCE,
hit_to_plane_threshold=m.DEFAULT_HIT_TO_PLANE_THRESHOLD,
cuboid_bottom_padding=m.DEFAULT_CUBOID_BOTTOM_PADDING,
undo_cuboid_bottom_padding=True,
verify_cuboid_empty=True,
refuse_downwards=False,
):
"""
Samples points on an object's surface using ray casting.
Args:
obj (DatasetObject): The object to sample points on.
start_points ((n, s, 3)-array): (num_samples, max_sampling_attempts, 3) shaped array representing the start points for
raycasting defined in the world frame
end_points ((n, s, 3)-array): (num_samples, max_sampling_attempts, 3) shaped array representing the end points for
raycasting defined in the world frame
cuboid_dimensions ((n, 3)-array): Float sequence of len 3, the size of the empty cuboid we are trying to sample.
Can also provide list of cuboid dimension triplets in which case each i'th sample will be sampled using
the i'th triplet. Alternatively, cuboid_dimensions can be set to be all zeros if the user just want to
sample points (instead of cuboids) for significantly better performance. This applies when the user wants
to sample very small particles.
ignore_objs (None or list of EntityPrim): If @obj is None, this can be used to filter objects when checking
for valid cuboid locations. Any sampled rays that hit an object in @ignore_objs will be ignored. If None,
no filtering will be used
new_ray_per_horizontal_distance (float): per this distance of the cuboid dimension, increase the grid size of
the parallel ray-testing by 1. This controls how fine-grained the grid ray-casting should be with respect to
the size of the sampled cuboid.
hit_proportion (float): the minimum percentage of the hits required across the grid.
max_angle_with_z_axis (float): maximum angle between hit normal and positive Z axis allowed. Can be used to
disallow downward-facing hits when refuse_downwards=True.
parallel_ray_normal_angle_tolerance (float): maximum angle difference between the normal of the center hit
and the normal of other hits allowed.
hit_to_plane_threshold (float): how far any given hit position can be from the least-squares fit plane to
all of the hit positions before the sample is rejected.
cuboid_bottom_padding (float): additional padding applied to the bottom of the cuboid. This is needed for the
emptiness check (@check_cuboid_empty) within the cuboid. un_padding=True can be set if the user wants to remove
the padding after the emptiness check.
undo_cuboid_bottom_padding (bool): Whether the bottom padding that's applied to the cuboid should be removed before return.
Useful when the cuboid needs to be flush with the surface for whatever reason. Note that the padding will still
be applied initially (since it's not possible to do the cuboid emptiness check without doing this - otherwise
the rays will hit the sampled-on object), so the emptiness check still checks a padded cuboid. This flag will
simply make the sampler undo the padding prior to returning.
verify_cuboid_empty (bool): Whether to filter out sampled cuboid locations that are not collision-free. Note
that this check will only potentially occur if nonzero cuboid dimensions are specified.
refuse_downwards (bool): whether downward-facing hits (as defined by max_angle_with_z_axis) are allowed.
Returns:
list of tuple: list of length num_samples elements where each element is a tuple in the form of
(cuboid_centroid, cuboid_up_vector, cuboid_rotation, {refusal_reason: [refusal_details...]}). Cuboid positions
are set to None when no successful sampling happens within the max number of attempts. Refusal details are only
filled if the m.DEBUG_SAMPLING flag is globally set to True.
"""
assert start_points.shape == end_points.shape, \
"the start and end points of raycasting are expected to have the same shape."
num_samples = start_points.shape[0]
cuboid_dimensions = np.array(cuboid_dimensions)
if np.any(cuboid_dimensions > 50.0):
log.warning("WARNING: Trying to sample for a very large cuboid (at least one dimensions > 50). "
"Terminating immediately, no hits will be registered.")
return [(None, None, None, None, defaultdict(list)) for _ in range(num_samples)]
assert cuboid_dimensions.ndim <= 2
assert cuboid_dimensions.shape[-1] == 3, "Cuboid dimensions need to contain all three dimensions."
if cuboid_dimensions.ndim == 2:
assert cuboid_dimensions.shape[0] == num_samples, "Need as many offsets as samples requested."
results = [(None, None, None, None, defaultdict(list)) for _ in range(num_samples)]
rigid_bodies = None if obj is None else {link.prim_path for link in obj.links.values()}
ignore_rigid_bodies = None if ignore_objs is None else \
{link.prim_path for ignore_obj in ignore_objs for link in ignore_obj.links.values()}
for i in range(num_samples):
refusal_reasons = results[i][4]
# Try each sampled position in the AABB.
for start_pos, end_pos in zip(start_points[i], end_points[i]):
# If we have a list of cuboid dimensions, pick the one that corresponds to this particular sample.
this_cuboid_dimensions = cuboid_dimensions if cuboid_dimensions.ndim == 1 else cuboid_dimensions[i]
zero_cuboid_dimension = (this_cuboid_dimensions == 0.0).all()
if not zero_cuboid_dimension:
# Make sure we have valid (nonzero) x and y values
assert (this_cuboid_dimensions[:-1] > 0).all(), \
f"Cuboid x and y dimensions must not be zero if z dimension is nonzero! Got: {this_cuboid_dimensions}"
# Obtain the parallel rays using the direction sampling method.
sources, destinations, grid = get_parallel_rays(
start_pos, end_pos, this_cuboid_dimensions[:2] / 2.0, new_ray_per_horizontal_distance,
)
sources = np.array(sources)
destinations = np.array(destinations)
else:
sources = np.array([start_pos])
destinations = np.array([end_pos])
# Time to cast the rays.
cast_results = raytest_batch(start_points=sources, end_points=destinations, ignore_bodies=ignore_rigid_bodies)
# Check whether sufficient number of rays hit the object
hits = check_rays_hit_object(
cast_results, hit_proportion, refusal_reasons["missed_object"], rigid_bodies)
if hits is None:
continue
center_idx = int(len(hits) / 2)
# Only consider objects whose center idx has a ray hit
if not hits[center_idx]:
continue
filtered_cast_results = []
filtered_center_idx = None
for idx, hit in enumerate(hits):
if hit:
filtered_cast_results.append(cast_results[idx])
if idx == center_idx:
filtered_center_idx = len(filtered_cast_results) - 1
# Process the hit positions and normals.
hit_positions = np.array([ray_res["position"] for ray_res in filtered_cast_results])
hit_normals = np.array([ray_res["normal"] for ray_res in filtered_cast_results])
hit_normals /= np.linalg.norm(hit_normals, axis=1, keepdims=True)
assert filtered_center_idx is not None
hit_link = filtered_cast_results[filtered_center_idx]["rigidBody"]
center_hit_pos = hit_positions[filtered_center_idx]
center_hit_normal = hit_normals[filtered_center_idx]
# Reject anything facing more than 45deg downwards if requested.
if refuse_downwards:
if not check_hit_max_angle_from_z_axis(
center_hit_normal, max_angle_with_z_axis, refusal_reasons["downward_normal"]
):
continue
# Check that none of the parallel rays' hit normal differs from center ray by more than threshold.
if not zero_cuboid_dimension:
if not check_normal_similarity(center_hit_normal, hit_normals, parallel_ray_normal_angle_tolerance, refusal_reasons["hit_normal_similarity"]):
continue
# Fit a plane to the points.
plane_centroid, plane_normal = fit_plane(hit_positions, refusal_reasons["fit_plane"])
if plane_centroid is None:
continue
# The fit_plane normal can be facing either direction on the normal axis, but we want it to face away from
# the object for purposes of normal checking and padding. To do this:
# We get a vector from the centroid towards the center ray source, and flip the plane normal to match it.
# The cosine has positive sign if the two vectors are similar and a negative one if not.
plane_to_source = sources[center_idx] - plane_centroid
plane_normal *= np.sign(np.dot(plane_to_source, plane_normal))
# Check that the plane normal is similar to the hit normal
if not check_normal_similarity(
center_hit_normal, plane_normal[None, :], parallel_ray_normal_angle_tolerance, refusal_reasons["plane_normal_similarity"]
):
continue
# Check that the points are all within some acceptable distance of the plane.
if not check_distance_to_plane(
hit_positions, plane_centroid, plane_normal, hit_to_plane_threshold, refusal_reasons["dist_to_plane"]
):
continue
# Get projection of the base onto the plane, fit a rotation, and compute the new center hit / corners.
hit_positions = np.array([ray_res.get("position", np.zeros(3)) for ray_res in cast_results])
projected_hits = get_projection_onto_plane(hit_positions, plane_centroid, plane_normal)
padding = cuboid_bottom_padding * plane_normal
projected_hits += padding
center_projected_hit = projected_hits[center_idx]
cuboid_centroid = center_projected_hit + plane_normal * this_cuboid_dimensions[2] / 2.0
rotation = compute_rotation_from_grid_sample(
grid, projected_hits, cuboid_centroid, this_cuboid_dimensions,
hits, refusal_reasons["rotation_not_computable"])
# Make sure there are enough hit points that can be used for alignment to find the rotation
if rotation is None:
continue
corner_positions = cuboid_centroid[None, :] + (
rotation.apply(
0.5
* this_cuboid_dimensions
* np.array(
[
[1, 1, -1],
[-1, 1, -1],
[-1, -1, -1],
[1, -1, -1],
]
)
)
)
# Now we use the cuboid's diagonals to check that the cuboid is actually empty
if verify_cuboid_empty and not check_cuboid_empty(
plane_normal,
corner_positions,
this_cuboid_dimensions,
refusal_reasons["cuboid_not_empty"],
):
continue
if undo_cuboid_bottom_padding:
cuboid_centroid -= padding
else:
cuboid_centroid = center_hit_pos
if not undo_cuboid_bottom_padding:
padding = cuboid_bottom_padding * center_hit_normal
cuboid_centroid += padding
plane_normal = np.zeros(3)
rotation = R.from_quat([0, 0, 0, 1])
# We've found a nice attachment point. Continue onto next point to sample.
results[i] = (cuboid_centroid, plane_normal, rotation.as_quat(), hit_link, refusal_reasons)
break
if m.DEBUG_SAMPLING:
og.log.debug("Sampling rejection reasons:")
counter = Counter()
for instance in results:
for reason, refusals in instance[-1].items():
counter[reason] += len(refusals)
og.log.debug("\n".join("%s: %d" % pair for pair in counter.items()))
return results
def compute_rotation_from_grid_sample(two_d_grid, projected_hits, cuboid_centroid, this_cuboid_dimensions, hits, refusal_log):
"""
Computes
Args:
two_d_grid (n, 2): (x,y) raycast origin points in the local plane frame
projected_hits ((k,3)-array): Points' positions projected onto the plane generated
cuboid_centroid (3-array): (x,y,z) sampled position of the hit cuboid centroid in the global frame
this_cuboid_dimensions (3-array): (x,y,z) size of cuboid being sampled from the grid
hits (list of bool): whether each point from @two_d_grid is a valid hit or not
refusal_log (dict): Dictionary to write debugging and log information to
Returns:
None or scipy.Rotation: If successfully hit, returns relative rotation from two_d_grid to
generated hit plane. Otherwise, returns None
"""
if np.sum(hits) < 3:
if m.DEBUG_SAMPLING:
refusal_log.append(f"insufficient hits to compute the rotation of the grid: needs 3, has {np.sum(hits)}")
return None
grid_in_planar_coordinates = two_d_grid.reshape(-1, 2)
grid_in_planar_coordinates = grid_in_planar_coordinates[hits]
grid_in_object_coordinates = np.zeros((len(grid_in_planar_coordinates), 3))
grid_in_object_coordinates[:, :2] = grid_in_planar_coordinates
grid_in_object_coordinates[:, 2] = -this_cuboid_dimensions[2] / 2.0
projected_hits = projected_hits[hits]
sampled_grid_relative_vectors = projected_hits - cuboid_centroid
rotation, _ = R.align_vectors(sampled_grid_relative_vectors, grid_in_object_coordinates)
return rotation
def check_normal_similarity(center_hit_normal, hit_normals, tolerance, refusal_log):
"""
Check whether the normals from @hit_normals are within some @tolerance of @center_hit_normal.
Args:
center_hit_normal (3-array): normal of the center hit point
hit_normals ((n, 3)-array): normals of all the hit points
tolerance (float): Acceptable deviation between the center hit normal and all normals
refusal_log (dict): Dictionary to write debugging and log information to
Returns:
bool: Whether the normal similarity is acceptable or not
"""
parallel_hit_main_hit_dot_products = np.clip(
np.dot(hit_normals, center_hit_normal)
/ (np.linalg.norm(hit_normals, axis=1) * np.linalg.norm(center_hit_normal)),
-1.0,
1.0,
)
parallel_hit_normal_angles_to_hit_normal = np.arccos(parallel_hit_main_hit_dot_products)
all_rays_hit_with_similar_normal = np.all(
parallel_hit_normal_angles_to_hit_normal < tolerance
)
if not all_rays_hit_with_similar_normal:
if m.DEBUG_SAMPLING:
refusal_log.append("angles %r" % (np.rad2deg(parallel_hit_normal_angles_to_hit_normal),))
return False
return True
def check_rays_hit_object(cast_results, threshold, refusal_log, body_names=None):
"""
Checks whether rays hit a specific object, as specified by a list of @body_names
Args:
cast_results (list of dict): Output from raycast_batch.
threshold (float): Relative ratio in [0, 1] specifying proportion of rays from @cast_results are
required to hit @body_names to count as the object being hit
refusal_log (list of str): Logging array for adding debug logs
body_names (None or list or set of str): absolute USD paths to rigid bodies to check for hit. If not
specified, then any valid hit will be accepted
Returns:
None or list of bool: Individual T/F for each ray -- whether it hit the object or not
"""
body_names = None if body_names is None else set(body_names)
ray_hits = [
ray_res["hit"] and
(body_names is None or ray_res["rigidBody"] in body_names)
for ray_res in cast_results
]
if sum(ray_hits) / len(cast_results) < threshold:
if m.DEBUG_SAMPLING:
refusal_log.append(f"{sum(ray_hits)} / {len(cast_results)} < {threshold} hits: {[ray_res['rigidBody'] for ray_res in cast_results if ray_res['hit']]}")
return None
return ray_hits
def check_hit_max_angle_from_z_axis(hit_normal, max_angle_with_z_axis, refusal_log):
"""
Check whether the normal @hit_normal deviates from the global z axis by more than @max_angle_with_z_axis
Args:
hit_normal (3-array): Normal vector to check with respect to global z-axis
max_angle_with_z_axis (float): Maximum acceptable angle between the global z-axis and @hit_normal
refusal_log (list of str): Logging array for adding debug logs
Returns:
bool: True if the angle between @hit_normal and the global z-axis is less than @max_angle_with_z_axis,
otherwise False
"""
hit_angle_with_z = np.arccos(np.clip(np.dot(hit_normal, np.array([0, 0, 1])), -1.0, 1.0))
if hit_angle_with_z > max_angle_with_z_axis:
if m.DEBUG_SAMPLING:
refusal_log.append("normal %r" % hit_normal)
return False
return True
def compute_ray_destination(axis, is_top, start_pos, aabb_min, aabb_max):
"""
Compute the point on the AABB defined by @aabb_min and @aabb_max from shooting a ray at @start_pos
in the direction defined by global axis @axis and @is_top
Args:
axis (int): Which direction to compute the ray destination. Valid options are {0, 1, 2} -- the
x, y, or z axes
is_top (bool): Whether to shoot in the positive or negative @axis direction
aabb_min (3-array): (x,y,z) position defining the lower corner of the AABB
aabb_max (3-array): (x,y,z) position defining the upper corner of the AABB
Returns:
3-array: computed (x,y,z) point on the AABB surface
"""
# Get the ray casting direction - we want to do it parallel to the sample axis.
ray_direction = np.array([0, 0, 0])
ray_direction[axis] = 1
ray_direction *= -1 if is_top else 1
# We want to extend our ray until it intersects one of the AABB's faces.
# Start by getting the distances towards the min and max boundaries of the AABB on each axis.
point_to_min = aabb_min - start_pos
point_to_max = aabb_max - start_pos
# Then choose the distance to the point in the correct direction on each axis.
closer_point_on_each_axis = np.where(ray_direction < 0, point_to_min, point_to_max)
# For each axis, find how many times the ray direction should be multiplied to reach the AABB's boundary.
multiple_to_face_on_each_axis = closer_point_on_each_axis / ray_direction
# Choose the minimum of these multiples, e.g. how many times the ray direction should be multiplied
# to reach the nearest boundary.
multiple_to_face = np.min(multiple_to_face_on_each_axis[np.isfinite(multiple_to_face_on_each_axis)])
# Finally, use the multiple we found to calculate the point on the AABB boundary that we want to cast our
# ray until.
point_on_face = start_pos + ray_direction * multiple_to_face
# Make sure that we did not end up with all NaNs or infinities due to division issues.
assert not np.any(np.isnan(point_on_face)) and not np.any(np.isinf(point_on_face))
return point_on_face
def check_cuboid_empty(hit_normal, bottom_corner_positions, this_cuboid_dimensions, refusal_log):
"""
Check whether the cuboid defined by @this_cuboid_dimensions and @bottom_corner_positions contains
empty space or not
Args:
hit_normal (3-array): (x,y,z) normal
bottom_corner_positions ((4, 3)-array): the positions defining the bottom corners of the cuboid
being sampled
this_cuboid_dimensions (3-array): (x,y,z) size of the sampled cuboid
refusal_log (list of str): Logging array for adding debug logs
Returns:
bool: True if the cuboid is empty, else False
"""
if m.DEBUG_SAMPLING:
draw_debug_markers(bottom_corner_positions)
# Compute top corners.
top_corner_positions = bottom_corner_positions + hit_normal * this_cuboid_dimensions[2]
# We only generate valid rays that have nonzero distances. If the inputted cuboid is flat (i.e.: one dimension
# is zero, i.e.: it is in fact a rectangle), raise an error
assert this_cuboid_dimensions[2] != 0, "Cannot check empty cuboid for cuboid with zero height!"
# Get all the top-to-bottom corner pairs.
# When we cast these rays, we check that the faces & volume of the cuboid are unoccupied.
top_to_bottom_pairs = list(itertools.product(top_corner_positions, bottom_corner_positions))
# Get all the same-height pairs. These also check that the surfaces areas are empty.
bottom_pairs = list(itertools.combinations(bottom_corner_positions, 2))
top_pairs = list(itertools.combinations(top_corner_positions, 2))
# Combine all these pairs, cast the rays, and make sure the rays don't hit anything.
all_pairs = np.array(top_to_bottom_pairs + bottom_pairs + top_pairs)
check_cast_results = raytest_batch(start_points=all_pairs[:, 0, :], end_points=all_pairs[:, 1, :])
if any(ray["hit"] for ray in check_cast_results):
if m.DEBUG_SAMPLING:
refusal_log.append("check ray info: %r" % (check_cast_results))
return False
return True
| 56,403 | Python | 48.60774 | 163 | 0.663511 |
StanfordVL/OmniGibson/omnigibson/utils/usd_utils.py | import math
from collections.abc import Iterable
import os
import omnigibson.lazy as lazy
import numpy as np
import trimesh
import omnigibson as og
from omnigibson.macros import gm
from omnigibson.utils.constants import JointType, PRIMITIVE_MESH_TYPES, PrimType
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.ui_utils import suppress_omni_log
import omnigibson.utils.transform_utils as T
def array_to_vtarray(arr, element_type):
"""
Converts array @arr into a Vt-typed array, where each individual element of type @element_type.
Args:
arr (n-array): An array of values. Can be, e.g., a list, or numpy array
element_type (type): Per-element type to convert the elements from @arr into.
Valid options are keys of GF_TO_VT_MAPPING
Returns:
Vt.Array: Vt-typed array, of specified type corresponding to @element_type
"""
GF_TO_VT_MAPPING = {
lazy.pxr.Gf.Vec3d: lazy.pxr.Vt.Vec3dArray,
lazy.pxr.Gf.Vec3f: lazy.pxr.Vt.Vec3fArray,
lazy.pxr.Gf.Vec3h: lazy.pxr.Vt.Vec3hArray,
lazy.pxr.Gf.Quatd: lazy.pxr.Vt.QuatdArray,
lazy.pxr.Gf.Quatf: lazy.pxr.Vt.QuatfArray,
lazy.pxr.Gf.Quath: lazy.pxr.Vt.QuathArray,
int: lazy.pxr.Vt.IntArray,
float: lazy.pxr.Vt.FloatArray,
bool: lazy.pxr.Vt.BoolArray,
str: lazy.pxr.Vt.StringArray,
chr: lazy.pxr.Vt.CharArray,
}
# Make sure array type is valid
assert_valid_key(key=element_type, valid_keys=GF_TO_VT_MAPPING, name="array element type")
# Construct list of values
arr_list = []
# Check first to see if elements are vectors or not. If this is an iterable value that is not a string,
# then this is a vector and we have to map it to the correct type via *
is_vec_element = (isinstance(arr[0], Iterable)) and (not isinstance(arr[0], str))
# Loop over array and set values
for ele in arr:
arr_list.append(element_type(*ele) if is_vec_element else ele)
return GF_TO_VT_MAPPING[element_type](arr_list)
def get_prim_nested_children(prim):
"""
Grabs all nested prims starting from root @prim via depth-first-search
Args:
prim (Usd.Prim): root prim from which to search for nested children prims
Returns:
list of Usd.Prim: nested prims
"""
prims = []
for child in lazy.omni.isaac.core.utils.prims.get_prim_children(prim):
prims.append(child)
prims += get_prim_nested_children(prim=child)
return prims
def create_joint(prim_path, joint_type, body0=None, body1=None, enabled=True,
joint_frame_in_parent_frame_pos=None, joint_frame_in_parent_frame_quat=None,
joint_frame_in_child_frame_pos=None, joint_frame_in_child_frame_quat=None,
break_force=None, break_torque=None):
"""
Creates a joint between @body0 and @body1 of specified type @joint_type
Args:
prim_path (str): absolute path to where the joint will be created
joint_type (str or JointType): type of joint to create. Valid options are:
"FixedJoint", "Joint", "PrismaticJoint", "RevoluteJoint", "SphericalJoint"
(equivalently, one of JointType)
body0 (str or None): absolute path to the first body's prim. At least @body0 or @body1 must be specified.
body1 (str or None): absolute path to the second body's prim. At least @body0 or @body1 must be specified.
enabled (bool): whether to enable this joint or not.
joint_frame_in_parent_frame_pos (np.ndarray or None): relative position of the joint frame to the parent frame (body0).
joint_frame_in_parent_frame_quat (np.ndarray or None): relative orientation of the joint frame to the parent frame (body0).
joint_frame_in_child_frame_pos (np.ndarray or None): relative position of the joint frame to the child frame (body1).
joint_frame_in_child_frame_quat (np.ndarray or None): relative orientation of the joint frame to the child frame (body1).
break_force (float or None): break force for linear dofs, unit is Newton.
break_torque (float or None): break torque for angular dofs, unit is Newton-meter.
Returns:
Usd.Prim: Created joint prim
"""
# Make sure we have valid joint_type
assert JointType.is_valid(joint_type=joint_type), \
f"Invalid joint specified for creation: {joint_type}"
# Make sure at least body0 or body1 is specified
assert body0 is not None or body1 is not None, \
f"At least either body0 or body1 must be specified when creating a joint!"
# Create the joint
joint = getattr(lazy.pxr.UsdPhysics, joint_type).Define(og.sim.stage, prim_path)
# Possibly add body0, body1 targets
if body0 is not None:
assert lazy.omni.isaac.core.utils.prims.is_prim_path_valid(body0), f"Invalid body0 path specified: {body0}"
joint.GetBody0Rel().SetTargets([lazy.pxr.Sdf.Path(body0)])
if body1 is not None:
assert lazy.omni.isaac.core.utils.prims.is_prim_path_valid(body1), f"Invalid body1 path specified: {body1}"
joint.GetBody1Rel().SetTargets([lazy.pxr.Sdf.Path(body1)])
# Get the prim pointed to at this path
joint_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path)
# Apply joint API interface
lazy.pxr.PhysxSchema.PhysxJointAPI.Apply(joint_prim)
# We need to step rendering once to auto-fill the local pose before overwriting it.
# Note that for some reason, if multi_gpu is used, this line will crash if create_joint is called during on_contact
# callback, e.g. when an attachment joint is being created due to contacts.
og.sim.render()
if joint_frame_in_parent_frame_pos is not None:
joint_prim.GetAttribute("physics:localPos0").Set(lazy.pxr.Gf.Vec3f(*joint_frame_in_parent_frame_pos))
if joint_frame_in_parent_frame_quat is not None:
joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*joint_frame_in_parent_frame_quat[[3, 0, 1, 2]]))
if joint_frame_in_child_frame_pos is not None:
joint_prim.GetAttribute("physics:localPos1").Set(lazy.pxr.Gf.Vec3f(*joint_frame_in_child_frame_pos))
if joint_frame_in_child_frame_quat is not None:
joint_prim.GetAttribute("physics:localRot1").Set(lazy.pxr.Gf.Quatf(*joint_frame_in_child_frame_quat[[3, 0, 1, 2]]))
if break_force is not None:
joint_prim.GetAttribute("physics:breakForce").Set(break_force)
if break_torque is not None:
joint_prim.GetAttribute("physics:breakTorque").Set(break_torque)
# Possibly (un-/)enable this joint
joint_prim.GetAttribute("physics:jointEnabled").Set(enabled)
# We update the simulation now without stepping physics if sim is playing so we can bypass the snapping warning from PhysicsUSD
if og.sim.is_playing():
with suppress_omni_log(channels=["omni.physx.plugin"]):
og.sim.pi.update_simulation(elapsedStep=0, currentTime=og.sim.current_time)
# Return this joint
return joint_prim
class RigidContactAPI:
"""
Class containing class methods to aggregate rigid body contacts across all rigid bodies in the simulator
"""
# Dictionary mapping rigid body prim path to corresponding index in the contact view matrix
_PATH_TO_ROW_IDX = None
_PATH_TO_COL_IDX = None
# Numpy array of rigid body prim paths where its array index directly corresponds to the corresponding
# index in the contact view matrix
_ROW_IDX_TO_PATH = None
_COL_IDX_TO_PATH = None
# Contact view for generating contact matrices at each timestep
_CONTACT_VIEW = None
# Current aggregated contacts over all rigid bodies at the current timestep. Shape: (N, N, 3)
_CONTACT_MATRIX = None
# Current cache, mapping 2-tuple (prim_paths_a, prim_paths_b) to contact values
_CONTACT_CACHE = None
@classmethod
def initialize_view(cls):
"""
Initializes the rigid contact view. Note: Can only be done when sim is playing!
"""
assert og.sim.is_playing(), "Cannot create rigid contact view while sim is not playing!"
# Compile deterministic mapping from rigid body path to idx
# Note that omni's ordering is based on the top-down object ordering path on the USD stage, which coincidentally
# matches the same ordering we store objects in our registry. So the mapping we generate from our registry
# mapping aligns with omni's ordering!
i = 0
cls._PATH_TO_COL_IDX = dict()
for obj in og.sim.scene.objects:
if obj.prim_type == PrimType.RIGID:
for link in obj.links.values():
if not link.kinematic_only:
cls._PATH_TO_COL_IDX[link.prim_path] = i
i += 1
# If there are no valid objects, clear the view and terminate early
if i == 0:
cls._CONTACT_VIEW = None
return
# Generate rigid body view, making sure to update the simulation first (without physics) so that the physx
# backend is synchronized with any newly added objects
# We also suppress the omni tensor plugin from giving warnings we expect
og.sim.pi.update_simulation(elapsedStep=0, currentTime=og.sim.current_time)
with suppress_omni_log(channels=["omni.physx.tensors.plugin"]):
cls._CONTACT_VIEW = og.sim.physics_sim_view.create_rigid_contact_view(
pattern="/World/*/*",
filter_patterns=list(cls._PATH_TO_COL_IDX.keys()),
)
# Create deterministic mapping from path to row index
cls._PATH_TO_ROW_IDX = {path: i for i, path in enumerate(cls._CONTACT_VIEW.sensor_paths)}
# Store the reverse mappings as well. This can just be a numpy array since the mapping uses integer indices
cls._ROW_IDX_TO_PATH = np.array(list(cls._PATH_TO_ROW_IDX.keys()))
cls._COL_IDX_TO_PATH = np.array(list(cls._PATH_TO_COL_IDX.keys()))
# Sanity check generated view -- this should generate square matrices of shape (N, N, 3)
n_bodies = len(cls._PATH_TO_COL_IDX)
assert cls._CONTACT_VIEW.filter_count == n_bodies, \
f"Got unexpected contact view shape. Expected: (N, {n_bodies}); " \
f"got: (N, {cls._CONTACT_VIEW.filter_count})"
@classmethod
def get_body_row_idx(cls, prim_path):
"""
Returns:
int: row idx assigned to the rigid body defined by @prim_path
"""
return cls._PATH_TO_ROW_IDX[prim_path]
@classmethod
def get_body_col_idx(cls, prim_path):
"""
Returns:
int: col idx assigned to the rigid body defined by @prim_path
"""
return cls._PATH_TO_COL_IDX[prim_path]
@classmethod
def get_row_idx_prim_path(cls, idx):
"""
Returns:
str: @prim_path corresponding to the row idx @idx in the contact matrix
"""
return cls._ROW_IDX_TO_PATH[idx]
@classmethod
def get_col_idx_prim_path(cls, idx):
"""
Returns:
str: @prim_path corresponding to the column idx @idx in the contact matrix
"""
return cls._COL_IDX_TO_PATH[idx]
@classmethod
def get_all_impulses(cls):
"""
Grab all impulses at the current timestep
Returns:
n-array: (N, M, 3) impulse array defining current impulses between all N contact-sensor enabled rigid bodies
in the simulator and M tracked rigid bodies
"""
# Generate the contact matrix if it doesn't already exist
if cls._CONTACT_MATRIX is None:
cls._CONTACT_MATRIX = cls._CONTACT_VIEW.get_contact_force_matrix(dt=1.0)
return cls._CONTACT_MATRIX
@classmethod
def get_impulses(cls, prim_paths_a, prim_paths_b):
"""
Grabs the matrix representing all impulse forces between rigid prims from @prim_paths_a and
rigid prims from @prim_paths_b
Args:
prim_paths_a (list of str): Rigid body prim path(s) with which to grab contact impulses against
any of the rigid body prim path(s) defined by @prim_paths_b
prim_paths_b (list of str): Rigid body prim path(s) with which to grab contact impulses against
any of the rigid body prim path(s) defined by @prim_paths_a
Returns:
n-array: (N, M, 3) impulse array defining current impulses between N bodies from @prim_paths_a and M bodies
from @prim_paths_b
"""
# Compute subset of matrix and return
idxs_a = [cls._PATH_TO_ROW_IDX[path] for path in prim_paths_a]
idxs_b = [cls._PATH_TO_COL_IDX[path] for path in prim_paths_b]
return cls.get_all_impulses()[idxs_a][:, idxs_b]
@classmethod
def in_contact(cls, prim_paths_a, prim_paths_b):
"""
Check if any rigid prim from @prim_paths_a is in contact with any rigid prim from @prim_paths_b
Args:
prim_paths_a (list of str): Rigid body prim path(s) with which to check contact against any of the rigid
body prim path(s) defined by @prim_paths_b
prim_paths_b (list of str): Rigid body prim path(s) with which to check contact against any of the rigid
body prim path(s) defined by @prim_paths_a
Returns:
bool: Whether any body from @prim_paths_a is in contact with any body from @prim_paths_b
"""
# Check if the contact tuple already exists in the cache; if so, return the value
key = (tuple(prim_paths_a), tuple(prim_paths_b))
if key not in cls._CONTACT_CACHE:
# In contact if any of the matrix values representing the interaction between the two groups is non-zero
cls._CONTACT_CACHE[key] = np.any(cls.get_impulses(prim_paths_a=prim_paths_a, prim_paths_b=prim_paths_b))
return cls._CONTACT_CACHE[key]
@classmethod
def clear(cls):
"""
Clears the internal contact matrix and cache
"""
cls._CONTACT_MATRIX = None
cls._CONTACT_CACHE = dict()
class CollisionAPI:
"""
Class containing class methods to facilitate collision handling, e.g. collision groups
"""
ACTIVE_COLLISION_GROUPS = dict()
@classmethod
def create_collision_group(cls, col_group, filter_self_collisions=False):
"""
Creates a new collision group with name @col_group
Args:
col_group (str): Name of the collision group to create
filter_self_collisions (bool): Whether to ignore self-collisions within the group. Default is False
"""
# Can only be done when sim is stopped
assert og.sim.is_stopped(), "Cannot create a collision group unless og.sim is stopped!"
# Make sure the group doesn't already exist
assert col_group not in cls.ACTIVE_COLLISION_GROUPS, \
f"Cannot create collision group {col_group} because it already exists!"
# Create the group
col_group_prim_path = f"/World/collision_groups/{col_group}"
group = lazy.pxr.UsdPhysics.CollisionGroup.Define(og.sim.stage, col_group_prim_path)
if filter_self_collisions:
# Do not collide with self
group.GetFilteredGroupsRel().AddTarget(col_group_prim_path)
cls.ACTIVE_COLLISION_GROUPS[col_group] = group
@classmethod
def add_to_collision_group(cls, col_group, prim_path):
"""
Adds the prim and all nested prims specified by @prim_path to the global collision group @col_group. If @col_group
does not exist, then it will either be created if @create_if_not_exist is True, otherwise will raise an Error.
Args:
col_group (str): Name of the collision group to assign the prim at @prim_path to
prim_path (str): Prim (and all nested prims) to assign to this @col_group
"""
# Make sure collision group exists
assert col_group in cls.ACTIVE_COLLISION_GROUPS, \
f"Cannot add to collision group {col_group} because it does not exist!"
# Add this prim to the collision group
cls.ACTIVE_COLLISION_GROUPS[col_group].GetCollidersCollectionAPI().GetIncludesRel().AddTarget(prim_path)
@classmethod
def add_group_filter(cls, col_group, filter_group):
"""
Adds a new group filter for group @col_group, filtering all collision with group @filter_group
Args:
col_group (str): Name of the collision group which will have a new filter group added
filter_group (str): Name of the group that should be filtered
"""
# Make sure the group doesn't already exist
for group_name in (col_group, filter_group):
assert group_name in cls.ACTIVE_COLLISION_GROUPS, \
(f"Cannot add group filter {filter_group} to collision group {col_group} because at least one group "
f"does not exist!")
# Grab the group, and add the filter
filter_group_prim_path = f"/World/collision_groups/{filter_group}"
group = cls.ACTIVE_COLLISION_GROUPS[col_group]
group.GetFilteredGroupsRel().AddTarget(filter_group_prim_path)
@classmethod
def clear(cls):
"""
Clears the internal state of this CollisionAPI
"""
cls.ACTIVE_COLLISION_GROUPS = {}
class FlatcacheAPI:
"""
Monolithic class for leveraging functionality meant to be used EXCLUSIVELY with flatcache.
"""
# Modified prims since transition from sim being stopped to sim being played occurred
# This should get cleared every time og.sim.stop() gets called
MODIFIED_PRIMS = set()
@classmethod
def sync_raw_object_transforms_in_usd(cls, prim):
"""
Manually synchronizes the per-link local raw transforms per-joint raw states from entity prim @prim using
dynamic control interface as the ground truth.
NOTE: This slightly abuses the dynamic control - usd integration, and should ONLY be used if flatcache
is active, since the USD is not R/W at runtime and so we can write directly to child link poses on the USD
without breaking the simulation!
Args:
prim (EntityPrim): prim whose owned links and joints should have their raw local states updated to match the
"true" values found from the dynamic control interface
"""
# Make sure flatcache is enabled -- this should NEVER be called otherwise!!
assert gm.ENABLE_FLATCACHE, "Syncing raw object transforms should only occur if flatcache is being used!"
# We're somewhat abusing low-level dynamic control - physx - usd integration, but we (supposedly) know
# what we're doing so we suppress logging so we don't see any error messages :D
with suppress_omni_log(["omni.physx.plugin"]):
# Import here to avoid circular imports
from omnigibson.prims.xform_prim import XFormPrim
# 1. For every link, update its xformOp properties based on the delta_tf between object frame and link frame
obj_pos, obj_quat = XFormPrim.get_local_pose(prim)
for link in prim.links.values():
rel_pos, rel_quat = T.relative_pose_transform(*link.get_position_orientation(), obj_pos, obj_quat)
XFormPrim.set_local_pose(link, rel_pos, rel_quat)
# 2. For every joint, update its linear / angular joint state
if prim.n_joints > 0:
joints_pos = prim.get_joint_positions()
for joint, joint_pos in zip(prim.joints.values(), joints_pos):
state_name = "linear" if joint.joint_type == JointType.JOINT_PRISMATIC else "angular"
joint_pos = joint_pos if joint.joint_type == JointType.JOINT_PRISMATIC else joint_pos * 180.0 / np.pi
joint.set_attribute(f"state:{state_name}:physics:position", float(joint_pos))
# Update the simulation without taking any time
# This is needed because physx complains that we're manually writing to child links' poses, and will
# subsequently not respect any additional writes to the object pose before an additional step is taken.
# So we take a "zero" length step so that any additional writes to the object's pose at the current
# timestep are respected
og.sim.pi.update_simulation(elapsedStep=0, currentTime=og.sim.current_time)
# Add this prim to the set of modified prims
cls.MODIFIED_PRIMS.add(prim)
@classmethod
def reset_raw_object_transforms_in_usd(cls, prim):
"""
Manually resets the per-link local raw transforms and per-joint raw states from entity prim @prim to be zero.
NOTE: This slightly abuses the dynamic control - usd integration, and should ONLY be used if flatcache
is active, since the USD is not R/W at runtime and so we can write directly to child link poses on the USD
without breaking the simulation!
Args:
prim (EntityPrim): prim whose owned links and joints should have their local values reset to be zero
"""
# Make sure flatcache is enabled -- this should NEVER be called otherwise!!
assert gm.ENABLE_FLATCACHE, "Resetting raw object transforms should only occur if flatcache is being used!"
# We're somewhat abusing low-level dynamic control - physx - usd integration, but we (supposedly) know
# what we're doing so we suppress logging so we don't see any error messages :D
with suppress_omni_log(["omni.physx.plugin"]):
# Import here to avoid circular imports
from omnigibson.prims.xform_prim import XFormPrim
# 1. For every link, update its xformOp properties to be 0
for link in prim.links.values():
XFormPrim.set_local_pose(link, np.zeros(3), np.array([0, 0, 0, 1.0]))
# 2. For every joint, update its linear / angular joint state to be 0
if prim.n_joints > 0:
for joint in prim.joints.values():
state_name = "linear" if joint.joint_type == JointType.JOINT_PRISMATIC else "angular"
joint.set_attribute(f"state:{state_name}:physics:position", 0.0)
# Update the simulation without taking any time
# This is needed because physx complains that we're manually writing to child links' poses, and will
# subsequently not respect any additional writes to the object pose before an additional step is taken.
# So we take a "zero" length step so that any additional writes to the object's pose at the current
# timestep are respected
og.sim.pi.update_simulation(elapsedStep=0, currentTime=og.sim.current_time)
@classmethod
def reset(cls):
"""
Resets the internal state of this FlatcacheAPI.This should only occur when the simulator is stopped
"""
# For any prim transforms that were manually updated, we need to restore their original transforms
for prim in cls.MODIFIED_PRIMS:
cls.reset_raw_object_transforms_in_usd(prim)
cls.MODIFIED_PRIMS = set()
class PoseAPI:
"""
This is a singleton class for getting world poses.
Whenever we directly set the pose of a prim, we should call PoseAPI.invalidate().
After that, if we need to access the pose of a prim without stepping physics,
this class will refresh the poses by syncing across USD-fabric-PhysX depending on the flatcache setting.
"""
VALID = False
@classmethod
def invalidate(cls):
cls.VALID = False
@classmethod
def mark_valid(cls):
cls.VALID = True
@classmethod
def _refresh(cls):
if og.sim is not None and not cls.VALID:
# when flatcache is on
if og.sim._physx_fabric_interface:
# no time step is taken here
og.sim._physx_fabric_interface.update(og.sim.get_physics_dt(), og.sim.current_time)
# when flatcache is off
else:
# no time step is taken here
og.sim.psi.fetch_results()
cls.mark_valid()
@classmethod
def get_world_pose(cls, prim_path):
cls._refresh()
position, orientation = lazy.omni.isaac.core.utils.xforms.get_world_pose(prim_path)
return np.array(position), np.array(orientation)[[1, 2, 3, 0]]
@classmethod
def get_world_pose_with_scale(cls, prim_path):
"""
This is used when information about the prim's global scale is needed,
e.g. when converting points in the prim frame to the world frame.
"""
cls._refresh()
return np.array(lazy.omni.isaac.core.utils.xforms._get_world_pose_transform_w_scale(prim_path)).T
def clear():
"""
Clear state tied to singleton classes
"""
PoseAPI.invalidate()
CollisionAPI.clear()
def create_mesh_prim_with_default_xform(primitive_type, prim_path, u_patches=None, v_patches=None, stage=None):
"""
Creates a mesh prim of the specified @primitive_type at the specified @prim_path
Args:
primitive_type (str): Primitive mesh type, should be one of PRIMITIVE_MESH_TYPES to be valid
prim_path (str): Destination prim path to store the mesh prim
u_patches (int or None): If specified, should be an integer that represents how many segments to create in the
u-direction. E.g. 10 means 10 segments (and therefore 11 vertices) will be created.
v_patches (int or None): If specified, should be an integer that represents how many segments to create in the
v-direction. E.g. 10 means 10 segments (and therefore 11 vertices) will be created.
Both u_patches and v_patches need to be specified for them to be effective.
stage (None or Usd.Stage): If specified, stage on which the primitive mesh should be generated. If None, will
use og.sim.stage
"""
MESH_PRIM_TYPE_TO_EVALUATOR_MAPPING = {
"Sphere": lazy.omni.kit.primitive.mesh.evaluators.sphere.SphereEvaluator,
"Disk": lazy.omni.kit.primitive.mesh.evaluators.disk.DiskEvaluator,
"Plane": lazy.omni.kit.primitive.mesh.evaluators.plane.PlaneEvaluator,
"Cylinder": lazy.omni.kit.primitive.mesh.evaluators.cylinder.CylinderEvaluator,
"Torus": lazy.omni.kit.primitive.mesh.evaluators.torus.TorusEvaluator,
"Cone": lazy.omni.kit.primitive.mesh.evaluators.cone.ConeEvaluator,
"Cube": lazy.omni.kit.primitive.mesh.evaluators.cube.CubeEvaluator,
}
assert primitive_type in PRIMITIVE_MESH_TYPES, "Invalid primitive mesh type: {primitive_type}"
evaluator = MESH_PRIM_TYPE_TO_EVALUATOR_MAPPING[primitive_type]
u_backup = lazy.carb.settings.get_settings().get(evaluator.SETTING_U_SCALE)
v_backup = lazy.carb.settings.get_settings().get(evaluator.SETTING_V_SCALE)
hs_backup = lazy.carb.settings.get_settings().get(evaluator.SETTING_OBJECT_HALF_SCALE)
lazy.carb.settings.get_settings().set(evaluator.SETTING_U_SCALE, 1)
lazy.carb.settings.get_settings().set(evaluator.SETTING_V_SCALE, 1)
stage = og.sim.stage if stage is None else stage
# Default half_scale (i.e. half-extent, half_height, radius) is 1.
# TODO (eric): change it to 0.5 once the mesh generator API accepts floating-number HALF_SCALE
# (currently it only accepts integer-number and floors 0.5 into 0).
lazy.carb.settings.get_settings().set(evaluator.SETTING_OBJECT_HALF_SCALE, 1)
kwargs = dict(prim_type=primitive_type, prim_path=prim_path, stage=stage)
if u_patches is not None and v_patches is not None:
kwargs["u_patches"] = u_patches
kwargs["v_patches"] = v_patches
# Import now to avoid too-eager load of Omni classes due to inheritance
from omnigibson.utils.deprecated_utils import CreateMeshPrimWithDefaultXformCommand
CreateMeshPrimWithDefaultXformCommand(**kwargs).do()
lazy.carb.settings.get_settings().set(evaluator.SETTING_U_SCALE, u_backup)
lazy.carb.settings.get_settings().set(evaluator.SETTING_V_SCALE, v_backup)
lazy.carb.settings.get_settings().set(evaluator.SETTING_OBJECT_HALF_SCALE, hs_backup)
def mesh_prim_mesh_to_trimesh_mesh(mesh_prim, include_normals=True, include_texcoord=True):
"""
Generates trimesh mesh from @mesh_prim if mesh_type is "Mesh"
Args:
mesh_prim (Usd.Prim): Mesh prim to convert into trimesh mesh
include_normals (bool): Whether to include the normals in the resulting trimesh or not
include_texcoord (bool): Whether to include the corresponding 2D-texture coordinates in the resulting
trimesh or not
Returns:
trimesh.Trimesh: Generated trimesh mesh
"""
mesh_type = mesh_prim.GetPrimTypeInfo().GetTypeName()
assert mesh_type == "Mesh", f"Expected mesh prim to have type Mesh, got {mesh_type}"
face_vertex_counts = np.array(mesh_prim.GetAttribute("faceVertexCounts").Get())
vertices = np.array(mesh_prim.GetAttribute("points").Get())
face_indices = np.array(mesh_prim.GetAttribute("faceVertexIndices").Get())
faces = []
i = 0
for count in face_vertex_counts:
for j in range(count - 2):
faces.append([face_indices[i], face_indices[i + j + 1], face_indices[i + j + 2]])
i += count
kwargs = dict(vertices=vertices, faces=faces)
if include_normals:
kwargs["vertex_normals"] = np.array(mesh_prim.GetAttribute("normals").Get())
if include_texcoord:
raw_texture = mesh_prim.GetAttribute("primvars:st").Get()
if raw_texture is not None:
kwargs["visual"] = trimesh.visual.TextureVisuals(uv=np.array(raw_texture))
return trimesh.Trimesh(**kwargs)
def mesh_prim_shape_to_trimesh_mesh(mesh_prim):
"""
Generates trimesh mesh from @mesh_prim if mesh_type is "Sphere", "Cube", "Cone" or "Cylinder"
Args:
mesh_prim (Usd.Prim): Mesh prim to convert into trimesh mesh
Returns:
trimesh.Trimesh: Generated trimesh mesh
"""
mesh_type = mesh_prim.GetPrimTypeInfo().GetTypeName()
if mesh_type == "Sphere":
radius = mesh_prim.GetAttribute("radius").Get()
trimesh_mesh = trimesh.creation.icosphere(subdivision=3, radius=radius)
elif mesh_type == "Cube":
extent = mesh_prim.GetAttribute("size").Get()
trimesh_mesh = trimesh.creation.box([extent] * 3)
elif mesh_type == "Cone":
radius = mesh_prim.GetAttribute("radius").Get()
height = mesh_prim.GetAttribute("height").Get()
trimesh_mesh = trimesh.creation.cone(radius=radius, height=height)
# Trimesh cones are centered at the base. We'll move them down by half the height.
transform = trimesh.transformations.translation_matrix([0, 0, -height / 2])
trimesh_mesh.apply_transform(transform)
elif mesh_type == "Cylinder":
radius = mesh_prim.GetAttribute("radius").Get()
height = mesh_prim.GetAttribute("height").Get()
trimesh_mesh = trimesh.creation.cylinder(radius=radius, height=height)
else:
raise ValueError(f"Expected mesh prim to have type Sphere, Cube, Cone or Cylinder, got {mesh_type}")
return trimesh_mesh
def mesh_prim_to_trimesh_mesh(mesh_prim, include_normals=True, include_texcoord=True, world_frame=False):
"""
Generates trimesh mesh from @mesh_prim
Args:
mesh_prim (Usd.Prim): Mesh prim to convert into trimesh mesh
include_normals (bool): Whether to include the normals in the resulting trimesh or not
include_texcoord (bool): Whether to include the corresponding 2D-texture coordinates in the resulting
trimesh or not
world_frame (bool): Whether to convert the mesh to the world frame or not
Returns:
trimesh.Trimesh: Generated trimesh mesh
"""
mesh_type = mesh_prim.GetTypeName()
if mesh_type == "Mesh":
trimesh_mesh = mesh_prim_mesh_to_trimesh_mesh(mesh_prim, include_normals, include_texcoord)
else:
trimesh_mesh = mesh_prim_shape_to_trimesh_mesh(mesh_prim)
if world_frame:
trimesh_mesh.apply_transform(PoseAPI.get_world_pose_with_scale(mesh_prim.GetPath().pathString))
return trimesh_mesh
def sample_mesh_keypoints(mesh_prim, n_keypoints, n_keyfaces, seed=None):
"""
Samples keypoints and keyfaces for mesh @mesh_prim
Args:
mesh_prim (Usd.Prim): Mesh prim to be sampled from
n_keypoints (int): number of (unique) keypoints to randomly sample from @mesh_prim
n_keyfaces (int): number of (unique) keyfaces to randomly sample from @mesh_prim
seed (None or int): If set, sets the random seed for deterministic results
Returns:
2-tuple:
- n-array: (n,) 1D int array representing the randomly sampled point idxs from @mesh_prim.
Note that since this is without replacement, the total length of the array may be less than
@n_keypoints
- None or n-array: 1D int array representing the randomly sampled face idxs from @mesh_prim.
Note that since this is without replacement, the total length of the array may be less than
@n_keyfaces
"""
# Set seed if deterministic
if seed is not None:
np.random.seed(seed)
# Generate trimesh mesh from which to aggregate points
tm = mesh_prim_mesh_to_trimesh_mesh(mesh_prim=mesh_prim, include_normals=False, include_texcoord=False)
n_unique_vertices, n_unique_faces = len(tm.vertices), len(tm.faces)
faces_flat = tm.faces.flatten()
n_vertices = len(faces_flat)
# Sample vertices
unique_vertices = np.unique(faces_flat)
assert len(unique_vertices) == n_unique_vertices
keypoint_idx = np.random.choice(unique_vertices, size=n_keypoints, replace=False) if \
n_unique_vertices > n_keypoints else unique_vertices
# Sample faces
keyface_idx = np.random.choice(n_unique_faces, size=n_keyfaces, replace=False) if \
n_unique_faces > n_keyfaces else np.arange(n_unique_faces)
return keypoint_idx, keyface_idx
def get_mesh_volume_and_com(mesh_prim, world_frame=False):
"""
Computes the volume and center of mass for @mesh_prim
Args:
mesh_prim (Usd.Prim): Mesh prim to compute volume and center of mass for
world_frame (bool): Whether to return the volume and CoM in the world frame
Returns:
Tuple[float, np.array]: Tuple containing the (volume, center_of_mass) in the mesh frame or the world frame
"""
trimesh_mesh = mesh_prim_to_trimesh_mesh(mesh_prim, include_normals=False, include_texcoord=False, world_frame=world_frame)
if trimesh_mesh.is_volume:
volume = trimesh_mesh.volume
com = trimesh_mesh.center_mass
else:
# If the mesh is not a volume, we compute its convex hull and use that instead
try:
trimesh_mesh_convex = trimesh_mesh.convex_hull
volume = trimesh_mesh_convex.volume
com = trimesh_mesh_convex.center_mass
except:
# if convex hull computation fails, it usually means the mesh is degenerated: use trivial values.
volume = 0.0
com = np.zeros(3)
return volume, com
def check_extent_radius_ratio(mesh_prim):
"""
Checks if the min extent in world frame and the extent radius ratio in local frame of @mesh_prim is within the
acceptable range for PhysX GPU acceleration (not too thin, and not too oblong)
Ref: https://github.com/NVIDIA-Omniverse/PhysX/blob/561a0df858d7e48879cdf7eeb54cfe208f660f18/physx/source/geomutils/src/convex/GuConvexMeshData.h#L183-L190
Args:
mesh_prim (Usd.Prim): Mesh prim to check
Returns:
bool: True if the min extent (world) and the extent radius ratio (local frame) is acceptable, False otherwise
"""
mesh_type = mesh_prim.GetPrimTypeInfo().GetTypeName()
# Non-mesh prims are always considered to be within the acceptable range
if mesh_type != "Mesh":
return True
trimesh_mesh_world = mesh_prim_to_trimesh_mesh(mesh_prim, include_normals=False, include_texcoord=False, world_frame=True)
min_extent = trimesh_mesh_world.extents.min()
# If the mesh is too flat in the world frame, omniverse cannot create convex mesh for it
if min_extent < 1e-5:
return False
trimesh_mesh = mesh_prim_to_trimesh_mesh(mesh_prim, include_normals=False, include_texcoord=False, world_frame=False)
if not trimesh_mesh.is_volume:
trimesh_mesh = trimesh_mesh.convex_hull
max_radius = trimesh_mesh.extents.max() / 2.0
min_radius = trimesh.proximity.closest_point(trimesh_mesh, np.array([trimesh_mesh.center_mass]))[1][0]
ratio = max_radius / min_radius
# PhysX requires ratio to be < 100.0. We use 95.0 to be safe.
return ratio < 95.0
def create_primitive_mesh(prim_path, primitive_type, extents=1.0, u_patches=None, v_patches=None, stage=None):
"""
Helper function that generates a UsdGeom.Mesh prim at specified @prim_path of type @primitive_type.
NOTE: Generated mesh prim will, by default, have extents equaling [1, 1, 1]
Args:
prim_path (str): Where the loaded mesh should exist on the stage
primitive_type (str): Type of primitive mesh to create. Should be one of:
{"Cone", "Cube", "Cylinder", "Disk", "Plane", "Sphere", "Torus"}
extents (float or 3-array): Specifies the extents of the generated mesh. Default is 1.0, i.e.:
generated mesh will be in be contained in a [1,1,1] sized bounding box
u_patches (int or None): If specified, should be an integer that represents how many segments to create in the
u-direction. E.g. 10 means 10 segments (and therefore 11 vertices) will be created.
v_patches (int or None): If specified, should be an integer that represents how many segments to create in the
v-direction. E.g. 10 means 10 segments (and therefore 11 vertices) will be created.
Both u_patches and v_patches need to be specified for them to be effective.
stage (None or Usd.Stage): If specified, stage on which the primitive mesh should be generated. If None, will
use og.sim.stage
Returns:
UsdGeom.Mesh: Generated primitive mesh as a prim on the active stage
"""
assert_valid_key(key=primitive_type, valid_keys=PRIMITIVE_MESH_TYPES, name="primitive mesh type")
create_mesh_prim_with_default_xform(primitive_type, prim_path, u_patches=u_patches, v_patches=v_patches, stage=stage)
mesh = lazy.pxr.UsdGeom.Mesh.Define(og.sim.stage if stage is None else stage, prim_path)
# Modify the points and normals attributes so that total extents is the desired
# This means multiplying omni's default by extents * 50.0, as the native mesh generated has extents [-0.01, 0.01]
# -- i.e.: 2cm-wide mesh
extents = np.ones(3) * extents if isinstance(extents, float) else np.array(extents)
for attr in (mesh.GetPointsAttr(), mesh.GetNormalsAttr()):
vals = np.array(attr.Get()).astype(np.float64)
attr.Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*(val * extents * 50.0)) for val in vals]))
mesh.GetExtentAttr().Set(lazy.pxr.Vt.Vec3fArray([lazy.pxr.Gf.Vec3f(*(-extents / 2.0)), lazy.pxr.Gf.Vec3f(*(extents / 2.0))]))
return mesh
def add_asset_to_stage(asset_path, prim_path):
"""
Adds asset file (either USD or OBJ) at @asset_path at the location @prim_path
Args:
asset_path (str): Absolute or relative path to the asset file to load
prim_path (str): Where loaded asset should exist on the stage
Returns:
Usd.Prim: Loaded prim as a USD prim
"""
# Make sure this is actually a supported asset type
assert asset_path[-4:].lower() in {".usd", ".obj"}, f"Cannot load a non-USD or non-OBJ file as a USD prim!"
asset_type = asset_path[-3:]
# Make sure the path exists
assert os.path.exists(asset_path), f"Cannot load {asset_type.upper()} file {asset_path} because it does not exist!"
# Add reference to stage and grab prim
lazy.omni.isaac.core.utils.stage.add_reference_to_stage(usd_path=asset_path, prim_path=prim_path)
prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(prim_path)
# Make sure prim was loaded correctly
assert prim, f"Failed to load {asset_type.upper()} object from path: {asset_path}"
return prim
def get_world_prim():
"""
Returns:
Usd.Prim: Active world prim in the current stage
"""
return lazy.omni.isaac.core.utils.prims.get_prim_at_path("/World")
| 40,894 | Python | 45.209039 | 159 | 0.665208 |
StanfordVL/OmniGibson/omnigibson/utils/config_utils.py | import collections.abc
import json
import os
import numpy as np
import yaml
# File I/O related
def parse_config(config):
"""
Parse OmniGibson config file / object
Args:
config (dict or str): Either config dictionary or path to yaml config to load
Returns:
dict: Parsed config
"""
if isinstance(config, collections.abc.Mapping):
return config
else:
assert isinstance(config, str)
if not os.path.exists(config):
raise IOError(
"config path {} does not exist. Please either pass in a dict or a string that represents the file path to the config yaml.".format(
config
)
)
with open(config, "r") as f:
config_data = yaml.load(f, Loader=yaml.FullLoader)
return config_data
def parse_str_config(config):
"""
Parse string config
Args:
config (str): Yaml cfg as a string to load
Returns:
dict: Parsed config
"""
return yaml.safe_load(config)
def dump_config(config):
"""
Converts YML config into a string
Args:
config (dict): Config to dump
Returns:
str: Config as a string
"""
return yaml.dump(config)
def load_default_config():
"""
Loads a default configuration to use for OmniGibson
Returns:
dict: Loaded default configuration file
"""
from omnigibson import example_config_path
return parse_config(f"{example_config_path}/default_cfg.yaml")
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj) | 1,691 | Python | 20.974026 | 143 | 0.628622 |
StanfordVL/OmniGibson/omnigibson/utils/constants.py | """
Constant Definitions
"""
from functools import cache
import hashlib
import os
import numpy as np
from enum import Enum, IntEnum
import omnigibson as og
from omnigibson.macros import gm
from omnigibson.utils.asset_utils import get_og_avg_category_specs, get_all_object_categories
MAX_INSTANCE_COUNT = np.iinfo(np.uint32).max
MAX_CLASS_COUNT = np.iinfo(np.uint32).max
MAX_VIEWER_SIZE = 2048
class ViewerMode(IntEnum):
NAVIGATION = 0
MANIPULATION = 1
PLANNING = 2
class LightingMode(str, Enum):
# See https://stackoverflow.com/a/58608362 for info on string enums
STAGE = "stage"
CAMERA = "camera"
RIG_DEFAULT = "Default"
RIG_GREY = "Grey Studio"
RIG_COLORED = "Colored Lights"
class SimulatorMode(IntEnum):
GUI = 1
HEADLESS = 2
VR = 3
# Specific methods for applying / removing particles
class ParticleModifyMethod(str, Enum):
ADJACENCY = "adjacency"
PROJECTION = "projection"
# Specific condition types for applying / removing particles
class ParticleModifyCondition(str, Enum):
FUNCTION = "function"
SATURATED = "saturated"
TOGGLEDON = "toggled_on"
GRAVITY = "gravity"
# Structure categories that need to always be loaded for stability purposes
STRUCTURE_CATEGORIES = frozenset({"floors", "walls", "ceilings", "lawn", "driveway", "fence", "roof", "background"})
# Joint friction magic values to assign to objects based on their category
DEFAULT_JOINT_FRICTION = 10.0
SPECIAL_JOINT_FRICTIONS = {
"oven": 30.0,
"dishwasher": 30.0,
"toilet": 3.0,
}
class PrimType(IntEnum):
RIGID = 0
CLOTH = 1
class EmitterType(IntEnum):
FIRE = 0
STEAM = 1
# Valid primitive mesh types
PRIMITIVE_MESH_TYPES = {
"Cone",
"Cube",
"Cylinder",
"Disk",
"Plane",
"Sphere",
"Torus",
}
# Valid geom types
GEOM_TYPES = {"Sphere", "Cube", "Cone", "Cylinder", "Mesh"}
# Valid joint axis
JointAxis = ["X", "Y", "Z"]
# TODO: Clean up this class to be better enum with sanity checks
# Joint types
class JointType:
JOINT = "Joint"
JOINT_FIXED = "FixedJoint"
JOINT_PRISMATIC = "PrismaticJoint"
JOINT_REVOLUTE = "RevoluteJoint"
JOINT_SPHERICAL = "SphericalJoint"
_STR_TO_TYPE = {
"Joint": JOINT,
"FixedJoint": JOINT_FIXED,
"PrismaticJoint": JOINT_PRISMATIC,
"RevoluteJoint": JOINT_REVOLUTE,
"SphericalJoint": JOINT_SPHERICAL,
}
_TYPE_TO_STR = {
JOINT: "Joint",
JOINT_FIXED: "FixedJoint",
JOINT_PRISMATIC: "PrismaticJoint",
JOINT_REVOLUTE: "RevoluteJoint",
JOINT_SPHERICAL: "SphericalJoint",
}
@classmethod
def get_type(cls, str_type):
assert str_type in cls._STR_TO_TYPE, f"Invalid string joint type name received: {str_type}"
return cls._STR_TO_TYPE[str_type]
@classmethod
def get_str(cls, joint_type):
assert joint_type in cls._TYPE_TO_STR, f"Invalid joint type name received: {joint_type}"
return cls._TYPE_TO_STR[joint_type]
@classmethod
def is_valid(cls, joint_type):
return joint_type in cls._TYPE_TO_STR if isinstance(joint_type, cls) else joint_type in cls._STR_TO_TYPE
# Object category specs
AVERAGE_OBJ_DENSITY = 67.0
AVERAGE_CATEGORY_SPECS = get_og_avg_category_specs()
def get_collision_group_mask(groups_to_exclude=[]):
"""Get a collision group mask that has collisions enabled for every group except those in groups_to_exclude."""
collision_mask = ALL_COLLISION_GROUPS_MASK
for group in groups_to_exclude:
collision_mask &= ~(1 << group)
return collision_mask
class OccupancyGridState:
OBSTACLES = 0.0
UNKNOWN = 0.5
FREESPACE = 1.0
MAX_TASK_RELEVANT_OBJS = 50
TASK_RELEVANT_OBJS_OBS_DIM = 9
AGENT_POSE_DIM = 6
# TODO: What the hell is this magic list?? It's not used anywhere
UNDER_OBJECTS = [
"breakfast_table",
"coffee_table",
"console_table",
"desk",
"gaming_table",
"pedestal_table",
"pool_table",
"stand",
"armchair",
"chaise_longue",
"folding_chair",
"highchair",
"rocking_chair",
"straight_chair",
"swivel_chair",
"bench",
]
@cache
def semantic_class_name_to_id():
"""
Get mapping from semantic class name to class id
Returns:
dict: class name to class id
"""
categories = get_all_object_categories()
from omnigibson.systems.system_base import REGISTERED_SYSTEMS
systems = sorted(REGISTERED_SYSTEMS)
all_semantics = sorted(set(categories + systems + ["background", "unlabelled", "object", "light", "agent"]))
# Assign a unique class id to each class name with hashing
class_name_to_class_id = {s: int(hashlib.md5(s.encode()).hexdigest(), 16) % (2 ** 32) for s in all_semantics}
return class_name_to_class_id
@cache
def semantic_class_id_to_name():
"""
Get mapping from semantic class id to class name
Returns:
dict: class id to class name
"""
return {v: k for k, v in semantic_class_name_to_id().items()}
| 5,031 | Python | 23.546341 | 116 | 0.659113 |
StanfordVL/OmniGibson/omnigibson/utils/teleop_utils.py | import numpy as np
import time
from typing import Iterable, Optional, Tuple
import omnigibson as og
import omnigibson.lazy as lazy
import omnigibson.utils.transform_utils as T
from omnigibson.macros import create_module_macros
from omnigibson.objects import USDObject
from omnigibson.robots.robot_base import BaseRobot
try:
from telemoma.human_interface.teleop_core import TeleopAction, TeleopObservation
from telemoma.human_interface.teleop_policy import TeleopPolicy
from telemoma.utils.general_utils import AttrDict
from telemoma.configs.base_config import teleop_config
except ImportError as e:
raise e from ValueError("For teleoperation, install telemoma by running 'pip install telemoma'")
m = create_module_macros(module_path=__file__)
m.movement_speed = 0.2 # the speed of the robot base movement
class TeleopSystem(TeleopPolicy):
"""
Base class for teleop policy
"""
def __init__(self, config: AttrDict, robot: BaseRobot, show_control_marker: bool = False) -> None:
"""
Initializes the Teleoperation System
Args:
config (AttrDict): configuration dictionary
robot (BaseRobot): the robot that will be controlled.
show_control_marker (bool): whether to show a visual marker that indicates the target pose of the control.
"""
super().__init__(config)
self.teleop_action: TeleopAction = TeleopAction()
self.robot_obs: TeleopObservation = TeleopObservation()
self.robot = robot
self.robot_arms = ["left", "right"] if self.robot.n_arms == 2 else ["right"]
# robot parameters
self.movement_speed = m.movement_speed
self.show_control_marker = show_control_marker
self.control_markers = {}
if show_control_marker:
for arm in robot.arm_names:
arm_name = "right" if arm == robot.default_arm else "left"
self.control_markers[arm_name] = USDObject(name=f"target_{arm_name}", usd_path=robot.eef_usd_path[arm],
visual_only=True)
og.sim.import_object(self.control_markers[arm_name])
def get_obs(self) -> TeleopObservation:
"""
Retrieve observation data from robot
Returns:
TeleopObservation: dataclass containing robot observations
"""
robot_obs = TeleopObservation()
base_pos, base_orn = self.robot.get_position_orientation()
robot_obs.base = np.r_[base_pos[:2], [T.quat2euler(base_orn)[2]]]
for i, arm in enumerate(self.robot_arms):
abs_cur_pos, abs_cur_orn = self.robot.eef_links[self.robot.arm_names[self.robot_arms.index(arm)]].get_position_orientation()
rel_cur_pos, rel_cur_orn = T.relative_pose_transform(abs_cur_pos, abs_cur_orn, base_pos, base_orn)
gripper_pos = np.mean(
self.robot.get_joint_positions(normalized=True)[self.robot.gripper_control_idx[self.robot.arm_names[i]]]
)
# if we are grasping, we manually set the gripper position to be at most 0.5
if self.robot.controllers[f"gripper_{self.robot.arm_names[i]}"].is_grasping():
gripper_pos = min(gripper_pos, 0.5)
robot_obs[arm] = np.r_[
rel_cur_pos,
rel_cur_orn,
gripper_pos
]
return robot_obs
def get_action(self, robot_obs: TeleopObservation) -> np.ndarray:
"""
Generate action data from VR input for robot teleoperation
Args:
robot_obs (TeleopObservation): dataclass containing robot observations
Returns:
np.ndarray: array of action data
"""
# get teleop action
self.teleop_action = super().get_action(robot_obs)
# optionally update control marker
if self.show_control_marker:
for arm_name in self.control_markers:
delta_pos, delta_orn = self.teleop_action[arm_name][:3], T.euler2quat(self.teleop_action[arm_name][3:6])
rel_target_pos = robot_obs[arm_name][:3] + delta_pos
rel_target_orn = T.quat_multiply(delta_orn, robot_obs[arm_name][3:7])
base_pos, base_orn = self.robot.get_position_orientation()
target_pos, target_orn = T.pose_transform(base_pos, base_orn, rel_target_pos, rel_target_orn)
self.control_markers[arm_name].set_position_orientation(target_pos, target_orn)
return self.robot.teleop_data_to_action(self.teleop_action)
def reset(self) -> None:
"""
Reset the teleop policy
"""
self.teleop_action = TeleopAction()
self.robot_obs = TeleopObservation()
for interface in self.interfaces.values():
interface.reset_state()
class OVXRSystem(TeleopSystem):
"""
VR Teleoperation System build on top of Omniverse XR extension and TeleMoMa's TeleopSystem
"""
def __init__(
self,
robot: BaseRobot,
show_control_marker: bool = False,
system: str = "SteamVR",
disable_display_output: bool = False,
enable_touchpad_movement: bool = False,
align_anchor_to_robot_base: bool = False,
use_hand_tracking: bool = False,
) -> None:
"""
Initializes the VR system
Args:
robot (BaseRobot): the robot that VR will control.
show_control_marker (bool): whether to show a control marker
system (str): the VR system to use, one of ["OpenXR", "SteamVR"], default is "SteamVR".
disable_display_output (bool): whether we will not display output to the VR headset (only use controller tracking), default is False.
enable_touchpad_movement (bool): whether to enable VR system anchor movement by controller, default is False.
align_anchor_to_robot_base (bool): whether to align VR anchor to robot base, default is False.
use_hand_tracking (bool): whether to use hand tracking instead of controllers, default is False.
show_controller (bool): whether to show the controller model in the scene, default is False.
NOTE: enable_touchpad_movement and align_anchor_to_robot_base cannot be enabled at the same time.
The former is to enable free movement of the VR system (i.e. the user), while the latter is constraining the VR system to the robot pose.
"""
self.raw_data = {}
# enable xr extension
lazy.omni.isaac.core.utils.extensions.enable_extension("omni.kit.xr.profile.vr")
self.xr_device_class = lazy.omni.kit.xr.core.XRDeviceClass
# run super method
super().__init__(teleop_config, robot, show_control_marker)
# we want to further slow down the movement speed if we are using touchpad movement
if enable_touchpad_movement:
self.movement_speed *= 0.3
# get xr core and profile
self.xr_core = lazy.omni.kit.xr.core.XRCore.get_singleton()
self.vr_profile = self.xr_core.get_profile("vr")
self.disable_display_output = disable_display_output
self.enable_touchpad_movement = enable_touchpad_movement
self.align_anchor_to_robot_base = align_anchor_to_robot_base
assert not (self.enable_touchpad_movement and self.align_anchor_to_robot_base), \
"enable_touchpad_movement and align_anchor_to_robot_base cannot be True at the same time!"
# set avatar
if self.show_control_marker:
self.vr_profile.set_avatar(lazy.omni.kit.xr.ui.stage.common.XRAvatarManager.get_singleton().create_avatar("basic_avatar", {}))
else:
self.vr_profile.set_avatar(lazy.omni.kit.xr.ui.stage.common.XRAvatarManager.get_singleton().create_avatar("empty_avatar", {}))
# set anchor mode to be custom anchor
lazy.carb.settings.get_settings().set(self.vr_profile.get_scene_persistent_path() + "anchorMode", "scene origin")
# set vr system
lazy.carb.settings.get_settings().set(self.vr_profile.get_persistent_path() + "system/display", system)
# set display mode
lazy.carb.settings.get_settings().set(
self.vr_profile.get_persistent_path() + "disableDisplayOutput", disable_display_output
)
lazy.carb.settings.get_settings().set('/rtx/rendermode', "RaytracedLighting")
# devices info
self.hmd = None
self.controllers = {}
self.trackers = {}
self.xr2og_orn_offset = np.array([0.5, -0.5, -0.5, -0.5])
self.og2xr_orn_offset = np.array([-0.5, 0.5, 0.5, -0.5])
# setup event subscriptions
self.reset()
self.use_hand_tracking = use_hand_tracking
if use_hand_tracking:
self.raw_data["hand_data"] = {}
self.teleop_action.hand_data = {}
self._hand_tracking_subscription = self.xr_core.get_event_stream().create_subscription_to_pop_by_type(
lazy.omni.kit.xr.core.XRCoreEventType.hand_joints, self._update_hand_tracking_data, name="hand tracking"
)
def xr2og(self, transform: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Apply the orientation offset from the Omniverse XR coordinate system to the OmniGibson coordinate system
Note that we have to transpose the transform matrix because Omniverse uses row-major matrices
while OmniGibson uses column-major matrices
Args:
transform (np.ndarray): the transform matrix in the Omniverse XR coordinate system
Returns:
tuple(np.ndarray, np.ndarray): the position and orientation in the OmniGibson coordinate system
"""
pos, orn = T.mat2pose(np.array(transform).T)
orn = T.quat_multiply(orn, self.xr2og_orn_offset)
return pos, orn
def og2xr(self, pos: np.ndarray, orn: np.ndarray) -> np.ndarray:
"""
Apply the orientation offset from the OmniGibson coordinate system to the Omniverse XR coordinate system
Args:
pos (np.ndarray): the position in the OmniGibson coordinate system
orn (np.ndarray): the orientation in the OmniGibson coordinate system
Returns:
np.ndarray: the transform matrix in the Omniverse XR coordinate system
"""
orn = T.quat_multiply(self.og2xr_orn_offset, orn)
return T.pose2mat((pos, orn)).T.astype(np.float64)
def reset(self) -> None:
"""
Reset the teleop policy
"""
super().reset()
self.raw_data = {}
self.teleop_action.is_valid = {"left": False, "right": False, "head": False}
self.teleop_action.reset = {"left": False, "right": False}
self.teleop_action.head = np.zeros(6)
@property
def is_enabled(self) -> bool:
"""
Checks whether the VR system is enabled
Returns:
bool: whether the VR system is enabled
"""
return self.vr_profile.is_enabled()
def start(self) -> None:
"""
Enabling the VR profile
"""
self.vr_profile.request_enable_profile()
og.sim.step()
assert self.vr_profile.is_enabled(), "[VRSys] VR profile not enabled!"
# We want to make sure the hmd is tracking so that the whole system is ready to go
while True:
print("[VRSys] Waiting for VR headset to become active...")
self._update_devices()
if self.hmd is not None:
break
time.sleep(1)
og.sim.step()
def stop(self) -> None:
"""
disable VR profile
"""
self.xr_core.request_disable_profile()
og.sim.step()
assert not self.vr_profile.is_enabled(), "[VRSys] VR profile not disabled!"
def update(self) -> None:
"""
Steps the VR system and update self.teleop_action
"""
# update raw data
self._update_devices()
self._update_device_transforms()
self._update_button_data()
# Update teleop data based on controller input if not using hand tracking
if not self.use_hand_tracking:
self.teleop_action.base = np.zeros(3)
self.teleop_action.torso = 0.0
# update right hand related info
for arm_name, arm in zip(["left", "right"], self.robot_arms):
if arm in self.controllers:
self.teleop_action[arm_name] = np.concatenate((
self.raw_data["transforms"]["controllers"][arm][0],
T.quat2euler(T.quat_multiply(
self.raw_data["transforms"]["controllers"][arm][1],
self.robot.teleop_rotation_offset[self.robot.arm_names[self.robot_arms.index(arm)]]
)),
[self.raw_data["button_data"][arm]["axis"]["trigger"]]
))
self.teleop_action.is_valid[arm_name] = self._is_valid_transform(self.raw_data["transforms"]["controllers"][arm])
else:
self.teleop_action.is_valid[arm_name] = False
# update base and reset info
if "right" in self.controllers:
self.teleop_action.reset["right"] = self.raw_data["button_data"]["right"]["press"]["grip"]
right_axis = self.raw_data["button_data"]["right"]["axis"]
self.teleop_action.base[0] = right_axis["touchpad_y"] * self.movement_speed
self.teleop_action.torso = -right_axis["touchpad_x"] * self.movement_speed
if "left" in self.controllers:
self.teleop_action.reset["left"] = self.raw_data["button_data"]["left"]["press"]["grip"]
left_axis = self.raw_data["button_data"]["left"]["axis"]
self.teleop_action.base[1] = -left_axis["touchpad_x"] * self.movement_speed
self.teleop_action.base[2] = left_axis["touchpad_y"] * self.movement_speed
# update head related info
self.teleop_action.head = np.r_[self.raw_data["transforms"]["head"][0], T.quat2euler(self.raw_data["transforms"]["head"][1])]
self.teleop_action.is_valid["head"] = self._is_valid_transform(self.raw_data["transforms"]["head"])
# Optionally move anchor
if self.enable_touchpad_movement:
# we use x, y from right controller for 2d movement and y from left controller for z movement
self._move_anchor(pos_offset=np.r_[[self.teleop_action.torso], self.teleop_action.base[[0, 2]]])
if self.align_anchor_to_robot_base:
robot_base_pos, robot_base_orn = self.robot.get_position_orientation()
self.vr_profile.set_virtual_world_anchor_transform(self.og2xr(robot_base_pos, robot_base_orn[[0, 2, 1, 3]]))
def teleop_data_to_action(self) -> np.ndarray:
"""
Generate action data from VR input for robot teleoperation
Returns:
np.ndarray: array of action data
"""
# optionally update control marker
if self.show_control_marker:
self.update_control_marker()
return self.robot.teleop_data_to_action(self.teleop_action)
def reset_transform_mapping(self, arm: str = "right") -> None:
"""
Snap device to the robot end effector (ManipulationRobot only)
Args:
arm(str): name of the arm, one of "left" or "right". Default is "right".
"""
robot_base_orn = self.robot.get_orientation()
robot_eef_pos = self.robot.eef_links[self.robot.arm_names[self.robot_arms.index(arm)]].get_position()
target_transform = self.og2xr(pos=robot_eef_pos, orn=robot_base_orn)
self.vr_profile.set_physical_world_to_world_anchor_transform_to_match_xr_device(target_transform, self.controllers[arm])
def set_initial_transform(self, pos: Iterable[float], orn: Iterable[float]=[0, 0, 0, 1]) -> None:
"""
Function that sets the initial transform of the VR system (w.r.t.) head
Note that stepping the vr system multiple times is necessary here due to a bug in OVXR plugin
Args:
pos(Iterable[float]): initial position of the vr system
orn(Iterable[float]): initial orientation of the vr system
"""
for _ in range(10):
self.update()
og.sim.step()
self.vr_profile.set_physical_world_to_world_anchor_transform_to_match_xr_device(self.og2xr(pos, orn), self.hmd)
def _move_anchor(
self,
pos_offset: Optional[Iterable[float]] = None,
rot_offset: Optional[Iterable[float]] = None
) -> None:
"""
Updates the anchor of the xr system in the virtual world
Args:
pos_offset (Iterable[float]): the position offset to apply to the anchor *in hmd frame*.
rot_offset (Iterable[float]): the rotation offset to apply to the anchor *in hmd frame*.
"""
if pos_offset is not None:
# note that x is forward, y is down, z is left for ovxr, but x is forward, y is left, z is up for og
pos_offset = np.array([-pos_offset[0], pos_offset[2], -pos_offset[1]]).astype(np.float64)
self.vr_profile.add_move_physical_world_relative_to_device(pos_offset)
if rot_offset is not None:
rot_offset = np.array(rot_offset).astype(np.float64)
self.vr_profile.add_rotate_physical_world_around_device(rot_offset)
def _is_valid_transform(self, transform: Tuple[np.ndarray, np.ndarray]) -> bool:
"""
Determine whether the transform is valid (ovxr plugin will return a zero position and rotation if not valid)
"""
return np.any(np.not_equal(transform[0], np.zeros(3))) \
and np.any(np.not_equal(transform[1], self.og2xr_orn_offset))
def _update_devices(self) -> None:
"""
Update the VR device list
"""
for device in self.vr_profile.get_device_list():
if device.get_class() == self.xr_device_class.xrdisplaydevice:
self.hmd = device
elif device.get_class() == self.xr_device_class.xrcontroller:
# we want the first 2 controllers to be corresponding to the left and right hand
d_idx = device.get_index()
controller_name = ["left", "right"][d_idx] if d_idx < 2 else f"controller_{d_idx+1}"
self.controllers[controller_name] = device
elif device.get_class() == self.xr_device_class.xrtracker:
self.trackers[device.get_index()] = device
def _update_device_transforms(self) -> None:
"""
Get the transform matrix of each VR device *in world frame* and store in self.raw_data
"""
transforms = {}
transforms["head"] = self.xr2og(self.hmd.get_virtual_world_pose())
transforms["controllers"] = {}
transforms["trackers"] = {}
for controller_name in self.controllers:
transforms["controllers"][controller_name] = self.xr2og(
self.controllers[controller_name].get_virtual_world_pose())
for tracker_index in self.trackers:
transforms["trackers"][tracker_index] = self.xr2og(self.trackers[tracker_index].get_virtual_world_pose())
self.raw_data["transforms"] = transforms
def _update_button_data(self):
"""
Get the button data for each controller and store in self.raw_data
Returns:
dict: a dictionary of whether each button is pressed or touched, and the axis state for touchpad and joysticks
"""
button_data = {}
for controller_name in self.controllers:
button_data[controller_name] = {}
button_data[controller_name]["press"] = self.controllers[controller_name].get_button_press_state()
button_data[controller_name]["touch"] = self.controllers[controller_name].get_button_touch_state()
button_data[controller_name]["axis"] = self.controllers[controller_name].get_axis_state()
self.raw_data["button_data"] = button_data
def _update_hand_tracking_data(self, e) -> None:
"""
Get hand tracking data, see https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#convention-of-hand-joints for joint indices
Args:
e (carb.events.IEvent): event that contains hand tracking data as payload
"""
e.consume()
data_dict = e.payload
for hand_name, hand in zip(["left, right"], self.robot_arms):
if data_dict[f"joint_count_{hand}"] != 0:
self.teleop_action.is_valid[hand_name] = True
self.raw_data["hand_data"][hand] = {"pos": [], "orn": []}
# hand_joint_matrices is an array of flattened 4x4 transform matrices for the 26 hand markers
hand_joint_matrices = data_dict[f"joint_matrices_{hand}"]
for i in range(26):
# extract the pose from the flattened transform matrix
pos, orn = self.xr2og(np.reshape(hand_joint_matrices[16 * i: 16 * (i + 1)], (4, 4)))
self.raw_data["hand_data"][hand]["pos"].append(pos)
self.raw_data["hand_data"][hand]["orn"].append(orn)
self.teleop_action[hand_name] = np.r_[
self.raw_data["hand_data"][hand]["pos"][0],
T.quat2euler(T.quat_multiply(
self.raw_data["hand_data"][hand]["orn"][0],
self.robot.teleop_rotation_offset[self.robot.arm_names[self.robot_arms.index(hand)]]
)),
[0]
]
# Get each finger joint's rotation angle from hand tracking data
# joint_angles is a 5 x 3 array of joint rotations (from thumb to pinky, from base to tip)
joint_angles = np.zeros((5, 3))
raw_hand_data = self.raw_data["hand_data"][hand]["pos"]
for i in range(5):
for j in range(3):
# get the 3 related joints indices
prev_joint_idx, cur_joint_idx, next_joint_idx = i * 5 + j + 1, i * 5 + j + 2, i * 5 + j + 3
# get the 3 related joints' positions
prev_joint_pos = raw_hand_data[prev_joint_idx]
cur_joint_pos = raw_hand_data[cur_joint_idx]
next_joint_pos = raw_hand_data[next_joint_idx]
# calculate the angle formed by 3 points
v1 = cur_joint_pos - prev_joint_pos
v2 = next_joint_pos - cur_joint_pos
v1 /= np.linalg.norm(v1)
v2 /= np.linalg.norm(v2)
joint_angles[i, j] = np.arccos(v1 @ v2)
self.teleop_action.hand_data[hand_name] = joint_angles
| 23,087 | Python | 50.079646 | 149 | 0.602157 |
StanfordVL/OmniGibson/omnigibson/utils/render_utils.py | """
Set of rendering utility functions when working with Omni
"""
import numpy as np
import omnigibson as og
from omnigibson.prims import EntityPrim, RigidPrim, VisualGeomPrim
from omnigibson.utils.physx_utils import bind_material
import omnigibson.utils.transform_utils as T
import omnigibson.lazy as lazy
def make_glass(prim):
"""
Links the OmniGlass material with EntityPrim, RigidPrim, or VisualGeomPrim @obj, and procedurally generates
the necessary OmniGlass material prim if necessary.
Args:
prim (EntityPrim or RigidPrim or VisualGeomPrim): Desired prim to convert into glass
"""
# Generate the set of visual meshes we'll convert into glass
if isinstance(prim, EntityPrim):
# Grab all visual meshes from all links
visual_meshes = [vm for link in prim.links.values() for vm in link.visual_meshes.values()]
elif isinstance(prim, RigidPrim):
# Grab all visual meshes from the link
visual_meshes = [vm for vm in prim.visual_meshes.values()]
elif isinstance(prim, VisualGeomPrim):
# Just use this visual mesh
visual_meshes = [prim]
else:
raise ValueError(f"Inputted prim must an instance of EntityPrim, RigidPrim, or VisualGeomPrim "
f"in order to be converted into glass!")
# Grab the glass material prim; if it doesn't exist, we create it on the fly
glass_prim_path = "/Looks/OmniGlass"
if not lazy.omni.isaac.core.utils.prims.get_prim_at_path(glass_prim_path):
mtl_created = []
lazy.omni.kit.commands.execute(
"CreateAndBindMdlMaterialFromLibrary",
mdl_name="OmniGlass.mdl",
mtl_name="OmniGlass",
mtl_created_list=mtl_created,
)
# Iterate over all meshes and bind the glass material to the mesh
for vm in visual_meshes:
bind_material(vm.prim_path, material_path=glass_prim_path)
def create_pbr_material(prim_path):
"""
Creates an omni pbr material prim at the specified @prim_path
Args:
prim_path (str): Prim path where the PBR material should be generated
Returns:
Usd.Prim: Generated PBR material prim
"""
# Use DeepWater omni present for rendering water
mtl_created = []
lazy.omni.kit.commands.execute(
"CreateAndBindMdlMaterialFromLibrary",
mdl_name="OmniPBR.mdl",
mtl_name="OmniPBR",
mtl_created_list=mtl_created,
)
material_path = mtl_created[0]
# Move prim to desired location
lazy.omni.kit.commands.execute("MovePrim", path_from=material_path, path_to=prim_path)
# Return generated material
return lazy.omni.isaac.core.utils.prims.get_prim_at_path(material_path)
def create_skylight(intensity=500, color=(1.0, 1.0, 1.0)):
"""
Creates a skylight object with the requested @color
Args:
intensity (float): Intensity of the generated skylight
color (3-array): Desired (R,G,B) color to assign to the skylight
Returns:
LightObject: Generated skylight object
"""
# Avoid circular imports
from omnigibson.objects.light_object import LightObject
light = LightObject(prim_path="/World/skylight", name="skylight", light_type="Dome", intensity=intensity)
og.sim.import_object(light)
light.set_orientation(T.euler2quat([0, 0, -np.pi / 4]))
light_prim = light.light_link.prim
light_prim.GetAttribute("color").Set(lazy.pxr.Gf.Vec3f(*color))
return light
| 3,476 | Python | 35.6 | 111 | 0.682969 |
StanfordVL/OmniGibson/omnigibson/utils/control_utils.py | """
Set of utilities for helping to execute robot control
"""
import omnigibson.lazy as lazy
import numpy as np
from numba import jit
import omnigibson.utils.transform_utils as T
class FKSolver:
"""
Class for thinly wrapping Lula Forward Kinematics solver
"""
def __init__(
self,
robot_description_path,
robot_urdf_path,
):
# Create robot description and kinematics
self.robot_description = lazy.lula.load_robot(robot_description_path, robot_urdf_path)
self.kinematics = self.robot_description.kinematics()
def get_link_poses(
self,
joint_positions,
link_names,
):
"""
Given @joint_positions, get poses of the desired links (specified by @link_names)
Args:
joint positions (n-array): Joint positions in configuration space
link_names (list): List of robot link names we want to specify (e.g. "gripper_link")
Returns:
link_poses (dict): Dictionary mapping each robot link name to its pose
"""
# TODO: Refactor this to go over all links at once
link_poses = {}
for link_name in link_names:
pose3_lula = self.kinematics.pose(joint_positions, link_name)
# get position
link_position = pose3_lula.translation
# get orientation
rotation_lula = pose3_lula.rotation
link_orientation = (
rotation_lula.x(),
rotation_lula.y(),
rotation_lula.z(),
rotation_lula.w(),
)
link_poses[link_name] = (link_position, link_orientation)
return link_poses
class IKSolver:
"""
Class for thinly wrapping Lula IK solver
"""
def __init__(
self,
robot_description_path,
robot_urdf_path,
eef_name,
reset_joint_pos,
):
# Create robot description, kinematics, and config
self.robot_description = lazy.lula.load_robot(robot_description_path, robot_urdf_path)
self.kinematics = self.robot_description.kinematics()
self.config = lazy.lula.CyclicCoordDescentIkConfig()
self.eef_name = eef_name
self.reset_joint_pos = reset_joint_pos
def solve(
self,
target_pos,
target_quat=None,
tolerance_pos=0.002,
tolerance_quat=0.01,
weight_pos=1.0,
weight_quat=0.05,
max_iterations=150,
initial_joint_pos=None,
):
"""
Backs out joint positions to achieve desired @target_pos and @target_quat
Args:
target_pos (3-array): desired (x,y,z) local target cartesian position in robot's base coordinate frame
target_quat (4-array or None): If specified, desired (x,y,z,w) local target quaternion orientation in
robot's base coordinate frame. If None, IK will be position-only (will override settings such that
orientation's tolerance is very high and weight is 0)
tolerance_pos (float): Maximum position error (L2-norm) for a successful IK solution
tolerance_quat (float): Maximum orientation error (per-axis L2-norm) for a successful IK solution
weight_pos (float): Weight for the relative importance of position error during CCD
weight_quat (float): Weight for the relative importance of position error during CCD
max_iterations (int): Number of iterations used for each cyclic coordinate descent.
initial_joint_pos (None or n-array): If specified, will set the initial cspace seed when solving for joint
positions. Otherwise, will use self.reset_joint_pos
Returns:
None or n-array: Joint positions for reaching desired target_pos and target_quat, otherwise None if no
solution was found
"""
pos = np.array(target_pos, dtype=np.float64).reshape(3, 1)
rot = np.array(T.quat2mat(np.array([0, 0, 0, 1.0]) if target_quat is None else target_quat), dtype=np.float64)
ik_target_pose = lazy.lula.Pose3(lazy.lula.Rotation3(rot), pos)
# Set the cspace seed and tolerance
initial_joint_pos = self.reset_joint_pos if initial_joint_pos is None else np.array(initial_joint_pos)
self.config.cspace_seeds = [initial_joint_pos]
self.config.position_tolerance = tolerance_pos
self.config.orientation_tolerance = 100.0 if target_quat is None else tolerance_quat
self.config.ccd_position_weight = weight_pos
self.config.ccd_orientation_weight = 0.0 if target_quat is None else weight_quat
self.config.max_num_descents = max_iterations
# Compute target joint positions
ik_results = lazy.lula.compute_ik_ccd(self.kinematics, ik_target_pose, self.eef_name, self.config)
if ik_results.success:
return np.array(ik_results.cspace_position)
else:
return None
@jit(nopython=True)
def orientation_error(desired, current):
"""
This function calculates a 3-dimensional orientation error vector for use in the
impedance controller. It does this by computing the delta rotation between the
inputs and converting that rotation to exponential coordinates (axis-angle
representation, where the 3d vector is axis * angle).
See https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation for more information.
Optimized function to determine orientation error from matrices
Args:
desired (tensor): (..., 3, 3) where final two dims are 2d array representing target orientation matrix
current (tensor): (..., 3, 3) where final two dims are 2d array representing current orientation matrix
Returns:
tensor: (..., 3) where final dim is (ax, ay, az) axis-angle representing orientation error
"""
# convert input shapes
input_shape = desired.shape[:-2]
desired = desired.reshape(-1, 3, 3)
current = current.reshape(-1, 3, 3)
# grab relevant info
rc1 = current[:, :, 0]
rc2 = current[:, :, 1]
rc3 = current[:, :, 2]
rd1 = desired[:, :, 0]
rd2 = desired[:, :, 1]
rd3 = desired[:, :, 2]
error = 0.5 * (np.cross(rc1, rd1) + np.cross(rc2, rd2) + np.cross(rc3, rd3))
# Reshape
error = error.reshape(*input_shape, 3)
return error
| 6,400 | Python | 37.793939 | 118 | 0.634844 |
StanfordVL/OmniGibson/omnigibson/utils/ui_utils.py | """
Helper classes and functions for streamlining user interactions
"""
import contextlib
import logging
import numpy as np
import sys
import datetime
from pathlib import Path
from PIL import Image
from termcolor import colored
import omnigibson as og
from omnigibson.macros import gm
import omnigibson.utils.transform_utils as T
import omnigibson.lazy as lazy
from scipy.spatial.transform import Rotation as R
from scipy.interpolate import CubicSpline
from scipy.integrate import quad
import imageio
from IPython import embed
def print_icon():
raw_texts = [
# Lgrey, grey, lgrey, grey, red, lgrey, red
(" ___________", "", "", "", "", "", "_"),
(" / ", "", "", "", "", "", "/ \\"),
(" / ", "", "", "", "/ /", "__", ""),
(" / ", "", "", "", "", "", "/ / /\\"),
(" /", "__________", "", "", "/ /", "__", "/ \\"),
(" ", "\\ _____ ", "", "", "\\ \\", "__", "\\ /"),
(" ", "\\ \\ ", "/ ", "\\ ", "", "", "\\ \\_/ /"),
(" ", "\\ \\", "/", "___\\ ", "", "", "\\ /"),
(" ", "\\__________", "", "", "", "", "\\_/ "),
]
for (lgrey_text0, grey_text0, lgrey_text1, grey_text1, red_text0, lgrey_text2, red_text1) in raw_texts:
lgrey_text0 = colored(lgrey_text0, "light_grey", attrs=["bold"])
grey_text0 = colored(grey_text0, "light_grey", attrs=["bold", "dark"])
lgrey_text1 = colored(lgrey_text1, "light_grey", attrs=["bold"])
grey_text1 = colored(grey_text1, "light_grey", attrs=["bold", "dark"])
red_text0 = colored(red_text0, "light_red", attrs=["bold"])
lgrey_text2 = colored(lgrey_text2, "light_grey", attrs=["bold"])
red_text1 = colored(red_text1, "light_red", attrs=["bold"])
print(lgrey_text0 + grey_text0 + lgrey_text1 + grey_text1 + red_text0 + lgrey_text2 + red_text1)
def print_logo():
raw_texts = [
(" ___ _", " ____ _ _ "),
(" / _ \ _ __ ___ _ __ (_)", "/ ___(_) |__ ___ ___ _ __ "),
(" | | | | '_ ` _ \| '_ \| |", " | _| | '_ \/ __|/ _ \| '_ \ "),
(" | |_| | | | | | | | | | |", " |_| | | |_) \__ \ (_) | | | |"),
(" \___/|_| |_| |_|_| |_|_|", "\____|_|_.__/|___/\___/|_| |_|"),
]
for (grey_text, red_text) in raw_texts:
grey_text = colored(grey_text, "light_grey", attrs=["bold", "dark"])
red_text = colored(red_text, "light_red", attrs=["bold"])
print(grey_text + red_text)
def logo_small():
grey_text = colored("Omni", "light_grey", attrs=["bold", "dark"])
red_text = colored("Gibson", "light_red", attrs=["bold"])
return grey_text + red_text
def dock_window(space, name, location, ratio=0.5):
"""
Method for docking a specific GUI window in a specified location within the workspace
Args:
space (WindowHandle): Handle to the docking space to dock the window specified by @name
name (str): Name of a window to dock
location (omni.ui.DockPosition): docking position for placing the window specified by @name
ratio (float): Ratio when splitting the docking space between the pre-existing and newly added window
Returns:
WindowHandle: Handle to the docking space that the window specified by @name was placed in
"""
window = lazy.omni.ui.Workspace.get_window(name)
if window and space:
window.dock_in(space, location, ratio=ratio)
return window
class KeyboardEventHandler:
"""
Simple singleton class for handing keyboard events
"""
# Global keyboard callbacks
KEYBOARD_CALLBACKS = dict()
# ID assigned to meta callback method for this class
_CALLBACK_ID = None
def __init__(self):
raise ValueError("Cannot create an instance of keyboard event handler!")
@classmethod
def initialize(cls):
"""
Hook up a meta function callback to the omni backend
"""
appwindow = lazy.omni.appwindow.get_default_app_window()
input_interface = lazy.carb.input.acquire_input_interface()
keyboard = appwindow.get_keyboard()
cls._CALLBACK_ID = input_interface.subscribe_to_keyboard_events(keyboard, cls._meta_callback)
@classmethod
def reset(cls):
"""
Resets this callback interface by removing all current callback functions
"""
appwindow = lazy.omni.appwindow.get_default_app_window()
input_interface = lazy.carb.input.acquire_input_interface()
keyboard = appwindow.get_keyboard()
input_interface.unsubscribe_to_keyboard_events(keyboard, cls._CALLBACK_ID)
cls.KEYBOARD_CALLBACKS = dict()
cls._CALLBACK_ID = None
@classmethod
def add_keyboard_callback(cls, key, callback_fn):
"""
Registers a keyboard callback function with omni, mapping a keypress from @key to run the callback_function
@callback_fn
Args:
key (carb.input.KeyboardInput): key to associate with the callback
callback_fn (function): Callback function to call if the key @key is pressed or repeated. Note that this
function's signature should be:
callback_fn() --> None
"""
# Initialize the interface if not initialized yet
if cls._CALLBACK_ID is None:
cls.initialize()
# Add the callback
cls.KEYBOARD_CALLBACKS[key] = callback_fn
@classmethod
def _meta_callback(cls, event, *args, **kwargs):
"""
Meta callback function that is hooked up to omni's backend
"""
# Check if we've received a key press or repeat
if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS \
or event.type == lazy.carb.input.KeyboardEventType.KEY_REPEAT:
# Run the specific callback
cls.KEYBOARD_CALLBACKS.get(event.input, lambda: None)()
# Always return True
return True
@contextlib.contextmanager
def suppress_omni_log(channels):
"""
A context scope for temporarily suppressing logging for certain omni channels.
Args:
channels (None or list of str): Logging channel(s) to suppress. If None, will globally disable logger
"""
# Record the state to restore to after the context exists
log = lazy.omni.log.get_log()
if gm.DEBUG:
# Do nothing
pass
elif channels is None:
# Globally disable log
log.enabled = False
else:
# For some reason, all enabled states always return False even if the logging is clearly enabled for the
# given channel, so we assume all channels are enabled
# We do, however, check what behavior was assigned to this channel, since we force an override during this context
channel_behavior = {channel: log.get_channel_enabled(channel)[2] for channel in channels}
# Suppress the channels
for channel in channels:
log.set_channel_enabled(channel, False, lazy.omni.log.SettingBehavior.OVERRIDE)
yield
if gm.DEBUG:
# Do nothing
pass
elif channels is None:
# Globally re-enable log
log.enabled = True
else:
# Unsuppress the channels
for channel in channels:
log.set_channel_enabled(channel, True, channel_behavior[channel])
@contextlib.contextmanager
def suppress_loggers(logger_names):
"""
A context scope for temporarily suppressing logging for certain omni channels.
Args:
logger_names (list of str): Logger name(s) whose corresponding loggers should be suppressed
"""
if not gm.DEBUG:
# Store prior states so we can restore them after this context exits
logger_levels = {name: logging.getLogger(name).getEffectiveLevel() for name in logger_names}
# Suppress the loggers (only output fatal messages)
for name in logger_names:
logging.getLogger(name).setLevel(logging.FATAL)
yield
if not gm.DEBUG:
# Unsuppress the loggers
for name in logger_names:
logging.getLogger(name).setLevel(logger_levels[name])
def create_module_logger(module_name):
"""
Creates and returns a logger for logging statements from the module represented by @module_name
Args:
module_name (str): Module to create the logger for. Should be the module's `__name__` variable
Returns:
Logger: Created logger for the module
"""
return logging.getLogger(module_name)
def disclaimer(msg):
"""
Prints a disclaimer message, i.e.: "We know this doesn't work; it's an omni issue; we expect it to be fixed in the
next release!
"""
if gm.SHOW_DISCLAIMERS:
print("****** DISCLAIMER ******")
print("Isaac Sim / Omniverse has some significant limitations and bugs in its current release.")
print("This message has popped up because a potential feature in OmniGibson relies upon a feature in Omniverse that "
"is yet to be released publically. Currently, the expected behavior may not be fully functional, but "
"should be resolved by the next Isaac Sim release.")
print(f"Exact Limitation: {msg}")
print("************************")
def debug_breakpoint(msg):
og.log.error(msg)
embed()
def choose_from_options(options, name, random_selection=False):
"""
Prints out options from a list, and returns the requested option.
Args:
options (dict or list): options to choose from. If dict, the value entries are assumed to be docstrings
explaining the individual options
name (str): name of the options
random_selection (bool): if the selection is random (for automatic demo execution). Default False
Returns:
str: Requested option
"""
# Select robot
print("\nHere is a list of available {}s:\n".format(name))
for k, option in enumerate(options):
docstring = ": {}".format(options[option]) if isinstance(options, dict) else ""
print("[{}] {}{}".format(k + 1, option, docstring))
print()
if not random_selection:
try:
s = input("Choose a {} (enter a number from 1 to {}): ".format(name, len(options)))
# parse input into a number within range
k = min(max(int(s), 1), len(options)) - 1
except ValueError:
k = 0
print("Input is not valid. Use {} by default.".format(list(options)[k]))
else:
k = np.random.choice(range(len(options)))
# Return requested option
return list(options)[k]
class CameraMover:
"""
A helper class for manipulating a camera via the keyboard. Utilizes carb keyboard callbacks to move
the camera around.
Args:
cam (VisionSensor): The camera vision sensor to manipulate via the keyboard
delta (float): Change (m) per keypress when moving the camera
save_dir (str): Absolute path to where recorded images should be stored. Default is <OMNIGIBSON_PATH>/imgs
"""
def __init__(self, cam, delta=0.25, save_dir=None):
if save_dir is None:
save_dir = f"{og.root_path}/../images"
self.cam = cam
self.delta = delta
self.light_val = gm.FORCE_LIGHT_INTENSITY
self.save_dir = save_dir
self._appwindow = lazy.omni.appwindow.get_default_app_window()
self._input = lazy.carb.input.acquire_input_interface()
self._keyboard = self._appwindow.get_keyboard()
self._sub_keyboard = self._input.subscribe_to_keyboard_events(self._keyboard, self._sub_keyboard_event)
def clear(self):
"""
Clears this camera mover. After this is called, the camera mover cannot be used.
"""
self._input.unsubscribe_to_keyboard_events(self._keyboard, self._sub_keyboard)
def set_save_dir(self, save_dir):
"""
Sets the absolute path corresponding to the image directory where recorded images from this CameraMover
should be saved
Args:
save_dir (str): Absolute path to where recorded images should be stored
"""
self.save_dir = save_dir
def change_light(self, delta):
self.light_val += delta
self.set_lights(self.light_val)
def set_lights(self, intensity):
world = lazy.omni.isaac.core.utils.prims.get_prim_at_path("/World")
for prim in world.GetChildren():
for prim_child in prim.GetChildren():
for prim_child_child in prim_child.GetChildren():
if "Light" in prim_child_child.GetPrimTypeInfo().GetTypeName():
prim_child_child.GetAttribute("intensity").Set(intensity)
def print_info(self):
"""
Prints keyboard command info out to the user
"""
print("*" * 40)
print("CameraMover! Commands:")
print()
print(f"\t Right Click + Drag: Rotate camera")
print(f"\t W / S : Move camera forward / backward")
print(f"\t A / D : Move camera left / right")
print(f"\t T / G : Move camera up / down")
print(f"\t 9 / 0 : Increase / decrease the lights")
print(f"\t P : Print current camera pose")
print(f"\t O: Save the current camera view as an image")
def print_cam_pose(self):
"""
Prints out the camera pose as (position, quaternion) in the world frame
"""
print(f"cam pose: {self.cam.get_position_orientation()}")
def get_image(self):
"""
Helper function for quickly grabbing the currently viewed RGB image
Returns:
np.array: (H, W, 3) sized RGB image array
"""
return self.cam.get_obs()[0]["rgb"][:, :, :-1]
def record_image(self, fpath=None):
"""
Saves the currently viewed image and writes it to disk
Args:
fpath (None or str): If specified, the absolute fpath to the image save location. Default is located in
self.save_dir
"""
og.log.info("Recording image...")
# Use default fpath if not specified
if fpath is None:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
fpath = f"{self.save_dir}/og_{timestamp}.png"
# Make sure save path directory exists, and then save the image to that location
Path(Path(fpath).parent).mkdir(parents=True, exist_ok=True)
Image.fromarray(self.get_image()).save(fpath)
og.log.info(f"Saved current viewer camera image to {fpath}.")
def record_trajectory(self, poses, fps, steps_per_frame=1, fpath=None):
"""
Moves the viewer camera through the poses specified by @poses and records the resulting trajectory to an mp4
video file on disk.
Args:
poses (list of 2-tuple): List of global (position, quaternion) values to set the viewer camera to defining
this trajectory
fps (int): Frames per second when recording this video
steps_per_frame (int): How many sim steps should occur between each frame being recorded. Minimum and
default is 1.
fpath (None or str): If specified, the absolute fpath to the video save location. Default is located in
self.save_dir
"""
og.log.info("Recording trajectory...")
# Use default fpath if not specified
if fpath is None:
timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
fpath = f"{self.save_dir}/og_{timestamp}.mp4"
# Make sure save path directory exists, and then create the video writer
Path(Path(fpath).parent).mkdir(parents=True, exist_ok=True)
video_writer = imageio.get_writer(fpath, fps=fps)
# Iterate through all desired poses, and record the trajectory
for i, (pos, quat) in enumerate(poses):
self.cam.set_position_orientation(position=pos, orientation=quat)
og.sim.step()
if i % steps_per_frame == 0:
video_writer.append_data(self.get_image())
# Close writer
video_writer.close()
og.log.info(f"Saved camera trajectory video to {fpath}.")
def record_trajectory_from_waypoints(self, waypoints, per_step_distance, fps, steps_per_frame=1, fpath=None):
"""
Moves the viewer camera through the waypoints specified by @waypoints and records the resulting trajectory to
an mp4 video file on disk.
Args:
waypoints (np.array): (n, 3) global position waypoint values to set the viewer camera to defining this trajectory
per_step_distance (float): How much distance (in m) should be approximately covered per trajectory step.
This will determine the path length between individual waypoints
fps (int): Frames per second when recording this video
steps_per_frame (int): How many sim steps should occur between each frame being recorded. Minimum and
default is 1.
fpath (None or str): If specified, the absolute fpath to the video save location. Default is located in
self.save_dir
"""
# Create splines and their derivatives
n_waypoints = len(waypoints)
if n_waypoints < 3:
og.log.error("Cannot generate trajectory from waypoints with less than 3 waypoints!")
return
splines = [CubicSpline(range(n_waypoints), waypoints[:, i], bc_type='clamped') for i in range(3)]
dsplines = [spline.derivative() for spline in splines]
# Function help get arc derivative
def arc_derivative(u):
return np.sqrt(np.sum([dspline(u) ** 2 for dspline in dsplines]))
# Function to help get interpolated positions
def get_interpolated_positions(step):
assert step < n_waypoints - 1
dist = quad(func=arc_derivative, a=step, b=step + 1)[0]
path_length = int(dist / per_step_distance)
interpolated_points = np.zeros((path_length, 3))
for i in range(path_length):
curr_step = step + (i / path_length)
interpolated_points[i, :] = np.array([spline(curr_step) for spline in splines])
return interpolated_points
# Iterate over all waypoints and infer the resulting trajectory, recording the resulting poses
poses = []
for i in range(n_waypoints - 1):
positions = get_interpolated_positions(step=i)
for j in range(len(positions) - 1):
# Get direction vector from the current to the following point
direction = positions[j + 1] - positions[j]
direction = direction / np.linalg.norm(direction)
# Infer tilt and pan angles from this direction
xy_direction = direction[:2] / np.linalg.norm(direction[:2])
z = direction[2]
pan_angle = np.arctan2(-xy_direction[0], xy_direction[1])
tilt_angle = np.arcsin(z)
# Infer global quat orientation from these angles
quat = T.euler2quat([np.pi / 2 - tilt_angle, 0.0, pan_angle])
poses.append([positions[j], quat])
# Record the generated trajectory
self.record_trajectory(poses=poses, fps=fps, steps_per_frame=steps_per_frame, fpath=fpath)
def set_delta(self, delta):
"""
Sets the delta value (how much the camera moves with each keypress) for this CameraMover
Args:
delta (float): Change (m) per keypress when moving the camera
"""
self.delta = delta
def set_cam(self, cam):
"""
Sets the active camera sensor for this CameraMover
Args:
cam (VisionSensor): The camera vision sensor to manipulate via the keyboard
"""
self.cam = cam
@property
def input_to_function(self):
"""
Returns:
dict: Mapping from relevant keypresses to corresponding function call to use
"""
return {
lazy.carb.input.KeyboardInput.O: lambda: self.record_image(fpath=None),
lazy.carb.input.KeyboardInput.P: lambda: self.print_cam_pose(),
lazy.carb.input.KeyboardInput.KEY_9: lambda: self.change_light(delta=-2e4),
lazy.carb.input.KeyboardInput.KEY_0: lambda: self.change_light(delta=2e4),
}
@property
def input_to_command(self):
"""
Returns:
dict: Mapping from relevant keypresses to corresponding delta command to apply to the camera pose
"""
return {
lazy.carb.input.KeyboardInput.D: np.array([self.delta, 0, 0]),
lazy.carb.input.KeyboardInput.A: np.array([-self.delta, 0, 0]),
lazy.carb.input.KeyboardInput.W: np.array([0, 0, -self.delta]),
lazy.carb.input.KeyboardInput.S: np.array([0, 0, self.delta]),
lazy.carb.input.KeyboardInput.T: np.array([0, self.delta, 0]),
lazy.carb.input.KeyboardInput.G: np.array([0, -self.delta, 0]),
}
def _sub_keyboard_event(self, event, *args, **kwargs):
"""
Handle keyboard events. Note: The signature is pulled directly from omni.
Args:
event (int): keyboard event type
"""
if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS \
or event.type == lazy.carb.input.KeyboardEventType.KEY_REPEAT:
if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS and event.input in self.input_to_function:
self.input_to_function[event.input]()
else:
command = self.input_to_command.get(event.input, None)
if command is not None:
# Convert to world frame to move the camera
transform = T.quat2mat(self.cam.get_orientation())
delta_pos_global = transform @ command
self.cam.set_position(self.cam.get_position() + delta_pos_global)
return True
class KeyboardRobotController:
"""
Simple class for controlling OmniGibson robots using keyboard commands
"""
def __init__(self, robot):
"""
Args:
robot (BaseRobot): robot to control
"""
# Store relevant info from robot
self.robot = robot
self.action_dim = robot.action_dim
self.controller_info = dict()
self.joint_idx_to_controller = dict()
idx = 0
for name, controller in robot._controllers.items():
self.controller_info[name] = {
"name": type(controller).__name__,
"start_idx": idx,
"dofs": controller.dof_idx,
"command_dim": controller.command_dim,
}
idx += controller.command_dim
for i in controller.dof_idx:
self.joint_idx_to_controller[i] = controller
# Other persistent variables we need to keep track of
self.joint_names = [name for name in robot.joints.keys()] # Ordered list of joint names belonging to the robot
self.joint_types = [joint.joint_type for joint in robot.joints.values()] # Ordered list of joint types
self.joint_command_idx = None # Indices of joints being directly controlled in the action array
self.joint_control_idx = None # Indices of joints being directly controlled in the actual joint array
self.active_joint_command_idx_idx = 0 # Which index within the joint_command_idx variable is being controlled by the user
self.current_joint = -1 # Active joint being controlled for joint control
self.ik_arms = [] # List of arm controller names to be controlled by IK
self.active_arm_idx = 0 # Which index within self.ik_arms is actively being controlled (only relevant for IK)
self.binary_grippers = [] # Grippers being controlled using multi-finger binary controller
self.active_gripper_idx = 0 # Which index within self.binary_grippers is actively being controlled
self.gripper_direction = None # Flips between -1 and 1, per arm controlled by multi-finger binary control
self.persistent_gripper_action = None # Persistent gripper commands, per arm controlled by multi-finger binary control
# i.e.: if using binary gripper control and when no keypress is active, the gripper action should still the last executed gripper action
self.keypress_mapping = None # Maps omni keybindings to information for controlling various parts of the robot
self.current_keypress = None # Current key that is being pressed
self.active_action = None # Current action information based on the current keypress
self.toggling_gripper = False # Whether we should toggle the gripper during the next action
self.custom_keymapping = None # Dictionary mapping custom keys to custom callback functions / info
# Populate the keypress mapping dictionary
self.populate_keypress_mapping()
# Register the keyboard callback function
self.register_keyboard_handler()
def register_keyboard_handler(self):
"""
Sets up the keyboard callback functionality with omniverse
"""
appwindow = lazy.omni.appwindow.get_default_app_window()
input_interface = lazy.carb.input.acquire_input_interface()
keyboard = appwindow.get_keyboard()
sub_keyboard = input_interface.subscribe_to_keyboard_events(keyboard, self.keyboard_event_handler)
def register_custom_keymapping(self, key, description, callback_fn):
"""
Register a custom keymapping with corresponding callback function for this keyboard controller.
Note that this will automatically override any pre-existing callback that existed for that key.
Args:
key (carb.input.KeyboardInput): Key to map to callback function
description (str): Description for the callback function
callback_fn (function): Callback function, should have signature:
callback_fn() -> None
"""
self.custom_keymapping[key] = {"description": description, "callback": callback_fn}
def generate_ik_keypress_mapping(self, controller_info):
"""
Generates a dictionary for keypress mappings for IK control, based on the inputted @controller_info
Args:
controller_info (dict): Dictionary of controller information for the specific robot arm to control
with IK
Returns:
dict: Populated keypress mappings for IK to control the specified controller
"""
mapping = {}
mapping[lazy.carb.input.KeyboardInput.UP] = {"idx": controller_info["start_idx"] + 0, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.DOWN] = {"idx": controller_info["start_idx"] + 0, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.RIGHT] = {"idx": controller_info["start_idx"] + 1, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.LEFT] = {"idx": controller_info["start_idx"] + 1, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.P] = {"idx": controller_info["start_idx"] + 2, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.SEMICOLON] = {"idx": controller_info["start_idx"] + 2, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.N] = {"idx": controller_info["start_idx"] + 3, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.B] = {"idx": controller_info["start_idx"] + 3, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.O] = {"idx": controller_info["start_idx"] + 4, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.U] = {"idx": controller_info["start_idx"] + 4, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.V] = {"idx": controller_info["start_idx"] + 5, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.C] = {"idx": controller_info["start_idx"] + 5, "val": -0.5}
return mapping
def generate_osc_keypress_mapping(self, controller_info):
"""
Generates a dictionary for keypress mappings for OSC control, based on the inputted @controller_info
Args:
controller_info (dict): Dictionary of controller information for the specific robot arm to control
with OSC
Returns:
dict: Populated keypress mappings for IK to control the specified controller
"""
mapping = {}
mapping[lazy.carb.input.KeyboardInput.UP] = {"idx": controller_info["start_idx"] + 0, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.DOWN] = {"idx": controller_info["start_idx"] + 0, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.RIGHT] = {"idx": controller_info["start_idx"] + 1, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.LEFT] = {"idx": controller_info["start_idx"] + 1, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.P] = {"idx": controller_info["start_idx"] + 2, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.SEMICOLON] = {"idx": controller_info["start_idx"] + 2, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.N] = {"idx": controller_info["start_idx"] + 3, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.B] = {"idx": controller_info["start_idx"] + 3, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.O] = {"idx": controller_info["start_idx"] + 4, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.U] = {"idx": controller_info["start_idx"] + 4, "val": -0.5}
mapping[lazy.carb.input.KeyboardInput.V] = {"idx": controller_info["start_idx"] + 5, "val": 0.5}
mapping[lazy.carb.input.KeyboardInput.C] = {"idx": controller_info["start_idx"] + 5, "val": -0.5}
return mapping
def populate_keypress_mapping(self):
"""
Populates the mapping @self.keypress_mapping, which maps keypresses to action info:
keypress:
idx: <int>
val: <float>
"""
self.keypress_mapping = {}
self.joint_command_idx = []
self.joint_control_idx = []
self.gripper_direction = {}
self.persistent_gripper_action = {}
self.custom_keymapping = {}
# Add mapping for joint control directions (no index because these are inferred at runtime)
self.keypress_mapping[lazy.carb.input.KeyboardInput.RIGHT_BRACKET] = {"idx": None, "val": 0.1}
self.keypress_mapping[lazy.carb.input.KeyboardInput.LEFT_BRACKET] = {"idx": None, "val": -0.1}
# Iterate over all controller info and populate mapping
for component, info in self.controller_info.items():
if info["name"] == "JointController":
for i in range(info["command_dim"]):
cmd_idx = info["start_idx"] + i
self.joint_command_idx.append(cmd_idx)
self.joint_control_idx += info["dofs"].tolist()
elif info["name"] == "DifferentialDriveController":
self.keypress_mapping[lazy.carb.input.KeyboardInput.I] = {"idx": info["start_idx"] + 0, "val": 0.4}
self.keypress_mapping[lazy.carb.input.KeyboardInput.K] = {"idx": info["start_idx"] + 0, "val": -0.4}
self.keypress_mapping[lazy.carb.input.KeyboardInput.L] = {"idx": info["start_idx"] + 1, "val": -0.2}
self.keypress_mapping[lazy.carb.input.KeyboardInput.J] = {"idx": info["start_idx"] + 1, "val": 0.2}
elif info["name"] == "InverseKinematicsController":
self.ik_arms.append(component)
self.keypress_mapping.update(self.generate_ik_keypress_mapping(controller_info=info))
elif info["name"] == "OperationalSpaceController":
self.ik_arms.append(component)
self.keypress_mapping.update(self.generate_osc_keypress_mapping(controller_info=info))
elif info["name"] == "MultiFingerGripperController":
if info["command_dim"] > 1:
for i in range(info["command_dim"]):
cmd_idx = info["start_idx"] + i
self.joint_command_idx.append(cmd_idx)
self.joint_control_idx += info["dofs"].tolist()
else:
self.keypress_mapping[lazy.carb.input.KeyboardInput.T] = {"idx": info["start_idx"], "val": 1.0}
self.gripper_direction[component] = 1.0
self.persistent_gripper_action[component] = 1.0
self.binary_grippers.append(component)
elif info["name"] == "NullJointController":
# We won't send actions if using a null gripper controller
self.keypress_mapping[lazy.carb.input.KeyboardInput.T] = {"idx": None, "val": None}
else:
raise ValueError("Unknown controller name received: {}".format(info["name"]))
def keyboard_event_handler(self, event, *args, **kwargs):
# Check if we've received a key press or repeat
if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS \
or event.type == lazy.carb.input.KeyboardEventType.KEY_REPEAT:
# Handle special cases
if event.input in {lazy.carb.input.KeyboardInput.KEY_1, lazy.carb.input.KeyboardInput.KEY_2} and len(self.joint_control_idx) > 1:
# Update joint and print out new joint being controlled
self.active_joint_command_idx_idx = max(0, self.active_joint_command_idx_idx - 1) \
if event.input == lazy.carb.input.KeyboardInput.KEY_1 \
else min(len(self.joint_control_idx) - 1, self.active_joint_command_idx_idx + 1)
print(f"Now controlling joint {self.joint_names[self.joint_control_idx[self.active_joint_command_idx_idx]]}")
elif event.input in {lazy.carb.input.KeyboardInput.KEY_3, lazy.carb.input.KeyboardInput.KEY_4} and len(self.ik_arms) > 1:
# Update arm, update keypress mapping, and print out new arm being controlled
self.active_arm_idx = max(0, self.active_arm_idx - 1) \
if event.input == lazy.carb.input.KeyboardInput.KEY_3 \
else min(len(self.ik_arms) - 1, self.active_arm_idx + 1)
new_arm = self.ik_arms[self.active_arm_idx]
self.keypress_mapping.update(self.generate_ik_keypress_mapping(self.controller_info[new_arm]))
print(f"Now controlling arm {new_arm} with IK")
elif event.input in {lazy.carb.input.KeyboardInput.KEY_5, lazy.carb.input.KeyboardInput.KEY_6} and len(self.binary_grippers) > 1:
# Update gripper, update keypress mapping, and print out new gripper being controlled
self.active_gripper_idx = max(0, self.active_gripper_idx - 1) \
if event.input == lazy.carb.input.KeyboardInput.KEY_5 \
else min(len(self.binary_grippers) - 1, self.active_gripper_idx + 1)
print(f"Now controlling gripper {self.binary_grippers[self.active_gripper_idx]} with binary toggling")
elif event.input == lazy.carb.input.KeyboardInput.M:
# Render the sensor modalities from the robot's camera and lidar
self.robot.visualize_sensors()
elif event.input in self.custom_keymapping:
# Run custom press
self.custom_keymapping[event.input]["callback"]()
elif event.input == lazy.carb.input.KeyboardInput.ESCAPE:
# Terminate immediately
og.shutdown()
else:
# Handle all other actions and update accordingly
self.active_action = self.keypress_mapping.get(event.input, None)
if event.type == lazy.carb.input.KeyboardEventType.KEY_PRESS:
# Store the current keypress
self.current_keypress = event.input
# Also store whether we pressed the key for toggling gripper actions
if event.input == lazy.carb.input.KeyboardInput.T:
self.toggling_gripper = True
# If we release a key, clear the active action and keypress
elif event.type == lazy.carb.input.KeyboardEventType.KEY_RELEASE:
self.active_action = None
self.current_keypress = None
# Callback always needs to return True
return True
def get_random_action(self):
"""
Returns:
n-array: Generated random action vector (normalized)
"""
return np.random.uniform(-1, 1, self.action_dim)
def get_teleop_action(self):
"""
Returns:
n-array: Generated action vector based on received user inputs from the keyboard
"""
action = np.zeros(self.action_dim)
# Handle the action if any key is actively being pressed
if self.active_action is not None:
idx, val = self.active_action["idx"], self.active_action["val"]
# Only handle the action if the value is specified
if val is not None:
# If there is no index, the user is controlling a joint with "[" and "]"
if idx is None and len(self.joint_command_idx) != 0:
idx = self.joint_command_idx[self.active_joint_command_idx_idx]
# Also potentially modify the value being deployed in we're controlling a prismatic joint
# Lower prismatic joint values modifying delta positions since 0.1m is very different from 0.1rad!
joint_idx = self.joint_control_idx[self.active_joint_command_idx_idx]
# Import here to avoid circular imports
from omnigibson.utils.constants import JointType
controller = self.joint_idx_to_controller[joint_idx]
if (self.joint_types[joint_idx] == JointType.JOINT_PRISMATIC and
controller.use_delta_commands and controller.motor_type == "position"):
val *= 0.2
# Set the action
if idx is not None:
action[idx] = val
# Possibly set the persistent gripper action
if len(self.binary_grippers) > 0 and self.keypress_mapping[lazy.carb.input.KeyboardInput.T]["val"] is not None:
for i, binary_gripper in enumerate(self.binary_grippers):
# Possibly update the stored value if the toggle gripper key has been pressed and
# it's the active gripper being controlled
if self.toggling_gripper and i == self.active_gripper_idx:
# We toggle the gripper direction or this gripper
self.gripper_direction[binary_gripper] *= -1.0
self.persistent_gripper_action[binary_gripper] = \
self.keypress_mapping[lazy.carb.input.KeyboardInput.T]["val"] * self.gripper_direction[binary_gripper]
# Clear the toggling gripper flag
self.toggling_gripper = False
# Set the persistent action
action[self.controller_info[binary_gripper]["start_idx"]] = self.persistent_gripper_action[binary_gripper]
# Print out the user what is being pressed / controlled
sys.stdout.write("\033[K")
keypress_str = self.current_keypress.__str__().split(".")[-1]
print("Pressed {}. Action: {}".format(keypress_str, action))
sys.stdout.write("\033[F")
# Return action
return action
def print_keyboard_teleop_info(self):
"""
Prints out relevant information for teleop controlling a robot
"""
def print_command(char, info):
char += " " * (10 - len(char))
print("{}\t{}".format(char, info))
print()
print("*" * 30)
print("Controlling the Robot Using the Keyboard")
print("*" * 30)
print()
print("Joint Control")
print_command("1, 2", "decrement / increment the joint to control")
print_command("[, ]", "move the joint backwards, forwards, respectively")
print()
print("Differential Drive Control")
print_command("i, k", "turn left, right")
print_command("l, j", "move forward, backwards")
print()
print("Inverse Kinematics Control")
print_command("3, 4", "toggle between the different arm(s) to control")
print_command(u"\u2190, \u2192", "translate arm eef along x-axis")
print_command(u"\u2191, \u2193", "translate arm eef along y-axis")
print_command("p, ;", "translate arm eef along z-axis")
print_command("n, b", "rotate arm eef about x-axis")
print_command("o, u", "rotate arm eef about y-axis")
print_command("v, c", "rotate arm eef about z-axis")
print()
print("Boolean Gripper Control")
print_command("5, 6", "toggle between the different gripper(s) using binary control")
print_command("t", "toggle gripper (open/close)")
print()
print("Sensor Rendering")
print_command("m", "render the onboard sensor modalities (RGB, Depth, Normals, Instance Segmentation, Occupancy Map)")
print()
if len(self.custom_keymapping) > 0:
print("Custom Keymappings")
for key, info in self.custom_keymapping.items():
key_str = key.__str__().split(".")[-1].lower()
print_command(key_str, info["description"])
print()
print("*" * 30)
print()
def generate_box_edges(center, extents):
"""
Generate the edges of a box given its center and extents.
Parameters:
- center: Tuple of (x, y, z) coordinates for the box's center
- extents: Tuple of (width, height, depth) extents of the box
Returns:
- A list of tuples, each containing two points (each a tuple of x, y, z) representing an edge of the box
"""
x_c, y_c, z_c = center
w, h, d = extents
# Calculate the corner points of the box
corners = [
(x_c - w, y_c - h, z_c - d),
(x_c - w, y_c - h, z_c + d),
(x_c - w, y_c + h, z_c - d),
(x_c - w, y_c + h, z_c + d),
(x_c + w, y_c - h, z_c - d),
(x_c + w, y_c - h, z_c + d),
(x_c + w, y_c + h, z_c - d),
(x_c + w, y_c + h, z_c + d)
]
# Define the edges by connecting the corners
edges = [
(corners[0], corners[1]), (corners[0], corners[2]), (corners[1], corners[3]),
(corners[2], corners[3]), (corners[4], corners[5]), (corners[4], corners[6]),
(corners[5], corners[7]), (corners[6], corners[7]), (corners[0], corners[4]),
(corners[1], corners[5]), (corners[2], corners[6]), (corners[3], corners[7])
]
return edges
def draw_line(start, end, color=(1., 0., 0., 1.), size=1.):
"""
Draws a single line between two points.
"""
from omni.isaac.debug_draw import _debug_draw
draw = _debug_draw.acquire_debug_draw_interface()
draw.draw_lines([start], [end], [color], [size])
def draw_box(center, extents, color=(1., 0., 0., 1.), size=1.):
"""
Draws a box defined by its center and extents.
"""
edges = generate_box_edges(center, extents)
for start, end in edges:
draw_line(start, end, color, size)
def draw_aabb(obj):
"""
Draws the axis-aligned bounding box of a given object.
"""
ctr = obj.aabb_center
ext = obj.aabb_extent / 2.0
draw_box(ctr, ext)
def clear_debug_drawing():
"""
Clears all debug drawings.
"""
from omni.isaac.debug_draw import _debug_draw
draw = _debug_draw.acquire_debug_draw_interface()
draw.clear_lines()
| 44,222 | Python | 43.896447 | 144 | 0.600018 |
StanfordVL/OmniGibson/omnigibson/utils/transform_utils.py | """
Utility functions of matrix and vector transformations.
NOTE: convention for quaternions is (x, y, z, w)
"""
import math
import numpy as np
from scipy.spatial.transform import Rotation as R
PI = np.pi
EPS = np.finfo(float).eps * 4.0
# axis sequences for Euler angles
_NEXT_AXIS = [1, 2, 0, 1]
# map axes strings to/from tuples of inner axis, parity, repetition, frame
_AXES2TUPLE = {
"sxyz": (0, 0, 0, 0),
"sxyx": (0, 0, 1, 0),
"sxzy": (0, 1, 0, 0),
"sxzx": (0, 1, 1, 0),
"syzx": (1, 0, 0, 0),
"syzy": (1, 0, 1, 0),
"syxz": (1, 1, 0, 0),
"syxy": (1, 1, 1, 0),
"szxy": (2, 0, 0, 0),
"szxz": (2, 0, 1, 0),
"szyx": (2, 1, 0, 0),
"szyz": (2, 1, 1, 0),
"rzyx": (0, 0, 0, 1),
"rxyx": (0, 0, 1, 1),
"ryzx": (0, 1, 0, 1),
"rxzx": (0, 1, 1, 1),
"rxzy": (1, 0, 0, 1),
"ryzy": (1, 0, 1, 1),
"rzxy": (1, 1, 0, 1),
"ryxy": (1, 1, 1, 1),
"ryxz": (2, 0, 0, 1),
"rzxz": (2, 0, 1, 1),
"rxyz": (2, 1, 0, 1),
"rzyz": (2, 1, 1, 1),
}
_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
def ewma_vectorized(data, alpha, offset=None, dtype=None, order="C", out=None):
"""
Calculates the exponential moving average over a vector.
Will fail for large inputs.
Args:
data (Iterable): Input data
alpha (float): scalar in range (0,1)
The alpha parameter for the moving average.
offset (None or float): If specified, the offset for the moving average. None defaults to data[0].
dtype (None or type): Data type used for calculations. If None, defaults to float64 unless
data.dtype is float32, then it will use float32.
order (None or str): Order to use when flattening the data. Valid options are {'C', 'F', 'A'}.
None defaults to 'C'.
out (None or np.array): If specified, the location into which the result is stored. If provided, it must have
the same shape as the input. If not provided or `None`,
a freshly-allocated array is returned.
Returns:
np.array: Exponential moving average from @data
"""
data = np.array(data, copy=False)
if dtype is None:
if data.dtype == np.float32:
dtype = np.float32
else:
dtype = np.float64
else:
dtype = np.dtype(dtype)
if data.ndim > 1:
# flatten input
data = data.reshape(-1, order)
if out is None:
out = np.empty_like(data, dtype=dtype)
else:
assert out.shape == data.shape
assert out.dtype == dtype
if data.size < 1:
# empty input, return empty array
return out
if offset is None:
offset = data[0]
alpha = np.array(alpha, copy=False).astype(dtype, copy=False)
# scaling_factors -> 0 as len(data) gets large
# this leads to divide-by-zeros below
scaling_factors = np.power(1.0 - alpha, np.arange(data.size + 1, dtype=dtype), dtype=dtype)
# create cumulative sum array
np.multiply(data, (alpha * scaling_factors[-2]) / scaling_factors[:-1], dtype=dtype, out=out)
np.cumsum(out, dtype=dtype, out=out)
# cumsums / scaling
out /= scaling_factors[-2::-1]
if offset != 0:
offset = np.array(offset, copy=False).astype(dtype, copy=False)
# add offsets
out += offset * scaling_factors[1:]
return out
def convert_quat(q, to="xyzw"):
"""
Converts quaternion from one convention to another.
The convention to convert TO is specified as an optional argument.
If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa.
Args:
q (np.array): a 4-dim array corresponding to a quaternion
to (str): either 'xyzw' or 'wxyz', determining which convention to convert to.
"""
if to == "xyzw":
return q[[1, 2, 3, 0]]
if to == "wxyz":
return q[[3, 0, 1, 2]]
raise Exception("convert_quat: choose a valid `to` argument (xyzw or wxyz)")
def quat_multiply(quaternion1, quaternion0):
"""
Return multiplication of two quaternions (q1 * q0).
E.g.:
>>> q = quat_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
>>> np.allclose(q, [-44, -14, 48, 28])
True
Args:
quaternion1 (np.array): (x,y,z,w) quaternion
quaternion0 (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) multiplied quaternion
"""
x0, y0, z0, w0 = quaternion0
x1, y1, z1, w1 = quaternion1
return np.array(
(
x1 * w0 + y1 * z0 - z1 * y0 + w1 * x0,
-x1 * z0 + y1 * w0 + z1 * x0 + w1 * y0,
x1 * y0 - y1 * x0 + z1 * w0 + w1 * z0,
-x1 * x0 - y1 * y0 - z1 * z0 + w1 * w0,
),
dtype=np.float32,
)
def quat_conjugate(quaternion):
"""
Return conjugate of quaternion.
E.g.:
>>> q0 = random_quaternion()
>>> q1 = quat_conjugate(q0)
>>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
True
Args:
quaternion (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion conjugate
"""
return np.array(
(-quaternion[0], -quaternion[1], -quaternion[2], quaternion[3]),
dtype=np.float32,
)
def quat_inverse(quaternion):
"""
Return inverse of quaternion.
E.g.:
>>> q0 = random_quaternion()
>>> q1 = quat_inverse(q0)
>>> np.allclose(quat_multiply(q0, q1), [0, 0, 0, 1])
True
Args:
quaternion (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion inverse
"""
return quat_conjugate(quaternion) / np.dot(quaternion, quaternion)
def quat_distance(quaternion1, quaternion0):
"""
Returns distance between two quaternions, such that distance * quaternion0 = quaternion1
Args:
quaternion1 (np.array): (x,y,z,w) quaternion
quaternion0 (np.array): (x,y,z,w) quaternion
Returns:
np.array: (x,y,z,w) quaternion distance
"""
return quat_multiply(quaternion1, quat_inverse(quaternion0))
def quat_slerp(quat0, quat1, fraction, shortestpath=True):
"""
Return spherical linear interpolation between two quaternions.
E.g.:
>>> q0 = random_quat()
>>> q1 = random_quat()
>>> q = quat_slerp(q0, q1, 0.0)
>>> np.allclose(q, q0)
True
>>> q = quat_slerp(q0, q1, 1.0)
>>> np.allclose(q, q1)
True
>>> q = quat_slerp(q0, q1, 0.5)
>>> angle = math.acos(np.dot(q0, q))
>>> np.allclose(2.0, math.acos(np.dot(q0, q1)) / angle) or \
np.allclose(2.0, math.acos(-np.dot(q0, q1)) / angle)
True
Args:
quat0 (np.array): (x,y,z,w) quaternion startpoint
quat1 (np.array): (x,y,z,w) quaternion endpoint
fraction (float): fraction of interpolation to calculate
shortestpath (bool): If True, will calculate the shortest path
Returns:
np.array: (x,y,z,w) quaternion distance
"""
q0 = unit_vector(quat0[:4])
q1 = unit_vector(quat1[:4])
if fraction == 0.0:
return q0
elif fraction == 1.0:
return q1
d = np.dot(q0, q1)
if abs(abs(d) - 1.0) < EPS:
return q0
if shortestpath and d < 0.0:
# invert rotation
d = -d
q1 *= -1.0
angle = math.acos(np.clip(d, -1, 1))
if abs(angle) < EPS:
return q0
isin = 1.0 / math.sin(angle)
q0 *= math.sin((1.0 - fraction) * angle) * isin
q1 *= math.sin(fraction * angle) * isin
q0 += q1
return q0
def random_quat(rand=None):
"""
Return uniform random unit quaternion.
E.g.:
>>> q = random_quat()
>>> np.allclose(1.0, vector_norm(q))
True
>>> q = random_quat(np.random.random(3))
>>> q.shape
(4,)
Args:
rand (3-array or None): If specified, must be three independent random variables that are uniformly distributed
between 0 and 1.
Returns:
np.array: (x,y,z,w) random quaternion
"""
if rand is None:
rand = np.random.rand(3)
else:
assert len(rand) == 3
r1 = np.sqrt(1.0 - rand[0])
r2 = np.sqrt(rand[0])
pi2 = math.pi * 2.0
t1 = pi2 * rand[1]
t2 = pi2 * rand[2]
return np.array(
(np.sin(t1) * r1, np.cos(t1) * r1, np.sin(t2) * r2, np.cos(t2) * r2),
dtype=np.float32,
)
def random_axis_angle(angle_limit=None, random_state=None):
"""
Samples an axis-angle rotation by first sampling a random axis
and then sampling an angle. If @angle_limit is provided, the size
of the rotation angle is constrained.
If @random_state is provided (instance of np.random.RandomState), it
will be used to generate random numbers.
Args:
angle_limit (None or float): If set, determines magnitude limit of angles to generate
random_state (None or RandomState): RNG to use if specified
Raises:
AssertionError: [Invalid RNG]
"""
if angle_limit is None:
angle_limit = 2.0 * np.pi
if random_state is not None:
assert isinstance(random_state, np.random.RandomState)
npr = random_state
else:
npr = np.random
# sample random axis using a normalized sample from spherical Gaussian.
# see (http://extremelearning.com.au/how-to-generate-uniformly-random-points-on-n-spheres-and-n-balls/)
# for why it works.
random_axis = npr.randn(3)
random_axis /= np.linalg.norm(random_axis)
random_angle = npr.uniform(low=0.0, high=angle_limit)
return random_axis, random_angle
def vec(values):
"""
Converts value tuple into a numpy vector.
Args:
values (n-array): a tuple of numbers
Returns:
np.array: vector of given values
"""
return np.array(values, dtype=np.float32)
def mat4(array):
"""
Converts an array to 4x4 matrix.
Args:
array (n-array): the array in form of vec, list, or tuple
Returns:
np.array: a 4x4 numpy matrix
"""
return np.array(array, dtype=np.float32).reshape((4, 4))
def mat2pose(hmat):
"""
Converts a homogeneous 4x4 matrix into pose.
Args:
hmat (np.array): a 4x4 homogeneous matrix
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
pos = hmat[:3, 3]
orn = mat2quat(hmat[:3, :3])
return pos, orn
def mat2quat(rmat):
"""
Converts given rotation matrix to quaternion.
Args:
rmat (np.array): (..., 3, 3) rotation matrix
Returns:
np.array: (..., 4) (x,y,z,w) float quaternion angles
"""
return R.from_matrix(rmat).as_quat()
def vec2quat(vec, up=(0, 0, 1.0)):
"""
Converts given 3d-direction vector @vec to quaternion orientation with respect to another direction vector @up
Args:
vec (3-array): (x,y,z) direction vector (possible non-normalized)
up (3-array): (x,y,z) direction vector representing the canonical up direction (possible non-normalized)
"""
# See https://stackoverflow.com/questions/15873996/converting-a-direction-vector-to-a-quaternion-rotation
# Take cross product of @up and @vec to get @s_n, and then cross @vec and @s_n to get @u_n
# Then compose 3x3 rotation matrix and convert into quaternion
vec_n = vec / np.linalg.norm(vec) # x
up_n = up / np.linalg.norm(up)
s_n = np.cross(up_n, vec_n) # y
u_n = np.cross(vec_n, s_n) # z
return mat2quat(np.array([vec_n, s_n, u_n]).T)
def euler2mat(euler):
"""
Converts euler angles into rotation matrix form
Args:
euler (np.array): (r,p,y) angles
Returns:
np.array: 3x3 rotation matrix
Raises:
AssertionError: [Invalid input shape]
"""
euler = np.asarray(euler, dtype=np.float64)
assert euler.shape[-1] == 3, "Invalid shaped euler {}".format(euler)
return R.from_euler("xyz", euler).as_matrix()
def mat2euler(rmat):
"""
Converts given rotation matrix to euler angles in radian.
Args:
rmat (np.array): 3x3 rotation matrix
Returns:
np.array: (r,p,y) converted euler angles in radian vec3 float
"""
M = np.array(rmat, dtype=np.float32, copy=False)[:3, :3]
return R.from_matrix(M).as_euler("xyz")
def pose2mat(pose):
"""
Converts pose to homogeneous matrix.
Args:
pose (2-tuple): a (pos, orn) tuple where pos is vec3 float cartesian, and
orn is vec4 float quaternion.
Returns:
np.array: 4x4 homogeneous matrix
"""
homo_pose_mat = np.zeros((4, 4), dtype=np.float32)
homo_pose_mat[:3, :3] = quat2mat(pose[1])
homo_pose_mat[:3, 3] = np.array(pose[0], dtype=np.float32)
homo_pose_mat[3, 3] = 1.0
return homo_pose_mat
def quat2mat(quaternion):
"""
Converts given quaternion to matrix.
Args:
quaternion (np.array): (..., 4) (x,y,z,w) float quaternion angles
Returns:
np.array: (..., 3, 3) rotation matrix
"""
return R.from_quat(quaternion).as_matrix()
def quat2axisangle(quat):
"""
Converts quaternion to axis-angle format.
Returns a unit vector direction scaled by its angle in radians.
Args:
quat (np.array): (x,y,z,w) vec4 float angles
Returns:
np.array: (ax,ay,az) axis-angle exponential coordinates
"""
return R.from_quat(quat).as_rotvec()
def axisangle2quat(vec):
"""
Converts scaled axis-angle to quat.
Args:
vec (np.array): (ax,ay,az) axis-angle exponential coordinates
Returns:
np.array: (x,y,z,w) vec4 float angles
"""
return R.from_rotvec(vec).as_quat()
def euler2quat(euler):
"""
Converts euler angles into quaternion form
Args:
euler (np.array): (r,p,y) angles
Returns:
np.array: (x,y,z,w) float quaternion angles
Raises:
AssertionError: [Invalid input shape]
"""
return R.from_euler("xyz", euler).as_quat()
def quat2euler(quat):
"""
Converts euler angles into quaternion form
Args:
quat (np.array): (x,y,z,w) float quaternion angles
Returns:
np.array: (r,p,y) angles
Raises:
AssertionError: [Invalid input shape]
"""
return R.from_quat(quat).as_euler("xyz")
def pose_in_A_to_pose_in_B(pose_A, pose_A_in_B):
"""
Converts a homogenous matrix corresponding to a point C in frame A
to a homogenous matrix corresponding to the same point C in frame B.
Args:
pose_A (np.array): 4x4 matrix corresponding to the pose of C in frame A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
np.array: 4x4 matrix corresponding to the pose of C in frame B
"""
# pose of A in B takes a point in A and transforms it to a point in C.
# pose of C in B = pose of A in B * pose of C in A
# take a point in C, transform it to A, then to B
# T_B^C = T_A^C * T_B^A
return pose_A_in_B.dot(pose_A)
def pose_inv(pose_mat):
"""
Computes the inverse of a homogeneous matrix corresponding to the pose of some
frame B in frame A. The inverse is the pose of frame A in frame B.
Args:
pose_mat (np.array): 4x4 matrix for the pose to inverse
Returns:
np.array: 4x4 matrix for the inverse pose
"""
# Note, the inverse of a pose matrix is the following
# [R t; 0 1]^-1 = [R.T -R.T*t; 0 1]
# Intuitively, this makes sense.
# The original pose matrix translates by t, then rotates by R.
# We just invert the rotation by applying R-1 = R.T, and also translate back.
# Since we apply translation first before rotation, we need to translate by
# -t in the original frame, which is -R-1*t in the new frame, and then rotate back by
# R-1 to align the axis again.
pose_inv = np.zeros((4, 4))
pose_inv[:3, :3] = pose_mat[:3, :3].T
pose_inv[:3, 3] = -pose_inv[:3, :3].dot(pose_mat[:3, 3])
pose_inv[3, 3] = 1.0
return pose_inv
def pose_transform(pos1, quat1, pos0, quat0):
"""
Conducts forward transform from pose (pos0, quat0) to pose (pos1, quat1):
pose1 @ pose0, NOT pose0 @ pose1
Args:
pos1: (x,y,z) position to transform
quat1: (x,y,z,w) orientation to transform
pos0: (x,y,z) initial position
quat0: (x,y,z,w) initial orientation
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get poses
mat0 = pose2mat((pos0, quat0))
mat1 = pose2mat((pos1, quat1))
# Multiply and convert back to pos, quat
return mat2pose(mat1 @ mat0)
def invert_pose_transform(pos, quat):
"""
Inverts a pose transform
Args:
pos: (x,y,z) position to transform
quat: (x,y,z,w) orientation to transform
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get pose
mat = pose2mat((pos, quat))
# Invert pose and convert back to pos, quat
return mat2pose(pose_inv(mat))
def relative_pose_transform(pos1, quat1, pos0, quat0):
"""
Computes relative forward transform from pose (pos0, quat0) to pose (pos1, quat1), i.e.: solves:
pose1 = pose0 @ transform
Args:
pos1: (x,y,z) position to transform
quat1: (x,y,z,w) orientation to transform
pos0: (x,y,z) initial position
quat0: (x,y,z,w) initial orientation
Returns:
2-tuple:
- (np.array) (x,y,z) position array in cartesian coordinates
- (np.array) (x,y,z,w) orientation array in quaternion form
"""
# Get poses
mat0 = pose2mat((pos0, quat0))
mat1 = pose2mat((pos1, quat1))
# Invert pose0 and calculate transform
return mat2pose(pose_inv(mat0) @ mat1)
def _skew_symmetric_translation(pos_A_in_B):
"""
Helper function to get a skew symmetric translation matrix for converting quantities
between frames.
Args:
pos_A_in_B (np.array): (x,y,z) position of A in frame B
Returns:
np.array: 3x3 skew symmetric translation matrix
"""
return np.array(
[
0.0,
-pos_A_in_B[2],
pos_A_in_B[1],
pos_A_in_B[2],
0.0,
-pos_A_in_B[0],
-pos_A_in_B[1],
pos_A_in_B[0],
0.0,
]
).reshape((3, 3))
def vel_in_A_to_vel_in_B(vel_A, ang_vel_A, pose_A_in_B):
"""
Converts linear and angular velocity of a point in frame A to the equivalent in frame B.
Args:
vel_A (np.array): (vx,vy,vz) linear velocity in A
ang_vel_A (np.array): (wx,wy,wz) angular velocity in A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
2-tuple:
- (np.array) (vx,vy,vz) linear velocities in frame B
- (np.array) (wx,wy,wz) angular velocities in frame B
"""
pos_A_in_B = pose_A_in_B[:3, 3]
rot_A_in_B = pose_A_in_B[:3, :3]
skew_symm = _skew_symmetric_translation(pos_A_in_B)
vel_B = rot_A_in_B.dot(vel_A) + skew_symm.dot(rot_A_in_B.dot(ang_vel_A))
ang_vel_B = rot_A_in_B.dot(ang_vel_A)
return vel_B, ang_vel_B
def force_in_A_to_force_in_B(force_A, torque_A, pose_A_in_B):
"""
Converts linear and rotational force at a point in frame A to the equivalent in frame B.
Args:
force_A (np.array): (fx,fy,fz) linear force in A
torque_A (np.array): (tx,ty,tz) rotational force (moment) in A
pose_A_in_B (np.array): 4x4 matrix corresponding to the pose of A in frame B
Returns:
2-tuple:
- (np.array) (fx,fy,fz) linear forces in frame B
- (np.array) (tx,ty,tz) moments in frame B
"""
pos_A_in_B = pose_A_in_B[:3, 3]
rot_A_in_B = pose_A_in_B[:3, :3]
skew_symm = _skew_symmetric_translation(pos_A_in_B)
force_B = rot_A_in_B.T.dot(force_A)
torque_B = -rot_A_in_B.T.dot(skew_symm.dot(force_A)) + rot_A_in_B.T.dot(torque_A)
return force_B, torque_B
def rotation_matrix(angle, direction, point=None):
"""
Returns matrix to rotate about axis defined by point and direction.
E.g.:
>>> angle = (random.random() - 0.5) * (2*math.pi)
>>> direc = numpy.random.random(3) - 0.5
>>> point = numpy.random.random(3) - 0.5
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
>>> is_same_transform(R0, R1)
True
>>> R0 = rotation_matrix(angle, direc, point)
>>> R1 = rotation_matrix(-angle, -direc, point)
>>> is_same_transform(R0, R1)
True
>>> I = numpy.identity(4, numpy.float32)
>>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
True
>>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
... direc, point)))
True
Args:
angle (float): Magnitude of rotation
direction (np.array): (ax,ay,az) axis about which to rotate
point (None or np.array): If specified, is the (x,y,z) point about which the rotation will occur
Returns:
np.array: 4x4 homogeneous matrix that includes the desired rotation
"""
sina = math.sin(angle)
cosa = math.cos(angle)
direction = unit_vector(direction[:3])
# rotation matrix around unit vector
R = np.array(((cosa, 0.0, 0.0), (0.0, cosa, 0.0), (0.0, 0.0, cosa)), dtype=np.float32)
R += np.outer(direction, direction) * (1.0 - cosa)
direction *= sina
R += np.array(
(
(0.0, -direction[2], direction[1]),
(direction[2], 0.0, -direction[0]),
(-direction[1], direction[0], 0.0),
),
dtype=np.float32,
)
M = np.identity(4)
M[:3, :3] = R
if point is not None:
# rotation not around origin
point = np.array(point[:3], dtype=np.float32, copy=False)
M[:3, 3] = point - np.dot(R, point)
return M
def clip_translation(dpos, limit):
"""
Limits a translation (delta position) to a specified limit
Scales down the norm of the dpos to 'limit' if norm(dpos) > limit, else returns immediately
Args:
dpos (n-array): n-dim Translation being clipped (e,g.: (x, y, z)) -- numpy array
limit (float): Value to limit translation by -- magnitude (scalar, in same units as input)
Returns:
2-tuple:
- (np.array) Clipped translation (same dimension as inputs)
- (bool) whether the value was clipped or not
"""
input_norm = np.linalg.norm(dpos)
return (dpos * limit / input_norm, True) if input_norm > limit else (dpos, False)
def clip_rotation(quat, limit):
"""
Limits a (delta) rotation to a specified limit
Converts rotation to axis-angle, clips, then re-converts back into quaternion
Args:
quat (np.array): (x,y,z,w) rotation being clipped
limit (float): Value to limit rotation by -- magnitude (scalar, in radians)
Returns:
2-tuple:
- (np.array) Clipped rotation quaternion (x, y, z, w)
- (bool) whether the value was clipped or not
"""
clipped = False
# First, normalize the quaternion
quat = quat / np.linalg.norm(quat)
den = np.sqrt(max(1 - quat[3] * quat[3], 0))
if den == 0:
# This is a zero degree rotation, immediately return
return quat, clipped
else:
# This is all other cases
x = quat[0] / den
y = quat[1] / den
z = quat[2] / den
a = 2 * math.acos(quat[3])
# Clip rotation if necessary and return clipped quat
if abs(a) > limit:
a = limit * np.sign(a) / 2
sa = math.sin(a)
ca = math.cos(a)
quat = np.array([x * sa, y * sa, z * sa, ca])
clipped = True
return quat, clipped
def make_pose(translation, rotation):
"""
Makes a homogeneous pose matrix from a translation vector and a rotation matrix.
Args:
translation (np.array): (x,y,z) translation value
rotation (np.array): a 3x3 matrix representing rotation
Returns:
pose (np.array): a 4x4 homogeneous matrix
"""
pose = np.zeros((4, 4))
pose[:3, :3] = rotation
pose[:3, 3] = translation
pose[3, 3] = 1.0
return pose
def unit_vector(data, axis=None, out=None):
"""
Returns ndarray normalized by length, i.e. eucledian norm, along axis.
E.g.:
>>> v0 = numpy.random.random(3)
>>> v1 = unit_vector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = unit_vector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = unit_vector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float32)
>>> unit_vector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(unit_vector([]))
[]
>>> list(unit_vector([1.0]))
[1.0]
Args:
data (np.array): data to normalize
axis (None or int): If specified, determines specific axis along data to normalize
out (None or np.array): If specified, will store computation in this variable
Returns:
None or np.array: If @out is not specified, will return normalized vector. Otherwise, stores the output in @out
"""
if out is None:
data = np.array(data, dtype=np.float32, copy=True)
if data.ndim == 1:
data /= math.sqrt(np.dot(data, data))
return data
else:
if out is not data:
out[:] = np.array(data, copy=False)
data = out
length = np.atleast_1d(np.sum(data * data, axis))
np.sqrt(length, length)
if axis is not None:
length = np.expand_dims(length, axis)
data /= length
if out is None:
return data
def get_orientation_error(target_orn, current_orn):
"""
Returns the difference between two quaternion orientations as a 3 DOF numpy array.
For use in an impedance controller / task-space PD controller.
Args:
target_orn (np.array): (x, y, z, w) desired quaternion orientation
current_orn (np.array): (x, y, z, w) current quaternion orientation
Returns:
orn_error (np.array): (ax,ay,az) current orientation error, corresponds to
(target_orn - current_orn)
"""
current_orn = np.array([current_orn[3], current_orn[0], current_orn[1], current_orn[2]])
target_orn = np.array([target_orn[3], target_orn[0], target_orn[1], target_orn[2]])
pinv = np.zeros((3, 4))
pinv[0, :] = [-current_orn[1], current_orn[0], -current_orn[3], current_orn[2]]
pinv[1, :] = [-current_orn[2], current_orn[3], current_orn[0], -current_orn[1]]
pinv[2, :] = [-current_orn[3], -current_orn[2], current_orn[1], current_orn[0]]
orn_error = 2.0 * pinv.dot(np.array(target_orn))
return orn_error
def get_orientation_diff_in_radian(orn0, orn1):
"""
Returns the difference between two quaternion orientations in radian
Args:
orn0 (np.array): (x, y, z, w)
orn1 (np.array): (x, y, z, w)
Returns:
orn_diff (float): orientation difference in radian
"""
vec0 = quat2axisangle(orn0)
vec0 /= np.linalg.norm(vec0)
vec1 = quat2axisangle(orn1)
vec1 /= np.linalg.norm(vec1)
return np.arccos(np.dot(vec0, vec1))
def get_pose_error(target_pose, current_pose):
"""
Computes the error corresponding to target pose - current pose as a 6-dim vector.
The first 3 components correspond to translational error while the last 3 components
correspond to the rotational error.
Args:
target_pose (np.array): a 4x4 homogenous matrix for the target pose
current_pose (np.array): a 4x4 homogenous matrix for the current pose
Returns:
np.array: 6-dim pose error.
"""
error = np.zeros(6)
# compute translational error
target_pos = target_pose[:3, 3]
current_pos = current_pose[:3, 3]
pos_err = target_pos - current_pos
# compute rotational error
r1 = current_pose[:3, 0]
r2 = current_pose[:3, 1]
r3 = current_pose[:3, 2]
r1d = target_pose[:3, 0]
r2d = target_pose[:3, 1]
r3d = target_pose[:3, 2]
rot_err = 0.5 * (np.cross(r1, r1d) + np.cross(r2, r2d) + np.cross(r3, r3d))
error[:3] = pos_err
error[3:] = rot_err
return error
def matrix_inverse(matrix):
"""
Helper function to have an efficient matrix inversion function.
Args:
matrix (np.array): 2d-array representing a matrix
Returns:
np.array: 2d-array representing the matrix inverse
"""
return np.linalg.inv(matrix)
def vecs2axisangle(vec0, vec1):
"""
Converts the angle from unnormalized 3D vectors @vec0 to @vec1 into an axis-angle representation of the angle
Args:
vec0 (np.array): (..., 3) (x,y,z) 3D vector, possibly unnormalized
vec1 (np.array): (..., 3) (x,y,z) 3D vector, possibly unnormalized
"""
# Normalize vectors
vec0 = normalize(vec0, axis=-1)
vec1 = normalize(vec1, axis=-1)
# Get cross product for direction of angle, and multiply by arcos of the dot product which is the angle
return np.cross(vec0, vec1) * np.arccos((vec0 * vec1).sum(-1, keepdims=True))
def vecs2quat(vec0, vec1, normalized=False):
"""
Converts the angle from unnormalized 3D vectors @vec0 to @vec1 into a quaternion representation of the angle
Args:
vec0 (np.array): (..., 3) (x,y,z) 3D vector, possibly unnormalized
vec1 (np.array): (..., 3) (x,y,z) 3D vector, possibly unnormalized
normalized (bool): If True, @vec0 and @vec1 are assumed to already be normalized and we will skip the
normalization step (more efficient)
"""
# Normalize vectors if requested
if not normalized:
vec0 = normalize(vec0, axis=-1)
vec1 = normalize(vec1, axis=-1)
# Half-way Quaternion Solution -- see https://stackoverflow.com/a/11741520
cos_theta = np.sum(vec0 * vec1, axis=-1, keepdims=True)
quat_unnormalized = np.where(cos_theta == -1, np.array([1.0, 0, 0, 0]), np.concatenate([np.cross(vec0, vec1), 1 + cos_theta], axis=-1))
return quat_unnormalized / np.linalg.norm(quat_unnormalized, axis=-1, keepdims=True)
def l2_distance(v1, v2):
"""Returns the L2 distance between vector v1 and v2."""
return np.linalg.norm(np.array(v1) - np.array(v2))
def frustum(left, right, bottom, top, znear, zfar):
"""Create view frustum matrix."""
assert right != left
assert bottom != top
assert znear != zfar
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = +2.0 * znear / (right - left)
M[2, 0] = (right + left) / (right - left)
M[1, 1] = +2.0 * znear / (top - bottom)
# TODO: Put this back to 3,1
# M[3, 1] = (top + bottom) / (top - bottom)
M[2, 1] = (top + bottom) / (top - bottom)
M[2, 2] = -(zfar + znear) / (zfar - znear)
M[3, 2] = -2.0 * znear * zfar / (zfar - znear)
M[2, 3] = -1.0
return M
def ortho(left, right, bottom, top, znear, zfar):
"""Create orthonormal projection matrix."""
assert right != left
assert bottom != top
assert znear != zfar
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = 2.0 / (right - left)
M[1, 1] = 2.0 / (top - bottom)
M[2, 2] = -2.0 / (zfar - znear)
M[3, 0] = -(right + left) / (right - left)
M[3, 1] = -(top + bottom) / (top - bottom)
M[3, 2] = -(zfar + znear) / (zfar - znear)
M[3, 3] = 1.0
return M
def perspective(fovy, aspect, znear, zfar):
"""Create perspective projection matrix."""
# fovy is in degree
assert znear != zfar
h = np.tan(fovy / 360.0 * np.pi) * znear
w = h * aspect
return frustum(-w, w, -h, h, znear, zfar)
def anorm(x, axis=None, keepdims=False):
"""Compute L2 norms alogn specified axes."""
return np.linalg.norm(x, axis=axis, keepdims=keepdims)
def normalize(v, axis=None, eps=1e-10):
"""L2 Normalize along specified axes."""
norm = anorm(v, axis=axis, keepdims=True)
return v / np.where(norm < eps, eps, norm)
def cartesian_to_polar(x, y):
"""Convert cartesian coordinate to polar coordinate"""
rho = np.sqrt(x ** 2 + y ** 2)
phi = np.arctan2(y, x)
return rho, phi
def deg2rad(deg):
return deg * np.pi / 180.
def rad2deg(rad):
return rad * 180. / np.pi
def check_quat_right_angle(quat, atol=5e-2):
"""
Check by making sure the quaternion is some permutation of +/- (1, 0, 0, 0),
+/- (0.707, 0.707, 0, 0), or +/- (0.5, 0.5, 0.5, 0.5)
Because orientations are all normalized (same L2-norm), every orientation should have a unique L1-norm
So we check the L1-norm of the absolute value of the orientation as a proxy for verifying these values
Args:
quat (4-array): (x,y,z,w) quaternion orientation to check
atol (float): Absolute tolerance permitted
Returns:
bool: Whether the quaternion is a right angle or not
"""
return np.any(np.isclose(np.abs(quat).sum(), np.array([1.0, 1.414, 2.0]), atol=atol))
def z_angle_from_quat(quat):
"""Get the angle around the Z axis produced by the quaternion."""
rotated_X_axis = R.from_quat(quat).apply([1, 0, 0])
return np.arctan2(rotated_X_axis[1], rotated_X_axis[0])
def z_rotation_from_quat(quat):
"""Get the quaternion for the rotation around the Z axis produced by the quaternion."""
return R.from_euler("z", z_angle_from_quat(quat)).as_quat()
| 34,011 | Python | 28.524306 | 139 | 0.591191 |
StanfordVL/OmniGibson/omnigibson/utils/vision_utils.py | import colorsys
import numpy as np
from PIL import Image, ImageDraw
try:
import accimage
except ImportError:
accimage = None
class RandomScale:
"""Rescale the input PIL.Image to the given size.
Args:
minsize (sequence or int): Desired min output size. If size is a sequence like
(w, h), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
maxsize (sequence or int): Desired max output size. If size is a sequence like
(w, h), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is ``PIL.Image.BILINEAR``
"""
def __init__(self, minsize, maxsize, interpolation=Image.BILINEAR):
assert isinstance(minsize, int)
assert isinstance(maxsize, int)
self.minsize = minsize
self.maxsize = maxsize
self.interpolation = interpolation
def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be scaled.
Returns:
PIL.Image: Rescaled image.
"""
size = np.random.randint(self.minsize, self.maxsize + 1)
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), self.interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), self.interpolation)
else:
raise NotImplementedError()
class Remapper:
"""
Remaps values in an image from old_mapping to new_mapping using an efficient key_array.
See more details in the remap method.
"""
def __init__(self):
self.key_array = np.array([], dtype=np.uint32) # Initialize the key_array as empty
self.known_ids = set()
def clear(self):
"""Resets the key_array to empty."""
self.key_array = np.array([], dtype=np.uint32)
self.known_ids = set()
def remap(self, old_mapping, new_mapping, image):
"""
Remaps values in the given image from old_mapping to new_mapping using an efficient key_array.
If the image contains values that are not in old_mapping, they are remapped to the value in new_mapping
that corresponds to 'unlabelled'.
Args:
old_mapping (dict): The old mapping dictionary that maps a set of image values to labels
e.g. {1: 'desk', 2: 'chair'}.
new_mapping (dict): The new mapping dictionary that maps another set of image values to labels,
e.g. {5: 'desk', 7: 'chair', 100: 'unlabelled'}.
image (np.ndarray): The 2D image to remap, e.g. [[1, 3], [1, 2]].
Returns:
np.ndarray: The remapped image, e.g. [[5,100],[5,7]].
dict: The remapped labels dictionary, e.g. {5: 'desk', 7: 'chair', 100: 'unlabelled'}.
"""
# Make sure that max uint32 doesn't match any value in the new mapping
assert np.all(np.array(list(new_mapping.keys())) != np.iinfo(np.uint32).max), "New mapping contains default unmapped value!"
image_max_key = np.max(image)
key_array_max_key = len(self.key_array) - 1
if image_max_key > key_array_max_key:
prev_key_array = self.key_array.copy()
# We build a new key array and use max uint32 as the default value.
self.key_array = np.full(image_max_key + 1, np.iinfo(np.uint32).max, dtype=np.uint32)
# Copy the previous key array into the new key array
self.key_array[:len(prev_key_array)] = prev_key_array
new_keys = old_mapping.keys() - self.known_ids
if new_keys:
self.known_ids.update(new_keys)
# Populate key_array with new keys
for key in new_keys:
label = old_mapping[key]
new_key = next((k for k, v in new_mapping.items() if v == label), None)
assert new_key is not None, f"Could not find a new key for label {label} in new_mapping!"
self.key_array[key] = new_key
# For all the values that exist in the image but not in old_mapping.keys(), we map them to whichever key in
# new_mapping that equals to 'unlabelled'. This is needed because some values in the image don't necessarily
# show up in the old_mapping, i.e. particle systems.
for key in np.unique(image):
if key not in old_mapping.keys():
new_key = next((k for k, v in new_mapping.items() if v == 'unlabelled'), None)
assert new_key is not None, f"Could not find a new key for label 'unlabelled' in new_mapping!"
self.key_array[key] = new_key
# Apply remapping
remapped_img = self.key_array[image]
# Make sure all values are correctly remapped and not equal to the default value
assert np.all(remapped_img != np.iinfo(np.uint32).max), "Not all keys in the image are in the key array!"
remapped_labels = {}
for key in np.unique(remapped_img):
remapped_labels[key] = new_mapping[key]
return remapped_img, remapped_labels
def remap_bbox(self, semantic_id):
"""
Remaps a semantic id to a new id using the key_array.
Args:
semantic_id (int): The semantic id to remap.
Returns:
int: The remapped id.
"""
assert semantic_id < len(self.key_array), f"Semantic id {semantic_id} is out of range!"
return self.key_array[semantic_id]
def randomize_colors(N, bright=True):
"""
Modified from https://github.com/matterport/Mask_RCNN/blob/master/mrcnn/visualize.py#L59
Generate random colors.
To get visually distinct colors, generate them in HSV space then
convert to RGB.
Args:
N (int): Number of colors to generate
Returns:
bright (bool): whether to increase the brightness of the colors or not
"""
brightness = 1.0 if bright else 0.5
hsv = [(1.0 * i / N, 1, brightness) for i in range(N)]
colors = np.array(list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)))
rstate = np.random.RandomState(seed=20)
np.random.shuffle(colors)
colors[0] = [0, 0, 0] # First color is black
return colors
def segmentation_to_rgb(seg_im, N, colors=None):
"""
Helper function to visualize segmentations as RGB frames.
NOTE: assumes that geom IDs go up to N at most - if not,
multiple geoms might be assigned to the same color.
Args:
seg_im ((W, H)-array): Segmentation image
N (int): Maximum segmentation ID from @seg_im
colors (None or list of 3-array): If specified, colors to apply
to different segmentation IDs. Otherwise, will be generated randomly
"""
# ensure all values lie within [0, N]
seg_im = np.mod(seg_im, N)
if colors is None:
use_colors = randomize_colors(N=N, bright=True)
else:
use_colors = colors
if N <= 256:
return (255.0 * use_colors[seg_im]).astype(np.uint8)
else:
return (use_colors[seg_im]).astype(np.float)
def colorize_bboxes_3d(bbox_3d_data, rgb_image, camera_params):
"""
Project 3D bounding box data onto 2D and colorize the bounding boxes for visualization.
Reference: https://forums.developer.nvidia.com/t/mathematical-definition-of-3d-bounding-boxes-annotator-nvidia-omniverse-isaac-sim/223416
Args:
bbox_3d_data (np.ndarray): 3D bounding box data
rgb_image (np.ndarray): RGB image
camera_params (dict): Camera parameters
Returns:
np.ndarray: RGB image with 3D bounding boxes drawn
"""
def world_to_image_pinhole(world_points, camera_params):
# Project corners to image space (assumes pinhole camera model)
proj_mat = camera_params["cameraProjection"].reshape(4, 4)
view_mat = camera_params["cameraViewTransform"].reshape(4, 4)
view_proj_mat = np.dot(view_mat, proj_mat)
world_points_homo = np.pad(world_points, ((0, 0), (0, 1)), constant_values=1.0)
tf_points = np.dot(world_points_homo, view_proj_mat)
tf_points = tf_points / (tf_points[..., -1:])
return 0.5 * (tf_points[..., :2] + 1)
def draw_lines_and_points_for_boxes(img, all_image_points):
width, height = img.size
draw = ImageDraw.Draw(img)
# Define connections between the corners of the bounding box
connections = [
(0, 1), (1, 3), (3, 2), (2, 0), # Front face
(4, 5), (5, 7), (7, 6), (6, 4), # Back face
(0, 4), (1, 5), (2, 6), (3, 7) # Side edges connecting front and back faces
]
# Calculate the number of bounding boxes
num_boxes = len(all_image_points) // 8
# Generate random colors for each bounding box
from omni.replicator.core import random_colours
box_colors = random_colours(num_boxes, enable_random=True, num_channels=3)
# Ensure colors are in the correct format for drawing (255 scale)
box_colors = [(int(r), int(g), int(b)) for r, g, b in box_colors]
# Iterate over each set of 8 points (each bounding box)
for i in range(0, len(all_image_points), 8):
image_points = all_image_points[i:i+8]
image_points[:, 1] = height - image_points[:, 1] # Flip Y-axis to match image coordinates
# Use a distinct color for each bounding box
line_color = box_colors[i // 8]
# Draw lines for each connection
for start, end in connections:
draw.line((image_points[start][0], image_points[start][1],
image_points[end][0], image_points[end][1]),
fill=line_color, width=2)
rgb = Image.fromarray(rgb_image)
# Get 3D corners
from omni.syntheticdata.scripts.helpers import get_bbox_3d_corners
corners_3d = get_bbox_3d_corners(bbox_3d_data)
corners_3d = corners_3d.reshape(-1, 3)
# Project to image space
corners_2d = world_to_image_pinhole(corners_3d, camera_params)
width, height = rgb.size
corners_2d *= np.array([[width, height]])
# Now, draw all bounding boxes
draw_lines_and_points_for_boxes(rgb, corners_2d)
return np.array(rgb)
| 10,880 | Python | 39.752809 | 141 | 0.598805 |
StanfordVL/OmniGibson/omnigibson/utils/lazy_import_utils.py | import importlib
from types import ModuleType
class LazyImporter(ModuleType):
"""Replace a module's global namespace with me to support lazy imports of submodules and members."""
def __init__(self, module_name, module):
super().__init__("lazy_" + module_name)
self._module_path = module_name
self._module = module
self._not_module = set()
self._submodules = {}
def __getattr__(self, name: str):
# First, try the argument as a module name.
if name not in self._not_module:
submodule = self._get_module(name)
if submodule:
return submodule
else:
# Record module not found so that we don't keep looking.
self._not_module.add(name)
# If it's not a module name, try it as a member of this module.
try:
return getattr(self._module, name)
except:
raise AttributeError(
f"module {self.__name__} has no attribute {name}"
) from None
def _get_module(self, module_name: str):
"""Recursively create and return a LazyImporter for the given module name."""
# Get the fully qualified module name by prepending self._module_path
if self._module_path:
module_name = f"{self._module_path}.{module_name}"
if module_name in self._submodules:
return self._submodules[module_name]
try:
wrapper = LazyImporter(module_name, importlib.import_module(module_name))
self._submodules[module_name] = wrapper
return wrapper
except ModuleNotFoundError:
return None | 1,701 | Python | 34.458333 | 104 | 0.586714 |
StanfordVL/OmniGibson/omnigibson/utils/sim_utils.py | import numpy as np
from collections import namedtuple
from collections.abc import Iterable
import omnigibson as og
from omnigibson.macros import gm
from omnigibson.utils import python_utils
import omnigibson.utils.transform_utils as T
import omnigibson.lazy as lazy
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Raw Body Contact Information
# See https://docs.omniverse.nvidia.com/py/isaacsim/source/extensions/omni.isaac.contact_sensor/docs/index.html?highlight=contact%20sensor#omni.isaac.contact_sensor._contact_sensor.CsRawData for more info.
CsRawData = namedtuple("RawBodyData", ["time", "dt", "body0", "body1", "position", "normal", "impulse"])
def set_carb_setting(carb_settings, setting, value):
"""
Convenience function to set settings.
Args:
setting (str): Name of setting to change.
value (Any): New value for the setting.
Raises:
TypeError: If the type of value does not match setting type.
"""
if isinstance(value, str):
carb_settings.set_string(setting, value)
elif isinstance(value, bool):
carb_settings.set_bool(setting, value)
elif isinstance(value, int):
carb_settings.set_int(setting, value)
elif isinstance(value, float):
carb_settings.set_float(setting, value)
elif isinstance(value, Iterable) and not isinstance(value, dict):
if len(value) == 0:
raise TypeError(f"Array of type {type(value)} must be nonzero.")
if isinstance(value[0], str):
carb_settings.set_string_array(setting, value)
elif isinstance(value[0], bool):
carb_settings.set_bool_array(setting, value)
elif isinstance(value[0], int):
carb_settings.set_int_array(setting, value)
elif isinstance(value[0], float):
carb_settings.set_float_array(setting, value)
else:
raise TypeError(f"Value of type {type(value)} is not supported.")
else:
raise TypeError(f"Value of type {type(value)} is not supported.")
def check_deletable_prim(prim_path):
"""
Checks whether the prim defined at @prim_path can be deleted.
Args:
prim_path (str): Path defining which prim should be checked for deletion
Returns:
bool: Whether the prim can be deleted or not
"""
if not lazy.omni.isaac.core.utils.prims.is_prim_path_valid(prim_path):
return False
if lazy.omni.isaac.core.utils.prims.is_prim_no_delete(prim_path):
return False
if lazy.omni.isaac.core.utils.prims.is_prim_ancestral(prim_path):
return False
if lazy.omni.isaac.core.utils.prims.get_prim_type_name(prim_path=prim_path) == "PhysicsScene":
return False
if prim_path == "/World":
return False
if prim_path == "/":
return False
# Don't remove any /Render prims as that can cause crashes
if prim_path.startswith("/Render"):
return False
return True
def prims_to_rigid_prim_set(inp_prims):
"""
Converts prims @inp_prims into its corresponding set of rigid prims
Args:
inp_prims (list of RigidPrim or EntityPrim): Arbitrary prims
Returns:
set of RigidPrim: Aggregated set of RigidPrims from @inp_prims
"""
# Avoid circular imports
from omnigibson.prims.entity_prim import EntityPrim
from omnigibson.prims.rigid_prim import RigidPrim
out = set()
for prim in inp_prims:
if isinstance(prim, EntityPrim):
out.update({link for link in prim.links.values()})
elif isinstance(prim, RigidPrim):
out.add(prim)
else:
raise ValueError(f"Inputted prims must be either EntityPrim or RigidPrim instances "
f"when getting collisions! Type: {type(prim)}")
return out
def get_collisions(prims=None, prims_check=None, prims_exclude=None, step_physics=False):
"""
Grab collisions that occurred during the most recent physics timestep associated with prims @prims
Args:
prims (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): Prim(s) to check for collision.
If None, will check against all objects currently in the scene.
prims_check (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): If specified, will
only check for collisions with these specific prim(s)
prims_exclude (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): If specified, will
explicitly ignore any collisions with these specific prim(s)
step_physics (bool): Whether to step the physics first before checking collisions. Default is False
Returns:
set of 2-tuple: Unique collision pairs occurring in the simulation at the current timestep between the
specified prim(s), represented by their prim_paths
"""
# Make sure sim is playing
assert og.sim.is_playing(), "Cannot get collisions while sim is not playing!"
# Optionally step physics and then update contacts
if step_physics:
og.sim.step_physics()
# Standardize inputs
prims = og.sim.scene.objects if prims is None else prims if isinstance(prims, Iterable) else [prims]
prims_check = [] if prims_check is None else prims_check if isinstance(prims_check, Iterable) else [prims_check]
prims_exclude = [] if prims_exclude is None else prims_exclude if isinstance(prims_exclude, Iterable) else [prims_exclude]
# Convert into prim paths to check for collision
def get_paths_from_rigid_prims(inp_prims):
return {prim.prim_path for prim in inp_prims}
def get_contacts(inp_prims):
return {(c.body0, c.body1) for prim in inp_prims for c in prim.contact_list()}
rprims = prims_to_rigid_prim_set(prims)
rprims_check = prims_to_rigid_prim_set(prims_check)
rprims_exclude = prims_to_rigid_prim_set(prims_exclude)
paths = get_paths_from_rigid_prims(rprims)
paths_check = get_paths_from_rigid_prims(rprims_check)
paths_exclude = get_paths_from_rigid_prims(rprims_exclude)
# Run sanity checks
assert paths_check.isdisjoint(paths_exclude), \
f"Paths to check and paths to ignore collisions for should be mutually exclusive! " \
f"paths_check: {paths_check}, paths_exclude: {paths_exclude}"
# Determine whether we're checking / filtering any collision from collision set A
should_check_collisions = len(paths_check) > 0
should_filter_collisions = len(paths_exclude) > 0
# Get all collisions from the objects set
collisions = get_contacts(rprims)
# Only run the following (expensive) code if we are actively using filtering criteria
if should_check_collisions or should_filter_collisions:
# First filter out unnecessary collisions
if should_filter_collisions:
# First filter pass, remove the intersection of the main contacts and the contacts from the exclusion set minus
# the intersection between the exclusion and normal set
# This filters out any matching collisions in the exclusion set that are NOT an overlap
# between @rprims and @rprims_exclude
rprims_exclude_intersect = rprims_exclude.intersection(rprims)
exclude_disjoint_collisions = get_contacts(rprims_exclude - rprims_exclude_intersect)
collisions.difference_update(exclude_disjoint_collisions)
# Second filter pass, we remove collisions that may include self-collisions
# This is a bit more tricky because we need to actually look at the individual contact pairs to determine
# whether it's a collision (which may include a self-collision) that should be filtered
# We do this by grabbing the contacts of the intersection between the exclusion and normal rprims sets,
# and then making sure the resulting contact pair sets are completely disjoint from the paths intersection
exclude_intersect_collisions = get_contacts(rprims_exclude_intersect)
collisions.difference_update({pair for pair in exclude_intersect_collisions if paths.issuperset(set(pair))})
# Now, we additionally check for explicit collisions, filtering out any that do not meet this criteria
# This is essentially the inverse of the filter collision process, where we do two passes again, but for each
# case we look at the union rather than the subtraction of the two sets
if should_check_collisions:
# First check pass, keep the intersection of the main contacts and the contacts from the check set minus
# the intersection between the check and normal set
# This keeps any matching collisions in the check set that overlap between @rprims and @rprims_check
rprims_check_intersect = rprims_check.intersection(rprims)
check_disjoint_collisions = get_contacts(rprims_check - rprims_check_intersect)
valid_other_collisions = collisions.intersection(check_disjoint_collisions)
# Second check pass, we additionally keep collisions that may include self-collisions
# This is a bit more tricky because we need to actually look at the individual contact pairs to determine
# whether it's a collision (which may include a self-collision) that should be kept
# We do this by grabbing the contacts of the intersection between the check and normal rprims sets,
# and then making sure the resulting contact pair sets is strictly a subset of the original set
# Lastly, we only keep the intersection of this resulting set with the original collision set, so that
# any previously filtered collisions are respected
check_intersect_collisions = get_contacts(rprims_check_intersect)
valid_intersect_collisions = collisions.intersection({pair for pair in check_intersect_collisions if paths.issuperset(set(pair))})
# Collisions is union of valid other and valid self collisions
collisions = valid_other_collisions.union(valid_intersect_collisions)
# Only going into this if it is for logging --> efficiency
if gm.DEBUG:
for item in collisions:
log.debug("linkA:{}, linkB:{}".format(item[0], item[1]))
return collisions
def check_collision(prims=None, prims_check=None, prims_exclude=None, step_physics=False):
"""
Checks if any valid collisions occurred during the most recent physics timestep associated with prims @prims
Args:
prims (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): Prim(s) to check for collision.
If None, will check against all objects currently in the scene.
prims_check (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): If specified, will
only check for collisions with these specific prim(s)
prims_exclude (None or EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): If specified, will
explicitly ignore any collisions with these specific prim(s)
step_physics (bool): Whether to step the physics first before checking collisions. Default is False
Returns:
bool: True if a valid collision has occurred, else False
"""
return len(get_collisions(
prims=prims,
prims_check=prims_check,
prims_exclude=prims_exclude,
step_physics=step_physics)) > 0
def filter_collisions(collisions, filter_prims):
"""
Filters collision pairs @collisions based on a set of prims @filter_prims.
Args:
collisions (set of 2-tuple): Collision pairs that should be filtered
filter_prims (EntityPrim or RigidPrim or tuple of EntityPrim or RigidPrim): Prim(s) specifying which
collisions to filter for. Any collisions that include prims from this filter
set will be removed
Returns:
set of 2-tuple: Filtered collision pairs
"""
paths = prims_to_rigid_prim_set(filter_prims)
filtered_collisions = set()
for pair in collisions:
if set(pair).isdisjoint(paths):
filtered_collisions.add(pair)
return filtered_collisions
def place_base_pose(obj, pos, quat=None, z_offset=None):
"""
Place the object so that its base (z-min) rests at the location of @pos
Args:
obj (BaseObject): Object to place in the environment
pos (3-array): Global (x,y,z) location to place the base of the robot
quat (None or 4-array): Optional (x,y,z,w) quaternion orientation when placing the object.
If None, the object's current orientation will be used
z_offset (None or float): Optional additional z_offset to apply
"""
# avoid circular dependency
from omnigibson.object_states import AABB
lower, _ = obj.states[AABB].get_value()
cur_pos = obj.get_position()
z_diff = cur_pos[2] - lower[2]
obj.set_position_orientation(pos + np.array([0, 0, z_diff if z_offset is None else z_diff + z_offset]), quat)
def test_valid_pose(obj, pos, quat=None, z_offset=None):
"""
Test if the object can be placed with no collision.
Args:
obj (BaseObject): Object to place in the environment
pos (3-array): Global (x,y,z) location to place the object
quat (None or 4-array): Optional (x,y,z,w) quaternion orientation when placing the object.
If None, the object's current orientation will be used
z_offset (None or float): Optional additional z_offset to apply
Returns:
bool: Whether the placed object position is valid
"""
# Make sure sim is playing
assert og.sim.is_playing(), "Cannot test valid pose while sim is not playing!"
# Store state before checking object position
state = og.sim.scene.dump_state(serialized=False)
# Set the pose of the object
place_base_pose(obj, pos, quat, z_offset)
obj.keep_still()
# Check whether we're in collision after taking a single physics step
in_collision = check_collision(prims=obj, step_physics=True)
# Restore state after checking the collision
og.sim.load_state(state, serialized=False)
# Valid if there are no collisions
return not in_collision
def land_object(obj, pos, quat=None, z_offset=None):
"""
Land the object at the specified position @pos, given a valid position and orientation.
Args:
obj (BaseObject): Object to place in the environment
pos (3-array): Global (x,y,z) location to place the object
quat (None or 4-array): Optional (x,y,z,w) quaternion orientation when placing the object.
If None, a random orientation about the z-axis will be sampled
z_offset (None or float): Optional additional z_offset to apply
"""
# Make sure sim is playing
assert og.sim.is_playing(), "Cannot land object while sim is not playing!"
# Set the object's pose
quat = T.euler2quat([0, 0, np.random.uniform(0, np.pi * 2)]) if quat is None else quat
place_base_pose(obj, pos, quat, z_offset)
obj.keep_still()
# Check to make sure we landed successfully
# land for maximum 1 second, should fall down ~5 meters
land_success = False
max_simulator_step = int(1.0 / og.sim.get_rendering_dt())
for _ in range(max_simulator_step):
# Run a sim step and see if we have any contacts
og.sim.step()
land_success = check_collision(prims=obj)
if land_success:
# Once we're successful, we can break immediately
log.info(f"Landed object {obj.name} successfully!")
break
# Print out warning in case we failed to land the object successfully
if not land_success:
log.warning(f"Object {obj.name} failed to land.")
obj.keep_still()
def meets_minimum_isaac_version(minimum_version):
return python_utils.meets_minimum_version(lazy.omni.isaac.version.get_version()[0], minimum_version)
| 16,079 | Python | 43.666667 | 205 | 0.687232 |
StanfordVL/OmniGibson/omnigibson/utils/motion_planning_utils.py | import numpy as np
from math import ceil
import heapq
import omnigibson as og
from omnigibson.macros import create_module_macros
from omnigibson.object_states import ContactBodies
import omnigibson.utils.transform_utils as T
from omnigibson.utils.control_utils import IKSolver
import omnigibson.lazy as lazy
m = create_module_macros(module_path=__file__)
m.ANGLE_DIFF = 0.3
m.DIST_DIFF = 0.1
def _wrap_angle(theta):
""""
Converts an angle to the range [-pi, pi).
Args:
theta (float): angle in radians
Returns:
float: angle in radians in range [-pi, pi)
"""
return (theta + np.pi) % (2 * np.pi) - np.pi
def plan_base_motion(
robot,
end_conf,
context,
planning_time=15.0,
):
"""
Plans a base motion to a 2d pose
Args:
robot (omnigibson.object_states.Robot): Robot object to plan for
end_conf (Iterable): [x, y, yaw] 2d pose to plan to
context (PlanningContext): Context to plan in that includes the robot copy
planning_time (float): Time to plan for
Returns:
Array of arrays: Array of 2d poses that the robot should navigate to
"""
from ompl import base as ob
from ompl import geometric as ompl_geo
class CustomMotionValidator(ob.MotionValidator):
def __init__(self, si, space):
super(CustomMotionValidator, self).__init__(si)
self.si = si
self.space = space
def checkMotion(self, s1, s2):
if not self.si.isValid(s2):
return False
start = np.array([s1.getX(), s1.getY(), s1.getYaw()])
goal = np.array([s2.getX(), s2.getY(), s2.getYaw()])
segment_theta = self.get_angle_between_poses(start, goal)
# Start rotation
if not self.is_valid_rotation(self.si, start, segment_theta):
return False
# Navigation
dist = np.linalg.norm(goal[:2] - start[:2])
num_points = ceil(dist / m.DIST_DIFF) + 1
nav_x = np.linspace(start[0], goal[0], num_points).tolist()
nav_y = np.linspace(start[1], goal[1], num_points).tolist()
for i in range(num_points):
state = create_state(self.si, nav_x[i], nav_y[i], segment_theta)
if not self.si.isValid(state()):
return False
# Goal rotation
if not self.is_valid_rotation(self.si, [goal[0], goal[1], segment_theta], goal[2]):
return False
return True
@staticmethod
def is_valid_rotation(si, start_conf, final_orientation):
diff = _wrap_angle(final_orientation - start_conf[2])
direction = np.sign(diff)
diff = abs(diff)
num_points = ceil(diff / m.ANGLE_DIFF) + 1
nav_angle = np.linspace(0.0, diff, num_points) * direction
angles = nav_angle + start_conf[2]
for i in range(num_points):
state = create_state(si.getStateSpace(), start_conf[0], start_conf[1], angles[i])
if not si.isValid(state()):
return False
return True
@staticmethod
# Get angle between 2d robot poses
def get_angle_between_poses(p1, p2):
segment = []
segment.append(p2[0] - p1[0])
segment.append(p2[1] - p1[1])
return np.arctan2(segment[1], segment[0])
def create_state(space, x, y, yaw):
x = float(x)
y = float(y)
yaw = float(yaw)
state = ob.State(space)
state().setX(x)
state().setY(y)
state().setYaw(_wrap_angle(yaw))
return state
def state_valid_fn(q):
x = q.getX()
y = q.getY()
yaw = q.getYaw()
pose = ([x, y, 0.0], T.euler2quat((0, 0, yaw)))
return not set_base_and_detect_collision(context, pose)
def remove_unnecessary_rotations(path):
"""
Removes unnecessary rotations from a path when possible for the base where the yaw for each pose in the path is in the direction of the
the position of the next pose in the path
Args:
path (Array of arrays): Array of 2d poses
Returns:
Array of numpy arrays: Array of 2d poses with unnecessary rotations removed
"""
# Start at the same starting pose
new_path = [path[0]]
# Process every intermediate waypoint
for i in range(1, len(path) - 1):
# compute the yaw you'd be at when arriving into path[i] and departing from it
arriving_yaw = CustomMotionValidator.get_angle_between_poses(path[i-1], path[i])
departing_yaw = CustomMotionValidator.get_angle_between_poses(path[i], path[i+1])
# check if you are able to make that rotation directly.
arriving_state = (path[i][0], path[i][1], arriving_yaw)
if CustomMotionValidator.is_valid_rotation(si, arriving_state, departing_yaw):
# Then use the arriving yaw directly
new_path.append(arriving_state)
else:
# Otherwise, keep the waypoint
new_path.append(path[i])
# Don't forget to add back the same ending pose
new_path.append(path[-1])
return new_path
pos = robot.get_position()
yaw = T.quat2euler(robot.get_orientation())[2]
start_conf = (pos[0], pos[1], yaw)
# create an SE(2) state space
space = ob.SE2StateSpace()
# set lower and upper bounds
bbox_vals = []
for floor in filter(lambda o: o.category == "floors", og.sim.scene.objects):
bbox_vals += floor.aabb[0][:2].tolist()
bbox_vals += floor.aabb[1][:2].tolist()
bounds = ob.RealVectorBounds(2)
bounds.setLow(min(bbox_vals))
bounds.setHigh(max(bbox_vals))
space.setBounds(bounds)
# create a simple setup object
ss = ompl_geo.SimpleSetup(space)
ss.setStateValidityChecker(ob.StateValidityCheckerFn(state_valid_fn))
si = ss.getSpaceInformation()
si.setMotionValidator(CustomMotionValidator(si, space))
# TODO: Try changing to RRTConnect in the future. Currently using RRT because movement is not direction invariant. Can change to RRTConnect
# possibly if hasSymmetricInterpolate is set to False for the state space. Doc here https://ompl.kavrakilab.org/classompl_1_1base_1_1StateSpace.html
planner = ompl_geo.RRT(si)
ss.setPlanner(planner)
start = create_state(space, start_conf[0], start_conf[1], start_conf[2])
print(start)
goal = create_state(space, end_conf[0], end_conf[1], end_conf[2])
print(goal)
ss.setStartAndGoalStates(start, goal)
if not state_valid_fn(start()) or not state_valid_fn(goal()):
return
solved = ss.solve(planning_time)
if solved:
# try to shorten the path
ss.simplifySolution()
sol_path = ss.getSolutionPath()
return_path = []
for i in range(sol_path.getStateCount()):
x = sol_path.getState(i).getX()
y = sol_path.getState(i).getY()
yaw = sol_path.getState(i).getYaw()
return_path.append([x, y, yaw])
return remove_unnecessary_rotations(return_path)
return None
def plan_arm_motion(
robot,
end_conf,
context,
planning_time=15.0,
torso_fixed=True,
):
"""
Plans an arm motion to a final joint position
Args:
robot (BaseRobot): Robot object to plan for
end_conf (Iterable): Final joint position to plan to
context (PlanningContext): Context to plan in that includes the robot copy
planning_time (float): Time to plan for
Returns:
Array of arrays: Array of joint positions that the robot should navigate to
"""
from ompl import base as ob
from ompl import geometric as ompl_geo
if torso_fixed:
joint_control_idx = robot.arm_control_idx[robot.default_arm]
dim = len(joint_control_idx)
initial_joint_pos = np.array(robot.get_joint_positions()[joint_control_idx])
control_idx_in_joint_pos = np.arange(dim)
else:
joint_control_idx = np.concatenate([robot.trunk_control_idx, robot.arm_control_idx[robot.default_arm]])
dim = len(joint_control_idx)
if "combined" in robot.robot_arm_descriptor_yamls:
joint_combined_idx = np.concatenate([robot.trunk_control_idx, robot.arm_control_idx["combined"]])
initial_joint_pos = np.array(robot.get_joint_positions()[joint_combined_idx])
control_idx_in_joint_pos = np.where(np.in1d(joint_combined_idx, joint_control_idx))[0]
else:
initial_joint_pos = np.array(robot.get_joint_positions()[joint_control_idx])
control_idx_in_joint_pos = np.arange(dim)
def state_valid_fn(q):
joint_pos = initial_joint_pos
joint_pos[control_idx_in_joint_pos] = [q[i] for i in range(dim)]
return not set_arm_and_detect_collision(context, joint_pos)
# create an SE2 state space
space = ob.RealVectorStateSpace(dim)
# set lower and upper bounds
bounds = ob.RealVectorBounds(dim)
joints = np.array([joint for joint in robot.joints.values()])
arm_joints = joints[joint_control_idx]
for i, joint in enumerate(arm_joints):
if end_conf[i] > joint.upper_limit:
end_conf[i] = joint.upper_limit
if end_conf[i] < joint.lower_limit:
end_conf[i] = joint.lower_limit
bounds.setLow(i, float(joint.lower_limit))
bounds.setHigh(i, float(joint.upper_limit))
space.setBounds(bounds)
# create a simple setup object
ss = ompl_geo.SimpleSetup(space)
ss.setStateValidityChecker(ob.StateValidityCheckerFn(state_valid_fn))
si = ss.getSpaceInformation()
planner = ompl_geo.BITstar(si)
ss.setPlanner(planner)
start_conf = robot.get_joint_positions()[joint_control_idx]
start = ob.State(space)
for i in range(dim):
start[i] = float(start_conf[i])
goal = ob.State(space)
for i in range(dim):
goal[i] = float(end_conf[i])
ss.setStartAndGoalStates(start, goal)
if not state_valid_fn(start) or not state_valid_fn(goal):
return
# this will automatically choose a default planner with
# default parameters
solved = ss.solve(planning_time)
if solved:
# try to shorten the path
# ss.simplifySolution()
sol_path = ss.getSolutionPath()
return_path = []
for i in range(sol_path.getStateCount()):
joint_pos = [sol_path.getState(i)[j] for j in range(dim)]
return_path.append(joint_pos)
return return_path
return None
def plan_arm_motion_ik(
robot,
end_conf,
context,
planning_time=15.0,
torso_fixed=True,
):
"""
Plans an arm motion to a final end effector pose
Args:
robot (BaseRobot): Robot object to plan for
end_conf (Iterable): Final end effector pose to plan to
context (PlanningContext): Context to plan in that includes the robot copy
planning_time (float): Time to plan for
Returns:
Array of arrays: Array of end effector pose that the robot should navigate to
"""
from ompl import base as ob
from ompl import geometric as ompl_geo
DOF = 6
if torso_fixed:
joint_control_idx = robot.arm_control_idx[robot.default_arm]
dim = len(joint_control_idx)
initial_joint_pos = np.array(robot.get_joint_positions()[joint_control_idx])
control_idx_in_joint_pos = np.arange(dim)
robot_description_path = robot.robot_arm_descriptor_yamls["left_fixed"]
else:
joint_control_idx = np.concatenate([robot.trunk_control_idx, robot.arm_control_idx[robot.default_arm]])
dim = len(joint_control_idx)
if "combined" in robot.robot_arm_descriptor_yamls:
joint_combined_idx = np.concatenate([robot.trunk_control_idx, robot.arm_control_idx["combined"]])
initial_joint_pos = np.array(robot.get_joint_positions()[joint_combined_idx])
control_idx_in_joint_pos = np.where(np.in1d(joint_combined_idx, joint_control_idx))[0]
else:
initial_joint_pos = np.array(robot.get_joint_positions()[joint_control_idx])
control_idx_in_joint_pos = np.arange(dim)
robot_description_path = robot.robot_arm_descriptor_yamls[robot.default_arm]
ik_solver = IKSolver(
robot_description_path=robot_description_path,
robot_urdf_path=robot.urdf_path,
reset_joint_pos=robot.reset_joint_pos[joint_control_idx],
eef_name=robot.eef_link_names[robot.default_arm],
)
def state_valid_fn(q):
joint_pos = initial_joint_pos
eef_pose = [q[i] for i in range(6)]
control_joint_pos = ik_solver.solve(
target_pos=eef_pose[:3],
target_quat=T.axisangle2quat(eef_pose[3:]),
max_iterations=1000,
)
if control_joint_pos is None:
return False
joint_pos[control_idx_in_joint_pos] = control_joint_pos
return not set_arm_and_detect_collision(context, joint_pos)
# create an SE2 state space
space = ob.RealVectorStateSpace(DOF)
# set lower and upper bounds for eef position
bounds = ob.RealVectorBounds(DOF)
EEF_X_LIM = [-0.8, 0.8]
EEF_Y_LIM = [-0.8, 0.8]
EEF_Z_LIM = [-2.0, 2.0]
bounds.setLow(0, EEF_X_LIM[0])
bounds.setHigh(0, EEF_X_LIM[1])
bounds.setLow(1, EEF_Y_LIM[0])
bounds.setHigh(1, EEF_Y_LIM[1])
bounds.setLow(2, EEF_Z_LIM[0])
bounds.setHigh(2, EEF_Z_LIM[1])
# # set lower and upper bounds for eef orientation (axis angle bounds)
for i in range(3, 6):
bounds.setLow(i, -np.pi)
bounds.setHigh(i, np.pi)
space.setBounds(bounds)
# create a simple setup object
ss = ompl_geo.SimpleSetup(space)
ss.setStateValidityChecker(ob.StateValidityCheckerFn(state_valid_fn))
si = ss.getSpaceInformation()
planner = ompl_geo.BITstar(si)
ss.setPlanner(planner)
start_conf = np.append(robot.get_relative_eef_position(), T.quat2axisangle(robot.get_relative_eef_orientation()))
# do fk
start = ob.State(space)
for i in range(DOF):
start[i] = float(start_conf[i])
goal = ob.State(space)
for i in range(DOF):
goal[i] = float(end_conf[i])
ss.setStartAndGoalStates(start, goal)
if not state_valid_fn(start) or not state_valid_fn(goal):
return
# this will automatically choose a default planner with
# default parameters
solved = ss.solve(planning_time)
if solved:
# try to shorten the path
# ss.simplifySolution()
sol_path = ss.getSolutionPath()
return_path = []
for i in range(sol_path.getStateCount()):
eef_pose = [sol_path.getState(i)[j] for j in range(DOF)]
return_path.append(eef_pose)
return return_path
return None
def set_base_and_detect_collision(context, pose):
"""
Moves the robot and detects robot collisions with the environment and itself
Args:
context (PlanningContext): Context to plan in that includes the robot copy
pose (Array): Pose in the world frame to check for collisions at
Returns:
bool: Whether the robot is in collision
"""
robot_copy = context.robot_copy
robot_copy_type = context.robot_copy_type
translation = lazy.pxr.Gf.Vec3d(*np.array(pose[0], dtype=float))
robot_copy.prims[robot_copy_type].GetAttribute("xformOp:translate").Set(translation)
orientation = np.array(pose[1], dtype=float)[[3, 0, 1, 2]]
robot_copy.prims[robot_copy_type].GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation))
return detect_robot_collision(context)
def set_arm_and_detect_collision(context, joint_pos):
"""
Sets joint positions of the robot and detects robot collisions with the environment and itself
Args:
context (PlanningContext): Context to plan in that includes the robot copy
joint_pos (Array): Joint positions to set the robot to
Returns:
bool: Whether the robot is in a valid state i.e. not in collision
"""
robot_copy = context.robot_copy
robot_copy_type = context.robot_copy_type
arm_links = context.robot.manipulation_link_names
link_poses = context.fk_solver.get_link_poses(joint_pos, arm_links)
for link in arm_links:
pose = link_poses[link]
if link in robot_copy.meshes[robot_copy_type].keys():
for mesh_name, mesh in robot_copy.meshes[robot_copy_type][link].items():
relative_pose = robot_copy.relative_poses[robot_copy_type][link][mesh_name]
mesh_pose = T.pose_transform(*pose, *relative_pose)
translation = lazy.pxr.Gf.Vec3d(*np.array(mesh_pose[0], dtype=float))
mesh.GetAttribute("xformOp:translate").Set(translation)
orientation = np.array(mesh_pose[1], dtype=float)[[3, 0, 1, 2]]
mesh.GetAttribute("xformOp:orient").Set(lazy.pxr.Gf.Quatd(*orientation))
return detect_robot_collision(context)
def detect_robot_collision(context):
"""
Detects robot collisions
Args:
context (PlanningContext): Context to plan in that includes the robot copy
Returns:
bool: Whether the robot is in collision
"""
robot_copy = context.robot_copy
robot_copy_type = context.robot_copy_type
# Define function for checking overlap
valid_hit = False
mesh_path = None
def overlap_callback(hit):
nonlocal valid_hit
valid_hit = hit.rigid_body not in context.disabled_collision_pairs_dict[mesh_path]
return not valid_hit
for meshes in robot_copy.meshes[robot_copy_type].values():
for mesh in meshes.values():
if valid_hit:
return valid_hit
mesh_path = mesh.GetPrimPath().pathString
mesh_id = lazy.pxr.PhysicsSchemaTools.encodeSdfPath(mesh_path)
if mesh.GetTypeName() == "Mesh":
og.sim.psqi.overlap_mesh(*mesh_id, reportFn=overlap_callback)
else:
og.sim.psqi.overlap_shape(*mesh_id, reportFn=overlap_callback)
return valid_hit
def detect_robot_collision_in_sim(robot, filter_objs=[], ignore_obj_in_hand=True):
"""
Detects robot collisions with the environment, but not with itself using the ContactBodies API
Args:
robot (BaseRobot): Robot object to detect collisions for
filter_objs (Array of StatefulObject): Objects to ignore collisions with
ignore_obj_in_hand (bool): Whether to ignore collisions with the object in the robot's hand
Returns:
bool: Whether the robot is in collision
"""
filter_categories = ["floors"]
obj_in_hand = robot._ag_obj_in_hand[robot.default_arm]
if obj_in_hand is not None and ignore_obj_in_hand:
filter_objs.append(obj_in_hand)
collision_prims = list(robot.states[ContactBodies].get_value(ignore_objs=tuple(filter_objs)))
for col_prim in collision_prims:
tokens = col_prim.prim_path.split("/")
obj_prim_path = "/".join(tokens[:-1])
col_obj = og.sim.scene.object_registry("prim_path", obj_prim_path)
if col_obj.category in filter_categories:
collision_prims.remove(col_prim)
return len(collision_prims) > 0
def astar(search_map, start, goal, eight_connected=True):
"""
A* search algorithm for finding a path from start to goal on a grid map
Args:
search_map (Array): 2D Grid map to search on
start (Array): Start position on the map
goal (Array): Goal position on the map
eight_connected (bool): Whether we consider the sides and diagonals of a cell as neighbors or just the sides
Returns:
2D numpy array or None: Array of shape (N, 2) where N is the number of steps in the path.
Each row represents the (x, y) coordinates of a step on the path.
If no path is found, returns None.
"""
def heuristic(node):
# Calculate the Euclidean distance from node to goal
return np.sqrt((node[0] - goal[0])**2 + (node[1] - goal[1])**2)
def get_neighbors(cell):
if eight_connected:
# 8-connected grid
return [(cell[0] + 1, cell[1]), (cell[0] - 1, cell[1]), (cell[0], cell[1] + 1), (cell[0], cell[1] - 1),
(cell[0] + 1, cell[1] + 1), (cell[0] - 1, cell[1] - 1), (cell[0] + 1, cell[1] - 1), (cell[0] - 1, cell[1] + 1)]
else:
# 4-connected grid
return [(cell[0] + 1, cell[1]), (cell[0] - 1, cell[1]), (cell[0], cell[1] + 1), (cell[0], cell[1] - 1)]
def is_valid(cell):
# Check if cell is within the map and traversable
return (0 <= cell[0] < search_map.shape[0] and
0 <= cell[1] < search_map.shape[1] and
search_map[cell] != 0)
def cost(cell1, cell2):
# Define the cost of moving from cell1 to cell2
# Return 1 for adjacent cells and square root of 2 for diagonal cells in an 8-connected grid.
if cell1[0] == cell2[0] or cell1[1] == cell2[1]:
return 1
else:
return np.sqrt(2)
open_set = [(0, start)]
came_from = {}
visited = set()
g_score = {cell: float('inf') for cell in np.ndindex(search_map.shape)}
g_score[start] = 0
while open_set:
_, current = heapq.heappop(open_set)
visited.add(current)
if current == goal:
# Reconstruct path
path = []
while current in came_from:
path.insert(0, current)
current = came_from[current]
path.insert(0, start)
return np.array(path)
for neighbor in get_neighbors(current):
# Skip neighbors that are not valid or have already been visited
if not is_valid(neighbor) or neighbor in visited:
continue
tentative_g_score = g_score[current] + cost(current, neighbor)
if tentative_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score = tentative_g_score + heuristic(neighbor)
heapq.heappush(open_set, (f_score, neighbor))
# Return None if no path is found
return None
| 22,689 | Python | 35.420546 | 152 | 0.61294 |
StanfordVL/OmniGibson/omnigibson/utils/registry_utils.py | """
A set of utility functions for registering and tracking objects
"""
from inspect import isclass
import numpy as np
from collections.abc import Iterable
from omnigibson.macros import create_module_macros
from omnigibson.utils.python_utils import Serializable, SerializableNonInstance, UniquelyNamed
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Token identifier for default values if a key doesn't exist in a given object
m.DOES_NOT_EXIST = "DOES_NOT_EXIST"
class Registry(UniquelyNamed):
"""
Simple class for easily registering and tracking arbitrary objects of the same (or very similar) class types.
Elements added are automatically organized by attributes specified by @unique_keys and @group_keys, and
can be accessed at runtime by specifying the desired key and indexing value to grab the object(s).
Default_key is a 1-to-1 mapping: i.e.: a single indexing value will return a single object.
default: "name" -- indexing by object.name (i.e.: every object's name should be unique)
Unique_keys are other 1-to-1 mappings: i.e.: a single indexing value will return a single object.
example: indexing by object.name (every object's name should be unique)
Group_keys are 1-to-many mappings: i.e.: a single indexing value will return a set of objects.
example: indexing by object.in_rooms (many objects can be in a single room)
Note that if a object's attribute is an array of values, then it will be stored under ALL of its values.
example: object.in_rooms = ["kitchen", "living_room"], indexing by in_rooms with a value of either kitchen OR
living room will return this object as part of its set!
You can also easily check for membership in this registry, via either the object's name OR the object itself,
e.g.:
> object.name in registry
> object in registry
If the latter, note that default_key attribute will automatically be used to search for the object
"""
def __init__(
self,
name,
class_types=object,
default_key="name",
unique_keys=None,
group_keys=None,
default_value=m.DOES_NOT_EXIST,
):
"""
Args:
name (str): name of this registry
class_types (class or list of class): class expected for all entries in this registry. Default is `object`,
meaning any object entered will be accepted. This is used to sanity check added entries using add()
to make sure their type is correct (either that the entry itself is a valid class, or that they are an
object of the valid class). Note that if a list of classes are passed, any one of the classes are
considered a valid type for added objects
default_key (str): default key by which to reference a given object. This key should be a
publically accessible attribute in a given object (e.g.: object.name) and uniquely identify
any entries
unique_keys (None or list of str): keys by which to reference a given object. Any key should be a
publically accessible attribute in a given object (e.g.: object.name)
i.e.: these keys should map to a single object
group_keys (None or list of str): keys by which to reference a group of objects, based on the key
(e.g.: object.room)
i.e.: these keys can map to multiple objects
e.g.: default is "name" key only, so we will store objects by their object.name attribute
default_value (any): Default value to use if the attribute @key does not exist in the object
"""
self._name = name
self.class_types = class_types if isinstance(class_types, Iterable) else [class_types]
self.default_key = default_key
self.unique_keys = set([] if unique_keys is None else unique_keys)
self.group_keys = set([] if group_keys is None else group_keys)
self.default_value = default_value
# We always add in the "name" attribute as well
self.unique_keys.add(self.default_key)
# Make sure there's no overlap between the unique and group keys
assert len(self.unique_keys.intersection(self.group_keys)) == 0,\
f"Cannot create registry with unique and group object keys that are the same! " \
f"Unique keys: {self.unique_keys}, group keys: {self.group_keys}"
# Create the dicts programmatically
for k in self.unique_keys.union(self.group_keys):
self.__setattr__(f"_objects_by_{k}", dict())
# Run super init
super().__init__()
@property
def name(self):
return self._name
def add(self, obj):
"""
Adds Instance @obj to this registry
Args:
obj (any): Instance to add to this registry
"""
# Make sure that obj is of the correct class type
assert any([isinstance(obj, class_type) or issubclass(obj, class_type) for class_type in self.class_types]), \
f"Added object must be either an instance or subclass of one of the following classes: {self.class_types}!"
self._add(obj=obj, keys=self.all_keys)
def _add(self, obj, keys=None):
"""
Same as self.add, but allows for selective @keys for adding this object to. Useful for internal things,
such as internal updating of mappings
Args:
obj (any): Instance to add to this registry
keys (None or set or list of str): Which object keys to use for adding the object to mappings.
None is default, which corresponds to all keys
"""
keys = self.all_keys if keys is None else keys
for k in keys:
obj_attr = self._get_obj_attr(obj=obj, attr=k)
# Standardize input as a list
obj_attr = obj_attr if \
isinstance(obj_attr, Iterable) and not isinstance(obj_attr, str) else [obj_attr]
# Loop over all values in this attribute and add to all mappings
for attr in obj_attr:
mapping = self.get_dict(k)
if k in self.unique_keys:
# Handle unique case
if attr in mapping:
log.warning(f"Instance identifier '{k}' should be unique for adding to this registry mapping! Existing {k}: {attr}")
# Special case for "name" attribute, which should ALWAYS be unique
assert k != "name", "For name attribute, objects MUST be unique."
mapping[attr] = obj
else:
# Not unique case
# Possibly initialize list
if attr not in mapping:
mapping[attr] = set()
mapping[attr].add(obj)
def remove(self, obj):
"""
Removes object @object from this registry
Args:
obj (any): Instance to remove from this registry
"""
# Iterate over all keys
for k in self.all_keys:
# Grab the attribute from the object
obj_attr = self._get_obj_attr(obj=obj, attr=k)
# Standardize input as a list
obj_attr = obj_attr if \
isinstance(obj_attr, Iterable) and not isinstance(obj_attr, str) else [obj_attr]
# Loop over all values in this attribute and remove them from all mappings
for attr in obj_attr:
mapping = self.get_dict(k)
if k in self.unique_keys:
# Handle unique case -- in this case, we just directly pop the value from the dictionary
mapping.pop(attr)
else:
# Not unique case
# We remove a value from the resulting set
mapping[attr].remove(obj)
def clear(self):
"""
Removes all owned objects from this registry
"""
# Re-create the owned dicts programmatically
for k in self.unique_keys.union(self.group_keys):
self.__setattr__(f"_objects_by_{k}", dict())
def update(self, keys=None):
"""
Updates this registry, refreshing all internal mappings in case an object's value was updated
Args:
keys (None or str or set or list of str): Which object keys to update. None is default, which corresponds
to all keys
"""
objects = self.objects
keys = self.all_keys if keys is None else \
(keys if type(keys) in {tuple, list} else [keys])
# Delete and re-create all keys mappings
for k in keys:
self.__delattr__(f"_objects_by_{k}")
self.__setattr__(f"_objects_by_{k}", dict())
# Iterate over all objects and re-populate the mappings
for obj in objects:
self._add(obj=obj, keys=[k])
def object_is_registered(self, obj):
"""
Check if a given object @object is registered
Args:
obj (any): Instance to check if it is internally registered
"""
return obj in self.objects
def get_dict(self, key):
"""
Specific mapping dictionary within this registry corresponding to the mappings of @key.
e.g.: if key = "name", this will return the dictionary mapping object.name to objects
Args:
key (str): Key with which to grab mapping dict from
Returns:
dict: Mapping from identifiers to object(s) based on @key
"""
return getattr(self, f"_objects_by_{key}")
def get_ids(self, key):
"""
All identifiers within this registry corresponding to the mappings of @key.
e.g.: if key = "name", this will return all "names" stored internally that index into a object
Args:
key (str): Key with which to grab all identifiers from
Returns:
set: All identifiers within this registry corresponding to the mappings of @key.
"""
return set(self.get_dict(key=key).keys())
def _get_obj_attr(self, obj, attr):
"""
Grabs object's @obj's attribute @attr. Additionally checks to see if @obj is a class or a class instance, and
uses the correct logic
Args:
obj (any): Object to grab attribute from
attr (str): String name of the attribute to grab
Return:
any: Attribute @k of @obj
"""
# We try to grab the object's attribute, and if it fails we fallback to the default value
try:
val = getattr(obj, attr)
except:
val = self.default_value
return val
@property
def objects(self):
"""
Get the objects in this registry
Returns:
list of any: Instances owned by this registry
"""
return list(self.get_dict(self.default_key).values())
@property
def all_keys(self):
"""
Returns:
set of str: All object keys that are valid identification methods to index object(s)
"""
return self.unique_keys.union(self.group_keys)
def __call__(self, key, value, default_val=None):
"""
Grab the object in this registry based on @key and @value
Args:
key (str): What identification type to use to grab the requested object(s).
Should be one of @self.all_keys.
value (any): Value to grab. Should be the value of your requested object.<key> attribute
default_val (any): Default value to return if @value is not found
Returns:
any or set of any: requested unique object if @key is one of unique_keys, else a set if
@key is one of group_keys
"""
assert key in self.all_keys,\
f"Invalid key requested! Valid options are: {self.all_keys}, got: {key}"
return self.get_dict(key).get(value, default_val)
def __contains__(self, obj):
# Instance can be either a string (default key) OR the object itself
if isinstance(obj, str):
obj = self(self.default_key, obj)
return self.object_is_registered(obj=obj)
class SerializableRegistry(Registry, Serializable):
"""
Registry that is serializable, i.e.: entries contain states that can themselves be serialized /deserialized.
Note that this assumes that any objects added to this registry are themselves of @Serializable type!
"""
def add(self, obj):
# In addition to any other class types, we make sure that the object is a serializable instance / class
validate_class = issubclass if isclass(obj) else isinstance
assert any([validate_class(obj, class_type) for class_type in (Serializable, SerializableNonInstance)]), \
f"Added object must be either an instance or subclass of Serializable or SerializableNonInstance!"
# Run super like normal
super().add(obj=obj)
@property
def state_size(self):
return sum(obj.state_size for obj in self.objects)
def _dump_state(self):
# Iterate over all objects and grab their states
state = dict()
for obj in self.objects:
state[obj.name] = obj.dump_state(serialized=False)
return state
def _load_state(self, state):
# Iterate over all objects and load their states. Currently the objects and the state don't have to match, i.e.
# there might be objects in the scene that do not appear in the state dict (a warning will be printed), or
# the state might contain additional information about objects that are NOT in the scene. For both cases, state
# loading will be skipped.
for obj in self.objects:
if obj.name not in state:
log.warning(f"Object '{obj.name}' is not in the state dict to load from. Skip loading its state.")
continue
obj.load_state(state[obj.name], serialized=False)
def _serialize(self, state):
# Iterate over the entire dict and flatten
return np.concatenate([obj.serialize(state[obj.name]) for obj in self.objects]) if \
len(self.objects) > 0 else np.array([])
def _deserialize(self, state):
state_dict = dict()
# Iterate over all the objects and deserialize their individual states, incrementing the index counter
# along the way
idx = 0
for obj in self.objects:
log.debug(f"obj: {obj.name}, state size: {obj.state_size}, idx: {idx}, passing in state length: {len(state[idx:])}")
# We pass in the entire remaining state vector, assuming the object only parses the relevant states
# at the beginning
state_dict[obj.name] = obj.deserialize(state[idx:])
idx += obj.state_size
return state_dict, idx
| 15,260 | Python | 41.391667 | 140 | 0.613434 |
StanfordVL/OmniGibson/omnigibson/utils/git_utils.py | from pathlib import Path
import bddl
import git
import omnigibson as og
def git_info(directory):
repo = git.Repo(directory)
try:
branch_name = repo.active_branch.name
except TypeError:
branch_name = "[DETACHED]"
return {
"directory": str(directory),
"code_diff": repo.git.diff(None),
"code_diff_staged": repo.git.diff("--staged"),
"commit_hash": repo.head.commit.hexsha,
"branch_name": branch_name,
}
def project_git_info():
return {
"OmniGibson": git_info(Path(og.root_path).parent),
"bddl": git_info(Path(bddl.__file__).parent.parent),
}
| 646 | Python | 21.310344 | 60 | 0.605263 |
StanfordVL/OmniGibson/omnigibson/utils/geometry_utils.py | """
A set of helper utility functions for dealing with 3D geometry
"""
import numpy as np
import omnigibson.utils.transform_utils as T
from omnigibson.utils.usd_utils import mesh_prim_mesh_to_trimesh_mesh
def get_particle_positions_in_frame(pos, quat, scale, particle_positions):
"""
Transforms particle positions @positions into the frame specified by @pos and @quat with new scale @scale,
where @pos and @quat are assumed to be specified in the same coordinate frame that @particle_positions is specified
Args:
pos (3-array): (x,y,z) pos of the new frame
quat (4-array): (x,y,z,w) quaternion orientation of the new frame
scale (3-array): (x,y,z) local scale of the new frame
particle_positions ((N, 3) array): positions
Returns:
(N,) array: updated particle positions in the new coordinate frame
"""
# Get pose of origin (global frame) in new_frame
origin_in_new_frame = T.pose_inv(T.pose2mat((pos, quat)))
# Batch the transforms to get all particle points in the local link frame
positions_tensor = np.tile(np.eye(4).reshape(1, 4, 4), (len(particle_positions), 1, 1)) # (N, 4, 4)
# Scale by the new scale#
positions_tensor[:, :3, 3] = particle_positions
particle_positions = (origin_in_new_frame @ positions_tensor)[:, :3, 3] # (N, 3)
# Scale by the new scale
return particle_positions / scale.reshape(1, 3)
def get_particle_positions_from_frame(pos, quat, scale, particle_positions):
"""
Transforms particle positions @positions from the frame specified by @pos and @quat with new scale @scale.
This is similar to @get_particle_positions_in_frame, but does the reverse operation, inverting @pos and @quat
Args:
pos (3-array): (x,y,z) pos of the local frame
quat (4-array): (x,y,z,w) quaternion orientation of the local frame
scale (3-array): (x,y,z) local scale of the local frame
particle_positions ((N, 3) array): positions
Returns:
(N,) array: updated particle positions in the parent coordinate frame
"""
# Scale by the new scale
particle_positions = particle_positions * scale.reshape(1, 3)
# Get pose of origin (global frame) in new_frame
origin_in_new_frame = T.pose2mat((pos, quat))
# Batch the transforms to get all particle points in the local link frame
positions_tensor = np.tile(np.eye(4).reshape(1, 4, 4), (len(particle_positions), 1, 1)) # (N, 4, 4)
# Scale by the new scale#
positions_tensor[:, :3, 3] = particle_positions
return (origin_in_new_frame @ positions_tensor)[:, :3, 3] # (N, 3)
def check_points_in_cube(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cube with specified size @size.
NOTE: Assumes the cube and positions are expressed
in the same coordinate frame such that the cube's dimensions are axis-aligned with (x,y,z)
Args:
size float: length of each side of the cube, specified in its local frame
pos (3-array): (x,y,z) local location of the cube
quat (4-array): (x,y,z,w) local orientation of the cube
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cube
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cube.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
return ((-size / 2.0 < particle_positions) & (particle_positions < size / 2.0)).sum(axis=-1) == 3
def check_points_in_cone(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cone with specified size @size.
NOTE: Assumes the cone and positions are
expressed in the same coordinate frame such that the cone's height is aligned with the z-axis
Args:
size (2-array): (radius, height) dimensions of the cone, specified in its local frame
pos (3-array): (x,y,z) local location of the cone
quat (4-array): (x,y,z,w) local orientation of the cone
scale (3-array): (x,y,z) local scale of the cone, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cone
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cone.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
radius, height = size
in_height = (-height / 2.0 < particle_positions[:, -1]) & (particle_positions[:, -1] < height / 2.0)
in_radius = np.linalg.norm(particle_positions[:, :-1], axis=-1) < \
(radius * (1 - (particle_positions[:, -1] + height / 2.0) / height ))
return in_height & in_radius
def check_points_in_cylinder(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a cylinder with specified size @size.
NOTE: Assumes the cylinder and positions are
expressed in the same coordinate frame such that the cylinder's height is aligned with the z-axis
Args:
size (2-array): (radius, height) dimensions of the cylinder, specified in its local frame
pos (3-array): (x,y,z) local location of the cylinder
quat (4-array): (x,y,z,w) local orientation of the cylinder
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the cylinder
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the cylinder.
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
radius, height = size
in_height = (-height / 2.0 < particle_positions[:, -1]) & (particle_positions[:, -1] < height / 2.0)
in_radius = np.linalg.norm(particle_positions[:, :-1], axis=-1) < radius
return in_height & in_radius
def check_points_in_sphere(size, pos, quat, scale, particle_positions):
"""
Checks which points are within a sphere with specified size @size.
NOTE: Assumes the sphere and positions are expressed in the same coordinate frame
Args:
size (float): radius dimensions of the sphere
pos (3-array): (x,y,z) local location of the sphere
quat (4-array): (x,y,z,w) local orientation of the sphere
scale (3-array): (x,y,z) local scale of the sphere, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the sphere
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the sphere
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
return np.linalg.norm(particle_positions, axis=-1) < size
def check_points_in_convex_hull_mesh(mesh_face_centroids, mesh_face_normals, pos, quat, scale, particle_positions):
"""
Checks which points are within a sphere with specified size @size.
NOTE: Assumes the mesh and positions are expressed in the same coordinate frame
Args:
mesh_face_centroids (D, 3): (x,y,z) location of the centroid of each mesh face, expressed in its local frame
mesh_face_normals (D, 3): (x,y,z) normalized direction vector of each mesh face, expressed in its local frame
pos (3-array): (x,y,z) local location of the mesh
quat (4-array): (x,y,z,w) local orientation of the mesh
scale (3-array): (x,y,z) local scale of the cube, specified in its local frame
particle_positions ((N, 3) array): positions to check for whether it is in the mesh
Returns:
(N,) array: boolean numpy array specifying whether each point lies in the mesh
"""
particle_positions = get_particle_positions_in_frame(
pos=pos,
quat=quat,
scale=scale,
particle_positions=particle_positions,
)
# For every mesh point / normal and particle position pair, we check whether it is "inside" (i.e.: the point lies
# BEHIND the normal plane -- this is easily done by taking the dot product with the vector from the point to the
# particle position with the normal, and validating that the value is < 0)
D, _ = mesh_face_centroids.shape
N, _ = particle_positions.shape
mesh_points = np.tile(mesh_face_centroids.reshape(1, D, 3), (N, 1, 1))
mesh_normals = np.tile(mesh_face_normals.reshape(1, D, 3), (N, 1, 1))
particle_positions = np.tile(particle_positions.reshape(N, 1, 3), (1, D, 1))
# All arrays are now (N, D, 3) shape -- efficient for batching
in_range = ((particle_positions - mesh_points) * mesh_normals).sum(axis=-1) < 0 # shape (N, D)
# All D normals must be satisfied for a single point to be considered inside the hull
in_range = in_range.sum(axis=-1) == D
return in_range
def _generate_convex_hull_volume_checker_functions(convex_hull_mesh):
"""
An internal helper function used to programmatically generate lambda funtions to check for particle
points within a convex hull mesh defined by face centroids @mesh_face_centroids and @mesh_face_normals.
Note that this is needed as an EXTERNAL helper function to @generate_points_in_volume_checker_function
because we "bake" certain arguments as part of the lambda internal scope, and
directly generating functions in a for loop results in these local variables being overwritten each time
(meaning that all the generated lambda functions reference the SAME variables!!)
Args:
convex_hull_mesh (Usd.Prim): Raw USD convex hull mesh to generate the volume checker functions
Returns:
2-tuple:
- function: Generated lambda function with signature:
in_range = check_in_volume(mesh, particle_positions)
where @in_range is a N-array boolean numpy array, (True where the particle is in the convex hull mesh
volume), @mesh is the raw USD mesh, and @particle_positions is a (N, 3) array specifying the particle
positions in the SAME coordinate frame as @mesh
- function: Function for grabbing real-time LOCAL scale volume of the container. Signature:
vol = calc_volume(mesh)
where @vol is the total volume being checked (expressed in the mesh's LOCAL scale), and @mesh is the raw
USD mesh
"""
# For efficiency, we pre-compute the mesh using trimesh and find its corresponding faces and normals
trimesh_mesh = mesh_prim_mesh_to_trimesh_mesh(convex_hull_mesh, include_normals=False, include_texcoord=False).convex_hull
assert trimesh_mesh.is_convex, \
f"Trying to generate a volume checker function for a non-convex mesh {convex_hull_mesh.GetPath().pathString}"
face_centroids = trimesh_mesh.vertices[trimesh_mesh.faces].mean(axis=1)
face_normals = trimesh_mesh.face_normals
# This function assumes that:
# 1. @particle_positions are in the local container_link frame
# 2. the @check_points_in_[...] function will convert them into the local @mesh frame
in_volume = lambda mesh, particle_positions: check_points_in_convex_hull_mesh(
mesh_face_centroids=face_centroids,
mesh_face_normals=face_normals,
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array(
[*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
calc_volume = lambda mesh: trimesh_mesh.volume if trimesh_mesh.is_volume else trimesh_mesh.convex_hull.volume
return in_volume, calc_volume
def generate_points_in_volume_checker_function(obj, volume_link, use_visual_meshes=True, mesh_name_prefixes=None):
"""
Generates a function for quickly checking which of a group of points are contained within any container volumes.
Four volume types are supported:
"Cylinder" - Cylinder volume
"Cube" - Cube volume
"Sphere" - Sphere volume
"Mesh" - Convex hull volume
@volume_link should have any number of nested, visual-only meshes of types {Sphere, Cylinder, Cube, Mesh} with
naming prefix "container[...]"
Args:
obj (EntityPrim): Object which contains @volume_link as one of its links
volume_link (RigidPrim): Link to use to grab container volumes composing the values for checking the points
use_visual_meshes (bool): Whether to use @volume_link's visual or collision meshes to generate points fcn
mesh_name_prefixes (None or str): If specified, specifies the substring that must exist in @volume_link's
mesh names in order for that mesh to be included in the volume checker function. If None, no filtering
will be used.
Returns:
2-tuple:
- function: Function with signature:
in_range = check_in_volumes(particle_positions)
where @in_range is a N-array boolean numpy array, (True where the particle is in the volume), and
@particle_positions is a (N, 3) array specifying the particle positions in global coordinates
- function: Function for grabbing real-time global scale volume of the container. Signature:
vol = total_volume()
where @vol is the total volume being checked (expressed in global scale) aggregated across
all container sub-volumes
"""
# Iterate through all visual meshes and keep track of any that are prefixed with container
container_meshes = []
meshes = volume_link.visual_meshes if use_visual_meshes else volume_link.collision_meshes
for container_mesh_name, container_mesh in meshes.items():
if mesh_name_prefixes is None or mesh_name_prefixes in container_mesh_name:
container_meshes.append(container_mesh)
# Programmatically define the volume checker functions based on each container found
volume_checker_fcns = []
for sub_container_mesh in container_meshes:
mesh_type = sub_container_mesh.prim.GetTypeName()
if mesh_type == "Mesh":
fcn, vol_fcn = _generate_convex_hull_volume_checker_functions(convex_hull_mesh=sub_container_mesh.prim)
elif mesh_type == "Sphere":
fcn = lambda mesh, particle_positions: check_points_in_sphere(
size=mesh.GetAttribute("radius").Get(),
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cylinder":
fcn = lambda mesh, particle_positions: check_points_in_cylinder(
size=[mesh.GetAttribute("radius").Get(), mesh.GetAttribute("height").Get()],
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cone":
fcn = lambda mesh, particle_positions: check_points_in_cone(
size=[mesh.GetAttribute("radius").Get(), mesh.GetAttribute("height").Get()],
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
elif mesh_type == "Cube":
fcn = lambda mesh, particle_positions: check_points_in_cube(
size=mesh.GetAttribute("size").Get(),
pos=np.array(mesh.GetAttribute("xformOp:translate").Get()),
quat=np.array([*(mesh.GetAttribute("xformOp:orient").Get().imaginary), mesh.GetAttribute("xformOp:orient").Get().real]),
scale=np.array(mesh.GetAttribute("xformOp:scale").Get()),
particle_positions=particle_positions,
)
else:
raise ValueError(f"Cannot create volume checker function for mesh of type: {mesh_type}")
volume_checker_fcns.append(fcn)
# Define the actual volume checker function
def check_points_in_volumes(particle_positions):
# Algo
# 1. Particles in global frame --> particles in volume link frame (including scaling)
# 2. For each volume checker function, apply volume checking
# 3. Aggregate across all functions with OR condition (any volume satisfied for that point)
######
n_particles = len(particle_positions)
# Get pose of origin (global frame) in frame of volume link
# NOTE: This assumes there is no relative scaling between obj and volume link
volume_link_pos, volume_link_quat = volume_link.get_position_orientation()
particle_positions = get_particle_positions_in_frame(
pos=volume_link_pos,
quat=volume_link_quat,
scale=obj.scale,
particle_positions=particle_positions,
)
in_volumes = np.zeros(n_particles).astype(bool)
for checker_fcn, mesh in zip(volume_checker_fcns, container_meshes):
in_volumes |= checker_fcn(mesh.prim, particle_positions)
return in_volumes
# Define the actual volume calculator function
def calculate_volume(precision=1e-5):
# We use monte-carlo sampling to approximate the voluem up to @precision
# NOTE: precision defines the RELATIVE precision of the volume computation -- i.e.: the relative error with
# respect to the volume link's global AABB
# Convert precision to minimum number of particles to sample
min_n_particles = int(np.ceil(1. / precision))
# Make sure container meshes are visible so AABB computation is correct
for mesh in container_meshes:
mesh.visible = True
# Determine equally-spaced sampling distance to achieve this minimum particle count
aabb_volume = np.product(volume_link.visual_aabb_extent)
sampling_distance = np.cbrt(aabb_volume / min_n_particles)
low, high = volume_link.visual_aabb
n_particles_per_axis = ((high - low) / sampling_distance).astype(int) + 1
assert np.all(n_particles_per_axis), "Must increase precision for calculate_volume -- too coarse for sampling!"
# 1e-10 is added because the extent might be an exact multiple of particle radius
arrs = [np.arange(l, h, sampling_distance)
for l, h, n in zip(low, high, n_particles_per_axis)]
# Generate 3D-rectangular grid of points, and only keep the ones inside the mesh
points = np.stack([arr.flatten() for arr in np.meshgrid(*arrs)]).T
# Re-hide container meshes
for mesh in container_meshes:
mesh.visible = False
# Return the fraction of the link AABB's volume based on fraction of points enclosed within it
return aabb_volume * np.mean(check_points_in_volumes(points))
return check_points_in_volumes, calculate_volume
| 19,995 | Python | 48.130221 | 136 | 0.663766 |
StanfordVL/OmniGibson/omnigibson/utils/gym_utils.py | import gym
from abc import ABCMeta, abstractmethod
import numpy as np
from omnigibson.utils.ui_utils import create_module_logger
# Create module logger
log = create_module_logger(module_name=__name__)
def recursively_generate_flat_dict(dic, prefix=None):
"""
Helper function to recursively iterate through dictionary / gym.spaces.Dict @dic and flatten any nested elements,
such that the result is a flat dictionary mapping keys to values
Args:
dic (dict or gym.spaces.Dict): (Potentially nested) dictionary to convert into a flattened dictionary
prefix (None or str): Prefix to append to the beginning of all strings in the flattened dictionary. None results
in no prefix being applied
Returns:
dict: Flattened version of @dic
"""
out = dict()
prefix = "" if prefix is None else f"{prefix}::"
for k, v in dic.items():
if isinstance(v, gym.spaces.Dict) or isinstance(v, dict):
out.update(recursively_generate_flat_dict(dic=v, prefix=f"{prefix}{k}"))
elif isinstance(v, gym.spaces.Tuple) or isinstance(v, tuple):
for i, vv in enumerate(v):
# Assume no dicts are nested within tuples
out[f"{prefix}{k}::{i}"] = vv
else:
# Add to out dict
out[f"{prefix}{k}"] = v
return out
def recursively_generate_compatible_dict(dic):
"""
Helper function to recursively iterate through dictionary and cast values to necessary types to be compatibel with
Gym spaces -- in particular, the Sequence and Tuple types for np.ndarray / np.void values in @dic
Args:
dic (dict or gym.spaces.Dict): (Potentially nested) dictionary to convert into a flattened dictionary
Returns:
dict: Gym-compatible version of @dic
"""
out = dict()
for k, v in dic.items():
if isinstance(v, dict):
out[k] = recursively_generate_compatible_dict(dic=v)
elif isinstance(v, np.ndarray) and len(v.dtype) > 0:
# Map to list of tuples
out[k] = list(map(tuple, v))
else:
# Preserve the key-value pair
out[k] = v
return out
class GymObservable(metaclass=ABCMeta):
"""
Simple class interface for observable objects. These objects should implement a way to grab observations,
(get_obs()), and should define an observation space that is created when load_observation_space() is called
Args:
kwargs: dict, does nothing, used to sink any extraneous arguments during initialization
"""
def __init__(self, *args, **kwargs):
# Initialize variables that we will fill in later
self.observation_space = None
# Call any super methods
super().__init__(*args, **kwargs)
@abstractmethod
def get_obs(self, **kwargs):
"""
Get observations for the object. Note that the shape / nested structure should match that
of @self.observation_space!
Args:
kwargs (dict): Any keyword args necessary for grabbing observations
Returns:
2-tuple:
dict: Keyword-mapped observations mapping observation names to nested observations
dict: Additional information about the observations
"""
raise NotImplementedError()
@staticmethod
def _build_obs_box_space(shape, low, high, dtype=np.float32):
"""
Helper function that builds individual observation box spaces.
Args:
shape (n-array): Shape of the space
low (float): Lower bound of the space
high (float): Upper bound of the space
Returns:
gym.spaces.Box: Generated gym box observation space
"""
return gym.spaces.Box(low=low, high=high, shape=shape, dtype=dtype)
@abstractmethod
def _load_observation_space(self):
"""
Create the observation space for this object. Should be implemented by subclass
Returns:
dict: Keyword-mapped observation space for this object mapping observation name to observation space
"""
raise NotImplementedError()
def load_observation_space(self):
"""
Load the observation space internally, and also return this value
Returns:
gym.spaces.Dict: Loaded observation space for this object
"""
# Load the observation space and convert it into a gym-compatible dictionary
self.observation_space = gym.spaces.Dict(self._load_observation_space())
log.debug(f"Loaded obs space dictionary for: {self.__class__.__name__}")
return self.observation_space
| 4,700 | Python | 34.345864 | 120 | 0.640851 |
StanfordVL/OmniGibson/omnigibson/utils/object_utils.py | """
Helper utility functions for computing relevant object information
"""
import omnigibson as og
import numpy as np
import omnigibson.utils.transform_utils as T
from scipy.spatial.transform import Rotation as R
from omnigibson.utils.geometry_utils import get_particle_positions_from_frame
def sample_stable_orientations(obj, n_samples=10, drop_aabb_offset=0.1):
"""
Samples random stable orientations for obj @obj by stochastically dropping the object and recording its
resulting orientations
Args:
obj (BaseObject): Object whose orientations will be sampled
n_samples (int): How many sampled orientations will be recorded
drop_aabb_offset (float): Offset to apply in the z-direction when dropping the object
Returns:
n-array: (N, 4) array, where each of the N rows are sampled (x,y,z,w) stable orientations
"""
og.sim.play()
assert np.all(obj.scale == 1.0)
aabb_extent = obj.aabb_extent
radius = np.linalg.norm(aabb_extent) / 2.0
drop_pos = np.array([0, 0, radius + drop_aabb_offset])
center_offset = obj.get_position() - obj.aabb_center
drop_orientations = R.random(n_samples).as_quat()
stable_orientations = np.zeros_like(drop_orientations)
for i, drop_orientation in enumerate(drop_orientations):
# Sample orientation, drop, wait to stabilize, then record
pos = drop_pos + T.quat2mat(drop_orientation) @ center_offset
obj.set_position_orientation(pos, drop_orientation)
obj.keep_still()
for j in range(25):
og.sim.step()
stable_orientations[i] = obj.get_orientation()
return stable_orientations
def compute_bbox_offset(obj):
"""
Computes the base link offset of @obj, specifying the relative position of the object's bounding box center wrt to
its root link frame, expressed in the world frame
Args:
obj (BaseObject): Object whose bbox offset will be computed
Returns:
n-array: (x,y,z) offset specifying the relative position from the root link to @obj's bounding box center
"""
og.sim.stop()
assert np.all(obj.scale == 1.0)
obj.set_position_orientation(np.zeros(3), np.array([0, 0, 0, 1.0]))
return obj.aabb_center - obj.get_position()
def compute_native_bbox_extent(obj):
"""
Computes the native bounding box extent for @obj, which is the extent with the obj placed at (0, 0, 0) with
orientation (0, 0, 0, 1) and scale (1, 1, 1)
Args:
obj (BaseObject): Object whose native bbox extent will be computed
Returns:
n-array: (x,y,z) native bounding box extent
"""
og.sim.stop()
assert np.all(obj.scale == 1.0)
obj.set_position_orientation(np.zeros(3), np.array([0, 0, 0, 1.0]))
return obj.aabb_extent
def compute_base_aligned_bboxes(obj):
link_bounding_boxes = {}
for link_name, link in obj.links.items():
link_bounding_boxes[link_name] = {}
for mesh_type, mesh_list in zip(("collision", "visual"), (link.collision_meshes, link.visual_meshes)):
pts_in_link_frame = []
for mesh_name, mesh in mesh_list.items():
pts = mesh.get_attribute("points")
local_pos, local_orn = mesh.get_local_pose()
pts_in_link_frame.append(get_particle_positions_from_frame(local_pos, local_orn, mesh.scale, pts))
pts_in_link_frame = np.concatenate(pts_in_link_frame, axis=0)
max_pt = np.max(pts_in_link_frame, axis=0)
min_pt = np.min(pts_in_link_frame, axis=0)
extent = max_pt - min_pt
center = (max_pt + min_pt) / 2.0
transform = T.pose2mat((center, np.array([0, 0, 0, 1.0])))
print(pts_in_link_frame.shape)
link_bounding_boxes[link_name][mesh_type] = {
"extent": extent,
"transform": transform,
}
return link_bounding_boxes
def compute_obj_kinematic_metadata(obj):
"""
Computes relevant kinematic metadata for @obj, such as stable_orientations, bounding box offsets,
bounding box extents, and base_aligned_bboxes
Args:
obj (BaseObject): Object whose metadata will be computed
Returns:
dict: Relevant metadata, with the following keys:
- "stable_orientations": 2D (N, 4)-array of sampled stable (x,y,z,w) quaternion orientations
- "bbox_offset": (x,y,z) relative position from the root link to @obj's bounding box center
- "native_bbox_extent": (x,y,z) native bounding box extent
- "base_aligned_bboxes": TODO
"""
assert og.sim.scene is not None
assert og.sim.scene.floor_plane is not None, "An empty scene must be used in order to compute kinematic metadata!"
assert np.all(obj.scale == 1.0), "Object must have scale [1, 1, 1] in order to compute kinematic metadata!"
og.sim.stop()
return {
"stable_orientations": sample_stable_orientations(obj=obj),
"bbox_offset": compute_bbox_offset(obj=obj),
"native_bbox_extent": compute_native_bbox_extent(obj=obj),
"base_aligned_bboxes": compute_base_aligned_bboxes(obj=obj),
}
| 5,156 | Python | 38.976744 | 118 | 0.651668 |
StanfordVL/OmniGibson/omnigibson/utils/processing_utils.py | import numpy as np
from omnigibson.utils.python_utils import Serializable
class Filter(Serializable):
"""
A base class for filtering a noisy data stream in an online fashion.
"""
def estimate(self, observation):
"""
Takes an observation and returns a de-noised estimate.
Args:
observation (n-array): A current observation.
Returns:
n-array: De-noised estimate.
"""
raise NotImplementedError
def reset(self):
"""
Resets this filter. Default is no-op.
"""
pass
@property
def state_size(self):
# No state by default
return 0
def _dump_state(self):
# Default is no state (empty dict)
return dict()
def _load_state(self, state):
# Default is no state (empty dict), so this is a no-op
pass
def _serialize(self, state):
# Default is no state, so do nothing
return np.array([])
def _deserialize(self, state):
# Default is no state, so do nothing
return dict(), 0
class MovingAverageFilter(Filter):
"""
This class uses a moving average to de-noise a noisy data stream in an online fashion.
This is a FIR filter.
"""
def __init__(self, obs_dim, filter_width):
"""
Args:
obs_dim (int): The dimension of the points to filter.
filter_width (int): The number of past samples to take the moving average over.
"""
self.obs_dim = obs_dim
assert filter_width > 0, f"MovingAverageFilter must have a non-zero size! Got: {filter_width}"
self.filter_width = filter_width
self.past_samples = np.zeros((filter_width, obs_dim))
self.current_idx = 0
self.fully_filled = False # Whether the entire filter buffer is filled or not
super().__init__()
def estimate(self, observation):
"""
Do an online hold for state estimation given a recent observation.
Args:
observation (n-array): New observation to hold internal estimate of state.
Returns:
n-array: New estimate of state.
"""
# Write the newest observation at the appropriate index
self.past_samples[self.current_idx, :] = np.array(observation)
# Compute value based on whether we're fully filled or not
if not self.fully_filled:
val = self.past_samples[:self.current_idx + 1, :].mean(axis=0)
# Denote that we're fully filled if we're at the end of the buffer
if self.current_idx == self.filter_width - 1:
self.fully_filled = True
else:
val = self.past_samples.mean(axis=0)
# Increment the index to write the next sample to
self.current_idx = (self.current_idx + 1) % self.filter_width
return val
def reset(self):
# Clear internal state
self.past_samples *= 0.0
self.current_idx = 0
self.fully_filled = False
@property
def state_size(self):
return super().state_size + self.filter_width * self.obs_dim + 2
def _dump_state(self):
# Run super init first
state = super()._dump_state()
# Add info from this filter
state["past_samples"] = np.array(self.past_samples)
state["current_idx"] = self.current_idx
state["fully_filled"] = self.fully_filled
return state
def _load_state(self, state):
# Run super first
super()._load_state(state=state)
# Load relevant info for this filter
self.past_samples = np.array(state["past_samples"])
self.current_idx = state["current_idx"]
self.fully_filled = state["fully_filled"]
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
# Serialize state for this filter
return np.concatenate([
state_flat,
state["past_samples"].flatten(),
[state["current_idx"]],
[state["fully_filled"]],
]).astype(float)
def _deserialize(self, state):
# Run super first
state_dict, idx = super()._deserialize(state=state)
# Deserialize state for this filter
samples_len = self.filter_width * self.obs_dim
state_dict["past_samples"] = state[idx: idx + samples_len]
state_dict["current_idx"] = int(state[idx + samples_len])
state_dict["fully_filled"] = bool(state[idx + samples_len + 1])
return state_dict, idx + samples_len + 2
class ExponentialAverageFilter(Filter):
"""
This class uses an exponential average of the form y_n = alpha * x_n + (1 - alpha) * y_{n - 1}.
This is an IIR filter.
"""
def __init__(self, obs_dim, alpha=0.9):
"""
Args:
obs_dim (int): The dimension of the points to filter.
alpha (float): The relative weighting of new samples relative to older samples
"""
self.obs_dim = obs_dim
self.avg = np.zeros(obs_dim)
self.num_samples = 0
self.alpha = alpha
super().__init__()
def estimate(self, observation):
"""
Do an online hold for state estimation given a recent observation.
Args:
observation (n-array): New observation to hold internal estimate of state.
Returns:
n-array: New estimate of state.
"""
self.avg = self.alpha * observation + (1.0 - self.alpha) * self.avg
self.num_samples += 1
return np.array(self.avg)
def reset(self):
# Clear internal state
self.avg *= 0.0
self.num_samples = 0
@property
def state_size(self):
return super().state_size + self.obs_dim + 1
def _dump_state(self):
# Run super init first
state = super()._dump_state()
# Add info from this filter
state["avg"] = np.array(self.avg)
state["num_samples"] = self.num_samples
return state
def _load_state(self, state):
# Run super first
super()._load_state(state=state)
# Load relevant info for this filter
self.avg = np.array(state["avg"])
self.num_samples = state["num_samples"]
def _serialize(self, state):
# Run super first
state_flat = super()._serialize(state=state)
# Serialize state for this filter
return np.concatenate([
state_flat,
state["avg"],
[state["num_samples"]],
]).astype(float)
def _deserialize(self, state):
# Run super first
state_dict, idx = super()._deserialize(state=state)
# Deserialize state for this filter
state_dict["avg"] = state[idx: idx + self.obs_dim]
state_dict["num_samples"] = int(state[idx + self.obs_dim])
return state_dict, idx + self.obs_dim + 1
class Subsampler:
"""
A base class for subsampling a data stream in an online fashion.
"""
def subsample(self, observation):
"""
Takes an observation and returns the observation, or None, which
corresponds to deleting the observation.
Args:
observation (n-array): A current observation.
Returns:
None or n-array: No observation if subsampled, otherwise the observation
"""
raise NotImplementedError
class UniformSubsampler(Subsampler):
"""
A class for subsampling a data stream uniformly in time in an online fashion.
"""
def __init__(self, T):
"""
Args:
T (int): Pick one every T observations.
"""
self.T = T
self.counter = 0
super(UniformSubsampler, self).__init__()
def subsample(self, observation):
"""
Returns an observation once every T observations, None otherwise.
Args:
observation (n-array): A current observation.
Returns:
None or n-array: The observation, or None.
"""
self.counter += 1
if self.counter == self.T:
self.counter = 0
return observation
return None
if __name__ == "__main__":
f = MovingAverageFilter(3, 10)
a = np.array([1, 1, 1])
for i in range(500):
print(f.estimate(a + np.random.normal(scale=0.1)))
| 8,427 | Python | 27.962199 | 102 | 0.576718 |
StanfordVL/OmniGibson/omnigibson/utils/grasping_planning_utils.py | import numpy as np
from scipy.spatial.transform import Rotation as R, Slerp
from math import ceil
from omnigibson.macros import create_module_macros
import omnigibson.utils.transform_utils as T
from omnigibson.object_states.open_state import _get_relevant_joints
from omnigibson.utils.constants import JointType, JointAxis
import omnigibson.lazy as lazy
m = create_module_macros(module_path=__file__)
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS = (0.4, 0.6)
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS = (0.2, 0.8)
m.ROTATION_ARC_SEGMENT_LENGTHS = 0.05
m.OPENNESS_THRESHOLD_TO_OPEN = 0.8
m.OPENNESS_THRESHOLD_TO_CLOSE = 0.05
def get_grasp_poses_for_object_sticky(target_obj):
"""
Obtain a grasp pose for an object from top down, to be used with sticky grasping.
Args:
target_object (StatefulObject): Object to get a grasp pose for
Returns:
List of grasp candidates, where each grasp candidate is a tuple containing the grasp pose and the approach direction.
"""
bbox_center_in_world, bbox_quat_in_world, bbox_extent_in_base_frame, _ = target_obj.get_base_aligned_bbox(
visual=False
)
grasp_center_pos = bbox_center_in_world + np.array([0, 0, np.max(bbox_extent_in_base_frame) + 0.05])
towards_object_in_world_frame = bbox_center_in_world - grasp_center_pos
towards_object_in_world_frame /= np.linalg.norm(towards_object_in_world_frame)
grasp_quat = T.euler2quat([0, np.pi/2, 0])
grasp_pose = (grasp_center_pos, grasp_quat)
grasp_candidate = [(grasp_pose, towards_object_in_world_frame)]
return grasp_candidate
def get_grasp_poses_for_object_sticky_from_arbitrary_direction(target_obj):
"""
Obtain a grasp pose for an object from an arbitrary direction to be used with sticky grasping.
Args:
target_object (StatefulObject): Object to get a grasp pose for
Returns:
List of grasp candidates, where each grasp candidate is a tuple containing the grasp pose and the approach direction.
"""
bbox_center_in_world, bbox_quat_in_world, bbox_extent_in_base_frame, _ = target_obj.get_base_aligned_bbox(
visual=False
)
# Pick an axis and a direction.
approach_axis = np.random.choice([0, 1, 2])
approach_direction = np.random.choice([-1, 1]) if approach_axis != 2 else 1
constant_dimension_in_base_frame = approach_direction * bbox_extent_in_base_frame * np.eye(3)[approach_axis]
randomizable_dimensions_in_base_frame = bbox_extent_in_base_frame - np.abs(constant_dimension_in_base_frame)
random_dimensions_in_base_frame = np.random.uniform([-1, -1, 0], [1, 1, 1]) # note that we don't allow going below center
grasp_center_in_base_frame = random_dimensions_in_base_frame * randomizable_dimensions_in_base_frame + constant_dimension_in_base_frame
grasp_center_pos = T.mat2pose(
T.pose2mat((bbox_center_in_world, bbox_quat_in_world)) @ # base frame to world frame
T.pose2mat((grasp_center_in_base_frame, [0, 0, 0, 1])) # grasp pose in base frame
)[0] + np.array([0, 0, 0.02])
towards_object_in_world_frame = bbox_center_in_world - grasp_center_pos
towards_object_in_world_frame /= np.linalg.norm(towards_object_in_world_frame)
# For the grasp, we want the X+ direction to be the direction of the object's surface.
# The other two directions can be randomized.
rand_vec = np.random.rand(3)
rand_vec /= np.linalg.norm(rand_vec)
grasp_x = towards_object_in_world_frame
grasp_y = np.cross(rand_vec, grasp_x)
grasp_y /= np.linalg.norm(grasp_y)
grasp_z = np.cross(grasp_x, grasp_y)
grasp_z /= np.linalg.norm(grasp_z)
grasp_mat = np.array([grasp_x, grasp_y, grasp_z]).T
grasp_quat = R.from_matrix(grasp_mat).as_quat()
grasp_pose = (grasp_center_pos, grasp_quat)
grasp_candidate = [(grasp_pose, towards_object_in_world_frame)]
return grasp_candidate
def get_grasp_position_for_open(robot, target_obj, should_open, relevant_joint=None, num_waypoints="default"):
"""
Computes the grasp position for opening or closing a joint.
Args:
robot: the robot object
target_obj: the object to open/close a joint of
should_open: a boolean indicating whether we are opening or closing
relevant_joint: the joint to open/close if we want to do a particular one in advance
num_waypoints: the number of waypoints to interpolate between the start and end poses (default is "default")
Returns:
None (if no grasp was found), or Tuple, containing:
relevant_joint: the joint that is being targeted for open/close by the returned grasp
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
# Pick a moving link of the object.
relevant_joints = [relevant_joint] if relevant_joint is not None else _get_relevant_joints(target_obj)[1]
if len(relevant_joints) == 0:
raise ValueError("Cannot open/close object without relevant joints.")
# Make sure what we got is an appropriately open/close joint.
np.random.shuffle(relevant_joints)
selected_joint = None
for joint in relevant_joints:
current_position = joint.get_state()[0][0]
joint_range = joint.upper_limit - joint.lower_limit
openness_fraction = (current_position - joint.lower_limit) / joint_range
if (should_open and openness_fraction < m.OPENNESS_FRACTION_TO_OPEN) or (not should_open and openness_fraction > m.OPENNESS_THRESHOLD_TO_CLOSE):
selected_joint = joint
break
if selected_joint is None:
return None
if selected_joint.joint_type == JointType.JOINT_REVOLUTE:
return (selected_joint,) + grasp_position_for_open_on_revolute_joint(robot, target_obj, selected_joint, should_open, num_waypoints=num_waypoints)
elif selected_joint.joint_type == JointType.JOINT_PRISMATIC:
return (selected_joint,) + grasp_position_for_open_on_prismatic_joint(robot, target_obj, selected_joint, should_open, num_waypoints=num_waypoints)
else:
raise ValueError("Unknown joint type encountered while generating joint position.")
def grasp_position_for_open_on_prismatic_joint(robot, target_obj, relevant_joint, should_open, num_waypoints="default"):
"""
Computes the grasp position for opening or closing a prismatic joint.
Args:
robot: the robot object
target_obj: the object to open
relevant_joint: the prismatic joint to open
should_open: a boolean indicating whether we are opening or closing
num_waypoints: the number of waypoints to interpolate between the start and end poses (default is "default")
Returns:
Tuple, containing:
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
link_name = relevant_joint.body1.split("/")[-1]
# Get the bounding box of the child link.
(
bbox_center_in_world,
bbox_quat_in_world,
bbox_extent_in_link_frame,
_,
) = target_obj.get_base_aligned_bbox(link_name=link_name, visual=False)
# Match the push axis to one of the bb axes.
joint_orientation = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(relevant_joint.get_attribute("physics:localRot0"))[[1, 2, 3, 0]]
push_axis = R.from_quat(joint_orientation).apply([1, 0, 0])
assert np.isclose(np.max(np.abs(push_axis)), 1.0) # Make sure we're aligned with a bb axis.
push_axis_idx = np.argmax(np.abs(push_axis))
canonical_push_axis = np.eye(3)[push_axis_idx]
# TODO: Need to figure out how to get the correct push direction.
push_direction = np.sign(push_axis[push_axis_idx]) if should_open else -1 * np.sign(push_axis[push_axis_idx])
canonical_push_direction = canonical_push_axis * push_direction
# Pick the closer of the two faces along the push axis as our favorite.
points_along_push_axis = (
np.array([canonical_push_axis, -canonical_push_axis]) * bbox_extent_in_link_frame[push_axis_idx] / 2
)
(
push_axis_closer_side_idx,
center_of_selected_surface_along_push_axis,
_,
) = _get_closest_point_to_point_in_world_frame(
points_along_push_axis, (bbox_center_in_world, bbox_quat_in_world), robot.get_position()
)
push_axis_closer_side_sign = 1 if push_axis_closer_side_idx == 0 else -1
# Pick the other axes.
all_axes = list(set(range(3)) - {push_axis_idx})
x_axis_idx, y_axis_idx = tuple(sorted(all_axes))
canonical_x_axis = np.eye(3)[x_axis_idx]
canonical_y_axis = np.eye(3)[y_axis_idx]
# Find the correct side of the lateral axis & go some distance along that direction.
min_lateral_pos_wrt_surface_center = (canonical_x_axis + canonical_y_axis) * -bbox_extent_in_link_frame / 2
max_lateral_pos_wrt_surface_center = (canonical_x_axis + canonical_y_axis) * bbox_extent_in_link_frame / 2
diff_lateral_pos_wrt_surface_center = max_lateral_pos_wrt_surface_center - min_lateral_pos_wrt_surface_center
sampled_lateral_pos_wrt_min = np.random.uniform(
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[0] * diff_lateral_pos_wrt_surface_center,
m.PRISMATIC_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[1] * diff_lateral_pos_wrt_surface_center,
)
lateral_pos_wrt_surface_center = min_lateral_pos_wrt_surface_center + sampled_lateral_pos_wrt_min
grasp_position_in_bbox_frame = center_of_selected_surface_along_push_axis + lateral_pos_wrt_surface_center
grasp_quat_in_bbox_frame = T.quat_inverse(joint_orientation)
grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, grasp_position_in_bbox_frame, grasp_quat_in_bbox_frame
)
# Now apply the grasp offset.
dist_from_grasp_pos = robot.finger_lengths[robot.default_arm] + 0.05
offset_grasp_pose_in_bbox_frame = (grasp_position_in_bbox_frame + canonical_push_axis * push_axis_closer_side_sign * dist_from_grasp_pos, grasp_quat_in_bbox_frame)
offset_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *offset_grasp_pose_in_bbox_frame
)
# To compute the rotation position, we want to decide how far along the rotation axis we'll go.
target_joint_pos = relevant_joint.upper_limit if should_open else relevant_joint.lower_limit
current_joint_pos = relevant_joint.get_state()[0][0]
required_pos_change = target_joint_pos - current_joint_pos
push_vector_in_bbox_frame = canonical_push_direction * abs(required_pos_change)
target_hand_pos_in_bbox_frame = grasp_position_in_bbox_frame + push_vector_in_bbox_frame
target_hand_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, target_hand_pos_in_bbox_frame, grasp_quat_in_bbox_frame
)
# Compute the approach direction.
approach_direction_in_world_frame = R.from_quat(bbox_quat_in_world).apply(canonical_push_axis * -push_axis_closer_side_sign)
# Decide whether a grasp is required. If approach direction and displacement are similar, no need to grasp.
grasp_required = np.dot(push_vector_in_bbox_frame, canonical_push_axis * -push_axis_closer_side_sign) < 0
# TODO: Need to find a better of getting the predicted position of eef for start point of interpolating waypoints. Maybe
# break this into another function that called after the grasp is executed, so we know the eef position?
waypoint_start_offset = -0.05 * approach_direction_in_world_frame if should_open else 0.05 * approach_direction_in_world_frame
waypoint_start_pose = (grasp_pose_in_world_frame[0] + -1 * approach_direction_in_world_frame * (robot.finger_lengths[robot.default_arm] + waypoint_start_offset), grasp_pose_in_world_frame[1])
waypoint_end_pose = (target_hand_pose_in_world_frame[0] + -1 * approach_direction_in_world_frame * (robot.finger_lengths[robot.default_arm]), target_hand_pose_in_world_frame[1])
waypoints = interpolate_waypoints(waypoint_start_pose, waypoint_end_pose, num_waypoints=num_waypoints)
return (
offset_grasp_pose_in_world_frame,
waypoints,
approach_direction_in_world_frame,
relevant_joint,
grasp_required,
required_pos_change
)
def interpolate_waypoints(start_pose, end_pose, num_waypoints="default"):
"""
Interpolates a series of waypoints between a start and end pose.
Args:
start_pose (tuple): A tuple containing the starting position and orientation as a quaternion.
end_pose (tuple): A tuple containing the ending position and orientation as a quaternion.
num_waypoints (int, optional): The number of waypoints to interpolate. If "default", the number of waypoints is calculated based on the distance between the start and end pose.
Returns:
list: A list of tuples representing the interpolated waypoints, where each tuple contains a position and orientation as a quaternion.
"""
start_pos, start_orn = start_pose
travel_distance = np.linalg.norm(end_pose[0] - start_pos)
if num_waypoints == "default":
num_waypoints = np.max([2, int(travel_distance / 0.01) + 1])
pos_waypoints = np.linspace(start_pos, end_pose[0], num_waypoints)
# Also interpolate the rotations
combined_rotation = R.from_quat(np.array([start_orn, end_pose[1]]))
slerp = Slerp([0, 1], combined_rotation)
orn_waypoints = slerp(np.linspace(0, 1, num_waypoints))
quat_waypoints = [x.as_quat() for x in orn_waypoints]
return [waypoint for waypoint in zip(pos_waypoints, quat_waypoints)]
def grasp_position_for_open_on_revolute_joint(robot, target_obj, relevant_joint, should_open):
"""
Computes the grasp position for opening or closing a revolute joint.
Args:
robot: the robot object
target_obj: the object to open
relevant_joint: the revolute joint to open
should_open: a boolean indicating whether we are opening or closing
Returns:
Tuple, containing:
offset_grasp_pose_in_world_frame: the grasp pose in the world frame
waypoints: the interpolated waypoints between the start and end poses
approach_direction_in_world_frame: the approach direction in the world frame
grasp_required: a boolean indicating whether a grasp is required for the opening/closing based on which side of the joint we are
required_pos_change: the required change in position of the joint to open/close
"""
link_name = relevant_joint.body1.split("/")[-1]
link = target_obj.links[link_name]
# Get the bounding box of the child link.
(
bbox_center_in_world,
bbox_quat_in_world,
_,
bbox_center_in_obj_frame
) = target_obj.get_base_aligned_bbox(link_name=link_name, visual=False)
bbox_quat_in_world = link.get_orientation()
bbox_extent_in_link_frame = np.array(target_obj.native_link_bboxes[link_name]['collision']['axis_aligned']['extent'])
bbox_wrt_origin = T.relative_pose_transform(bbox_center_in_world, bbox_quat_in_world, *link.get_position_orientation())
origin_wrt_bbox = T.invert_pose_transform(*bbox_wrt_origin)
joint_orientation = lazy.omni.isaac.core.utils.rotations.gf_quat_to_np_array(relevant_joint.get_attribute("physics:localRot0"))[[1, 2, 3, 0]]
joint_axis = R.from_quat(joint_orientation).apply([1, 0, 0])
joint_axis /= np.linalg.norm(joint_axis)
origin_towards_bbox = np.array(bbox_wrt_origin[0])
open_direction = np.cross(joint_axis, origin_towards_bbox)
open_direction /= np.linalg.norm(open_direction)
lateral_axis = np.cross(open_direction, joint_axis)
# Match the axes to the canonical axes of the link bb.
lateral_axis_idx = np.argmax(np.abs(lateral_axis))
open_axis_idx = np.argmax(np.abs(open_direction))
joint_axis_idx = np.argmax(np.abs(joint_axis))
assert lateral_axis_idx != open_axis_idx
assert lateral_axis_idx != joint_axis_idx
assert open_axis_idx != joint_axis_idx
canonical_open_direction = np.eye(3)[open_axis_idx]
points_along_open_axis = (
np.array([canonical_open_direction, -canonical_open_direction]) * bbox_extent_in_link_frame[open_axis_idx] / 2
)
current_yaw = relevant_joint.get_state()[0][0]
closed_yaw = relevant_joint.lower_limit
points_along_open_axis_after_rotation = [
_rotate_point_around_axis((point, [0, 0, 0, 1]), bbox_wrt_origin, joint_axis, closed_yaw - current_yaw)[0]
for point in points_along_open_axis
]
open_axis_closer_side_idx, _, _ = _get_closest_point_to_point_in_world_frame(
points_along_open_axis_after_rotation, (bbox_center_in_world, bbox_quat_in_world), robot.get_position()
)
open_axis_closer_side_sign = 1 if open_axis_closer_side_idx == 0 else -1
center_of_selected_surface_along_push_axis = points_along_open_axis[open_axis_closer_side_idx]
# Find the correct side of the lateral axis & go some distance along that direction.
canonical_joint_axis = np.eye(3)[joint_axis_idx]
lateral_away_from_origin = np.eye(3)[lateral_axis_idx] * np.sign(origin_towards_bbox[lateral_axis_idx])
min_lateral_pos_wrt_surface_center = (
lateral_away_from_origin * -np.array(origin_wrt_bbox[0])
- canonical_joint_axis * bbox_extent_in_link_frame[lateral_axis_idx] / 2
)
max_lateral_pos_wrt_surface_center = (
lateral_away_from_origin * bbox_extent_in_link_frame[lateral_axis_idx] / 2
+ canonical_joint_axis * bbox_extent_in_link_frame[lateral_axis_idx] / 2
)
diff_lateral_pos_wrt_surface_center = max_lateral_pos_wrt_surface_center - min_lateral_pos_wrt_surface_center
sampled_lateral_pos_wrt_min = np.random.uniform(
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[0] * diff_lateral_pos_wrt_surface_center,
m.REVOLUTE_JOINT_FRACTION_ACROSS_SURFACE_AXIS_BOUNDS[1] * diff_lateral_pos_wrt_surface_center,
)
lateral_pos_wrt_surface_center = min_lateral_pos_wrt_surface_center + sampled_lateral_pos_wrt_min
grasp_position = center_of_selected_surface_along_push_axis + lateral_pos_wrt_surface_center
# Get the appropriate rotation
# grasp_quat_in_bbox_frame = get_quaternion_between_vectors([1, 0, 0], canonical_open_direction * open_axis_closer_side_sign * -1)
grasp_quat_in_bbox_frame = _get_orientation_facing_vector_with_random_yaw(canonical_open_direction * open_axis_closer_side_sign * -1)
# Now apply the grasp offset.
dist_from_grasp_pos = robot.finger_lengths[robot.default_arm] + 0.05
offset_in_bbox_frame = canonical_open_direction * open_axis_closer_side_sign * dist_from_grasp_pos
offset_grasp_pose_in_bbox_frame = (grasp_position + offset_in_bbox_frame, grasp_quat_in_bbox_frame)
offset_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *offset_grasp_pose_in_bbox_frame
)
# To compute the rotation position, we want to decide how far along the rotation axis we'll go.
desired_yaw = relevant_joint.upper_limit if should_open else relevant_joint.lower_limit
required_yaw_change = desired_yaw - current_yaw
# Now we'll rotate the grasp position around the origin by the desired rotation.
# Note that we use the non-offset position here since the joint can't be pulled all the way to the offset.
grasp_pose_in_bbox_frame = grasp_position, grasp_quat_in_bbox_frame
grasp_pose_in_origin_frame = T.pose_transform(*bbox_wrt_origin, *grasp_pose_in_bbox_frame)
# Get the arc length and divide it up to 10cm segments
arc_length = abs(required_yaw_change) * np.linalg.norm(grasp_pose_in_origin_frame[0])
turn_steps = int(ceil(arc_length / m.ROTATION_ARC_SEGMENT_LENGTHS))
targets = []
for i in range(turn_steps):
partial_yaw_change = (i + 1) / turn_steps * required_yaw_change
rotated_grasp_pose_in_bbox_frame = _rotate_point_around_axis(
(offset_grasp_pose_in_bbox_frame[0], offset_grasp_pose_in_bbox_frame[1]), bbox_wrt_origin, joint_axis, partial_yaw_change
)
rotated_grasp_pose_in_world_frame = T.pose_transform(
bbox_center_in_world, bbox_quat_in_world, *rotated_grasp_pose_in_bbox_frame
)
targets.append(rotated_grasp_pose_in_world_frame)
# Compute the approach direction.
approach_direction_in_world_frame = R.from_quat(bbox_quat_in_world).apply(canonical_open_direction * -open_axis_closer_side_sign)
# Decide whether a grasp is required. If approach direction and displacement are similar, no need to grasp.
movement_in_world_frame = np.array(targets[-1][0]) - np.array(offset_grasp_pose_in_world_frame[0])
grasp_required = np.dot(movement_in_world_frame, approach_direction_in_world_frame) < 0
return (
offset_grasp_pose_in_world_frame,
targets,
approach_direction_in_world_frame,
grasp_required,
required_yaw_change,
)
def _get_orientation_facing_vector_with_random_yaw(vector):
"""
Get a quaternion that orients the x-axis of the object to face the given vector and the y and z
axes to be random.
Args:
vector (np.ndarray): The vector to face.
Returns:
np.ndarray: A quaternion representing the orientation.
"""
forward = vector / np.linalg.norm(vector)
rand_vec = np.random.rand(3)
rand_vec /= np.linalg.norm(3)
side = np.cross(rand_vec, forward)
side /= np.linalg.norm(3)
up = np.cross(forward, side)
# assert np.isclose(np.linalg.norm(up), 1, atol=1e-3)
rotmat = np.array([forward, side, up]).T
return R.from_matrix(rotmat).as_quat()
def _rotate_point_around_axis(point_wrt_arbitrary_frame, arbitrary_frame_wrt_origin, joint_axis, yaw_change):
"""
Rotate a point around an axis, given the point in an arbitrary frame, the arbitrary frame's pose in the origin frame,
the axis to rotate around, and the amount to rotate by. This is a utility for rotating the grasp position around the
joint axis.
Args:
point_wrt_arbitrary_frame (tuple): The point in the arbitrary frame.
arbitrary_frame_wrt_origin (tuple): The pose of the arbitrary frame in the origin frame.
joint_axis (np.ndarray): The axis to rotate around.
yaw_change (float): The amount to rotate by.
Returns:
tuple: The rotated point in the arbitrary frame.
"""
rotation = R.from_rotvec(joint_axis * yaw_change).as_quat()
origin_wrt_arbitrary_frame = T.invert_pose_transform(*arbitrary_frame_wrt_origin)
pose_in_origin_frame = T.pose_transform(*arbitrary_frame_wrt_origin, *point_wrt_arbitrary_frame)
rotated_pose_in_origin_frame = T.pose_transform([0, 0, 0], rotation, *pose_in_origin_frame)
rotated_pose_in_arbitrary_frame = T.pose_transform(*origin_wrt_arbitrary_frame, *rotated_pose_in_origin_frame)
return rotated_pose_in_arbitrary_frame
def _get_closest_point_to_point_in_world_frame(
vectors_in_arbitrary_frame, arbitrary_frame_to_world_frame, point_in_world
):
"""
Given a set of vectors in an arbitrary frame, find the closest vector to a point in world frame.
Useful for picking between two sides of a joint for grasping.
Args:
vectors_in_arbitrary_frame (list): A list of vectors in the arbitrary frame.
arbitrary_frame_to_world_frame (tuple): The pose of the arbitrary frame in the world frame.
point_in_world (tuple): The point in the world frame.
Returns:
tuple: The index of the closest vector, the closest vector in the arbitrary frame, and the closest vector in the world frame.
"""
vectors_in_world = np.array(
[
T.pose_transform(*arbitrary_frame_to_world_frame, vector, [0, 0, 0, 1])[0]
for vector in vectors_in_arbitrary_frame
]
)
vector_distances_to_point = np.linalg.norm(vectors_in_world - np.array(point_in_world)[None, :], axis=1)
closer_option_idx = np.argmin(vector_distances_to_point)
vector_in_arbitrary_frame = vectors_in_arbitrary_frame[closer_option_idx]
vector_in_world_frame = vectors_in_world[closer_option_idx]
return closer_option_idx, vector_in_arbitrary_frame, vector_in_world_frame
| 24,988 | Python | 49.687627 | 195 | 0.699416 |
StanfordVL/OmniGibson/omnigibson/utils/bddl_utils.py | import json
import bddl
import os
import random
import numpy as np
import networkx as nx
from collections import defaultdict
from bddl.activity import (
get_goal_conditions,
get_ground_goal_state_options,
get_initial_conditions,
)
from bddl.backend_abc import BDDLBackend
from bddl.condition_evaluation import Negation
from bddl.logic_base import BinaryAtomicFormula, UnaryAtomicFormula, AtomicFormula
from bddl.object_taxonomy import ObjectTaxonomy
import omnigibson as og
from omnigibson.macros import gm, create_module_macros
from omnigibson.utils.constants import PrimType
from omnigibson.utils.asset_utils import get_attachment_metalinks, get_all_object_categories, get_all_object_category_models_with_abilities
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.python_utils import Wrapper
from omnigibson.objects.dataset_object import DatasetObject
from omnigibson.robots import BaseRobot
from omnigibson import object_states
from omnigibson.object_states.object_state_base import AbsoluteObjectState, RelativeObjectState
from omnigibson.object_states.factory import _KINEMATIC_STATE_SET, get_system_states
from omnigibson.systems.system_base import is_system_active, get_system
from omnigibson.scenes.interactive_traversable_scene import InteractiveTraversableScene
# Create module logger
log = create_module_logger(module_name=__name__)
# Create settings for this module
m = create_module_macros(module_path=__file__)
m.MIN_DYNAMIC_SCALE = 0.5
m.DYNAMIC_SCALE_INCREMENT = 0.1
GOOD_MODELS = {
"jar": {"kijnrj"},
"carton": {"causya", "msfzpz", "sxlklf"},
"hamper": {"drgdfh", "hlgjme", "iofciz", "pdzaca", "ssfvij"},
"hanging_plant": set(),
"hardback": {"esxakn"},
"notebook": {"hwhisw"},
"paperback": {"okcflv"},
"plant_pot": {"ihnfbi", "vhglly", "ygrtaz"},
"pot_plant": {"cvthyv", "dbjcic", "cecdwu"},
"recycling_bin": {"nuoypc"},
"tray": {"gsxbym", "huwhjg", "txcjux", "uekqey", "yqtlhy"},
}
GOOD_BBOXES = {
"basil": {
"dkuhvb": [0.07286304, 0.0545199 , 0.03108144],
},
"basil_jar": {
"swytaw": [0.22969539, 0.19492961, 0.30791675],
},
"bicycle_chain": {
"czrssf": [0.242, 0.012, 0.021],
},
"clam": {
"ihhbfj": [0.078, 0.081, 0.034],
},
"envelope": {
"urcigc": [0.004, 0.06535058, 0.10321216],
},
"mail": {
"azunex": [0.19989018, 0.005, 0.12992871],
"gvivdi": [0.28932137, 0.005, 0.17610794],
"mbbwhn": [0.27069291, 0.005, 0.13114884],
"ojkepk": [0.19092424, 0.005, 0.13252979],
"qpwlor": [0.22472473, 0.005, 0.18983322],
},
"pill_bottle": {
"csvdbe": [0.078, 0.078, 0.109],
"wsasmm": [0.078, 0.078, 0.109],
},
"plant_pot": {
"ihnfbi": [0.24578613, 0.2457865 , 0.18862737],
},
"razor": {
"jocsgp": [0.046, 0.063, 0.204],
},
"recycling_bin": {
"nuoypc": [0.69529409, 0.80712041, 1.07168694],
},
"tupperware": {
"mkstwr": [0.33, 0.33, 0.21],
},
}
BAD_CLOTH_MODELS = {
"bandana": {"wbhliu"},
"curtain": {"ohvomi"},
"cardigan": {"itrkhr"},
"sweatshirt": {"nowqqh"},
"jeans": {"nmvvil", "pvzxyp"},
"pajamas": {"rcgdde"},
"polo_shirt": {"vqbvph"},
"vest": {"girtqm"}, # bddl NOT FIXED
"onesie": {"pbytey"},
"dishtowel": {"ltydgg"},
"dress": {"gtghon"},
"hammock": {'aiftuk', 'fglfga', 'klhkgd', 'lqweda', 'qewdqa'},
'jacket': {'kiiium', 'nogevo', 'remcyk'},
"quilt": {"mksdlu", "prhems"},
"pennant": {"tfnwti"},
"pillowcase": {"dtoahb", "yakvci"},
"rubber_glove": {"leuiso"},
"scarf": {"kclcrj"},
"sock": {"vpafgj"},
"tank_top": {"fzldgi"},
"curtain": {"shbakk"}
}
class UnsampleablePredicate:
def _sample(self, *args, **kwargs):
raise NotImplementedError()
class ObjectStateInsourcePredicate(UnsampleablePredicate, BinaryAtomicFormula):
def _evaluate(self, entity, **kwargs):
# Always returns True
return True
class ObjectStateFuturePredicate(UnsampleablePredicate, UnaryAtomicFormula):
STATE_NAME = "future"
def _evaluate(self, entity, **kwargs):
return not entity.exists
class ObjectStateRealPredicate(UnsampleablePredicate, UnaryAtomicFormula):
STATE_NAME = "real"
def _evaluate(self, entity, **kwargs):
return entity.exists
class ObjectStateUnaryPredicate(UnaryAtomicFormula):
STATE_CLASS = None
STATE_NAME = None
def _evaluate(self, entity, **kwargs):
return entity.get_state(self.STATE_CLASS, **kwargs)
def _sample(self, entity, binary_state, **kwargs):
return entity.set_state(self.STATE_CLASS, binary_state, **kwargs)
class ObjectStateBinaryPredicate(BinaryAtomicFormula):
STATE_CLASS = None
STATE_NAME = None
def _evaluate(self, entity1, entity2, **kwargs):
return entity1.get_state(self.STATE_CLASS, entity2.wrapped_obj, **kwargs) if entity2.exists else False
def _sample(self, entity1, entity2, binary_state, **kwargs):
return entity1.set_state(self.STATE_CLASS, entity2.wrapped_obj, binary_state, **kwargs) if entity2.exists else None
def get_unary_predicate_for_state(state_class, state_name):
return type(
state_class.__name__ + "StateUnaryPredicate",
(ObjectStateUnaryPredicate,),
{"STATE_CLASS": state_class, "STATE_NAME": state_name},
)
def get_binary_predicate_for_state(state_class, state_name):
return type(
state_class.__name__ + "StateBinaryPredicate",
(ObjectStateBinaryPredicate,),
{"STATE_CLASS": state_class, "STATE_NAME": state_name},
)
def is_substance_synset(synset):
return "substance" in OBJECT_TAXONOMY.get_abilities(synset)
def get_system_name_by_synset(synset):
system_names = OBJECT_TAXONOMY.get_subtree_substances(synset)
assert len(system_names) == 1, f"Got zero or multiple systems for {synset}: {system_names}"
return system_names[0]
def process_single_condition(condition):
"""
Processes a single BDDL condition
Args:
condition (Condition): Condition to process
Returns:
2-tuple:
- Expression: Condition's expression
- bool: Whether this evaluated condition is positive or negative
"""
if not isinstance(condition.children[0], Negation) and not isinstance(condition.children[0], AtomicFormula):
log.debug(("Skipping over sampling of predicate that is not a negation or an atomic formula"))
return None, None
if isinstance(condition.children[0], Negation):
condition = condition.children[0].children[0]
positive = False
else:
condition = condition.children[0]
positive = True
return condition, positive
# TODO: Add remaining predicates.
SUPPORTED_PREDICATES = {
"inside": get_binary_predicate_for_state(object_states.Inside, "inside"),
"nextto": get_binary_predicate_for_state(object_states.NextTo, "nextto"),
"ontop": get_binary_predicate_for_state(object_states.OnTop, "ontop"),
"under": get_binary_predicate_for_state(object_states.Under, "under"),
"touching": get_binary_predicate_for_state(object_states.Touching, "touching"),
"covered": get_binary_predicate_for_state(object_states.Covered, "covered"),
"contains": get_binary_predicate_for_state(object_states.Contains, "contains"),
"saturated": get_binary_predicate_for_state(object_states.Saturated, "saturated"),
"filled": get_binary_predicate_for_state(object_states.Filled, "filled"),
"cooked": get_unary_predicate_for_state(object_states.Cooked, "cooked"),
"burnt": get_unary_predicate_for_state(object_states.Burnt, "burnt"),
"frozen": get_unary_predicate_for_state(object_states.Frozen, "frozen"),
"hot": get_unary_predicate_for_state(object_states.Heated, "hot"),
"open": get_unary_predicate_for_state(object_states.Open, "open"),
"toggled_on": get_unary_predicate_for_state(object_states.ToggledOn, "toggled_on"),
"on_fire": get_unary_predicate_for_state(object_states.OnFire, "on_fire"),
"attached": get_binary_predicate_for_state(object_states.AttachedTo, "attached"),
"overlaid": get_binary_predicate_for_state(object_states.Overlaid, "overlaid"),
"folded": get_unary_predicate_for_state(object_states.Folded, "folded"),
"unfolded": get_unary_predicate_for_state(object_states.Unfolded, "unfolded"),
"draped": get_binary_predicate_for_state(object_states.Draped, "draped"),
"future": ObjectStateFuturePredicate,
"real": ObjectStateRealPredicate,
"insource": ObjectStateInsourcePredicate,
}
KINEMATIC_STATES_BDDL = frozenset([state.__name__.lower() for state in _KINEMATIC_STATE_SET] + ["attached"])
# BEHAVIOR-related
OBJECT_TAXONOMY = ObjectTaxonomy()
BEHAVIOR_ACTIVITIES = sorted(os.listdir(os.path.join(os.path.dirname(bddl.__file__), "activity_definitions")))
def _populate_input_output_objects_systems(og_recipe, input_synsets, output_synsets):
# Map input/output synsets into input/output objects and systems.
for synsets, obj_key, system_key in zip((input_synsets, output_synsets), ("input_objects", "output_objects"), ("input_systems", "output_systems")):
for synset, count in synsets.items():
assert OBJECT_TAXONOMY.is_leaf(synset), f"Synset {synset} must be a leaf node in the taxonomy!"
if is_substance_synset(synset):
og_recipe[system_key].append(get_system_name_by_synset(synset))
else:
obj_categories = OBJECT_TAXONOMY.get_categories(synset)
assert len(obj_categories) == 1, f"Object synset {synset} must map to exactly one object category! Now: {obj_categories}."
og_recipe[obj_key][obj_categories[0]] = count
# Assert only one of output_objects or output_systems is not None
assert len(og_recipe["output_objects"]) == 0 or len(og_recipe["output_systems"]) == 0, \
"Recipe can only generate output objects or output systems, but not both!"
def _populate_input_output_states(og_recipe, input_states, output_states):
# Apply post-processing for input/output states if specified
for synsets_to_states, states_key in zip((input_states, output_states), ("input_states", "output_states")):
if synsets_to_states is None:
continue
for synsets, states in synsets_to_states.items():
# For unary/binary states, synsets is a single synset or a comma-separated pair of synsets, respectively
synset_split = synsets.split(",")
if len(synset_split) == 1:
first_synset = synset_split[0]
second_synset = None
else:
first_synset, second_synset = synset_split
# Assert the first synset is an object because the systems don't have any states.
assert OBJECT_TAXONOMY.is_leaf(first_synset), f"Input/output state synset {first_synset} must be a leaf node in the taxonomy!"
assert not is_substance_synset(first_synset), f"Input/output state synset {first_synset} must be applied to an object, not a substance!"
obj_categories = OBJECT_TAXONOMY.get_categories(first_synset)
assert len(obj_categories) == 1, f"Input/output state synset {first_synset} must map to exactly one object category! Now: {obj_categories}."
first_obj_category = obj_categories[0]
if second_synset is None:
# Unary states for the first synset
for state_type, state_value in states:
state_class = SUPPORTED_PREDICATES[state_type].STATE_CLASS
assert issubclass(state_class, AbsoluteObjectState), f"Input/output state type {state_type} must be a unary state!"
# Example: (Cooked, True)
og_recipe[states_key][first_obj_category]["unary"].append((state_class, state_value))
else:
assert OBJECT_TAXONOMY.is_leaf(second_synset), f"Input/output state synset {second_synset} must be a leaf node in the taxonomy!"
obj_categories = OBJECT_TAXONOMY.get_categories(second_synset)
if is_substance_synset(second_synset):
second_obj_category = get_system_name_by_synset(second_synset)
is_substance = True
else:
obj_categories = OBJECT_TAXONOMY.get_categories(second_synset)
assert len(obj_categories) == 1, f"Input/output state synset {second_synset} must map to exactly one object category! Now: {obj_categories}."
second_obj_category = obj_categories[0]
is_substance = False
for state_type, state_value in states:
state_class = SUPPORTED_PREDICATES[state_type].STATE_CLASS
assert issubclass(state_class, RelativeObjectState), f"Input/output state type {state_type} must be a binary state!"
assert is_substance == (state_class in get_system_states()), f"Input/output state type {state_type} system state inconsistency found!"
if is_substance:
# Non-kinematic binary states, e.g. Covered, Saturated, Filled, Contains.
# Example: (Covered, "sesame_seed", True)
og_recipe[states_key][first_obj_category]["binary_system"].append(
(state_class, second_obj_category, state_value))
else:
# Kinematic binary states w.r.t. the second object.
# Example: (OnTop, "raw_egg", True)
assert states_key != "output_states", f"Output state type {state_type} can only be used in input states!"
og_recipe[states_key][first_obj_category]["binary_object"].append(
(state_class, second_obj_category, state_value))
def _populate_filter_categories(og_recipe, filter_name, synsets):
# Map synsets to categories.
if synsets is not None:
og_recipe[f"{filter_name}_categories"] = set()
for synset in synsets:
assert OBJECT_TAXONOMY.is_leaf(synset), f"Synset {synset} must be a leaf node in the taxonomy!"
assert not is_substance_synset(synset), f"Synset {synset} must be applied to an object, not a substance!"
for category in OBJECT_TAXONOMY.get_categories(synset):
og_recipe[f"{filter_name}_categories"].add(category)
def translate_bddl_recipe_to_og_recipe(
name,
input_synsets,
output_synsets,
input_states=None,
output_states=None,
fillable_synsets=None,
heatsource_synsets=None,
timesteps=None,
):
"""
Translate a BDDL recipe to an OG recipe.
Args:
name (str): Name of the recipe
input_synsets (dict): Maps synsets to number of instances required for the recipe
output_synsets (dict): Maps synsets to number of instances to be spawned in the container when the recipe executes
input_states (dict or None): Maps input synsets to states that must be satisfied for the recipe to execute,
or None if no states are required
otuput_states (dict or None): Map output synsets to states that should be set when spawned when the recipe executes,
or None if no states are required
fillable_synsets (None or set of str): If specified, set of fillable synsets which are allowed for this recipe.
If None, any fillable is allowed
heatsource_synsets (None or set of str): If specified, set of heatsource synsets which are allowed for this recipe.
If None, any heatsource is allowed
timesteps (None or int): Number of subsequent heating steps required for the recipe to execute. If None,
it will be set to be 1, i.e.: instantaneous execution
"""
og_recipe = {
"name": name,
# Maps object categories to number of instances required for the recipe
"input_objects": dict(),
# List of system names required for the recipe
"input_systems": list(),
# Maps object categories to number of instances to be spawned in the container when the recipe executes
"output_objects": dict(),
# List of system names to be spawned in the container when the recipe executes. Currently the length is 1.
"output_systems": list(),
# Maps object categories to ["unary", "bianry_system", "binary_object"] to a list of states that must be satisfied for the recipe to execute
"input_states": defaultdict(lambda: defaultdict(list)),
# Maps object categories to ["unary", "bianry_system"] to a list of states that should be set after the output objects are spawned
"output_states": defaultdict(lambda: defaultdict(list)),
# Set of fillable categories which are allowed for this recipe
"fillable_categories": None,
# Set of heatsource categories which are allowed for this recipe
"heatsource_categories": None,
# Number of subsequent heating steps required for the recipe to execute
"timesteps": timesteps if timesteps is not None else 1,
}
_populate_input_output_objects_systems(og_recipe=og_recipe, input_synsets=input_synsets, output_synsets=output_synsets)
_populate_input_output_states(og_recipe=og_recipe, input_states=input_states, output_states=output_states)
_populate_filter_categories(og_recipe=og_recipe, filter_name="fillable", synsets=fillable_synsets)
_populate_filter_categories(og_recipe=og_recipe, filter_name="heatsource", synsets=heatsource_synsets)
return og_recipe
def translate_bddl_washer_rule_to_og_washer_rule(conditions):
"""
Translate BDDL washer rule to OG washer rule.
Args:
conditions (dict): Dictionary mapping the synset of ParticleSystem (str) to None or list of synsets of
ParticleSystem (str). None represents "never", empty list represents "always", or non-empty list represents
at least one of the systems in the list needs to be present in the washer for the key system to be removed.
E.g. "rust.n.01" -> None: "never remove rust.n.01 from the washer"
E.g. "dust.n.01" -> []: "always remove dust.n.01 from the washer"
E.g. "cooking_oil.n.01" -> ["sodium_carbonate.n.01", "vinegar.n.01"]: "remove cooking_oil.n.01 from the
washer if either sodium_carbonate.n.01 or vinegar.n.01 is present"
For keys not present in the dictionary, the default is []: "always remove"
Returns:
dict: Dictionary mapping the system name (str) to None or list of system names (str). None represents "never",
empty list represents "always", or non-empty list represents at least one of the systems in the list needs
to be present in the washer for the key system to be removed.
"""
og_washer_rule = dict()
for solute, solvents in conditions.items():
assert OBJECT_TAXONOMY.is_leaf(solute), f"Synset {solute} must be a leaf node in the taxonomy!"
assert is_substance_synset(solute), f"Synset {solute} must be a substance synset!"
solute_name = get_system_name_by_synset(solute)
if solvents is None:
og_washer_rule[solute_name] = None
else:
solvent_names = []
for solvent in solvents:
assert OBJECT_TAXONOMY.is_leaf(solvent), f"Synset {solvent} must be a leaf node in the taxonomy!"
assert is_substance_synset(solvent), f"Synset {solvent} must be a substance synset!"
solvent_name = get_system_name_by_synset(solvent)
solvent_names.append(solvent_name)
og_washer_rule[solute_name] = solvent_names
return og_washer_rule
class OmniGibsonBDDLBackend(BDDLBackend):
def get_predicate_class(self, predicate_name):
return SUPPORTED_PREDICATES[predicate_name]
class BDDLEntity(Wrapper):
"""
Thin wrapper class that wraps an object or system if it exists, or nothing if it does not exist. Will
dynamically reference an object / system as they become real in the sim
"""
def __init__(
self,
bddl_inst,
entity=None,
):
"""
Args:
bddl_inst (str): BDDL synset instance of the entity, e.g.: "almond.n.01_1"
entity (None or DatasetObject or BaseSystem): If specified, the BDDL entity to wrap. If not
specified, will initially wrap nothing, but may dynamically reference an actual object or system
if it exists in the future
"""
# Store synset and other info, and pass entity internally
self.bddl_inst = bddl_inst
self.synset = "_".join(self.bddl_inst.split("_")[:-1])
self.is_system = is_substance_synset(self.synset)
# Infer the correct category to assign
self.og_categories = OBJECT_TAXONOMY.get_subtree_substances(self.synset) \
if self.is_system else OBJECT_TAXONOMY.get_subtree_categories(self.synset)
super().__init__(obj=entity)
@property
def name(self):
"""
Returns:
None or str: Name of this entity, if it exists, else None
"""
if self.exists:
return self.og_categories[0] if self.is_system else self.wrapped_obj.name
else:
return None
@property
def exists(self):
"""
Checks whether the entity referenced by @synset exists
Returns:
bool: Whether the entity referenced by @synset exists
"""
return self.wrapped_obj is not None
def set_entity(self, entity):
"""
Sets the internal entity, overriding any if it already exists
Args:
entity (BaseSystem or BaseObject): Entity to set internally
"""
self.wrapped_obj = entity
def clear_entity(self):
"""
Clears the internal entity, if any
"""
self.wrapped_obj = None
def get_state(self, state, *args, **kwargs):
"""
Helper function to grab wrapped entity's state @state
Args:
state (BaseObjectState): State whose get_value() should be called
*args (tuple): Any arguments to pass to getter, in order
**kwargs (dict): Any keyword arguments to pass to getter, in order
Returns:
any: Returned value(s) from @state if self.wrapped_obj exists (i.e.: not None), else False
"""
return self.wrapped_obj.states[state].get_value(*args, **kwargs) if self.exists else False
def set_state(self, state, *args, **kwargs):
"""
Helper function to set wrapped entity's state @state. Note: Should only be called if the entity exists!
Args:
state (BaseObjectState): State whose set_value() should be called
*args (tuple): Any arguments to pass to getter, in order
**kwargs (dict): Any keyword arguments to pass to getter, in order
Returns:
any: Returned value(s) from @state if self.wrapped_obj exists (i.e.: not None)
"""
assert self.exists, \
f"Cannot call set_state() for BDDLEntity {self.synset} when the entity does not exist!"
return self.wrapped_obj.states[state].set_value(*args, **kwargs)
class BDDLSampler:
def __init__(
self,
env,
activity_conditions,
object_scope,
backend,
debug=False,
):
# Store internal variables from inputs
self._env = env
self._scene_model = self._env.scene.scene_model if isinstance(self._env.scene, InteractiveTraversableScene) else None
self._agent = self._env.robots[0]
if debug:
gm.DEBUG = True
self._backend = backend
self._activity_conditions = activity_conditions
self._object_scope = object_scope
self._object_instance_to_synset = {
obj_inst: obj_cat
for obj_cat in self._activity_conditions.parsed_objects
for obj_inst in self._activity_conditions.parsed_objects[obj_cat]
}
self._substance_instances = {obj_inst for obj_inst in self._object_scope.keys() if
is_substance_synset(self._object_instance_to_synset[obj_inst])}
# Initialize other variables that will be filled in later
self._room_type_to_object_instance = None # dict
self._inroom_object_instances = None # set of str
self._object_sampling_orders = None # dict mapping str to list of str
self._sampled_objects = None # set of BaseObject
self._future_obj_instances = None # set of str
self._inroom_object_conditions = None # list of (condition, positive) tuple
self._inroom_object_scope_filtered_initial = None # dict mapping str to BDDLEntity
self._attached_objects = defaultdict(set) # dict mapping str to set of str
def sample(self, validate_goal=False):
"""
Run sampling for this BEHAVIOR task
Args:
validate_goal (bool): Whether the goal should be validated or not
Returns:
2-tuple:
- bool: Whether sampling was successful or not
- None or str: None if successful, otherwise the associated error message
"""
log.info("Sampling task...")
# Reject scenes with missing non-sampleable objects
# Populate object_scope with sampleable objects and the robot
accept_scene, feedback = self._prepare_scene_for_sampling()
if not accept_scene:
return accept_scene, feedback
# Sample objects to satisfy initial conditions
accept_scene, feedback = self._sample_all_conditions(validate_goal=validate_goal)
if not accept_scene:
return accept_scene, feedback
log.info("Sampling succeeded!")
return True, None
def _sample_all_conditions(self, validate_goal=False):
"""
Run sampling for this BEHAVIOR task
Args:
validate_goal (bool): Whether the goal should be validated or not
Returns:
2-tuple:
- bool: Whether sampling was successful or not
- None or str: None if successful, otherwise the associated error message
"""
# Auto-initialize all sampleable objects
with og.sim.playing():
self._env.scene.reset()
error_msg = self._sample_initial_conditions()
if error_msg:
log.error(error_msg)
return False, error_msg
if validate_goal:
error_msg = self._sample_goal_conditions()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._sample_initial_conditions_final()
if error_msg:
log.error(error_msg)
return False, error_msg
self._env.scene.update_initial_state()
return True, None
def _prepare_scene_for_sampling(self):
"""
Runs sanity checks for the current scene for the given BEHAVIOR task
Returns:
2-tuple:
- bool: Whether the generated scene activity should be accepted or not
- dict: Any feedback from the sampling / initialization process
"""
error_msg = self._parse_inroom_object_room_assignment()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._parse_attached_states()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._build_sampling_order()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._build_inroom_object_scope()
if error_msg:
log.error(error_msg)
return False, error_msg
error_msg = self._import_sampleable_objects()
if error_msg:
log.error(error_msg)
return False, error_msg
self._object_scope["agent.n.01_1"] = BDDLEntity(bddl_inst="agent.n.01_1", entity=self._agent)
return True, None
def _parse_inroom_object_room_assignment(self):
"""
Infers which rooms each object is assigned to
"""
self._room_type_to_object_instance = dict()
self._inroom_object_instances = set()
for cond in self._activity_conditions.parsed_initial_conditions:
if cond[0] == "inroom":
obj_inst, room_type = cond[1], cond[2]
obj_synset = self._object_instance_to_synset[obj_inst]
abilities = OBJECT_TAXONOMY.get_abilities(obj_synset)
if "sceneObject" not in abilities:
# Invalid room assignment
return f"You have assigned room type for [{obj_synset}], but [{obj_synset}] is sampleable. " \
f"Only non-sampleable (scene) objects can have room assignment."
if self._scene_model is not None and room_type not in og.sim.scene.seg_map.room_sem_name_to_ins_name:
# Missing room type
return f"Room type [{room_type}] missing in scene [{self._scene_model}]."
if room_type not in self._room_type_to_object_instance:
self._room_type_to_object_instance[room_type] = []
self._room_type_to_object_instance[room_type].append(obj_inst)
if obj_inst in self._inroom_object_instances:
# Duplicate room assignment
return f"Object [{obj_inst}] has more than one room assignment"
self._inroom_object_instances.add(obj_inst)
def _parse_attached_states(self):
"""
Infers which objects are attached to which other objects.
If a category-level attachment is specified, it will be expanded to all instances of that category.
E.g. if the goal condition requires corks to be attached to bottles, every cork needs to be able to
attach to every bottle.
"""
for cond in self._activity_conditions.parsed_initial_conditions:
if cond[0] == "attached":
obj_inst, parent_inst = cond[1], cond[2]
if obj_inst not in self._object_scope or parent_inst not in self._object_scope:
return f"Object [{obj_inst}] or parent [{parent_inst}] in attached initial condition not found in object scope"
self._attached_objects[obj_inst].add(parent_inst)
ground_attached_conditions = []
conditions_to_check = self._activity_conditions.parsed_goal_conditions.copy()
while conditions_to_check:
new_conditions_to_check = []
for cond in conditions_to_check:
if cond[0] == "attached":
ground_attached_conditions.append(cond)
else:
new_conditions_to_check.extend([ele for ele in cond if isinstance(ele, list)])
conditions_to_check = new_conditions_to_check
for cond in ground_attached_conditions:
obj_inst, parent_inst = cond[1].lstrip("?"), cond[2].lstrip("?")
if obj_inst in self._object_scope:
obj_insts = [obj_inst]
elif obj_inst in self._activity_conditions.parsed_objects:
obj_insts = self._activity_conditions.parsed_objects[obj_inst]
else:
return f"Object [{obj_inst}] in attached goal condition not found in object scope or parsed objects"
if parent_inst in self._object_scope:
parent_insts = [parent_inst]
elif parent_inst in self._activity_conditions.parsed_objects:
parent_insts = self._activity_conditions.parsed_objects[parent_inst]
else:
return f"Parent [{parent_inst}] in attached goal condition not found in object scope or parsed objects"
for obj_inst in obj_insts:
for parent_inst in parent_insts:
self._attached_objects[obj_inst].add(parent_inst)
def _build_sampling_order(self):
"""
Sampling orders is a list of lists: [[batch_1_inst_1, ... batch_1_inst_N], [batch_2_inst_1, batch_2_inst_M], ...]
Sampling should happen for batch 1 first, then batch 2, so on and so forth
Example: OnTop(plate, table) should belong to batch 1, and OnTop(apple, plate) should belong to batch 2
"""
unsampleable_conditions = []
sampling_groups = {group: [] for group in ("kinematic", "particle", "unary")}
self._object_sampling_conditions = {group: [] for group in ("kinematic", "particle", "unary")}
self._object_sampling_orders = {group: [] for group in ("kinematic", "particle", "unary")}
self._inroom_object_conditions = []
# First, sort initial conditions into kinematic, particle and unary groups
# bddl.condition_evaluation.HEAD, each with one child.
# This child is either a ObjectStateUnaryPredicate/ObjectStateBinaryPredicate or
# a Negation of a ObjectStateUnaryPredicate/ObjectStateBinaryPredicate
for condition in get_initial_conditions(self._activity_conditions, self._backend, self._object_scope):
condition, positive = process_single_condition(condition)
if condition is None:
continue
# Sampled conditions must always be positive
# Non-positive (e.g.: NOT onTop) is not restrictive enough for sampling
if condition.STATE_NAME in KINEMATIC_STATES_BDDL and not positive:
return "Initial condition has negative kinematic conditions: {}".format(condition.body)
# Store any unsampleable conditions separately
if isinstance(condition, UnsampleablePredicate):
unsampleable_conditions.append(condition)
continue
# Infer the group the condition and its object instances belong to
# (a) Kinematic (binary) conditions, where (ent0, ent1) are both objects
# (b) Particle (binary) conditions, where (ent0, ent1) are (object, substance)
# (d) Unary conditions, where (ent0,) is an object
# Binary conditions have length 2: (ent0, ent1)
if len(condition.body) == 2:
group = "particle" if condition.body[1] in self._substance_instances else "kinematic"
else:
assert len(condition.body) == 1, \
f"Got invalid parsed initial condition; body length should either be 2 or 1. " \
f"Got body: {condition.body} for condition: {condition}"
group = "unary"
sampling_groups[group].append(condition.body)
self._object_sampling_conditions[group].append((condition, positive))
# If the condition involves any non-sampleable object (e.g.: furniture), it's a non-sampleable condition
# This means that there's no ordering constraint in terms of sampling, because we know the, e.g., furniture
# object already exists in the scene and is placed, so these specific conditions can be sampled without
# any dependencies
if len(self._inroom_object_instances.intersection(set(condition.body))) > 0:
self._inroom_object_conditions.append((condition, positive))
# Now, sort each group, ignoring the futures (since they don't get sampled)
# First handle kinematics, then particles, then unary
# Start with the non-sampleable objects as the first sampled set, then infer recursively
cur_batch = self._inroom_object_instances
while len(cur_batch) > 0:
next_batch = set()
for cur_batch_inst in cur_batch:
inst_batch = set()
for condition, _ in self._object_sampling_conditions["kinematic"]:
if condition.body[1] == cur_batch_inst:
inst_batch.add(condition.body[0])
next_batch.add(condition.body[0])
if len(inst_batch) > 0:
self._object_sampling_orders["kinematic"].append(inst_batch)
cur_batch = next_batch
# Now parse particles -- simply unordered, since particle systems shouldn't impact each other
self._object_sampling_orders["particle"].append({cond[0] for cond in sampling_groups["particle"]})
sampled_particle_entities = {cond[1] for cond in sampling_groups["particle"]}
# Finally, parse unaries -- this is simply unordered, since it is assumed that unary predicates do not
# affect each other
self._object_sampling_orders["unary"].append({cond[0] for cond in sampling_groups["unary"]})
# Aggregate future objects and any unsampleable obj instances
# Unsampleable obj instances are strictly a superset of future obj instances
unsampleable_obj_instances = {cond.body[-1] for cond in unsampleable_conditions}
self._future_obj_instances = {cond.body[0] for cond in unsampleable_conditions if isinstance(cond, ObjectStateFuturePredicate)}
nonparticle_entities = set(self._object_scope.keys()) - self._substance_instances
# Sanity check kinematic objects -- any non-system must be kinematically sampled
remaining_kinematic_entities = nonparticle_entities - unsampleable_obj_instances - \
self._inroom_object_instances - set.union(*(self._object_sampling_orders["kinematic"] + [set()]))
# Possibly remove the agent entity if we're in an empty scene -- i.e.: no kinematic sampling needed for the
# agent
if self._scene_model is None:
remaining_kinematic_entities -= {"agent.n.01_1"}
if len(remaining_kinematic_entities) != 0:
return f"Some objects do not have any kinematic condition defined for them in the initial conditions: " \
f"{', '.join(remaining_kinematic_entities)}"
# Sanity check particle systems -- any non-future system must be sampled as part of particle groups
remaining_particle_entities = self._substance_instances - unsampleable_obj_instances - sampled_particle_entities
if len(remaining_particle_entities) != 0:
return f"Some systems do not have any particle condition defined for them in the initial conditions: " \
f"{', '.join(remaining_particle_entities)}"
def _build_inroom_object_scope(self):
"""
Store simulator object options for non-sampleable objects in self.inroom_object_scope
{
"living_room": {
"table1": {
"living_room_0": [URDFObject, URDFObject, URDFObject],
"living_room_1": [URDFObject]
},
"table2": {
"living_room_0": [URDFObject, URDFObject],
"living_room_1": [URDFObject, URDFObject]
},
"chair1": {
"living_room_0": [URDFObject],
"living_room_1": [URDFObject]
},
}
}
"""
room_type_to_scene_objs = {}
for room_type in self._room_type_to_object_instance:
room_type_to_scene_objs[room_type] = {}
for obj_inst in self._room_type_to_object_instance[room_type]:
room_type_to_scene_objs[room_type][obj_inst] = {}
obj_synset = self._object_instance_to_synset[obj_inst]
# We allow burners to be used as if they are stoves
# No need to safeguard check for subtree_substances because inroom objects will never be substances
categories = OBJECT_TAXONOMY.get_subtree_categories(obj_synset)
# Grab all models that fully support all abilities for the corresponding category
valid_models = {cat: set(get_all_object_category_models_with_abilities(
cat, OBJECT_TAXONOMY.get_abilities(OBJECT_TAXONOMY.get_synset_from_category(cat))))
for cat in categories}
valid_models = {cat: (models if cat not in GOOD_MODELS else models.intersection(GOOD_MODELS[cat])) - BAD_CLOTH_MODELS.get(cat, set()) for cat, models in valid_models.items()}
valid_models = {cat: self._filter_model_choices_by_attached_states(models, cat, obj_inst) for cat, models in valid_models.items()}
room_insts = [None] if self._scene_model is None else og.sim.scene.seg_map.room_sem_name_to_ins_name[room_type]
for room_inst in room_insts:
# A list of scene objects that satisfy the requested categories
room_objs = og.sim.scene.object_registry("in_rooms", room_inst, default_val=[])
scene_objs = [obj for obj in room_objs if obj.category in categories and obj.model in valid_models[obj.category]]
if len(scene_objs) != 0:
room_type_to_scene_objs[room_type][obj_inst][room_inst] = scene_objs
error_msg = self._consolidate_room_instance(room_type_to_scene_objs, "initial_pre-sampling")
if error_msg:
return error_msg
self._inroom_object_scope = room_type_to_scene_objs
def _filter_object_scope(self, input_object_scope, conditions, condition_type):
"""
Filters the object scope based on given @input_object_scope, @conditions, and @condition_type
Args:
input_object_scope (dict):
conditions (list): List of conditions to filter scope with, where each list entry is
a tuple of (condition, positive), where @positive is True if the condition has a positive
evaluation.
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
2-tuple:
- dict: Filtered object scope
- list of str: The name of children object(s) that have the highest proportion of kinematic sampling
failures
"""
filtered_object_scope = {}
# Maps child obj name (SCOPE name) to parent obj name (OBJECT name) to T / F,
# ie: if the kinematic relationship was sampled successfully
problematic_objs = defaultdict(dict)
for room_type in input_object_scope:
filtered_object_scope[room_type] = {}
for scene_obj in input_object_scope[room_type]:
filtered_object_scope[room_type][scene_obj] = {}
for room_inst in input_object_scope[room_type][scene_obj]:
# These are a list of candidate simulator objects that need sampling test
for obj in input_object_scope[room_type][scene_obj][room_inst]:
# Temporarily set object_scope to point to this candidate object
self._object_scope[scene_obj] = BDDLEntity(bddl_inst=scene_obj, entity=obj)
success = True
# If this candidate object is not involved in any conditions,
# success will be True by default and this object will qualify
parent_obj_name = obj.name
conditions_to_sample = []
for condition, positive in conditions:
# Sample positive kinematic conditions that involve this candidate object
if condition.STATE_NAME in KINEMATIC_STATES_BDDL and positive and scene_obj in condition.body:
child_scope_name = condition.body[0]
entity = self._object_scope[child_scope_name]
conditions_to_sample.append((condition, positive, entity, child_scope_name))
# If we're sampling kinematics, sort children based on (a) whether they are cloth or not, and
# then (b) their AABB, so that first all rigid objects are sampled before all cloth objects,
# and within each group the larger objects are sampled first. This is needed because rigid
# objects currently don't detect collisions with cloth objects (rigid_obj.states[ContactBodies]
# is empty even when a cloth object is in contact with it).
rigid_conditions = [c for c in conditions_to_sample if c[2].prim_type != PrimType.CLOTH]
cloth_conditions = [c for c in conditions_to_sample if c[2].prim_type == PrimType.CLOTH]
conditions_to_sample = (
list(reversed(sorted(rigid_conditions, key=lambda x: np.product(x[2].aabb_extent)))) +
list(reversed(sorted(cloth_conditions, key=lambda x: np.product(x[2].aabb_extent))))
)
# Sample!
for condition, positive, entity, child_scope_name in conditions_to_sample:
kwargs = dict()
# Reset if we're sampling a kinematic state
if condition.STATE_NAME in {"inside", "ontop", "under"}:
kwargs["reset_before_sampling"] = True
elif condition.STATE_NAME in {"attached"}:
kwargs["bypass_alignment_checking"] = True
kwargs["check_physics_stability"] = True
kwargs["can_joint_break"] = False
success = condition.sample(binary_state=positive, **kwargs)
log_msg = " ".join(
[
f"{condition_type} kinematic condition sampling",
room_type,
scene_obj,
room_inst,
parent_obj_name,
condition.STATE_NAME,
str(condition.body),
str(success),
]
)
log.info(log_msg)
# Record the result for the child object
assert parent_obj_name not in problematic_objs[child_scope_name], \
f"Multiple kinematic relationships attempted for pair {condition.body}"
problematic_objs[child_scope_name][parent_obj_name] = success
# If any condition fails for this candidate object, skip
if not success:
break
# If this candidate object fails, move on to the next candidate object
if not success:
continue
if room_inst not in filtered_object_scope[room_type][scene_obj]:
filtered_object_scope[room_type][scene_obj][room_inst] = []
filtered_object_scope[room_type][scene_obj][room_inst].append(obj)
# Compute most problematic objects
if len(problematic_objs) == 0:
max_problematic_objs = []
else:
problematic_objs_by_proportion = defaultdict(list)
for child_scope_name, parent_obj_names in problematic_objs.items():
problematic_objs_by_proportion[np.mean(list(parent_obj_names.values()))].append(child_scope_name)
max_problematic_objs = problematic_objs_by_proportion[min(problematic_objs_by_proportion.keys())]
return filtered_object_scope, max_problematic_objs
def _consolidate_room_instance(self, filtered_object_scope, condition_type):
"""
Consolidates room instances
Args:
filtered_object_scope (dict): Filtered object scope
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: Error message, if any
"""
for room_type in filtered_object_scope:
# For each room_type, filter in room_inst that has successful
# sampling options for all obj_inst in this room_type
room_inst_satisfied = set.intersection(
*[
set(filtered_object_scope[room_type][obj_inst].keys())
for obj_inst in filtered_object_scope[room_type]
]
)
if len(room_inst_satisfied) == 0:
error_msg = "{}: Room type [{}] of scene [{}] do not contain or cannot sample all the objects needed.\nThe following are the possible room instances for each object, the intersection of which is an empty set.\n".format(
condition_type, room_type, self._scene_model
)
for obj_inst in filtered_object_scope[room_type]:
error_msg += (
"{}: ".format(obj_inst) + ", ".join(filtered_object_scope[room_type][obj_inst].keys()) + "\n"
)
return error_msg
for obj_inst in filtered_object_scope[room_type]:
filtered_object_scope[room_type][obj_inst] = {
key: val
for key, val in filtered_object_scope[room_type][obj_inst].items()
if key in room_inst_satisfied
}
def _filter_model_choices_by_attached_states(self, model_choices, category, obj_inst):
# If obj_inst is a child object that depends on a parent object that has been imported or exists in the scene,
# we filter in only models that match the parent object's attachment metalinks.
if obj_inst in self._attached_objects:
parent_insts = self._attached_objects[obj_inst]
parent_objects = []
for parent_inst in parent_insts:
# If parent_inst is not an inroom object, it must be a non-sampleable object that has already been imported.
# Grab it from the object_scope
if parent_inst not in self._inroom_object_instances:
assert self._object_scope[parent_inst] is not None
parent_objects.append([self._object_scope[parent_inst].wrapped_obj])
# If parent_inst is an inroom object, it can refer to multiple objects in the scene in different rooms.
# We gather all of them and require that the model choice supports attachment to at least one of them.
else:
for _, parent_inst_to_parent_objs in self._inroom_object_scope.items():
if parent_inst in parent_inst_to_parent_objs:
parent_objects.append(sum(parent_inst_to_parent_objs[parent_inst].values(), []))
# Help function to check if a child object can attach to a parent object
def can_attach(child_attachment_links, parent_attachment_links):
for child_link_name in child_attachment_links:
child_category = child_link_name.split("_")[1]
if child_category.endswith("F"):
continue
assert child_category.endswith("M")
parent_category = child_category[:-1] + "F"
for parent_link_name in parent_attachment_links:
if parent_category in parent_link_name:
return True
return False
# Filter out models that don't support the attached states
new_model_choices = set()
for model_choice in model_choices:
child_attachment_links = get_attachment_metalinks(category, model_choice)
# The child model choice needs to be able to attach to all parent instances.
# For in-room parent instances, there might be multiple parent objects (e.g. different wall nails),
# and the child object needs to be able to attach to at least one of them.
if all(
any(
can_attach(child_attachment_links, get_attachment_metalinks(parent_obj.category, parent_obj.model))
for parent_obj in parent_objs_per_inst
)
for parent_objs_per_inst in parent_objects):
new_model_choices.add(model_choice)
return new_model_choices
# If obj_inst is a prent object that other objects depend on, we filter in only models that have at least some
# attachment links.
elif any(obj_inst in parents for parents in self._attached_objects.values()):
# Filter out models that don't support the attached states
new_model_choices = set()
for model_choice in model_choices:
if len(get_attachment_metalinks(category, model_choice)) > 0:
new_model_choices.add(model_choice)
return new_model_choices
# If neither of the above cases apply, we don't need to filter the model choices
else:
return model_choices
def _import_sampleable_objects(self):
"""
Import all objects that can be sampled
Args:
env (Environment): Current active environment instance
"""
assert og.sim.is_stopped(), "Simulator should be stopped when importing sampleable objects"
# Move the robot object frame to a far away location, similar to other newly imported objects below
self._agent.set_position_orientation([300, 300, 300], [0, 0, 0, 1])
self._sampled_objects = set()
num_new_obj = 0
# Only populate self.object_scope for sampleable objects
available_categories = set(get_all_object_categories())
# Attached states introduce dependencies among objects during import time.
# For example, when importing a child object instance, we need to make sure the imported model can be attached
# to the parent object instance. We sort the object instances such that parent object instances are imported
# before child object instances.
dependencies = {key: self._attached_objects.get(key, {}) for key in self._object_instance_to_synset.keys()}
for obj_inst in list(reversed(list(nx.algorithms.topological_sort(nx.DiGraph(dependencies))))):
obj_synset = self._object_instance_to_synset[obj_inst]
# Don't populate agent
if obj_synset == "agent.n.01":
continue
# Populate based on whether it's a substance or not
if is_substance_synset(obj_synset):
assert len(self._activity_conditions.parsed_objects[obj_synset]) == 1, "Systems are singletons"
obj_inst = self._activity_conditions.parsed_objects[obj_synset][0]
system_name = OBJECT_TAXONOMY.get_subtree_substances(obj_synset)[0]
self._object_scope[obj_inst] = BDDLEntity(
bddl_inst=obj_inst,
entity=None if obj_inst in self._future_obj_instances else get_system(system_name),
)
else:
valid_categories = set(OBJECT_TAXONOMY.get_subtree_categories(obj_synset))
categories = list(valid_categories.intersection(available_categories))
if len(categories) == 0:
return f"None of the following categories could be found in the dataset for synset {obj_synset}: " \
f"{valid_categories}"
# Don't explicitly sample if future
if obj_inst in self._future_obj_instances:
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst)
continue
# Don't sample if already in room
if obj_inst in self._inroom_object_instances:
continue
# Shuffle categories and sample to find a valid model
np.random.shuffle(categories)
model_choices = set()
for category in categories:
# Get all available models that support all of its synset abilities
model_choices = set(get_all_object_category_models_with_abilities(
category=category,
abilities=OBJECT_TAXONOMY.get_abilities(OBJECT_TAXONOMY.get_synset_from_category(category)),
))
model_choices = model_choices if category not in GOOD_MODELS else model_choices.intersection(GOOD_MODELS[category])
model_choices -= BAD_CLOTH_MODELS.get(category, set())
model_choices = self._filter_model_choices_by_attached_states(model_choices, category, obj_inst)
if len(model_choices) > 0:
break
if len(model_choices) == 0:
# We failed to find ANY valid model across ALL valid categories
return f"Missing valid object models for all categories: {categories}"
# Randomly select an object model
model = np.random.choice(list(model_choices))
# Potentially add additional kwargs
obj_kwargs = dict()
obj_kwargs["bounding_box"] = GOOD_BBOXES.get(category, dict()).get(model, None)
# create the object
simulator_obj = DatasetObject(
name=f"{category}_{len(og.sim.scene.objects)}",
category=category,
model=model,
prim_type=PrimType.CLOTH if "cloth" in OBJECT_TAXONOMY.get_abilities(obj_synset) else PrimType.RIGID,
**obj_kwargs,
)
num_new_obj += 1
# Load the object into the simulator
assert og.sim.scene.loaded, "Scene is not loaded"
og.sim.import_object(simulator_obj)
# Set these objects to be far-away locations
simulator_obj.set_position(np.array([100.0, 100.0, -100.0]) + np.ones(3) * num_new_obj * 5.0)
self._sampled_objects.add(simulator_obj)
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst, entity=simulator_obj)
og.sim.play()
og.sim.stop()
def _sample_initial_conditions(self):
"""
Sample initial conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
error_msg, self._inroom_object_scope_filtered_initial = self._sample_conditions(
self._inroom_object_scope, self._inroom_object_conditions, "initial"
)
return error_msg
def _sample_goal_conditions(self):
"""
Sample goal conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
activity_goal_conditions = get_goal_conditions(self._activity_conditions, self._backend, self._object_scope)
ground_goal_state_options = get_ground_goal_state_options(self._activity_conditions, self._backend, self._object_scope, activity_goal_conditions)
np.random.shuffle(ground_goal_state_options)
log.debug(("number of ground_goal_state_options", len(ground_goal_state_options)))
num_goal_condition_set_to_test = 10
goal_condition_success = False
# Try to fulfill different set of ground goal conditions (maximum num_goal_condition_set_to_test)
for goal_condition_set in ground_goal_state_options[:num_goal_condition_set_to_test]:
goal_condition_processed = []
for condition in goal_condition_set:
condition, positive = process_single_condition(condition)
if condition is None:
continue
goal_condition_processed.append((condition, positive))
error_msg, _ = self._sample_conditions(
self._inroom_object_scope_filtered_initial, goal_condition_processed, "goal"
)
if not error_msg:
# if one set of goal conditions (and initial conditions) are satisfied, sampling is successful
goal_condition_success = True
break
if not goal_condition_success:
return error_msg
def _sample_initial_conditions_final(self):
"""
Sample final initial conditions
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
# Sample kinematics first, then particle states, then unary states
state = og.sim.dump_state(serialized=False)
for group in ("kinematic", "particle", "unary"):
log.info(f"Sampling {group} states...")
if len(self._object_sampling_orders[group]) > 0:
for cur_batch in self._object_sampling_orders[group]:
conditions_to_sample = []
for condition, positive in self._object_sampling_conditions[group]:
# Sample conditions that involve the current batch of objects
child_scope_name = condition.body[0]
if child_scope_name in cur_batch:
entity = self._object_scope[child_scope_name]
conditions_to_sample.append((condition, positive, entity, child_scope_name))
# If we're sampling kinematics, sort children based on (a) whether they are cloth or not, and then
# (b) their AABB, so that first all rigid objects are sampled before cloth objects, and within each
# group the larger objects are sampled first
if group == "kinematic":
rigid_conditions = [c for c in conditions_to_sample if c[2].prim_type != PrimType.CLOTH]
cloth_conditions = [c for c in conditions_to_sample if c[2].prim_type == PrimType.CLOTH]
conditions_to_sample = (
list(reversed(sorted(rigid_conditions, key=lambda x: np.product(x[2].aabb_extent)))) +
list(reversed(sorted(cloth_conditions, key=lambda x: np.product(x[2].aabb_extent))))
)
# Sample!
for condition, positive, entity, child_scope_name in conditions_to_sample:
success = False
kwargs = dict()
# Reset if we're sampling a kinematic state
if condition.STATE_NAME in {"inside", "ontop", "under"}:
kwargs["reset_before_sampling"] = True
elif condition.STATE_NAME in {"attached"}:
kwargs["bypass_alignment_checking"] = True
kwargs["check_physics_stability"] = True
kwargs["can_joint_break"] = False
while True:
num_trials = 1
for _ in range(num_trials):
success = condition.sample(binary_state=positive, **kwargs)
if success:
# Update state
state = og.sim.dump_state(serialized=False)
break
if success:
# After the final round of kinematic sampling, we assign in_rooms to newly imported objects
if group == "kinematic":
parent = self._object_scope[condition.body[1]]
entity.in_rooms = parent.in_rooms.copy()
# Can terminate immediately
break
# Can't re-sample non-kinematics or rescale cloth or agent, so in
# those cases terminate immediately
if group != "kinematic" or condition.STATE_NAME == "attached" or "agent" in child_scope_name or entity.prim_type == PrimType.CLOTH:
break
# If any scales are equal or less than the lower threshold, terminate immediately
new_scale = entity.scale - m.DYNAMIC_SCALE_INCREMENT
if np.any(new_scale < m.MIN_DYNAMIC_SCALE):
break
# Re-scale and re-attempt
# Re-scaling is not respected unless sim cycle occurs
og.sim.stop()
entity.scale = new_scale
log.info(f"Kinematic sampling {condition.STATE_NAME} {condition.body} failed, rescaling obj: {child_scope_name} to {entity.scale}")
og.sim.play()
og.sim.load_state(state, serialized=False)
og.sim.step_physics()
if not success:
# Update object registry because we just assigned in_rooms to newly imported objects
og.sim.scene.object_registry.update(keys=["in_rooms"])
return f"Sampleable object conditions failed: {condition.STATE_NAME} {condition.body}"
# Update object registry because we just assigned in_rooms to newly imported objects
og.sim.scene.object_registry.update(keys=["in_rooms"])
# One more sim step to make sure the object states are propagated correctly
# E.g. after sampling Filled.set_value(True), Filled.get_value() will become True only after one step
og.sim.step()
def _sample_conditions(self, input_object_scope, conditions, condition_type):
"""
Sample conditions
Args:
input_object_scope (dict):
conditions (list): List of conditions to filter scope with, where each list entry is
a tuple of (condition, positive), where @positive is True if the condition has a positive
evaluation.
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
error_msg, problematic_objs = "", []
while not np.any([np.any(self._object_scope[obj_inst].scale < m.MIN_DYNAMIC_SCALE) for obj_inst in problematic_objs]):
filtered_object_scope, problematic_objs = self._filter_object_scope(input_object_scope, conditions, condition_type)
error_msg = self._consolidate_room_instance(filtered_object_scope, condition_type)
if error_msg is None:
break
# Re-scaling is not respected unless sim cycle occurs
og.sim.stop()
for obj_inst in problematic_objs:
obj = self._object_scope[obj_inst]
# If the object's initial condition is attachment, or it's agent or cloth, we can't / shouldn't scale
# down, so play again and then terminate immediately
if obj_inst in self._attached_objects or "agent" in obj_inst or obj.prim_type == PrimType.CLOTH:
og.sim.play()
return error_msg, None
assert np.all(obj.scale > m.DYNAMIC_SCALE_INCREMENT)
obj.scale -= m.DYNAMIC_SCALE_INCREMENT
og.sim.play()
if error_msg:
return error_msg, None
return self._maximum_bipartite_matching(filtered_object_scope, condition_type), filtered_object_scope
def _maximum_bipartite_matching(self, filtered_object_scope, condition_type):
"""
Matches objects from @filtered_object_scope to specific room instances it can be
sampled from
Args:
filtered_object_scope (dict): Filtered object scope
condition_type (str): What type of condition to sample, e.g., "initial"
Returns:
None or str: If successful, returns None. Otherwise, returns an error message
"""
# For each room instance, perform maximum bipartite matching between object instance in scope to simulator objects
# Left nodes: a list of object instance in scope
# Right nodes: a list of simulator objects
# Edges: if the simulator object can support the sampling requirement of ths object instance
for room_type in filtered_object_scope:
# The same room instances will be shared across all scene obj in a given room type
some_obj = list(filtered_object_scope[room_type].keys())[0]
room_insts = list(filtered_object_scope[room_type][some_obj].keys())
success = False
# Loop through each room instance
for room_inst in room_insts:
graph = nx.Graph()
# For this given room instance, gether mapping from obj instance to a list of simulator obj
obj_inst_to_obj_per_room_inst = {}
for obj_inst in filtered_object_scope[room_type]:
obj_inst_to_obj_per_room_inst[obj_inst] = filtered_object_scope[room_type][obj_inst][room_inst]
top_nodes = []
log_msg = "MBM for room instance [{}]".format(room_inst)
log.debug((log_msg))
for obj_inst in obj_inst_to_obj_per_room_inst:
for obj in obj_inst_to_obj_per_room_inst[obj_inst]:
# Create an edge between obj instance and each of the simulator obj that supports sampling
graph.add_edge(obj_inst, obj)
log_msg = "Adding edge: {} <-> {}".format(obj_inst, obj.name)
log.debug((log_msg))
top_nodes.append(obj_inst)
# Need to provide top_nodes that contain all nodes in one bipartite node set
# The matches will have two items for each match (e.g. A -> B, B -> A)
matches = nx.bipartite.maximum_matching(graph, top_nodes=top_nodes)
if len(matches) == 2 * len(obj_inst_to_obj_per_room_inst):
log.debug(("Object scope finalized:"))
for obj_inst, obj in matches.items():
if obj_inst in obj_inst_to_obj_per_room_inst:
self._object_scope[obj_inst] = BDDLEntity(bddl_inst=obj_inst, entity=obj)
log.debug((obj_inst, obj.name))
success = True
break
if not success:
return "{}: Room type [{}] of scene [{}] do not have enough simulator objects that can successfully sample all the objects needed. This is usually caused by specifying too many object instances in the object scope or the conditions are so stringent that too few simulator objects can satisfy them via sampling.\n".format(
condition_type, room_type, self._scene_model
)
| 72,214 | Python | 49.429469 | 337 | 0.597945 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/post_processing_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class PostProcessingSettings(SettingsBase):
"""
Post-Processing setting group that handles a variety of sub-settings, including:
- Tone Mapping
- Auto Exposure
- Color Correction
- Color Grading
- XR Compositing
- Chromatic Aberration
- Depth Of Field Camera Overrides
- Motion Blur
- FTT Bloom
- TV Noise & Film Grain
- Reshade
"""
def __init__(self):
self.tone_mapping_settings = ToneMappingSettings()
self.auto_exposure_settings = AutoExposureSettings()
self.color_correction_settings = ColorCorrectionSettings()
self.color_grading_settings = ColorGradingSettings()
self.xr_compositing_settings = XRCompositingSettings()
self.chromatic_aberration_settings = ChromaticAberrationSettings()
self.depth_of_field_settings = DepthOfFieldSettings()
self.motion_blur_settings = MotionBlurSettings()
self.ftt_bloom_settings = FTTBloomSettings()
self.tv_noise_grain_settings = TVNoiseGrainSettings()
self.reshade_settings = ReshadeSettings()
@property
def settings(self):
settings = {}
settings.update(self.tone_mapping_settings.settings)
settings.update(self.auto_exposure_settings.settings)
settings.update(self.color_correction_settings.settings)
settings.update(self.color_grading_settings.settings)
settings.update(self.xr_compositing_settings.settings)
settings.update(self.chromatic_aberration_settings.settings)
settings.update(self.depth_of_field_settings.settings)
settings.update(self.motion_blur_settings.settings)
settings.update(self.ftt_bloom_settings.settings)
settings.update(self.tv_noise_grain_settings.settings)
settings.update(self.reshade_settings.settings)
return settings
class ToneMappingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
# The main tonemapping layout contains only the combo box. All the other options
# are saved in a different layout which can be swapped out in case the tonemapper changes.
tonemapper_ops = [
"Clamp",
"Linear",
"Reinhard",
"Reinhard (modified)",
"HejiHableAlu",
"HableUc2",
"Aces",
"Iray",
]
self.tomemap_op = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Tone Mapping Operator", "/rtx/post/tonemap/op", range_list=tonemapper_ops
)
# tonemap_op_idx = self._carb_settings.get("/rtx/post/tonemap/op")
# Modified Reinhard
# tonemap_op_idx == 3
self.max_white_luminance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max White Luminance",
"/rtx/post/tonemap/maxWhiteLuminance",
range_from=0,
range_to=100,
)
# HableUc2
# tonemap_op_idx == 5
self.white_scale = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "White Scale Value", "/rtx/post/tonemap/whiteScale", range_from=0, range_to=100
)
self.cm2_factor = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "cm^2 Factor", "/rtx/post/tonemap/cm2Factor", range_from=0, range_to=2
)
self.white_point = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "White Point", "/rtx/post/tonemap/whitepoint")
self.film_iso = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Film ISO", "/rtx/post/tonemap/filmIso", range_from=50, range_to=1600
)
self.camera_shutter = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Camera Shutter", "/rtx/post/tonemap/cameraShutter", range_from=1, range_to=5000
)
self.f_number = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "f-Number / f-Stop", "/rtx/post/tonemap/fNumber", range_from=1, range_to=20
)
# Iray
# tonemap_op_idx == 7
self.crush_blacks = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Crush Blacks",
"/rtx/post/tonemap/irayReinhard/crushBlacks",
range_from=0,
range_to=1,
)
self.burn_highlights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Burn Highlights",
"/rtx/post/tonemap/irayReinhard/burnHighlights",
range_from=0,
range_to=1,
)
self.burn_highlights_per_component = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Burn Highlights per Component",
"/rtx/post/tonemap/irayReinhard/burnHighlightsPerComponent",
)
self.burn_highlights_max_component = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Burn Highlights max Component",
"/rtx/post/tonemap/irayReinhard/burnHighlightsMaxComponent",
)
self.saturation = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Saturation", "/rtx/post/tonemap/irayReinhard/saturation", range_from=0, range_to=1
)
# Clamp is never using srgb conversion
# tonemap_op_idx != 0
self.enable_srgb_to_gamma = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable SRGB To Gamma Conversion", "/rtx/post/tonemap/enableSrgbToGamma"
)
tonemapColorMode = ["sRGBLinear", "ACEScg"]
self.color_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Tonemapping Color Space",
"/rtx/post/tonemap/colorMode",
range_list=tonemapColorMode,
)
self.wrapvalue = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Wrap Value", "/rtx/post/tonemap/wrapValue", range_from=0, range_to=100000
)
@property
def settings(self):
settings = {
"/rtx/post/tonemap/op": self.tomemap_op,
"/rtx/post/tonemap/cm2Factor": self.cm2_factor,
"/rtx/post/tonemap/whitepoint": self.white_point,
"/rtx/post/tonemap/filmIso": self.film_iso,
"/rtx/post/tonemap/cameraShutter": self.camera_shutter,
"/rtx/post/tonemap/fNumber": self.f_number,
"/rtx/post/tonemap/colorMode": self.color_mode,
"/rtx/post/tonemap/wrapValue": self.wrapvalue,
}
tonemap_op_idx = self._carb_settings.get("/rtx/post/tonemap/op")
if tonemap_op_idx == 3: # Modified Reinhard
settings.update(
{"/rtx/post/tonemap/maxWhiteLuminance": self.max_white_luminance,}
)
if tonemap_op_idx == 5: # HableUc2
settings.update(
{"/rtx/post/tonemap/whiteScale": self.white_scale,}
)
if tonemap_op_idx == 7: # Iray
settings.update(
{
"/rtx/post/tonemap/irayReinhard/crushBlacks": self.crush_blacks,
"/rtx/post/tonemap/irayReinhard/burnHighlights": self.burn_highlights,
"/rtx/post/tonemap/irayReinhard/burnHighlightsPerComponent": self.burn_highlights_per_component,
"/rtx/post/tonemap/irayReinhard/burnHighlightsMaxComponent": self.burn_highlights_max_component,
"/rtx/post/tonemap/irayReinhard/saturation": self.saturation,
}
)
if tonemap_op_idx != 0: # Clamp is never using srgb conversion
settings.update(
{"/rtx/post/tonemap/enableSrgbToGamma": self.enable_srgb_to_gamma,}
)
return settings
class AutoExposureSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
histFilter_types = ["Median", "Average"]
self.filter_type = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Histogram Filter", "/rtx/post/histogram/filterType", range_list=histFilter_types
)
self.tau = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Adaptation Speed", "/rtx/post/histogram/tau", range_from=0.5, range_to=10.0
)
self.white_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"White Point Scale",
"/rtx/post/histogram/whiteScale",
range_from=0.01,
range_to=80.0,
)
self.use_exposure_clamping = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Exposure Clamping", "/rtx/post/histogram/useExposureClamping"
)
self.min_ev = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Min EV", "/rtx/post/histogram/minEV", range_from=0.0, range_to=1000000.0
)
self.max_ev = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max EV", "/rtx/post/histogram/maxEV", range_from=0.0, range_to=1000000.0
)
@property
def settings(self):
return {
"/rtx/post/histogram/filterType": self.filter_type,
"/rtx/post/histogram/tau": self.tau,
"/rtx/post/histogram/whiteScale": self.white_scale,
"/rtx/post/histogram/useExposureClamping": self.use_exposure_clamping,
"/rtx/post/histogram/minEV": self.min_ev,
"/rtx/post/histogram/maxEV": self.max_ev,
}
@property
def enabled_setting_path(self):
return "/rtx/post/histogram/enabled"
class ColorCorrectionSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
mode = ["ACES (Pre-Tonemap)", "Standard (Post-Tonemap)"]
self.mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Mode", "/rtx/post/colorcorr/mode", range_list=mode)
# ccMode = self._carb_settings.get("/rtx/post/colorcorr/mode")
# ccMode == 0
color_correction_mode = ["sRGBLinear", "ACEScg"]
self.outputMode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Output Color Space",
"/rtx/post/colorcorr/outputMode",
range_list=color_correction_mode,
)
self.saturation = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Saturation", "/rtx/post/colorcorr/saturation")
self.contrast = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Contrast", "/rtx/post/colorcorr/contrast")
self.gamma = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gamma", "/rtx/post/colorcorr/gamma")
self.gain = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gain", "/rtx/post/colorcorr/gain")
self.offset = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Offset", "/rtx/post/colorcorr/offset")
@property
def settings(self):
settings = {
"/rtx/post/colorcorr/mode": self.mode,
"/rtx/post/colorcorr/saturation": self.saturation,
"/rtx/post/colorcorr/contrast": self.contrast,
"/rtx/post/colorcorr/gamma": self.gamma,
"/rtx/post/colorcorr/gain": self.gain,
"/rtx/post/colorcorr/offset": self.offset,
}
cc_mode = self._carb_settings.get("/rtx/post/colorcorr/mode")
if cc_mode == 0:
settings.update(
{"/rtx/post/colorcorr/outputMode": self.outputMode,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/colorcorr/enabled"
class ColorGradingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
mode = ["ACES (Pre-Tonemap)", "Standard (Post-Tonemap)"]
self.mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Mode", "/rtx/post/colorgrad/mode", range_list=mode)
cg_mode = self._carb_settings.get("/rtx/post/colorgrad/mode")
if cg_mode == 0:
colorGradingMode = ["sRGBLinear", "ACEScg"]
self.output_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Output Color Space",
"/rtx/post/colorgrad/outputMode",
range_list=colorGradingMode,
)
self.blackpoint = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Black Point", "/rtx/post/colorgrad/blackpoint")
self.whitepoint = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "White Point", "/rtx/post/colorgrad/whitepoint")
self.contrast = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Contrast", "/rtx/post/colorgrad/contrast")
self.lift = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Lift", "/rtx/post/colorgrad/lift")
self.gain = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gain", "/rtx/post/colorgrad/gain")
self.multiply = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Multiply", "/rtx/post/colorgrad/multiply")
self.offset = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Offset", "/rtx/post/colorgrad/offset")
self.gamma = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Gamma", "/rtx/post/colorgrad/gamma")
@property
def settings(self):
settings = {
"/rtx/post/colorgrad/mode": self.mode,
"/rtx/post/colorgrad/blackpoint": self.blackpoint,
"/rtx/post/colorgrad/whitepoint": self.whitepoint,
"/rtx/post/colorgrad/contrast": self.contrast,
"/rtx/post/colorgrad/lift": self.lift,
"/rtx/post/colorgrad/gain": self.gain,
"/rtx/post/colorgrad/multiply": self.multiply,
"/rtx/post/colorgrad/offset": self.offset,
"/rtx/post/colorgrad/gamma": self.gamma,
}
cg_mode = self._carb_settings.get("/rtx/post/colorgrad/mode")
if cg_mode == 0:
settings.update(
{"/rtx/post/colorgrad/outputMode": self.output_mode,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/colorgrad/enabled"
class XRCompositingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.apply_alpha_zero_pass_first = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite in Linear Space", "/rtx/post/backgroundZeroAlpha/ApplyAlphaZeroPassFirst"
)
self.backgroundComposite = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite in Editor", "/rtx/post/backgroundZeroAlpha/backgroundComposite"
)
# self.backplate_texture = SettingItem(self, "ASSET", "Default Backplate Texture", "/rtx/post/backgroundZeroAlpha/backplateTexture")
self.background_default_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Default Backplate Color", "/rtx/post/backgroundZeroAlpha/backgroundDefaultColor"
)
self.enable_lens_distortion_correction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Enable Lens Distortion",
"/rtx/post/backgroundZeroAlpha/enableLensDistortionCorrection",
)
# self.distortion_map = SettingItem(self, "ASSET", "Lens Distortion Map", "/rtx/post/lensDistortion/distortionMap")
# self.undistortion_map = SettingItem(self, "ASSET", "Lens Undistortion Map", "/rtx/post/lensDistortion/undistortionMap")
@property
def settings(self):
return {
"/rtx/post/backgroundZeroAlpha/ApplyAlphaZeroPassFirst": self.apply_alpha_zero_pass_first,
"/rtx/post/backgroundZeroAlpha/backgroundComposite": self.backgroundComposite,
"/rtx/post/backgroundZeroAlpha/backgroundDefaultColor": self.background_default_color,
"/rtx/post/backgroundZeroAlpha/enableLensDistortionCorrection": self.enable_lens_distortion_correction,
}
@property
def enabled_setting_path(self):
return "/rtx/post/backgroundZeroAlpha/enabled"
class ChromaticAberrationSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.strength_r = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Red", "/rtx/post/chromaticAberration/strengthR", -1.0, 1.0, 0.01
)
self.strength_g = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Green", "/rtx/post/chromaticAberration/strengthG", -1.0, 1.0, 0.01
)
self.strength_b = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Strength Blue", "/rtx/post/chromaticAberration/strengthB", -1.0, 1.0, 0.01
)
chromatic_aberration_ops = ["Radial", "Barrel"]
self.mode_r = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Red", "/rtx/post/chromaticAberration/modeR", chromatic_aberration_ops
)
self.mode_g = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Green", "/rtx/post/chromaticAberration/modeG", chromatic_aberration_ops
)
self.mode_b = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm Blue", "/rtx/post/chromaticAberration/modeB", chromatic_aberration_ops
)
self.enable_lanczos = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Lanczos Sampler", "/rtx/post/chromaticAberration/enableLanczos"
)
@property
def settings(self):
return {
"/rtx/post/chromaticAberration/strengthR": self.strength_r,
"/rtx/post/chromaticAberration/strengthG": self.strength_g,
"/rtx/post/chromaticAberration/strengthB": self.strength_b,
"/rtx/post/chromaticAberration/modeR": self.mode_r,
"/rtx/post/chromaticAberration/modeG": self.mode_g,
"/rtx/post/chromaticAberration/modeB": self.mode_b,
"/rtx/post/chromaticAberration/enableLanczos": self.enable_lanczos,
}
@property
def enabled_setting_path(self):
return "/rtx/post/chromaticAberration/enabled"
class DepthOfFieldSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.dof_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable DOF", "/rtx/post/dof/enabled")
self.subject_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Subject Distance",
"/rtx/post/dof/subjectDistance",
range_from=-10000,
range_to=10000.0,
)
self.focal_length = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Focal Length (mm)", "/rtx/post/dof/focalLength", range_from=0, range_to=1000
)
self.f_number = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "f-Number / f-Stop", "/rtx/post/dof/fNumber", range_from=0, range_to=1000
)
self.anisotropy = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Anisotropy", "/rtx/post/dof/anisotropy", range_from=-1, range_to=1
)
@property
def settings(self):
return {
"/rtx/post/dof/enabled": self.dof_enabled,
"/rtx/post/dof/subjectDistance": self.subject_distance,
"/rtx/post/dof/focalLength": self.focal_length,
"/rtx/post/dof/fNumber": self.f_number,
"/rtx/post/dof/anisotropy": self.anisotropy,
}
@property
def enabled_setting_path(self):
return "/rtx/post/dof/overrideEnabled"
class MotionBlurSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_blur_diameter_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Blur Diameter Fraction",
"/rtx/post/motionblur/maxBlurDiameterFraction",
range_from=0,
range_to=0.5,
)
self.num_samples = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Number of Samples", "/rtx/post/motionblur/numSamples", range_from=4, range_to=32
)
self.exposure_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Exposure Fraction",
"/rtx/post/motionblur/exposureFraction",
range_from=0,
range_to=5.0,
)
@property
def settings(self):
return {
"/rtx/post/motionblur/maxBlurDiameterFraction": self.max_blur_diameter_fraction,
"/rtx/post/motionblur/numSamples": self.num_samples,
"/rtx/post/motionblur/exposureFraction": self.exposure_fraction,
}
@property
def enabled_setting_path(self):
return "/rtx/post/motionblur/enabled"
class FTTBloomSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.flare_scale = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Scale", "/rtx/post/lensFlares/flareScale", range_from=-1000, range_to=1000
)
self.cutoff_point = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Cutoff Point", "/rtx/post/lensFlares/cutoffPoint")
self.cutoff_fuzziness = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Cutoff Fuzziness",
"/rtx/post/lensFlares/cutoffFuzziness",
range_from=0.0,
range_to=1.0,
)
self.energy_constraining_blend = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Energy Constrained", "/rtx/post/lensFlares/energyConstrainingBlend"
)
self.physical_settings = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Physical Settings", "/rtx/post/lensFlares/physicalSettings"
)
# fftbloom_use_physical_settings = self._carb_settings.get("/rtx/post/lensFlares/physicalSettings")
# Physical settings
self.blades = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Blades", "/rtx/post/lensFlares/blades", range_from=0, range_to=10
)
self.aperture_rotation = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Aperture Rotation",
"/rtx/post/lensFlares/apertureRotation",
range_from=-1000,
range_to=1000,
)
self.sensor_diagonal = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Sensor Diagonal",
"/rtx/post/lensFlares/sensorDiagonal",
range_from=-1000,
range_to=1000,
)
self.sensor_aspect_ratio = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Sensor Aspect Ratio",
"/rtx/post/lensFlares/sensorAspectRatio",
range_from=-1000,
range_to=1000,
)
self.f_number = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"f-Number / f-Stop",
"/rtx/post/lensFlares/fNumber",
range_from=-1000,
range_to=1000,
)
self.focal_length = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Focal Length (mm)",
"/rtx/post/lensFlares/focalLength",
range_from=-1000,
range_to=1000,
)
# Non-physical settings
self.halo_flare_radius = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Halo Radius", "/rtx/post/lensFlares/haloFlareRadius"
)
self.halo_flare_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Halo Flare Falloff", "/rtx/post/lensFlares/haloFlareFalloff"
)
self.halo_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Halo Flare Weight",
"/rtx/post/lensFlares/haloFlareWeight",
range_from=-1000,
range_to=1000,
)
self.aniso_flare_falloff_y = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Aniso Falloff Y", "/rtx/post/lensFlares/anisoFlareFalloffY"
)
self.aniso_flare_falloff_x = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Aniso Falloff X", "/rtx/post/lensFlares/anisoFlareFalloffX"
)
self.aniso_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Aniso Flare Weight",
"/rtx/post/lensFlares/anisoFlareWeight",
range_from=-1000,
range_to=1000,
)
self.isotropic_flare_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.DOUBLE3, "Isotropic Flare Falloff", "/rtx/post/lensFlares/isotropicFlareFalloff"
)
self.isotropic_flare_weight = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Isotropic Flare Weight",
"/rtx/post/lensFlares/isotropicFlareWeight",
range_from=-1000,
range_to=1000,
)
@property
def settings(self):
settings = {
"/rtx/post/lensFlares/flareScale": self.flare_scale,
"/rtx/post/lensFlares/cutoffPoint": self.cutoff_point,
"/rtx/post/lensFlares/cutoffFuzziness": self.cutoff_fuzziness,
"/rtx/post/lensFlares/energyConstrainingBlend": self.energy_constraining_blend,
"/rtx/post/lensFlares/physicalSettings": self.physical_settings,
}
fftbloom_use_physical_settings = self._carb_settings.get("/rtx/post/lensFlares/physicalSettings")
if fftbloom_use_physical_settings:
settings.update(
{
"/rtx/post/lensFlares/blades": self.blades,
"/rtx/post/lensFlares/apertureRotation": self.aperture_rotation,
"/rtx/post/lensFlares/sensorDiagonal": self.sensor_diagonal,
"/rtx/post/lensFlares/sensorAspectRatio": self.sensor_aspect_ratio,
"/rtx/post/lensFlares/fNumber": self.f_number,
"/rtx/post/lensFlares/focalLength": self.focal_length,
}
)
else:
settings.update(
{
"/rtx/post/lensFlares/haloFlareRadius": self.halo_flare_radius,
"/rtx/post/lensFlares/haloFlareFalloff": self.halo_flare_falloff,
"/rtx/post/lensFlares/haloFlareWeight": self.halo_flare_weight,
"/rtx/post/lensFlares/anisoFlareFalloffY": self.aniso_flare_falloff_y,
"/rtx/post/lensFlares/anisoFlareFalloffX": self.aniso_flare_falloff_x,
"/rtx/post/lensFlares/anisoFlareWeight": self.aniso_flare_weight,
"/rtx/post/lensFlares/isotropicFlareFalloff": self.isotropic_flare_falloff,
"/rtx/post/lensFlares/isotropicFlareWeight": self.isotropic_flare_weight,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/lensFlares/enabled"
class TVNoiseGrainSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.enable_scanlines = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Scanlines", "/rtx/post/tvNoise/enableScanlines"
)
self.scanline_spread = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Scanline Spreading",
"/rtx/post/tvNoise/scanlineSpread",
range_from=0.0,
range_to=2.0,
)
self.enable_scroll_bug = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Scroll Bug", "/rtx/post/tvNoise/enableScrollBug"
)
self.enable_vignetting = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vignetting", "/rtx/post/tvNoise/enableVignetting"
)
self.vignetting_size = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Vignetting Size", "/rtx/post/tvNoise/vignettingSize", range_from=0.0, range_to=255
)
self.vignetting_strength = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Vignetting Strength",
"/rtx/post/tvNoise/vignettingStrength",
range_from=0.0,
range_to=2.0,
)
self.enable_vignetting_flickering = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vignetting Flickering", "/rtx/post/tvNoise/enableVignettingFlickering"
)
self.enable_ghost_flickering = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Ghost Flickering", "/rtx/post/tvNoise/enableGhostFlickering"
)
self.enable_wave_distortion = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Wavy Distortion", "/rtx/post/tvNoise/enableWaveDistortion"
)
self.enable_vertical_lines = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Vertical Lines", "/rtx/post/tvNoise/enableVerticalLines"
)
self.enable_random_splotches = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Random Splotches", "/rtx/post/tvNoise/enableRandomSplotches"
)
self.enable_film_grain = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Film Grain", "/rtx/post/tvNoise/enableFilmGrain"
)
# Filmgrain is a subframe in TV Noise
# self._carb_settings.get("/rtx/post/tvNoise/enableFilmGrain"):
self.grain_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Grain Amount", "/rtx/post/tvNoise/grainAmount", range_from=0, range_to=0.2
)
self.color_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Color Amount", "/rtx/post/tvNoise/colorAmount", range_from=0, range_to=1.0
)
self.lum_amount = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Luminance Amount", "/rtx/post/tvNoise/lumAmount", range_from=0, range_to=1.0
)
self.grain_size = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Grain Size", "/rtx/post/tvNoise/grainSize", range_from=1.5, range_to=2.5
)
@property
def settings(self):
settings = {
"/rtx/post/tvNoise/enableScanlines": self.enable_scanlines,
"/rtx/post/tvNoise/scanlineSpread": self.scanline_spread,
"/rtx/post/tvNoise/enableScrollBug": self.enable_scroll_bug,
"/rtx/post/tvNoise/enableVignetting": self.enable_vignetting,
"/rtx/post/tvNoise/vignettingSize": self.vignetting_size,
"/rtx/post/tvNoise/vignettingStrength": self.vignetting_strength,
"/rtx/post/tvNoise/enableVignettingFlickering": self.enable_vignetting_flickering,
"/rtx/post/tvNoise/enableGhostFlickering": self.enable_ghost_flickering,
"/rtx/post/tvNoise/enableWaveDistortion": self.enable_wave_distortion,
"/rtx/post/tvNoise/enableVerticalLines": self.enable_vertical_lines,
"/rtx/post/tvNoise/enableRandomSplotches": self.enable_random_splotches,
"/rtx/post/tvNoise/enableFilmGrain": self.enable_film_grain,
}
if self._carb_settings.get("/rtx/post/tvNoise/enableFilmGrain"):
settings.update(
{
"/rtx/post/tvNoise/grainAmount": self.grain_amount,
"/rtx/post/tvNoise/colorAmount": self.color_amount,
"/rtx/post/tvNoise/lumAmount": self.lum_amount,
"/rtx/post/tvNoise/grainSize": self.grain_size,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/post/tvNoise/enabled"
class ReshadeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
# self._add_setting("ASSET", "Preset path", "/rtx/reshade/presetFilePath")
# widget = self._add_setting("ASSET", "Effect search dir path", "/rtx/reshade/effectSearchDirPath")
# widget.is_folder=True
# widget = self._add_setting("ASSET", "Texture search dir path", "/rtx/reshade/textureSearchDirPath")
# widget.is_folder=True
@property
def settings(self):
return {}
@property
def enabled_setting_path(self):
return "/rtx/reshade/enable"
| 34,472 | Python | 44.240157 | 150 | 0.625348 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/common_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class CommonSettings(SettingsBase):
"""
Common setting group that handles a variety of sub-settings, including:
- Rendering
- Geometry
- Materials
- Lighting
- Simple Fog
- Flow
- Debug View
"""
def __init__(self):
self.render_settings = RenderSettings()
self.geometry_settings = GeometrySettings()
self.materials_settings = MaterialsSettings()
self.lighting_settings = LightingSettings()
self.simple_fog_setting = SimpleFogSettings()
self.flow_settings = FlowSettings()
self.debug_view_settings = DebugViewSettings()
@property
def settings(self):
settings = {}
settings.update(self.render_settings.settings)
settings.update(self.geometry_settings.settings)
settings.update(self.materials_settings.settings)
settings.update(self.lighting_settings.settings)
settings.update(self.simple_fog_setting.settings)
settings.update(self.flow_settings.settings)
settings.update(self.debug_view_settings.settings)
return settings
class RenderSettings(SubSettingsBase):
def __init__(self):
self.multi_threading_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Multi-Threading", "/rtx/multiThreading/enabled"
)
@property
def settings(self):
return {
"/rtx/multiThreading/enabled": self.multi_threading_enabled,
}
class GeometrySettings(SubSettingsBase):
def __init__(self):
# Basic geometry settings.
tbnMode = ["AUTO", "CPU", "GPU", "Force GPU"]
self.tbn_frame_mode = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Normal & Tangent Space Generation Mode",
"/rtx/hydra/TBNFrameMode",
range_list=tbnMode,
)
self.face_culling_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Back Face Culling", "/rtx/hydra/faceCulling/enabled"
)
# Wireframe settings.
self.wireframe_thickness = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Wireframe Thickness",
"/rtx/wireframe/wireframeThickness",
range_from=0.1,
range_to=100,
)
self.wireframe_thickness_world_space = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Wireframe World Space Thickness", "/rtx/wireframe/wireframeThicknessWorldSpace"
)
self.wireframe_shading_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Shaded Wireframe", "/rtx/wireframe/shading/enabled"
)
# Subdivision settings.
self.subdivision_refinement_level = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Subdivision Global Refinement Level",
"/rtx/hydra/subdivision/refinementLevel",
range_from=0,
range_to=2,
)
self.subdivision_adaptive_refinement = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Subdivision Feature-adaptive Refinement",
"/rtx/hydra/subdivision/adaptiveRefinement",
)
# if set to zero, override to scene unit, which means the scale factor would be 1
self.renderMeterPerUnit = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Renderer-internal meters per unit ", "/rtx/scene/renderMeterPerUnit"
)
self.only_opaque_ray_flags = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Hide geometry that uses opacity (debug)", "/rtx/debug/onlyOpaqueRayFlags"
)
@property
def settings(self):
return {
"/rtx/hydra/TBNFrameMode": self.tbn_frame_mode,
"/rtx/hydra/faceCulling/enabled": self.face_culling_enabled,
"/rtx/wireframe/wireframeThickness": self.wireframe_thickness,
"/rtx/wireframe/wireframeThicknessWorldSpace": self.wireframe_thickness_world_space,
"/rtx/wireframe/shading/enabled": self.wireframe_shading_enabled,
"/rtx/hydra/subdivision/refinementLevel": self.subdivision_refinement_level,
"/rtx/hydra/subdivision/adaptiveRefinement": self.subdivision_adaptive_refinement,
"/rtx/scene/renderMeterPerUnit": self.renderMeterPerUnit,
"/rtx/debug/onlyOpaqueRayFlags": self.only_opaque_ray_flags,
}
class MaterialsSettings(SubSettingsBase):
def __init__(self):
self.skip_material_loading = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Disable Material Loading", "/app/renderer/skipMaterialLoading"
)
self.max_mip_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Textures: Mipmap Levels to Load",
"/rtx-transient/resourcemanager/maxMipCount",
range_from=2,
range_to=15,
)
self.compression_mip_size_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Textures: Compression Mipmap Size Threshold (0 to disable) ",
"/rtx-transient/resourcemanager/compressionMipSizeThreshold",
0,
8192,
)
self.enable_texture_streaming = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Textures: on-demand streaming (toggling requires scene reload)",
"/rtx-transient/resourcemanager/enableTextureStreaming",
)
self.memory_budget = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Texture streaming memory budget (fraction of GPU memory)",
"/rtx-transient/resourcemanager/texturestreaming/memoryBudget",
0.01,
1,
)
self.animation_time = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "MDL Animation Time Override", "/rtx/animationTime")
self.animation_time_use_wallclock = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "MDL Animation Time Use Wallclock", "/rtx/animationTimeUseWallclock"
)
@property
def settings(self):
return {
"/app/renderer/skipMaterialLoading": self.skip_material_loading,
"/rtx-transient/resourcemanager/maxMipCount": self.max_mip_count,
"/rtx-transient/resourcemanager/compressionMipSizeThreshold": self.compression_mip_size_threshold,
"/rtx-transient/resourcemanager/enableTextureStreaming": self.enable_texture_streaming,
"/rtx-transient/resourcemanager/texturestreaming/memoryBudget": self.memory_budget,
"/rtx/animationTime": self.animation_time,
"/rtx/animationTimeUseWallclock": self.animation_time_use_wallclock,
}
class LightingSettings(SubSettingsBase):
def __init__(self):
# Basic light settings.
show_lights_settings = {"Per-Light Enable": 0, "Force Enable": 1, "Force Disable": 2}
self.show_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Show Area Lights In Primary Rays",
"/rtx/raytracing/showLights",
range_dict=show_lights_settings,
)
self.shadow_bias = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Shadow Bias", "/rtx/raytracing/shadowBias", range_from=0.0, range_to=5.0
)
self.skip_most_lights = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use First Distant Light & First Dome Light Only", "/rtx/scenedb/skipMostLights"
)
# Demo light.
dome_lighting_sampling_type = {
"Upper & Lower Hemisphere": 0,
# "Upper Visible & Sampled, Lower Is Black": 1,
"Upper Hemisphere Visible & Sampled, Lower Is Only Visible": 2,
"Use As Env Map": 3,
}
self.upper_lower_strategy = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Hemisphere Sampling",
"/rtx/domeLight/upperLowerStrategy",
range_dict=dome_lighting_sampling_type,
)
dome_texture_resolution_items = {
"16": 16,
"32": 32,
"64": 64,
"128": 128,
"256": 256,
"512": 512,
"1024": 1024,
"2048": 2048,
"4096": 4096,
"8192": 8192,
}
self.baking_resolution = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Baking Resolution",
"/rtx/domeLight/baking/resolution",
range_dict=dome_texture_resolution_items,
)
self.resolution_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Dome Light Texture Resolution Factor",
"/rtx/domeLight/resolutionFactor",
range_from=0.01,
range_to=4.0,
)
self.baking_spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Dome Light Material Baking SPP",
"/rtx/domeLight/baking/spp",
range_from=1,
range_to=32,
)
@property
def settings(self):
return {
"/rtx/raytracing/showLights": self.show_lights,
"/rtx/raytracing/shadowBias": self.shadow_bias,
"/rtx/scenedb/skipMostLights": self.skip_most_lights,
"/rtx/domeLight/upperLowerStrategy": self.upper_lower_strategy,
"/rtx/domeLight/baking/resolution": self.baking_resolution,
"/rtx/domeLight/resolutionFactor": self.resolution_factor,
"/rtx/domeLight/baking/spp": self.baking_spp,
}
class SimpleFogSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.fog_color = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Color", "/rtx/fog/fogColor")
self.fog_color_intensity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Intensity", "/rtx/fog/fogColorIntensity", range_from=1, range_to=1000000
)
self.fog_z_up_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Height-based Fog - Use +Z Axis", "/rtx/fog/fogZup/enabled"
)
self.fog_start_height = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Height-based Fog - Plane Height",
"/rtx/fog/fogStartHeight",
range_from=-1000000,
range_to=1000000,
)
self.fog_height_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height Density", "/rtx/fog/fogHeightDensity", range_from=0, range_to=1
)
self.fog_height_falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height Falloff", "/rtx/fog/fogHeightFalloff", range_from=0, range_to=1000
)
self.fog_distance_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Distance Density", "/rtx/fog/fogDistanceDensity", range_from=0, range_to=1
)
self.fog_start_dist = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Start Distance to Camera", "/rtx/fog/fogStartDist", range_from=0, range_to=1000000
)
self.fog_end_dist = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "End Distance to Camera", "/rtx/fog/fogEndDist", range_from=0, range_to=1000000
)
@property
def settings(self):
return {
"/rtx/fog/fogColor": self.fog_color,
"/rtx/fog/fogColorIntensity": self.fog_color_intensity,
"/rtx/fog/fogZup/enabled": self.fog_z_up_enabled,
"/rtx/fog/fogStartHeight": self.fog_height_density,
"/rtx/fog/fogHeightDensity": self.fog_height_density,
"/rtx/fog/fogHeightFalloff": self.fog_height_falloff,
"/rtx/fog/fogDistanceDensity": self.fog_distance_density,
"/rtx/fog/fogStartDist": self.fog_start_dist,
"/rtx/fog/fogEndDist": self.fog_end_dist,
}
@property
def enabled_setting_path(self):
return "/rtx/fog/enabled"
class FlowSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.ray_traced_shadows_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Real-Time Ray Traced Shadows", "/rtx/flow/rayTracedShadowsEnabled"
)
self.ray_traced_reflections_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Real-Time Ray Traced Reflections", "/rtx/flow/rayTracedReflectionsEnabled"
)
self.path_tracing_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Path-Traced Mode", "/rtx/flow/pathTracingEnabled"
)
self.path_tracing_shadows_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Flow in Path-Traced Mode Shadows", "/rtx/flow/pathTracingShadowsEnabled"
)
self.composite_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Composite with Flow Library Renderer", "/rtx/flow/compositeEnabled"
)
self.use_flow_library_self_shadow = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use Flow Library Self Shadow", "/rtx/flow/useFlowLibrarySelfShadow"
)
self.max_blocks = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Blocks", "/rtx/flow/maxBlocks")
@property
def settings(self):
return {
"/rtx/flow/rayTracedShadowsEnabled": self.ray_traced_shadows_enabled,
"/rtx/flow/rayTracedReflectionsEnabled": self.ray_traced_reflections_enabled,
"/rtx/flow/pathTracingEnabled": self.path_tracing_enabled,
"/rtx/flow/pathTracingShadowsEnabled": self.path_tracing_shadows_enabled,
"/rtx/flow/compositeEnabled": self.composite_enabled,
"/rtx/flow/useFlowLibrarySelfShadow": self.use_flow_library_self_shadow,
"/rtx/flow/maxBlocks": self.max_blocks,
}
@property
def enabled_setting_path(self):
return "/rtx/flow/enabled"
class DebugViewSettings(SubSettingsBase):
def __init__(self):
debug_view_items = {
"Off": "",
"Beauty Before Tonemap": "beautyPreTonemap",
"Beauty After Tonemap": "beautyPostTonemap",
"Timing Heat Map": "TimingHeatMap",
"Depth": "depth",
"World Position": "worldPosition",
"Wireframe": "wire",
"Barycentrics": "barycentrics",
"Texture Coordinates 0": "texcoord0",
"Tangent U": "tangentu",
"Tangent V": "tangentv",
"Interpolated Normal": "normal",
"Triangle Normal": "triangleNormal",
"Material Normal": "materialGeometryNormal",
"Instance ID": "instanceId",
"3D Motion Vectors": "targetMotion",
"Shadow (last light)": "shadow",
"Diffuse Reflectance": "diffuseReflectance",
"Specular Reflectance": "reflectance",
"Roughness": "roughness",
"Ambient Occlusion": "ao",
"Reflections": "reflections",
"Reflections 3D Motion Vectors": "reflectionsMotion",
"Translucency": "translucency",
"Radiance": "radiance",
"Diffuse GI": "indirectDiffuse",
"Caustics": "caustics",
"PT Noisy Result": "pathTracerNoisy",
"PT Denoised Result": "pathTracerDenoised",
"RT Noisy Sampled Lighting": "rtNoisySampledLighting",
"RT Denoised Sampled Lighting": "rtDenoisedSampledLighting",
"Developer Debug Texture": "developerDebug",
"Noisy Dome Light": "noisyDomeLightingTex",
"Denoised Dome Light": "denoisedDomeLightingTex",
"RT Noisy Sampled Lighting Diffuse": "rtNoisySampledLightingDiffuse", # ReLAX Only
"RT Noisy Sampled Lighting Specular": "rtNoisySampledLightingSpecular", # ReLAX Only
"RT Denoised Sampled Lighting Diffuse": "rtDenoiseSampledLightingDiffuse", # ReLAX Only
"RT Denoised Sampled Lighting Specular": "rtDenoiseSampledLightingSpecular", # ReLAX Only
"Triangle Normal (OctEnc)": "triangleNormalOctEnc", # ReLAX Only
"Material Normal (OctEnc)": "materialGeometryNormalOctEnc", # ReLAX Only
# Targets not using RT accumulation
"RT Noisy Sampled Lighting (Not Accumulated)": "rtNoisySampledLightingNonAccum",
"RT Noisy Sampled Lighting Diffuse (Not Accumulated)": "sampledLightingDiffuseNonAccum",
"RT Noisy Sampled Lighting Specular (Not Accumulated)": "sampledLightingSpecularNonAccum",
"Reflections (Not Accumulated)": "reflectionsNonAccum",
"Diffuse GI (Not Accumulated)": "indirectDiffuseNonAccum",
}
self.target = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Render Target", "/rtx/debugView/target", range_dict=debug_view_items
)
self.scaling = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Output Value Scaling",
"/rtx/debugView/scaling",
range_from=-1000000,
range_to=1000000,
)
@property
def settings(self):
return {
"/rtx/debugView/target": self.target,
"/rtx/debugView/scaling": self.scaling,
}
| 18,494 | Python | 43.352518 | 150 | 0.621229 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/real_time_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class RealTimeSettings(SettingsBase):
"""
Real-Time setting group that handles a variety of sub-settings, including:
- Eco Mode
- Anti Aliasing
- Direct Lighting
- Reflections
- Translucency
- Global Volumetric Effects
- Caustics
- Indirect Diffuse Lighting
- RTMulti GPU (if multiple GPUs available)
"""
def __init__(self):
self.eco_mode_settings = EcoModeSettings()
self.anti_aliasing_settings = AntiAliasingSettings()
self.direct_lighting_settings = DirectLightingSettings()
self.reflections_settings = ReflectionsSettings()
self.translucency_settings = TranslucencySettings()
self.global_volumetric_effects_settings = GlobalVolumetricEffectsSettings()
self.caustics_settings = CausticsSettings()
self.indirect_diffuse_lighting_settings = IndirectDiffuseLightingSettings()
gpu_count = lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount")
if gpu_count and gpu_count > 1:
self.rt_multi_gpu_settings = RTMultiGPUSettings()
@property
def settings(self):
settings = {}
settings.update(self.eco_mode_settings.settings)
settings.update(self.anti_aliasing_settings.settings)
settings.update(self.direct_lighting_settings.settings)
settings.update(self.reflections_settings.settings)
settings.update(self.translucency_settings.settings)
settings.update(self.global_volumetric_effects_settings.settings)
settings.update(self.caustics_settings.settings)
settings.update(self.indirect_diffuse_lighting_settings.settings)
gpu_count = lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount")
if gpu_count and gpu_count > 1:
settings.update(self.rt_multi_gpu_settings.settings)
return settings
class EcoModeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_frames_without_change = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Stop Rendering After This Many Frames Without Changes",
"/rtx/ecoMode/maxFramesWithoutChange",
range_from=0,
range_to=100,
)
@property
def settings(self):
return {
"/rtx/ecoMode/maxFramesWithoutChange": self.max_frames_without_change,
}
@property
def enabled_setting_path(self):
return "/rtx/ecoMode/enabled"
class AntiAliasingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
antialiasing_ops = ["Off", "TAA", "FXAA"]
if self._carb_settings.get("/ngx/enabled") is True:
antialiasing_ops.append("DLSS")
antialiasing_ops.append("RTXAA")
self.algorithm = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Algorithm", "/rtx/post/aa/op", antialiasing_ops)
# antialiasing_op_idx == 1
# TAA
self.static_ratio = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Static scaling", "/rtx/post/scaling/staticRatio", range_from=0.33, range_to=1
)
self.samples = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "TAA Samples", "/rtx/post/taa/samples", range_from=1, range_to=16
)
self.alpha = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "TAA history scale", "/rtx/post/taa/alpha", range_from=0, range_to=1
)
# antialiasing_op_idx == 2
# FXAA
self.quality_sub_pix = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Subpixel Quality", "/rtx/post/fxaa/qualitySubPix", range_from=0.0, range_to=1.0
)
self.quality_edge_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Edge Threshold",
"/rtx/post/fxaa/qualityEdgeThreshold",
range_from=0.0,
range_to=1.0,
)
self.quality_edge_threshold_min = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Edge Threshold Min",
"/rtx/post/fxaa/qualityEdgeThresholdMin",
range_from=0.0,
range_to=1.0,
)
# antialiasing_op_idx == 3 or antialiasing_op_idx == 4
# DLSS and RTXAA
# if antialiasing_op_idx == 3
dlss_opts = ["Performance", "Balanced", "Quality"]
self.exec_mode = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.STRING, "Execution mode", "/rtx/post/dlss/execMode", dlss_opts)
self.sharpness = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Sharpness", "/rtx/post/aa/sharpness", range_from=0.0, range_to=1.0
)
exposure_ops = ["Force self evaluated", "PostProcess Autoexposure", "Fixed"]
self.auto_exposure_mode = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Exposure mode", "/rtx/post/aa/autoExposureMode", exposure_ops
)
# auto_exposure_idx = self._carb_settings.get("/rtx/post/aa/autoExposureMode")
# if auto_exposure_idx == 1
self.exposure_multiplier = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Auto Exposure Multiplier",
"/rtx/post/aa/exposureMultiplier",
range_from=0.00001,
range_to=10.0,
)
# if auto_exposure_idx == 2
self.exposure = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Fixed Exposure Value", "/rtx/post/aa/exposure", range_from=0.00001, range_to=1.0
)
@property
def settings(self):
settings = {
"/rtx/post/aa/op": self.algorithm,
}
antialiasing_op_idx = self._carb_settings.get("/rtx/post/aa/op")
if antialiasing_op_idx == 1:
# TAA
settings.update(
{
"/rtx/post/scaling/staticRatio": self.static_ratio,
"/rtx/post/taa/samples": self.samples,
"/rtx/post/taa/alpha": self.alpha,
}
)
elif antialiasing_op_idx == 2:
# FXAA
settings.update(
{
"/rtx/post/fxaa/qualitySubPix": self.quality_sub_pix,
"/rtx/post/fxaa/qualityEdgeThreshold": self.quality_edge_threshold,
"/rtx/post/fxaa/qualityEdgeThresholdMin": self.quality_edge_threshold_min,
}
)
elif antialiasing_op_idx == 3 or antialiasing_op_idx == 4:
# DLSS and RTXAA
if antialiasing_op_idx == 3:
settings.update(
{"/rtx/post/dlss/execMode": self.exec_mode,}
)
settings.update(
{"/rtx/post/aa/sharpness": self.sharpness, "/rtx/post/aa/autoExposureMode": self.auto_exposure_mode,}
)
auto_exposure_idx = self._carb_settings.get("/rtx/post/aa/autoExposureMode")
if auto_exposure_idx == 1:
settings.update(
{"/rtx/post/aa/exposureMultiplier": self.exposure_multiplier,}
)
elif auto_exposure_idx == 2:
settings.update(
{"/rtx/post/aa/exposure": self.exposure,}
)
return settings
class DirectLightingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.shadows_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Shadows", "/rtx/shadows/enabled")
self.sampled_lighting_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Sampled Direct Lighting", "/rtx/directLighting/sampledLighting/enabled"
)
self.sampled_lighting_auto_enable = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Auto-enable Sampled Lighting Above Light Count Threshold",
"/rtx/directLighting/sampledLighting/autoEnable",
)
self.sampled_lighting_auto_enable_light_count_threshold = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Auto-enable Sampled Lighting: Light Count Threshold",
"/rtx/directLighting/sampledLighting/autoEnableLightCountThreshold",
)
# if not self._settings.get("/rtx/directLighting/sampledLighting/enabled"
self.shadows_sample_count = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Shadow Samples per Pixel", "/rtx/shadows/sampleCount", range_from=1, range_to=16
)
self.shadows_denoiser_quarter_res = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Lower Resolution Shadows Denoiser", "/rtx/shadows/denoiser/quarterRes"
)
self.dome_light_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting", "/rtx/directLighting/domeLight/enabled"
)
self.dome_light_sample_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Dome Light Samples per Pixel",
"/rtx/directLighting/domeLight/sampleCount",
range_from=0,
range_to=32,
)
self.dome_light_enabled_in_reflections = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting in Reflections", "/rtx/directLighting/domeLight/enabledInReflections"
)
# if self._settings.get("/rtx/directLighting/sampledLighting/enabled")
sampled_lighting_spp_items = {"1": 1, "2": 2, "4": 4, "8": 8}
self.samples_per_pixel = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Samples per Pixel",
"/rtx/directLighting/sampledLighting/samplesPerPixel",
range_dict=sampled_lighting_spp_items,
)
self.clamp_samples_per_pixel_to_number_of_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Clamp Sample Count to Light Count",
"/rtx/directLighting/sampledLighting/clampSamplesPerPixelToNumberOfLights",
)
self.reflections_samples_per_pixel = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Reflections: Light Samples per Pixel",
"/rtx/reflections/sampledLighting/samplesPerPixel",
range_dict=sampled_lighting_spp_items,
)
self.reflections_clamp_samples_per_pixel_to_number_of_lights = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Reflections: Clamp Sample Count to Light Count",
"/rtx/reflections/sampledLighting/clampSamplesPerPixelToNumberOfLights",
)
self.max_ray_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity",
"/rtx/directLighting/sampledLighting/maxRayIntensity",
range_from=0.0,
range_to=1000000,
)
self.reflections_max_ray_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Reflections: Max Ray Intensity",
"/rtx/reflections/sampledLighting/maxRayIntensity",
range_from=0.0,
range_to=1000000,
)
self.enabled_in_reflections = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Dome Lighting in Reflections", "/rtx/directLighting/domeLight/enabledInReflections"
)
firefly_filter_types = {"None": "None", "Median": "Cross-Bilateral Median", "RCRS": "Cross-Bilateral RCRS"}
self.firefly_suppression_type = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Firefly Filter",
"/rtx/lightspeed/ReLAX/fireflySuppressionType",
range_dict=firefly_filter_types,
)
self.history_clamping_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "History Clamping", "/rtx/lightspeed/ReLAX/historyClampingEnabled"
)
self.denoiser_iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Denoiser Iterations",
"/rtx/lightspeed/ReLAX/aTrousIterations",
range_from=1,
range_to=10,
)
self.diffuse_backscattering_enabled = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.BOOL,
"Enable Extended Diffuse Backscattering",
"/rtx/directLighting/diffuseBackscattering/enabled",
)
self.shadow_offset = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Shadow Ray Offset",
"/rtx/directLighting/diffuseBackscattering/shadowOffset",
range_from=0.1,
range_to=1000,
)
self.extinction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Extinction",
"/rtx/directLighting/diffuseBackscattering/extinction",
range_from=0.001,
range_to=100,
)
@property
def settings(self):
settings = {
"/rtx/shadows/enabled": self.shadows_enabled,
"/rtx/directLighting/sampledLighting/enabled": self.sampled_lighting_enabled,
"/rtx/directLighting/sampledLighting/autoEnable": self.sampled_lighting_auto_enable,
"/rtx/directLighting/sampledLighting/autoEnableLightCountThreshold": self.sampled_lighting_auto_enable_light_count_threshold,
}
if not self._carb_settings.get("/rtx/directLighting/sampledLighting/enabled"):
settings.update(
{
"/rtx/shadows/sampleCount": self.shadows_sample_count,
"/rtx/shadows/denoiser/quarterRes": self.shadows_denoiser_quarter_res,
"/rtx/directLighting/domeLight/enabled": self.dome_light_enabled,
"/rtx/directLighting/domeLight/sampleCount": self.dome_light_sample_count,
"/rtx/directLighting/domeLight/enabledInReflections": self.dome_light_enabled_in_reflections,
}
)
else:
settings.update(
{
"/rtx/directLighting/sampledLighting/samplesPerPixel": self.samples_per_pixel,
"/rtx/directLighting/sampledLighting/clampSamplesPerPixelToNumberOfLights": self.clamp_samples_per_pixel_to_number_of_lights,
"/rtx/reflections/sampledLighting/samplesPerPixel": self.reflections_samples_per_pixel,
"/rtx/reflections/sampledLighting/clampSamplesPerPixelToNumberOfLights": self.reflections_clamp_samples_per_pixel_to_number_of_lights,
"/rtx/directLighting/sampledLighting/maxRayIntensity": self.max_ray_intensity,
"/rtx/reflections/sampledLighting/maxRayIntensity": self.reflections_max_ray_intensity,
"/rtx/directLighting/domeLight/enabledInReflections": self.enabled_in_reflections,
"/rtx/lightspeed/ReLAX/fireflySuppressionType": self.firefly_suppression_type,
"/rtx/lightspeed/ReLAX/historyClampingEnabled": self.history_clamping_enabled,
"/rtx/lightspeed/ReLAX/aTrousIterations": self.denoiser_iterations,
"/rtx/directLighting/diffuseBackscattering/enabled": self.diffuse_backscattering_enabled,
"/rtx/directLighting/diffuseBackscattering/shadowOffset": self.shadow_offset,
"/rtx/directLighting/diffuseBackscattering/extinction": self.extinction,
}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/directLighting/enabled"
class ReflectionsSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_roughness = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max Roughness", "/rtx/reflections/maxRoughness", range_from=0.0, range_to=1.0
)
self.max_reflection_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Reflection Bounces",
"/rtx/reflections/maxReflectionBounces",
range_from=0,
range_to=100,
)
@property
def settings(self):
return {
"/rtx/reflections/maxRoughness": self.max_roughness,
"/rtx/reflections/maxReflectionBounces": self.max_reflection_bounces,
}
@property
def enabled_setting_path(self):
return "/rtx/reflections/enabled"
class TranslucencySettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_refraction_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Refraction Bounces",
"/rtx/translucency/maxRefractionBounces",
range_from=0,
range_to=100,
)
self.reflection_cutoff = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Secondary Bounce Roughness Cutoff",
"/rtx/translucency/reflectionCutoff",
range_from=0.0,
range_to=1.0,
)
self.fractional_cutou_opacity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Fractional Cutout Opacity", "/rtx/raytracing/fractionalCutoutOpacity"
)
self.virtual_depth = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Depth Correction for DoF", "/rtx/translucency/virtualDepth"
)
@property
def settings(self):
return {
"/rtx/translucency/maxRefractionBounces": self.max_refraction_bounces,
"/rtx/translucency/reflectionCutoff": self.reflection_cutoff,
"/rtx/raytracing/fractionalCutoutOpacity": self.reflection_cutoff,
"/rtx/translucency/virtualDepth": self.virtual_depth,
}
@property
def enabled_setting_path(self):
return "/rtx/translucency/enabled"
class GlobalVolumetricEffectsSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_accumulation_frames = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Accumulation Frames",
"/rtx/raytracing/inscattering/maxAccumulationFrames",
range_from=1,
range_to=255,
)
self.depth_slices = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"# Depth Slices",
"/rtx/raytracing/inscattering/depthSlices",
range_from=16,
range_to=1024,
)
self.pixel_ratio = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Pixel Density", "/rtx/raytracing/inscattering/pixelRatio", range_from=4, range_to=64
)
self.max_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max inscattering Distance",
"/rtx/raytracing/inscattering/maxDistance",
range_from=10,
range_to=100000,
)
self.atmosphere_height = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Atmosphere Height",
"/rtx/raytracing/inscattering/atmosphereHeight",
range_from=-100000,
range_to=100000,
)
self.transmittance_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Transmittance Color", "/rtx/raytracing/inscattering/transmittanceColor"
)
self.transmittance_measurement_distance = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Transmittance Measurment Distance",
"/rtx/raytracing/inscattering/transmittanceMeasurementDistance",
range_from=0.0001,
range_to=1000000,
)
self.single_scattering_albedo = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Single Scattering Albedo", "/rtx/raytracing/inscattering/singleScatteringAlbedo",
)
self.anisotropy_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Anisotropy Factor",
"/rtx/raytracing/inscattering/anisotropyFactor",
range_from=-0.999,
range_to=0.999,
)
self.slice_distribution_exponent = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Slice Distribution Exponent",
"/rtx/raytracing/inscattering/sliceDistributionExponent",
range_from=1,
range_to=16,
)
self.blur_sigma = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Inscatter Blur Sigma",
"/rtx/raytracing/inscattering/blurSigma",
0.0,
range_to=10.0,
)
self.dithering_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Inscatter Dithering Scale",
"/rtx/raytracing/inscattering/ditheringScale",
range_from=0,
range_to=100,
)
self.spatial_jitter_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Spatial Sample Jittering Scale",
"/rtx/raytracing/inscattering/spatialJitterScale",
range_from=0.0,
range_to=1,
)
self.temporal_jitter_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Temporal Reprojection Jittering Scale",
"/rtx/raytracing/inscattering/temporalJitterScale",
range_from=0.0,
range_to=1,
)
self.use_detail_noise = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Apply Density Noise", "/rtx/raytracing/inscattering/useDetailNoise"
)
self.detail_noise_scale = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise World Scale",
"/rtx/raytracing/inscattering/detailNoiseScale",
range_from=0.0,
range_to=1,
)
self.noise_animation_speed_x = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed X",
"/rtx/raytracing/inscattering/noiseAnimationSpeedX",
range_from=-1.0,
range_to=1.0,
)
self.noise_animation_speed_y = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed Y",
"/rtx/raytracing/inscattering/noiseAnimationSpeedY",
range_from=-1.0,
range_to=1.0,
)
self.noise_animation_speed_z = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Animation Speed Z",
"/rtx/raytracing/inscattering/noiseAnimationSpeedZ",
range_from=-1.0,
range_to=1.0,
)
self.noise_scale_range_min = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Scale Min",
"/rtx/raytracing/inscattering/noiseScaleRangeMin",
range_from=-1.0,
range_to=5.0,
)
self.noise_scale_range_max = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Density Noise Scale Max",
"/rtx/raytracing/inscattering/noiseScaleRangeMax",
range_from=-1.0,
range_to=5.0,
)
self.noise_num_octaves = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Density Noise Octave Count",
"/rtx/raytracing/inscattering/noiseNumOctaves",
range_from=1,
range_to=8,
)
self.use_32bit_precision = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use 32-bit Precision", "/rtx/raytracing/inscattering/use32bitPrecision"
)
@property
def settings(self):
return {
"/rtx/raytracing/inscattering/maxAccumulationFrames": self.max_accumulation_frames,
"/rtx/raytracing/inscattering/depthSlices": self.depth_slices,
"/rtx/raytracing/inscattering/pixelRatio": self.pixel_ratio,
"/rtx/raytracing/inscattering/maxDistance": self.max_distance,
"/rtx/raytracing/inscattering/atmosphereHeight": self.atmosphere_height,
"/rtx/raytracing/inscattering/transmittanceColor": self.transmittance_color,
"/rtx/raytracing/inscattering/transmittanceMeasurementDistance": self.transmittance_measurement_distance,
"/rtx/raytracing/inscattering/singleScatteringAlbedo": self.single_scattering_albedo,
"/rtx/raytracing/inscattering/anisotropyFactor": self.anisotropy_factor,
"/rtx/raytracing/inscattering/sliceDistributionExponent": self.slice_distribution_exponent,
"/rtx/raytracing/inscattering/blurSigma": self.blur_sigma,
"/rtx/raytracing/inscattering/ditheringScale": self.dithering_scale,
"/rtx/raytracing/inscattering/spatialJitterScale": self.spatial_jitter_scale,
"/rtx/raytracing/inscattering/temporalJitterScale": self.temporal_jitter_scale,
"/rtx/raytracing/inscattering/useDetailNoise": self.use_detail_noise,
"/rtx/raytracing/inscattering/detailNoiseScale": self.detail_noise_scale,
"/rtx/raytracing/inscattering/noiseAnimationSpeedX": self.noise_animation_speed_x,
"/rtx/raytracing/inscattering/noiseAnimationSpeedY": self.noise_animation_speed_y,
"/rtx/raytracing/inscattering/noiseAnimationSpeedZ": self.noise_animation_speed_z,
"/rtx/raytracing/inscattering/noiseScaleRangeMin": self.noise_scale_range_min,
"/rtx/raytracing/inscattering/noiseScaleRangeMax": self.noise_scale_range_max,
"/rtx/raytracing/inscattering/noiseNumOctaves": self.noise_num_octaves,
"/rtx/raytracing/inscattering/use32bitPrecision": self.use_32bit_precision,
}
@property
def enabled_setting_path(self):
return "/rtx/raytracing/globalVolumetricEffects/enabled"
class CausticsSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.photon_count_nultiplier = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Photon Count Multiplier",
"/rtx/raytracing/caustics/photonCountMultiplier",
range_from=1,
range_to=5000,
)
self.photon_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Photon Max Bounces",
"/rtx/raytracing/caustics/photonMaxBounces",
range_from=1,
range_to=20,
)
self.positio_phi = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Position Phi", "/rtx/raytracing/caustics/positionPhi", range_from=0.1, range_to=50
)
self.normal_phi = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Normal Phi", "/rtx/raytracing/caustics/normalPhi", range_from=0.3, range_to=1
)
self.filtering_iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Filter Iterations",
"/rtx/raytracing/caustics/eawFilteringSteps",
range_from=0,
range_to=10,
)
@property
def settings(self):
return {
"/rtx/raytracing/caustics/photonCountMultiplier": self.photon_count_nultiplier,
"/rtx/raytracing/caustics/photonMaxBounces": self.photon_max_bounces,
"/rtx/raytracing/caustics/positionPhi": self.positio_phi,
"/rtx/raytracing/caustics/normalPhi": self.normal_phi,
"/rtx/raytracing/caustics/eawFilteringSteps": self.filtering_iterations,
}
@property
def enabled_setting_path(self):
return "/rtx/caustics/enabled"
class IndirectDiffuseLightingSettings(SettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.ambient_light_color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Ambient Light Color", "/rtx/sceneDb/ambientLightColor"
)
self.ambient_light_intensity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Ambient Light Intensity",
"/rtx/sceneDb/ambientLightIntensity",
range_from=0.0,
range_to=10.0,
)
self.ambient_occlusion_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Ambient Occlusion (AO)", "/rtx/ambientOcclusion/enabled"
)
# if self._carb_settings.get("/rtx/ambientOcclusion/enabled")
self.ray_length_in_cm = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"AO: Ray Length (cm)",
"/rtx/ambientOcclusion/rayLengthInCm",
range_from=0.0,
range_to=2000.0,
)
self.min_samples = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"AO: Minimum Samples per Pixel",
"/rtx/ambientOcclusion/minSamples",
range_from=1,
range_to=16,
)
self.max_samples = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"AO: Maximum Samples per Pixel",
"/rtx/ambientOcclusion/maxSamples",
range_from=1,
range_to=16,
)
self.aggressive_denoising = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "AO: Aggressive denoising", "/rtx/ambientOcclusion/aggressiveDenoising"
)
self.indirect_diffuse_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Indirect Diffuse GI", "/rtx/indirectDiffuse/enabled"
)
# if self._carb_settings.get("/rtx/indirectDiffuse/enabled")
gi_denoising_techniques_ops = ["NVRTD", "NRD:Reblur"]
self.fetch_sample_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel",
"/rtx/indirectDiffuse/fetchSampleCount",
range_from=0,
range_to=4,
)
self.max_bounces = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Bounces", "/rtx/indirectDiffuse/maxBounces", range_from=0, range_to=16
)
self.scaling_factor = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Intensity", "/rtx/indirectDiffuse/scalingFactor", range_from=0.0, range_to=20.0
)
self.denoiser_method = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Denoising technique",
"/rtx/indirectDiffuse/denoiser/method",
range_list=gi_denoising_techniques_ops,
)
# if enabled and self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 0:
self.kernel_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Kernel radius",
"/rtx/indirectDiffuse/denoiser/kernelRadius",
range_from=1,
range_to=64,
)
self.iterations = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Iteration count",
"/rtx/indirectDiffuse/denoiser/iterations",
range_from=1,
range_to=10,
)
self.max_history = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max History Length",
"/rtx/indirectDiffuse/denoiser/temporal/maxHistory",
range_from=1,
range_to=100,
)
# if enabled and self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 1:
self.max_accumulated_frame_num = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Frames in History",
"/rtx/lightspeed/NRD_ReblurDiffuse/maxAccumulatedFrameNum",
range_from=0,
range_to=63,
)
self.max_fast_accumulated_frame_num = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Frames in Fast History",
"/rtx/lightspeed/NRD_ReblurDiffuse/maxFastAccumulatedFrameNum",
range_from=0,
range_to=63,
)
self.plane_distance_sensitivity = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Plane Distance Sensitivity",
"/rtx/lightspeed/NRD_ReblurDiffuse/planeDistanceSensitivity",
range_from=0,
range_to=1,
)
self.blur_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Blur Radius",
"/rtx/lightspeed/NRD_ReblurDiffuse/blurRadius",
range_from=0,
range_to=100,
)
@property
def settings(self):
settings = {
"/rtx/sceneDb/ambientLightColor": self.ambient_light_color,
"/rtx/sceneDb/ambientLightIntensity": self.ambient_light_intensity,
"/rtx/ambientOcclusion/enabled": self.ambient_occlusion_enabled,
"/rtx/indirectDiffuse/enabled": self.indirect_diffuse_enabled,
}
if self._carb_settings.get("/rtx/ambientOcclusion/enabled"):
settings.update(
{
"/rtx/ambientOcclusion/rayLengthInCm": self.ray_length_in_cm,
"/rtx/ambientOcclusion/minSamples": self.min_samples,
"/rtx/ambientOcclusion/maxSamples": self.max_samples,
"/rtx/ambientOcclusion/aggressiveDenoising": self.aggressive_denoising,
}
)
if self._carb_settings.get("/rtx/indirectDiffuse/enabled"):
settings.update(
{
"/rtx/indirectDiffuse/fetchSampleCount": self.max_bounces,
"/rtx/indirectDiffuse/maxBounces": self.ambient_light_color,
"/rtx/indirectDiffuse/scalingFactor": self.scaling_factor,
"/rtx/indirectDiffuse/denoiser/method": self.denoiser_method,
}
)
if self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 0:
settings.update(
{
"/rtx/indirectDiffuse/denoiser/kernelRadius": self.kernel_radius,
"/rtx/indirectDiffuse/denoiser/iterations": self.iterations,
"/rtx/indirectDiffuse/denoiser/temporal/maxHistory": self.max_history,
}
)
elif self._carb_settings.get("/rtx/indirectDiffuse/denoiser/method") == 1:
settings.update(
{
"/rtx/lightspeed/NRD_ReblurDiffuse/maxAccumulatedFrameNum": self.max_accumulated_frame_num,
"/rtx/lightspeed/NRD_ReblurDiffuse/maxFastAccumulatedFrameNum": self.max_fast_accumulated_frame_num,
"/rtx/lightspeed/NRD_ReblurDiffuse/planeDistanceSensitivity": self.plane_distance_sensitivity,
"/rtx/lightspeed/NRD_ReblurDiffuse/blurRadius": self.blur_radius,
}
)
return settings
class RTMultiGPUSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
currentGpuCount = self._carb_settings.get("/renderer/multiGpu/currentGpuCount")
self.tile_count = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Tile Count", "/rtx/realtime/mgpu/tileCount", range_from=2, range_to=currentGpuCount
)
self.master_post_processOnly = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "GPU 0 Post Process Only", "/rtx/realtime/mgpu/masterPostProcessOnly"
)
self.tile_overlap = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Tile Overlap (Pixels)", "/rtx/realtime/mgpu/tileOverlap", range_from=0, range_to=256
)
self.tile_overlap_blend_fraction = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Fraction of Overlap Pixels to Blend",
"/rtx/realtime/mgpu/tileOverlapBlendFraction",
range_from=0.0,
range_to=1.0,
)
@property
def settings(self):
return {
"/rtx/realtime/mgpu/tileCount": self.tile_count,
"/rtx/realtime/mgpu/masterPostProcessOnly": self.master_post_processOnly,
"/rtx/realtime/mgpu/tileOverlap": self.tile_overlap,
"/rtx/realtime/mgpu/tileOverlapBlendFraction": self.tile_overlap_blend_fraction,
}
@property
def enabled_setting_path(self):
return "/rtx/realtime/mgpu/enabled"
| 39,074 | Python | 42.320399 | 154 | 0.609203 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/__init__.py | from omnigibson.renderer_settings.renderer_settings import RendererSettings
| 76 | Python | 37.499981 | 75 | 0.894737 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/path_tracing_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.settings_base import SettingItem, SettingsBase, SubSettingsBase
class PathTracingSettings(SettingsBase):
"""
Path-Tracing setting group that handles a variety of sub-settings, including:
- Anti-Aliasing
- Firefly Filter
- Path-Tracing
- Sampling & Caching
- Denoising
- Path-Traced Fog
- Heterogeneous Volumes (Path Traced Volume)
- Multi GPU (if multiple GPUs available)
"""
def __init__(self):
self.anti_aliasing_settings = AntiAliasingSettings()
self.firefly_filter_settings = FireflyFilterSettings()
self.path_tracing_settings = PathTracingSettings()
self.sampling_and_caching_settings = SamplingAndCachingSettings()
self.denoising_settings = DenoisingSettings()
self.path_traced_fog_settings = PathTracedFogSettings()
self.path_traced_volume_settings = PathTracedVolumeSettings()
if lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount") > 1:
self.multi_gpu_settings = MultiGPUSettings()
@property
def settings(self):
settings = {}
settings.update(self.anti_aliasing_settings.settings)
settings.update(self.firefly_filter_settings.settings)
settings.update(self.path_tracing_settings.settings)
settings.update(self.sampling_and_caching_settings.settings)
settings.update(self.denoising_settings.settings)
settings.update(self.path_traced_fog_settings.settings)
settings.update(self.path_traced_volume_settings.settings)
if lazy.carb.settings.get_settings().get("/renderer/multiGpu/currentGpuCount") > 1:
settings.update(self.multi_gpu_settings.settings)
return settings
class AntiAliasingSettings(SubSettingsBase):
def __init__(self):
pt_aa_ops = ["Box", "Triangle", "Gaussian", "Uniform"]
self.sample_pattern = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.STRING, "Anti-Aliasing Sample Pattern", "/rtx/pathtracing/aa/op", pt_aa_ops
)
self.filter_radius = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Anti-Aliasing Radius",
"/rtx/pathtracing/aa/filterRadius",
range_from=0.0001,
range_to=5.0,
)
@property
def settings(self):
return {
"/rtx/pathtracing/aa/op": self.sample_pattern,
"/rtx/pathtracing/aa/filterRadius": self.filter_radius,
}
class FireflyFilterSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.max_intensity_per_sample = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity Glossy",
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSample",
range_from=0,
range_to=100000,
)
self.max_intensityper_sample_diffuse = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Max Ray Intensity Diffuse",
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse",
range_from=0,
range_to=100000,
)
@property
def settings(self):
return {
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSample": self.max_intensity_per_sample,
"/rtx/pathtracing/fireflyFilter/maxIntensityPerSampleDiffuse": self.max_intensityper_sample_diffuse,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/fireflyFilter/enabled"
class PathTracingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.pathtracing_max_bounces = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.INT, "Max Bounces", "/rtx/pathtracing/maxBounces", range_from=0, range_to=64
)
self.max_specular_and_transmission_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Specular and Transmission Bounces",
"/rtx/pathtracing/maxSpecularAndTransmissionBounces",
range_from=1,
range_to=128,
)
self.maxvolume_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max SSS Volume Scattering Bounces",
"/rtx/pathtracing/maxVolumeBounces",
range_from=0,
range_to=1024,
)
self.ptfog_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Fog Scattering Bounces",
"/rtx/pathtracing/ptfog/maxBounces",
range_from=1,
range_to=10,
)
self.ptvol_max_bounces = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Heterogeneous Volume Scattering Bounces",
"/rtx/pathtracing/ptvol/maxBounces",
range_from=0,
range_to=1024,
)
clamp_spp = self._carb_settings.get("/rtx/pathtracing/clampSpp")
if clamp_spp > 1: # better 0, but setting range = (1,1) completely disables the UI control range
self.spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel per Frame (1 to {})".format(clamp_spp),
"/rtx/pathtracing/spp",
range_from=1,
range_to=clamp_spp,
)
else:
self.spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Samples per Pixel per Frame",
"/rtx/pathtracing/spp",
range_from=1,
range_to=1048576,
)
self.total_spp = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Total Samples per Pixel (0 = inf)",
"/rtx/pathtracing/totalSpp",
range_from=0,
range_to=1048576,
)
self.fractional_cutout_opacity = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Fractional Cutout Opacity", "/rtx/pathtracing/fractionalCutoutOpacity"
)
self.reset_pt_accum_on_anim_time_change = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Reset Accumulation on Time Change", "/rtx/resetPtAccumOnAnimTimeChange"
)
@property
def settings(self):
return {
"/rtx/pathtracing/maxBounces": self.pathtracing_max_bounces,
"/rtx/pathtracing/maxSpecularAndTransmissionBounces": self.max_specular_and_transmission_bounces,
"/rtx/pathtracing/maxVolumeBounces": self.maxvolume_bounces,
"/rtx/pathtracing/ptfog/maxBounces": self.ptfog_max_bounces,
"/rtx/pathtracing/ptvol/maxBounces": self.ptvol_max_bounces,
"/rtx/pathtracing/spp": self.spp,
"/rtx/pathtracing/totalSpp": self.total_spp,
"/rtx/pathtracing/fractionalCutoutOpacity": self.fractional_cutout_opacity,
"/rtx/resetPtAccumOnAnimTimeChange": self.reset_pt_accum_on_anim_time_change,
}
class SamplingAndCachingSettings(SubSettingsBase):
def __init__(self):
self.cached_enabled = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Caching", "/rtx/pathtracing/cached/enabled")
self.lightcache_cached_enabled = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Enable Many-Light Sampling", "/rtx/pathtracing/lightcache/cached/enabled"
)
@property
def settings(self):
return {
"/rtx/pathtracing/cached/enabled": self.cached_enabled,
"/rtx/pathtracing/lightcache/cached/enabled": self.lightcache_cached_enabled,
}
class DenoisingSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.blend_factor = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"OptiX Denoiser Blend Factor",
"/rtx/pathtracing/optixDenoiser/blendFactor",
range_from=0,
range_to=1,
)
@property
def settings(self):
return {
"/rtx/pathtracing/optixDenoiser/blendFactor": self.blend_factor,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/optixDenoiser/enabled"
class PathTracedFogSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Density", "/rtx/pathtracing/ptfog/density", range_from=0, range_to=1
)
self.height = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Height", "/rtx/pathtracing/ptfog/height", range_from=-10, range_to=1000
)
self.falloff = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Falloff", "/rtx/pathtracing/ptfog/falloff", range_from=0, range_to=100
)
self.color = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.COLOR3, "Color", "/rtx/pathtracing/ptfog/color", range_from=0, range_to=1
)
self.asymmetry = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.FLOAT,
"Asymmetry (g)",
"/rtx/pathtracing/ptfog/asymmetry",
range_from=-0.99,
range_to=0.99,
)
self.z_up = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Use +Z Axis for Height", "/rtx/pathtracing/ptfog/ZUp")
@property
def settings(self):
return {
"/rtx/pathtracing/ptfog/density": self.density,
"/rtx/pathtracing/ptfog/height": self.height,
"/rtx/pathtracing/ptfog/falloff": self.falloff,
"/rtx/pathtracing/ptfog/color": self.color,
"/rtx/pathtracing/ptfog/asymmetry": self.asymmetry,
"/rtx/pathtracing/ptfog/ZUp": self.z_up,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/ptfog/enabled"
class PathTracedVolumeSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
pt_vol_tr_ops = ["Biased Ray Marching", "Ratio Tracking", "Brute-force Ray Marching"]
self.transmittance_method = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.STRING,
"Transmittance Method",
"/rtx/pathtracing/ptvol/transmittanceMethod",
range_list=pt_vol_tr_ops,
)
self.max_collision_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Collision Count",
"/rtx/pathtracing/ptvol/maxCollisionCount",
range_from=0,
range_to=1024,
)
self.max_light_collision_count = SettingItem(
self,
lazy.omni.kit.widget.settings.SettingType.INT,
"Max Light Collision Count",
"/rtx/pathtracing/ptvol/maxLightCollisionCount",
range_from=0,
range_to=1024,
)
self.max_density = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "Max Density", "/rtx/pathtracing/ptvol/maxDensity", range_from=0, range_to=1000
)
self.fast_vdb = SettingItem(self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Fast VDB", "/rtx/pathtracing/ptvol/fastVdb")
# if self._carb_settings.get("/rtx/pathtracing/ptvol/fastVdb")
self.autoMajorant_vdb = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Fast VDB Auto majorant", "/rtx/pathtracing/ptvol/autoMajorantVdb"
)
@property
def settings(self):
settings = {
"/rtx/pathtracing/ptvol/transmittanceMethod": self.transmittance_method,
"/rtx/pathtracing/ptvol/maxCollisionCount": self.max_collision_count,
"/rtx/pathtracing/ptvol/maxLightCollisionCount": self.max_light_collision_count,
"/rtx/pathtracing/ptvol/maxDensity": self.max_density,
"/rtx/pathtracing/ptvol/fastVdb": self.fast_vdb,
}
if self._carb_settings.get("/rtx/pathtracing/ptvol/fastVdb"):
settings.update(
{"/rtx/pathtracing/ptvol/autoMajorantVdb": self.autoMajorant_vdb,}
)
return settings
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/ptvol/enabled"
class MultiGPUSettings(SubSettingsBase):
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.weight_gpu0 = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.FLOAT, "GPU 0 Weight", "/rtx/pathtracing/mgpu/weightGpu0", range_from=0, range_to=1
)
self.compress_radiance = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Radiance", "/rtx/pathtracing/mgpu/compressRadiance"
)
self.compress_albedo = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Albedo", "/rtx/pathtracing/mgpu/compressAlbedo"
)
self.compress_normals = SettingItem(
self, lazy.omni.kit.widget.settings.SettingType.BOOL, "Compress Normals", "/rtx/pathtracing/mgpu/compressNormals"
)
@property
def settings(self):
return {
"/rtx/pathtracing/mgpu/weightGpu0": self.weight_gpu0,
"/rtx/pathtracing/mgpu/compressRadiance": self.compress_radiance,
"/rtx/pathtracing/mgpu/compressAlbedo": self.compress_albedo,
"/rtx/pathtracing/mgpu/compressNormals": self.compress_normals,
}
@property
def enabled_setting_path(self):
return "/rtx/pathtracing/mgpu/enabled"
| 14,389 | Python | 39.083565 | 148 | 0.623601 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/renderer_settings.py | import omnigibson.lazy as lazy
from omnigibson.renderer_settings.common_settings import CommonSettings
from omnigibson.renderer_settings.path_tracing_settings import PathTracingSettings
from omnigibson.renderer_settings.post_processing_settings import PostProcessingSettings
from omnigibson.renderer_settings.real_time_settings import RealTimeSettings
def singleton(cls):
instances = {}
def getinstance():
if cls not in instances:
instances[cls] = cls()
return instances[cls]
return getinstance
@singleton
class RendererSettings:
"""
Controller for all renderer settings.
"""
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
self.common_settings = CommonSettings()
self.path_tracing_settings = PathTracingSettings()
self.post_processing_settings = PostProcessingSettings()
self.real_time_settings = RealTimeSettings()
def set_setting(self, path, value):
"""
Sets setting @path with value @value.
Args:
path (str): Path of the setting to set.
value (any): Value to set for for setting @path.
"""
if path not in self.settings:
raise NotImplementedError(f"Setting {path} is not supported.")
self.settings[path].set(value)
def reset_setting(self, path):
"""
Resets setting @path to default value.
Args:
path (str): Path of the setting to reset.
"""
if path not in self.settings:
raise NotImplementedError(f"Setting {path} is not supported.")
self.settings[path].reset()
def get_setting_from_path(self, path):
"""
Get the value of setting @path.
Args:
path (str): Path of the setting to get.
Returns:
any: Value of the requested setting @path.
"""
return self._carb_settings.get(path)
def get_current_renderer(self):
"""
Get the current renderer.
Args:
path (str): Path of the setting to get.
Returns:
str: the current renderer.
"""
return lazy.omni.rtx.window.settings.RendererSettingsFactory.get_current_renderer()
def set_current_renderer(self, renderer):
"""
Set the current renderer to @renderer.
Args:
renderer (str): The renderer to set as current (e.g. Real-Time, Path-Traced).
"""
assert (
renderer in lazy.omni.rtx.window.settings.RendererSettingsFactory.get_registered_renderers()
), f"renderer must be one of {lazy.omni.rtx.window.settings.RendererSettingsFactory.get_registered_renderers()}"
print(f"Set current renderer to {renderer}.")
lazy.omni.rtx.window.settings.RendererSettingsFactory.set_current_renderer(renderer)
@property
def settings(self):
"""
Get all available settings.
Returns:
dict: A dictionary of all available settings.
Keys are setting paths and values are setting item objects.
"""
settings = {}
settings.update(self.common_settings.settings)
settings.update(self.path_tracing_settings.settings)
settings.update(self.post_processing_settings.settings)
settings.update(self.real_time_settings.settings)
return settings
| 3,431 | Python | 31.685714 | 120 | 0.632469 |
StanfordVL/OmniGibson/omnigibson/renderer_settings/settings_base.py | from abc import ABCMeta
import numpy as np
import omnigibson.lazy as lazy
class SettingsBase(metaclass=ABCMeta):
"""
Base class for all renderer settings classes.
Settings classes include Common, Real-Time (Ray-Tracing), Path-Tracing and Post Processing.
"""
class SubSettingsBase(metaclass=ABCMeta):
"""
Base class for all renderer sub-settings classes.
"""
def __init__(self):
self._carb_settings = lazy.carb.settings.get_settings()
@property
def enabled_setting_path(self):
"""
The path of "enabled" setting for this sub-settings class.
Subclass with "enabled" mode needs to overwrite this method.
Returns:
str or None: The path of "enabled" mode for this sub-setting class.
Defaults to None, which means this sub-setting group cannot be enabled/disabled.
"""
return None
def is_enabled(self):
"""
Get the enabled status for this sub-setting class.
Returns:
bool: Whether this sub-setting group is enabled.
Returns true if this sub-setting group has no "enabled" mode.
"""
if not self.enabled_setting_path:
return True
return self._carb_settings.get(self.enabled_setting_path)
def enable(self):
"""
Enable this sub-setting class.
"""
if not self.enabled_setting_path:
print(f"{self.__class__.__name__} has no enabled mode.")
return
self._carb_settings.set_bool(self.enabled_setting_path, True)
def disable(self):
"""
Disable this sub-setting class.
"""
if not self.enabled_setting_path:
print(f"{self.__class__.__name__} has no enabled mode.")
return
self._carb_settings.set_bool(self.enabled_setting_path, False)
class SettingItem:
"""
A wrapper of an individual setting item.
Args:
owner (:class:`SubSettingsBase`): The SubSettingsBase object owning this setting.
setting_type (:class:`SettingType`): Setting type (e.g. float, int).
name (str): Description of this setting.
path (str): Path of this setting.
range_from (float): The lower bound of the values for this setting. Defaults to -inf.
range_to (float): The upper bound of the values for this settin. Defaults to inf.
range_list (list): Possible values for this setting. Defaults to None.
range_dict (dict): Possible values for this setting. Defaults to None.
"""
def __init__(
self,
owner,
setting_type,
name,
path,
range_from=-float("inf"),
range_to=float("inf"),
range_list=None,
range_dict=None,
):
self._carb_settings = lazy.carb.settings.get_settings()
self.owner = owner
self.setting_type = setting_type
self.name = name
self.path = path
self.range_from = range_from
self.range_to = range_to
self.range_list = range_list
self.range_dict = range_dict
self.initial_value = self.value
@property
def value(self):
"""
Get the current setting value.
Returns:
any: The current setting value.
"""
return self._carb_settings.get(self.path)
def get(self):
"""
Get the current setting value.
Returns:
any: The current setting value.
"""
return self.value
def reset(self):
"""
Reset the current setting value to default.
"""
self.set(self.initial_value)
def set(self, value):
"""
Set the current setting to @value.
Args:
value (any): Value to set for the current setting value.
"""
print(f"Set setting {self.path} ({self.name}) to {value}.") # carb.log_info
if not self.owner.is_enabled():
print(f"Note: {self.owner.enabled_setting_path} is not enabled.")
# Validate range list and range dict.
if self.range_list:
assert value in self.range_list, f"Setting {self.path} must be chosen from {self.range_list}."
if self.range_dict:
assert isinstance(self.range_dict, dict)
assert (
value in self.range_dict.values()
), f"Setting {self.path} must be chosen from a value (not key) in {self.range_dict}."
if self.setting_type == lazy.omni.kit.widget.settings.SettingType.FLOAT:
assert isinstance(value, (int, float)), f"Setting {self.path} must be of type float."
assert (
value >= self.range_from and value <= self.range_to
), f"Setting {self.path} must be within range ({self.range_from}, {self.range_to})."
self._carb_settings.set_float(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.INT:
assert isinstance(value, int), f"Setting {self.path} must be of type int."
assert (
value >= self.range_from and value <= self.range_to
), f"Setting {self.path} must be within range ({self.range_from}, {self.range_to})."
self._carb_settings.set_int(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.COLOR3:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 3
), f"Setting {self.path} must be a list of 3 numbers within range [0,1]."
for v in value:
assert (
isinstance(v, (int, float)) and v >= 0 and v <= 1
), f"Setting {self.path} must be a list of 3 numbers within range [0,1]."
self._carb_settings.set_float_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.BOOL:
assert isinstance(value, bool), f"Setting {self.path} must be of type bool."
self._carb_settings.set_bool(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.STRING:
assert isinstance(value, str), f"Setting {self.path} must be of type str."
self._carb_settings.set_string(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.DOUBLE3:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 3
), f"Setting {self.path} must be a list of 3 floats."
for v in value:
assert isinstance(v, (int, float)), f"Setting {self.path} must be a list of 3 floats."
self._carb_settings.set_float_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.INT2:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 2
), f"Setting {self.path} must be a list of 2 ints."
for v in value:
assert isinstance(v, int), f"Setting {self.path} must be a list of 2 ints."
self._carb_settings.set_int_array(self.path, value)
elif self.setting_type == lazy.omni.kit.widget.settings.SettingType.DOUBLE2:
assert (
isinstance(value, (list, tuple, np.ndarray)) and len(value) == 2
), f"Setting {self.path} must be a list of 2 floats."
for v in value:
assert isinstance(v, (int, float)), f"Setting {self.path} must be a list of 2 floats."
self._carb_settings.set_float_array(self.path, value)
else:
raise TypeError(f"Setting type {self.setting_type} is not supported.")
| 7,821 | Python | 36.787439 | 106 | 0.586626 |
StanfordVL/OmniGibson/omnigibson/scene_graphs/graph_builder.py | import itertools
import os
import networkx as nx
import numpy as np
from PIL import Image
from matplotlib import pyplot as plt
from omnigibson import object_states
from omnigibson.macros import create_module_macros
from omnigibson.sensors import VisionSensor
from omnigibson.object_states.factory import get_state_name
from omnigibson.object_states.object_state_base import AbsoluteObjectState, BooleanStateMixin, RelativeObjectState
from omnigibson.utils import transform_utils as T
def _formatted_aabb(obj):
return T.pose2mat((obj.aabb_center, [0, 0, 0, 1])), obj.aabb_extent
class SceneGraphBuilder(object):
def __init__(
self,
robot_name=None,
egocentric=False,
full_obs=False,
only_true=False,
merge_parallel_edges=False,
exclude_states=(object_states.Touching,)
):
"""
A utility that builds a scene graph with objects as nodes and relative states as edges,
alongside additional metadata.
Args:
robot_name (str): Name of the robot whose POV the scene graph will be from. If None, we assert that there
is exactly one robot in the scene and use that robot.
egocentric (bool): Whether the objects should have poses in the world frame or robot frame.
full_obs (bool): Whether all objects should be updated or only those in FOV of the robot.
only_true (bool): Whether edges should be created only for relative states that have a value True, or for all
relative states (with the appropriate value attached as an attribute).
merge_parallel_edges (bool): Whether parallel edges (e.g. different states of the same pair of objects) should
exist (making the graph a MultiDiGraph) or should be merged into a single edge instead.
exclude_states (Iterable): Object state classes that should be ignored when building the graph.
"""
self._G = None
self._robot = None
self._robot_name = robot_name
self._egocentric = egocentric
self._full_obs = full_obs
self._only_true = only_true
self._merge_parallel_edges = merge_parallel_edges
self._last_desired_frame_to_world = None
self._exclude_states = set(exclude_states)
def get_scene_graph(self):
return self._G.copy()
def _get_desired_frame(self):
desired_frame_to_world = np.eye(4)
world_to_desired_frame = np.eye(4)
if self._egocentric:
desired_frame_to_world = self._get_robot_to_world_transform()
world_to_desired_frame = T.pose_inv(desired_frame_to_world)
return desired_frame_to_world, world_to_desired_frame
def _get_robot_to_world_transform(self):
robot_to_world = self._robot.get_position_orientation()
# Get rid of any rotation outside xy plane
robot_to_world = T.pose2mat((robot_to_world[0], T.z_rotation_from_quat(robot_to_world[1])))
return robot_to_world
def _get_boolean_unary_states(self, obj):
states = {}
for state_type, state_inst in obj.states.items():
if not issubclass(state_type, BooleanStateMixin) or not issubclass(state_type, AbsoluteObjectState):
continue
if state_type in self._exclude_states:
continue
value = state_inst.get_value()
if self._only_true and not value:
continue
states[get_state_name(state_type)] = value
return states
def _get_boolean_binary_states(self, objs):
states = []
for obj1 in objs:
for obj2 in objs:
if obj1 == obj2:
continue
for state_type, state_inst in obj1.states.items():
if not issubclass(state_type, BooleanStateMixin) or not issubclass(state_type, RelativeObjectState):
continue
if state_type in self._exclude_states:
continue
try:
value = state_inst.get_value(obj2)
if self._only_true and not value:
continue
states.append((obj1, obj2, get_state_name(state_type), {"value": value}))
except:
pass
return states
def start(self, scene):
assert self._G is None, "Cannot start graph builder multiple times."
if self._robot_name is None:
assert len(scene.robots) == 1, "Cannot build scene graph without specifying robot name if there are multiple robots."
self._robot = scene.robots[0]
else:
self._robot = scene.object_registry("name", self._robot_name)
assert self._robot, f"Robot with name {self._robot_name} not found in scene."
self._G = nx.DiGraph() if self._merge_parallel_edges else nx.MultiDiGraph()
desired_frame_to_world, world_to_desired_frame = self._get_desired_frame()
robot_pose = world_to_desired_frame @ self._get_robot_to_world_transform()
robot_bbox_pose, robot_bbox_extent = _formatted_aabb(self._robot)
robot_bbox_pose = world_to_desired_frame @ robot_bbox_pose
self._G.add_node(
self._robot, pose=robot_pose, bbox_pose=robot_bbox_pose, bbox_extent=robot_bbox_extent, states={}
)
self._last_desired_frame_to_world = desired_frame_to_world
# Let's also take the first step.
self.step(scene)
def step(self, scene):
assert self._G is not None, "Cannot step graph builder before starting it."
# Prepare the necessary transformations.
desired_frame_to_world, world_to_desired_frame = self._get_desired_frame()
# Update the position of everything that's already in the scene by using our relative position to last frame.
old_desired_to_new_desired = world_to_desired_frame @ self._last_desired_frame_to_world
nodes = list(self._G.nodes)
poses = np.array([self._G.nodes[obj]["pose"] for obj in nodes])
bbox_poses = np.array([self._G.nodes[obj]["bbox_pose"] for obj in nodes])
updated_poses = old_desired_to_new_desired @ poses
updated_bbox_poses = old_desired_to_new_desired @ bbox_poses
for i, obj in enumerate(nodes):
self._G.nodes[obj]["pose"] = updated_poses[i]
self._G.nodes[obj]["bbox_pose"] = updated_bbox_poses[i]
# Update the robot's pose. We don't want to accumulate errors because of the repeated transforms.
self._G.nodes[self._robot]["pose"] = world_to_desired_frame @ self._get_robot_to_world_transform()
robot_bbox_pose, robot_bbox_extent = _formatted_aabb(self._robot)
robot_bbox_pose = world_to_desired_frame @ robot_bbox_pose
self._G.nodes[self._robot]["bbox_pose"] = robot_bbox_pose
self._G.nodes[self._robot]["bbox_extent"] = robot_bbox_extent
# Go through the objects in FOV of the robot.
objs_to_add = set(scene.objects)
if not self._full_obs:
# TODO: Reenable this once InFOV state is fixed.
# If we're not in full observability mode, only pick the objects in FOV of robot.
# bids_in_fov = self._robot.states[object_states.ObjectsInFOVOfRobot].get_value()
# objs_in_fov = set(
# scene.objects_by_id[bid]
# for bid in bids_in_fov
# if bid in scene.objects_by_id
# )
# objs_to_add &= objs_in_fov
raise NotImplementedError("Partial observability not supported in scene graph builder yet.")
for obj in objs_to_add:
# Add the object if not already in the graph
if obj not in self._G.nodes:
self._G.add_node(obj)
# Get the relative position of the object & update it (reducing accumulated errors)
self._G.nodes[obj]["pose"] = world_to_desired_frame @ T.pose2mat(obj.get_position_orientation())
# Get the bounding box.
if hasattr(obj, "get_base_aligned_bbox"):
bbox_center, bbox_orn, bbox_extent, _ = obj.get_base_aligned_bbox(visual=True)
bbox_pose = T.pose2mat((bbox_center, bbox_orn))
else:
bbox_pose, bbox_extent = _formatted_aabb(obj)
self._G.nodes[obj]["bbox_pose"] = world_to_desired_frame @ bbox_pose
self._G.nodes[obj]["bbox_extent"] = bbox_extent
# Update the states of the object
self._G.nodes[obj]["states"] = self._get_boolean_unary_states(obj)
# Update the binary states for seen objects.
self._G.remove_edges_from(list(itertools.product(objs_to_add, objs_to_add)))
edges = self._get_boolean_binary_states(objs_to_add)
if self._merge_parallel_edges:
new_edges = {}
for edge in edges:
edge_pair = (edge[0], edge[1])
if edge_pair not in new_edges:
new_edges[edge_pair] = []
new_edges[edge_pair].append((edge[2], edge[3]["value"]))
edges = [(k[0], k[1], {"states": v}) for k, v in new_edges.items()]
self._G.add_edges_from(edges)
# Save the robot's transform in this frame.
self._last_desired_frame_to_world = desired_frame_to_world
def visualize_scene_graph(scene, G, show_window=True, realistic_positioning=False):
"""
Converts the graph into an image and shows it in a cv2 window if preferred.
Args:
show_window (bool): Whether a cv2 GUI window containing the visualization should be shown.
realistic_positioning (bool): Whether nodes should be positioned based on their position in the scene (if True)
or placed using a graphviz layout (neato) that makes it easier to read edges & find clusters.
"""
def _draw_graph():
nodes = list(G.nodes)
node_labels = {obj: obj.category for obj in nodes}
colors = [
"yellow"
if obj.category == "agent"
else ("green" if obj.states[object_states.InFOVOfRobot].get_value() else "red")
for obj in nodes
]
positions = (
{obj: (-pose[0][1], pose[0][0]) for obj, pose in G.nodes.data("pose")}
if realistic_positioning
else nx.nx_pydot.pydot_layout(G, prog="neato")
)
nx.drawing.draw_networkx(
G,
pos=positions,
labels=node_labels,
nodelist=nodes,
node_color=colors,
font_size=4,
arrowsize=5,
node_size=150,
)
edge_labels = {
edge: ", ".join(
state + "=" + str(value)
for state, value in G.edges[edge]["states"]
)
for edge in G.edges
}
nx.drawing.draw_networkx_edge_labels(G, pos=positions, edge_labels=edge_labels, font_size=4)
# Prepare pyplot figure that's sized to match the robot video.
robot = scene.robots[0]
robot_camera_sensor, = [s for s in robot.sensors.values() if isinstance(s, VisionSensor) and "rgb" in s.modalities]
robot_view = (robot_camera_sensor.get_obs()[0]["rgb"][..., :3]).astype(np.uint8)
imgheight, imgwidth, _ = robot_view.shape
figheight = 4.8
figdpi = imgheight / figheight
figwidth = imgwidth / figdpi
# Draw the graph onto the figure.
fig = plt.figure(figsize=(figwidth, figheight), dpi=figdpi)
_draw_graph()
fig.canvas.draw()
# Convert the canvas to image
graph_view = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
graph_view = graph_view.reshape(fig.canvas.get_width_height()[::-1] + (3,))
assert graph_view.shape == robot_view.shape
plt.close(fig)
# Combine the two images side-by-side
img = np.hstack((robot_view, graph_view))
# # Convert to BGR for cv2-based viewing.
if show_window:
import cv2
cv_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
cv2.imshow("SceneGraph", cv_img)
cv2.waitKey(1)
return Image.fromarray(img).save(r"D:\test.png")
| 12,289 | Python | 40.52027 | 129 | 0.604768 |
StanfordVL/OmniGibson/omnigibson/robots/franka_allegro.py | import os
import numpy as np
import omnigibson.utils.transform_utils as T
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
class FrankaAllegro(ManipulationRobot):
"""
Franka Robot with Allegro hand
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at teh render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
grasping_direction="upper",
**kwargs,
)
@property
def model_name(self):
return "FrankaAllegro"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Franka does not support discrete actions!")
@property
def controller_order(self):
return ["arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_gripper_multi_finger_controller_configs(self):
conf = super()._default_gripper_multi_finger_controller_configs
conf[self.default_arm]["mode"] = "independent"
conf[self.default_arm]["command_input_limits"] = None
return conf
@property
def _default_joint_pos(self):
# position where the hand is parallel to the ground
return np.r_[[0.86, -0.27, -0.68, -1.52, -0.18, 1.29, 1.72], np.zeros(16)]
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
return {self.default_arm: np.arange(7)}
@property
def gripper_control_idx(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: np.array([8, 12, 16, 20, 10, 14, 18, 22, 9, 13, 17, 21, 7, 11, 15, 19])}
@property
def arm_link_names(self):
return {self.default_arm: [f"panda_link{i}" for i in range(8)]}
@property
def arm_joint_names(self):
return {self.default_arm: [f"panda_joint_{i+1}" for i in range(7)]}
@property
def eef_link_names(self):
return {self.default_arm: "base_link"}
@property
def finger_link_names(self):
return {self.default_arm: [f"link_{i}_0" for i in range(16)]}
@property
def finger_joint_names(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: [f"joint_{i}_0" for i in [12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3]]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_allegro.urdf")
@property
def disabled_collision_pairs(self):
return [
["link_12_0", "part_studio_link"],
]
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"base_link", position=[0.015, 0, -0.03]),
GraspingPoint(link_name=f"base_link", position=[0.015, 0, -0.08]),
GraspingPoint(link_name=f"link_15_0_tip", position=[0, 0.015, 0.007]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"link_3_0_tip", position=[0.012, 0, 0.007]),
GraspingPoint(link_name=f"link_7_0_tip", position=[0.012, 0, 0.007]),
GraspingPoint(link_name=f"link_11_0_tip", position=[0.012, 0, 0.007]),
]}
@property
def teleop_rotation_offset(self):
return {self.default_arm: T.euler2quat(np.array([0, np.pi / 2, 0]))}
| 9,906 | Python | 42.643172 | 126 | 0.628104 |
StanfordVL/OmniGibson/omnigibson/robots/two_wheel_robot.py | from abc import abstractmethod
import gym
import numpy as np
from omnigibson.controllers import DifferentialDriveController
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.utils.python_utils import classproperty
class TwoWheelRobot(LocomotionRobot):
"""
Robot that is is equipped with locomotive (navigational) capabilities, as defined by two wheels that can be used
for differential drive (e.g.: Turtlebot).
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
base: controller specifications for the controller to control this robot's base (locomotion).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# Make sure base only has two indices (i.e.: two wheels for differential drive)
assert len(self.base_control_idx) == 2, "Differential drive can only be used with robot with two base joints!"
# run super
super()._validate_configuration()
def _create_discrete_action_space(self):
# Set action list based on controller (joint or DD) used
# We set straight velocity to be 50% of max velocity for the wheels
max_wheel_joint_vels = self.control_limits["velocity"][1][self.base_control_idx]
assert len(max_wheel_joint_vels) == 2, "TwoWheelRobot must only have two base (wheel) joints!"
assert max_wheel_joint_vels[0] == max_wheel_joint_vels[1], "Both wheels must have the same max speed!"
wheel_straight_vel = 0.5 * max_wheel_joint_vels[0]
wheel_rotate_vel = 0.5
if self._controller_config["base"]["name"] == "JointController":
action_list = [
[wheel_straight_vel, wheel_straight_vel],
[-wheel_straight_vel, -wheel_straight_vel],
[wheel_rotate_vel, -wheel_rotate_vel],
[-wheel_rotate_vel, wheel_rotate_vel],
[0, 0],
]
else:
# DifferentialDriveController
lin_vel = wheel_straight_vel * self.wheel_radius
ang_vel = wheel_rotate_vel * self.wheel_radius * 2.0 / self.wheel_axle_length
action_list = [
[lin_vel, 0],
[-lin_vel, 0],
[0, ang_vel],
[0, -ang_vel],
[0, 0],
]
self.action_list = action_list
# Return this action space
return gym.spaces.Discrete(n=len(self.action_list))
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Grab wheel joint velocity info
joints = list(self._joints.values())
wheel_joints = [joints[idx] for idx in self.base_control_idx]
l_vel, r_vel = [jnt.get_state()[1] for jnt in wheel_joints]
# Compute linear and angular velocities
lin_vel = (l_vel + r_vel) / 2.0 * self.wheel_radius
ang_vel = (r_vel - l_vel) / self.wheel_axle_length
# Add info
dic["dd_base_lin_vel"] = lin_vel # lin_vel is already 1D np array of length 1
dic["dd_base_ang_vel"] = ang_vel # lin_vel is already 1D np array of length 1
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["dd_base_lin_vel", "dd_base_ang_vel"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# Use DifferentialDrive as default
controllers["base"] = "DifferentialDriveController"
return controllers
@property
def _default_base_differential_drive_controller_config(self):
"""
Returns:
dict: Default differential drive controller config to
control this robot's base.
"""
return {
"name": "DifferentialDriveController",
"control_freq": self._control_freq,
"wheel_radius": self.wheel_radius,
"wheel_axle_length": self.wheel_axle_length,
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# Add differential drive option to base
cfg["base"][
self._default_base_differential_drive_controller_config["name"]
] = self._default_base_differential_drive_controller_config
return cfg
@property
@abstractmethod
def wheel_radius(self):
"""
Returns:
float: radius of each wheel at the base, in metric units
"""
raise NotImplementedError
@property
@abstractmethod
def wheel_axle_length(self):
"""
Returns:
float: perpendicular distance between the robot's two wheels, in metric units
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("TwoWheelRobot")
return classes
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
NOTE: This implementation only supports DifferentialDriveController.
Overwrite this function if the robot is using a different base controller.
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data
"""
action = super().teleop_data_to_action(teleop_action)
assert isinstance(self._controllers["base"], DifferentialDriveController), "Only DifferentialDriveController is supported!"
action[self.base_action_idx] = np.array([teleop_action.base[0], teleop_action.base[2]]) * 0.3
return action
| 6,279 | Python | 36.60479 | 131 | 0.621118 |
StanfordVL/OmniGibson/omnigibson/robots/tiago.py | import os
import numpy as np
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.macros import gm
import omnigibson.utils.transform_utils as T
from omnigibson.macros import create_module_macros
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.manipulation_robot import GraspingPoint, ManipulationRobot
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.usd_utils import JointType
# Create settings for this module
m = create_module_macros(module_path=__file__)
DEFAULT_ARM_POSES = {
"vertical",
"diagonal15",
"diagonal30",
"diagonal45",
"horizontal",
}
RESET_JOINT_OPTIONS = {
"tuck",
"untuck",
}
m.MAX_LINEAR_VELOCITY = 1.5 # linear velocity in meters/second
m.MAX_ANGULAR_VELOCITY = np.pi # angular velocity in radians/second
class Tiago(ManipulationRobot, LocomotionRobot, ActiveCameraRobot):
"""
Tiago Robot
Reference: https://pal-robotics.com/robots/tiago/
NOTE: If using IK Control for both the right and left arms, note that the left arm dictates control of the trunk,
and the right arm passively must follow. That is, sending desired delta position commands to the right end effector
will be computed independently from any trunk motion occurring during that timestep.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
disable_grasp_handling=False,
# Unique to Tiago
variant="default",
rigid_trunk=False,
default_trunk_offset=0.365,
default_reset_mode="untuck",
default_arm_pose="vertical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
category (str): Category for the object. Defaults to "object".
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
prim_type (PrimType): Which type of prim the object is, Valid options are: {PrimType.RIGID, PrimType.CLOTH}
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
disable_grasp_handling (bool): If True, will disable all grasp handling for this object. This means that
sticky and assisted grasp modes will not work unless the connection/release methodsare manually called.
variant (str): Which variant of the robot should be loaded. One of "default", "wrist_cam"
rigid_trunk (bool) if True, will prevent the trunk from moving during execution.
default_trunk_offset (float): sets the default height of the robot's trunk
default_reset_mode (str): Default reset mode for the robot. Should be one of: {"tuck", "untuck"}
If reset_joint_pos is not None, this will be ignored (since _default_joint_pos won't be used during initialization).
default_arm_pose (str): Default pose for the robot arm. Should be one of:
{"vertical", "diagonal15", "diagonal30", "diagonal45", "horizontal"}
If either reset_joint_pos is not None or default_reset_mode is "tuck", this will be ignored.
Otherwise the reset_joint_pos will be initialized to the precomputed joint positions that represents default_arm_pose.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store args
assert variant in ("default", "wrist_cam"), f"Invalid Tiago variant specified {variant}!"
self._variant = variant
self.rigid_trunk = rigid_trunk
self.default_trunk_offset = default_trunk_offset
assert_valid_key(key=default_reset_mode, valid_keys=RESET_JOINT_OPTIONS, name="default_reset_mode")
self.default_reset_mode = default_reset_mode
assert_valid_key(key=default_arm_pose, valid_keys=DEFAULT_ARM_POSES, name="default_arm_pose")
self.default_arm_pose = default_arm_pose
# Other args that will be created at runtime
self._world_base_fixed_joint_prim = None
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=True,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
disable_grasp_handling=disable_grasp_handling,
**kwargs,
)
@property
def arm_joint_names(self):
names = dict()
for arm in self.arm_names:
names[arm] = ["torso_lift_joint"] + [
f"arm_{arm}_{i}_joint" for i in range(1, 8)
]
return names
@property
def model_name(self):
return "Tiago"
@property
def n_arms(self):
return 2
@property
def arm_names(self):
return ["left", "right"]
@property
def tucked_default_joint_pos(self):
pos = np.zeros(self.n_dof)
# Keep the current joint positions for the base joints
pos[self.base_idx] = self.get_joint_positions()[self.base_idx]
pos[self.trunk_control_idx] = 0
pos[self.camera_control_idx] = np.array([0.0, 0.0])
for arm in self.arm_names:
pos[self.gripper_control_idx[arm]] = np.array([0.045, 0.045]) # open gripper
pos[self.arm_control_idx[arm]] = np.array(
[-1.10, 1.47, 2.71, 1.71, -1.57, 1.39, 0]
)
return pos
@property
def untucked_default_joint_pos(self):
pos = np.zeros(self.n_dof)
# Keep the current joint positions for the base joints
pos[self.base_idx] = self.get_joint_positions()[self.base_idx]
pos[self.trunk_control_idx] = 0.02 + self.default_trunk_offset
pos[self.camera_control_idx] = np.array([0.0, -0.45])
# Choose arm joint pos based on setting
for arm in self.arm_names:
pos[self.gripper_control_idx[arm]] = np.array([0.045, 0.045]) # open gripper
if self.default_arm_pose == "vertical":
pos[self.arm_control_idx[arm]] = np.array(
[0.85846, -0.14852, 1.81008, 1.63368, 0.13764, -1.32488, -0.68415]
)
elif self.default_arm_pose == "diagonal15":
pos[self.arm_control_idx[arm]] = np.array(
[0.90522, -0.42811, 2.23505, 1.64627, 0.76867, -0.79464, 2.05251]
)
elif self.default_arm_pose == "diagonal30":
pos[self.arm_control_idx[arm]] = np.array(
[0.71883, -0.02787, 1.86002, 1.52897, 0.52204, -0.99741, 2.03113]
)
elif self.default_arm_pose == "diagonal45" :
pos[self.arm_control_idx[arm]] = np.array(
[0.66058, -0.14251, 1.77547, 1.43345, 0.65988, -1.02741, 1.81302]
)
elif self.default_arm_pose == "horizontal":
pos[self.arm_control_idx[arm]] = np.array(
[0.61511, 0.49229, 1.46306, 1.24919, 1.08282, -1.28865, 1.50910]
)
else:
raise ValueError("Unknown default arm pose: {}".format(self.default_arm_pose))
return pos
def _create_discrete_action_space(self):
# Tiago does not support discrete actions
raise ValueError("Fetch does not support discrete actions!")
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def tuck(self):
"""
Immediately set this robot's configuration to be in tucked mode
"""
self.set_joint_positions(self.tucked_default_joint_pos)
def untuck(self):
"""
Immediately set this robot's configuration to be in untucked mode
"""
self.set_joint_positions(self.untucked_default_joint_pos)
def reset(self):
"""
Reset should not change the robot base pose.
We need to cache and restore the base joints to the world.
"""
base_joint_positions = self.get_joint_positions()[self.base_idx]
super().reset()
self.set_joint_positions(base_joint_positions, indices=self.base_idx)
def _post_load(self):
super()._post_load()
# The eef gripper links should be visual-only. They only contain a "ghost" box volume for detecting objects
# inside the gripper, in order to activate attachments (AG for Cloths).
for arm in self.arm_names:
self.eef_links[arm].visual_only = True
self.eef_links[arm].visible = False
self._world_base_fixed_joint_prim = lazy.omni.isaac.core.utils.prims.get_prim_at_path(f"{self._prim_path}/rootJoint")
position, orientation = self.get_position_orientation()
# Set the world-to-base fixed joint to be at the robot's current pose
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*orientation[[3, 0, 1, 2]].tolist()))
def _initialize(self):
# Run super method first
super()._initialize()
# Set the joint friction for EEF to be higher
for arm in self.arm_names:
for joint in self.finger_joints[arm]:
if joint.joint_type != JointType.JOINT_FIXED:
joint.friction = 500
# Name of the actual root link that we are interested in. Note that this is different from self.root_link_name,
# which is "base_footprint_x", corresponding to the first of the 6 1DoF joints to control the base.
@property
def base_footprint_link_name(self):
return "base_footprint"
@property
def base_footprint_link(self):
"""
Returns:
RigidPrim: base footprint link of this object prim
"""
return self._links[self.base_footprint_link_name]
def _postprocess_control(self, control, control_type):
# Run super method first
u_vec, u_type_vec = super()._postprocess_control(control=control, control_type=control_type)
# Change the control from base_footprint_link ("base_footprint") frame to root_link ("base_footprint_x") frame
base_orn = self.base_footprint_link.get_orientation()
root_link_orn = self.root_link.get_orientation()
cur_orn = T.mat2quat(T.quat2mat(root_link_orn).T @ T.quat2mat(base_orn))
# Rotate the linear and angular velocity to the desired frame
lin_vel_global, _ = T.pose_transform([0, 0, 0], cur_orn, u_vec[self.base_idx[:3]], [0, 0, 0, 1])
ang_vel_global, _ = T.pose_transform([0, 0, 0], cur_orn, u_vec[self.base_idx[3:]], [0, 0, 0, 1])
u_vec[self.base_control_idx] = np.array([lin_vel_global[0], lin_vel_global[1], ang_vel_global[2]])
return u_vec, u_type_vec
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add trunk info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["trunk_qpos"] = joint_positions[self.trunk_control_idx]
dic["trunk_qvel"] = joint_velocities[self.trunk_control_idx]
return dic
@property
def control_limits(self):
# Overwrite the control limits with the maximum linear and angular velocities for the purpose of clip_control
# Note that when clip_control happens, the control is still in the base_footprint_link ("base_footprint") frame
# Omniverse still thinks these joints have no limits because when the control is transformed to the root_link
# ("base_footprint_x") frame, it can go above this limit.
limits = super().control_limits
limits["velocity"][0][self.base_idx[:3]] = -m.MAX_LINEAR_VELOCITY
limits["velocity"][1][self.base_idx[:3]] = m.MAX_LINEAR_VELOCITY
limits["velocity"][0][self.base_idx[3:]] = -m.MAX_ANGULAR_VELOCITY
limits["velocity"][1][self.base_idx[3:]] = m.MAX_ANGULAR_VELOCITY
return limits
def get_control_dict(self):
# Modify the right hand's pos_relative in the z-direction based on the trunk's value
# We do this so we decouple the trunk's dynamic value from influencing the IK controller solution for the right
# hand, which does not control the trunk
fcns = super().get_control_dict()
native_fcn = fcns.get_fcn("eef_right_pos_relative")
fcns["eef_right_pos_relative"] = lambda: (native_fcn() + np.array([0, 0, -self.get_joint_positions()[self.trunk_control_idx[0]]]))
return fcns
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["trunk_qpos"]
@property
def controller_order(self):
controllers = ["base", "camera"]
for arm in self.arm_names:
controllers += ["arm_{}".format(arm), "gripper_{}".format(arm)]
return controllers
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# We use joint controllers for base and camera as default
controllers["base"] = "JointController"
controllers["camera"] = "JointController"
# We use multi finger gripper, and IK controllers for eefs as default
for arm in self.arm_names:
controllers["arm_{}".format(arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_base_controller_configs(self):
dic = {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"use_delta_commands": False,
"use_impedances": False,
"motor_type": "velocity",
"dof_idx": self.base_control_idx,
}
return dic
@property
def _default_controller_config(self):
# Grab defaults from super method first
cfg = super()._default_controller_config
# Get default base controller for omnidirectional Tiago
cfg["base"] = {"JointController": self._default_base_controller_configs}
for arm in self.arm_names:
for arm_cfg in cfg["arm_{}".format(arm)].values():
if arm == "left":
# Need to override joint idx being controlled to include trunk in default arm controller configs
arm_control_idx = np.concatenate([self.trunk_control_idx, self.arm_control_idx[arm]])
arm_cfg["dof_idx"] = arm_control_idx
# Need to modify the default joint positions also if this is a null joint controller
if arm_cfg["name"] == "NullJointController":
arm_cfg["default_command"] = self.reset_joint_pos[arm_control_idx]
# If using rigid trunk, we also clamp its limits
# TODO: How to handle for right arm which has a fixed trunk internally even though the trunk is moving
# via the left arm??
if self.rigid_trunk:
arm_cfg["control_limits"]["position"][0][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
arm_cfg["control_limits"]["position"][1][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
return cfg
@property
def _default_joint_pos(self):
return self.tucked_default_joint_pos if self.default_reset_mode == "tuck" else self.untucked_default_joint_pos
@property
def assisted_grasp_start_points(self):
return {
arm: [
GraspingPoint(link_name="gripper_{}_right_finger_link".format(arm), position=[0.002, 0.0, -0.2]),
GraspingPoint(link_name="gripper_{}_right_finger_link".format(arm), position=[0.002, 0.0, -0.13]),
]
for arm in self.arm_names
}
@property
def assisted_grasp_end_points(self):
return {
arm: [
GraspingPoint(link_name="gripper_{}_left_finger_link".format(arm), position=[-0.002, 0.0, -0.2]),
GraspingPoint(link_name="gripper_{}_left_finger_link".format(arm), position=[-0.002, 0.0, -0.13]),
]
for arm in self.arm_names
}
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to the three controllable 1DoF base joints
"""
joints = list(self.joints.keys())
return np.array(
[
joints.index(f"base_footprint_{component}_joint")
for component in ["x", "y", "rz"]
]
)
@property
def base_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to the six 1DoF base joints
"""
joints = list(self.joints.keys())
return np.array(
[
joints.index(f"base_footprint_{component}_joint")
for component in ["x", "y", "z", "rx", "ry", "rz"]
]
)
@property
def trunk_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to trunk joint.
"""
return np.array([6])
@property
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [tilt, pan] camera joints.
"""
return np.array([9, 12])
@property
def arm_control_idx(self):
return {"left": np.array([7, 10, 13, 15, 17, 19, 21]),
"right": np.array([8, 11, 14, 16, 18, 20, 22]),
"combined": np.array([7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22])}
@property
def gripper_control_idx(self):
return {"left": np.array([23, 24]), "right": np.array([25, 26])}
@property
def finger_lengths(self):
return {arm: 0.12 for arm in self.arm_names}
@property
def disabled_collision_link_names(self):
# These should NEVER have collisions in the first place (i.e.: these are poorly modeled geoms from the source
# asset) -- they are strictly engulfed within ANOTHER collision mesh from a DIFFERENT link
return [name for arm in self.arm_names for name in [f"arm_{arm}_tool_link", f"wrist_{arm}_ft_link", f"wrist_{arm}_ft_tool_link"]]
@property
def disabled_collision_pairs(self):
return [
["arm_left_1_link", "arm_left_2_link"],
["arm_left_2_link", "arm_left_3_link"],
["arm_left_3_link", "arm_left_4_link"],
["arm_left_4_link", "arm_left_5_link"],
["arm_left_5_link", "arm_left_6_link"],
["arm_left_6_link", "arm_left_7_link"],
["arm_right_1_link", "arm_right_2_link"],
["arm_right_2_link", "arm_right_3_link"],
["arm_right_3_link", "arm_right_4_link"],
["arm_right_4_link", "arm_right_5_link"],
["arm_right_5_link", "arm_right_6_link"],
["arm_right_6_link", "arm_right_7_link"],
["gripper_right_right_finger_link", "gripper_right_left_finger_link"],
["gripper_right_link", "wrist_right_ft_link"],
["arm_right_6_link", "gripper_right_link"],
["arm_right_6_link", "wrist_right_ft_tool_link"],
["arm_right_6_link", "wrist_right_ft_link"],
["arm_right_6_link", "arm_right_tool_link"],
["arm_right_5_link", "wrist_right_ft_link"],
["arm_right_5_link", "arm_right_tool_link"],
["gripper_left_right_finger_link", "gripper_left_left_finger_link"],
["gripper_left_link", "wrist_left_ft_link"],
["arm_left_6_link", "gripper_left_link"],
["arm_left_6_link", "wrist_left_ft_tool_link"],
["arm_left_6_link", "wrist_left_ft_link"],
["arm_left_6_link", "arm_left_tool_link"],
["arm_left_5_link", "wrist_left_ft_link"],
["arm_left_5_link", "arm_left_tool_link"],
["torso_lift_link", "torso_fixed_column_link"],
["torso_fixed_link", "torso_fixed_column_link"],
["base_antenna_left_link", "torso_fixed_link"],
["base_antenna_right_link", "torso_fixed_link"],
["base_link", "wheel_rear_left_link"],
["base_link", "wheel_rear_right_link"],
["base_link", "wheel_front_left_link"],
["base_link", "wheel_front_right_link"],
["base_link", "base_dock_link"],
["base_link", "base_antenna_right_link"],
["base_link", "base_antenna_left_link"],
["base_link", "torso_fixed_column_link"],
["base_link", "suspension_front_left_link"],
["base_link", "suspension_front_right_link"],
["base_link", "torso_fixed_link"],
["suspension_front_left_link", "wheel_front_left_link"],
["torso_lift_link", "arm_right_1_link"],
["torso_lift_link", "arm_right_2_link"],
["torso_lift_link", "arm_left_1_link"],
["torso_lift_link", "arm_left_2_link"],
["arm_left_tool_link", "wrist_left_ft_link"],
["wrist_left_ft_link", "wrist_left_ft_tool_link"],
["wrist_left_ft_tool_link", "gripper_left_link"],
['gripper_left_grasping_frame', 'gripper_left_left_finger_link'],
['gripper_left_grasping_frame', 'gripper_left_right_finger_link'],
['wrist_right_ft_link', 'arm_right_tool_link'],
['wrist_right_ft_tool_link', 'wrist_right_ft_link'],
['gripper_right_link', 'wrist_right_ft_tool_link'],
['head_1_link', 'head_2_link'],
['torso_fixed_column_link', 'arm_right_1_link'],
['torso_fixed_column_link', 'arm_left_1_link'],
['arm_left_1_link', 'arm_left_3_link'],
['arm_right_1_link', 'arm_right_3_link'],
['base_link', 'arm_right_4_link'],
['base_link', 'arm_right_5_link'],
['base_link', 'arm_left_4_link'],
['base_link', 'arm_left_5_link'],
['wrist_left_ft_tool_link', 'arm_left_5_link'],
['wrist_right_ft_tool_link', 'arm_right_5_link'],
['arm_left_tool_link', 'wrist_left_ft_tool_link'],
['arm_right_tool_link', 'wrist_right_ft_tool_link']
]
@property
def manipulation_link_names(self):
return [
"torso_fixed_link",
"torso_lift_link",
"arm_left_1_link",
"arm_left_2_link",
"arm_left_3_link",
"arm_left_4_link",
"arm_left_5_link",
"arm_left_6_link",
"arm_left_7_link",
"arm_left_tool_link",
"wrist_left_ft_link",
"wrist_left_ft_tool_link",
"gripper_left_link",
# "gripper_left_grasping_frame",
"gripper_left_left_finger_link",
"gripper_left_right_finger_link",
"gripper_left_tool_link",
"arm_right_1_link",
"arm_right_2_link",
"arm_right_3_link",
"arm_right_4_link",
"arm_right_5_link",
"arm_right_6_link",
"arm_right_7_link",
"arm_right_tool_link",
"wrist_right_ft_link",
"wrist_right_ft_tool_link",
"gripper_right_link",
# "gripper_right_grasping_frame",
"gripper_right_left_finger_link",
"gripper_right_right_finger_link",
"gripper_right_tool_link",
"head_1_link",
"head_2_link",
"xtion_link",
]
@property
def arm_link_names(self):
return {arm: [f"arm_{arm}_{i}_link" for i in range(1, 8)] for arm in self.arm_names}
@property
def eef_link_names(self):
return {arm: "gripper_{}_grasping_frame".format(arm) for arm in self.arm_names}
@property
def finger_link_names(self):
return {arm: ["gripper_{}_right_finger_link".format(arm), "gripper_{}_left_finger_link".format(arm)] for arm in
self.arm_names}
@property
def finger_joint_names(self):
return {arm: ["gripper_{}_right_finger_joint".format(arm), "gripper_{}_left_finger_joint".format(arm)] for arm
in self.arm_names}
@property
def usd_path(self):
if self._variant == "wrist_cam":
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33_with_wrist_cam.usd")
# Default variant
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33.usd")
@property
def simplified_mesh_usd_path(self):
# TODO: How can we make this more general - maybe some automatic way to generate these?
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_dual_omnidirectional_stanford_33_simplified_collision_mesh.usd")
@property
def robot_arm_descriptor_yamls(self):
# TODO: Remove the need to do this by making the arm descriptor yaml files generated automatically
return {"left": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_left_arm_descriptor.yaml"),
"left_fixed": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_left_arm_fixed_trunk_descriptor.yaml"),
"right": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford_right_arm_fixed_trunk_descriptor.yaml"),
"combined": os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford.urdf")
@property
def arm_workspace_range(self):
return {
"left": [np.deg2rad(15), np.deg2rad(75)],
"right": [np.deg2rad(-75), np.deg2rad(-15)],
}
def get_position_orientation(self):
# TODO: Investigate the need for this custom behavior.
return self.base_footprint_link.get_position_orientation()
def set_position_orientation(self, position=None, orientation=None):
current_position, current_orientation = self.get_position_orientation()
if position is None:
position = current_position
if orientation is None:
orientation = current_orientation
position, orientation = np.array(position), np.array(orientation)
assert np.isclose(np.linalg.norm(orientation), 1, atol=1e-3), \
f"{self.name} desired orientation {orientation} is not a unit quaternion."
# TODO: Reconsider the need for this. Why can't these behaviors be unified? Does the joint really need to move?
# If the simulator is playing, set the 6 base joints to achieve the desired pose of base_footprint link frame
if og.sim.is_playing() and self.initialized:
# Find the relative transformation from base_footprint_link ("base_footprint") frame to root_link
# ("base_footprint_x") frame. Assign it to the 6 1DoF joints that control the base.
# Note that the 6 1DoF joints are originated from the root_link ("base_footprint_x") frame.
joint_pos, joint_orn = self.root_link.get_position_orientation()
inv_joint_pos, inv_joint_orn = T.mat2pose(T.pose_inv(T.pose2mat((joint_pos, joint_orn))))
relative_pos, relative_orn = T.pose_transform(inv_joint_pos, inv_joint_orn, position, orientation)
relative_rpy = T.quat2euler(relative_orn)
self.joints["base_footprint_x_joint"].set_pos(relative_pos[0], drive=False)
self.joints["base_footprint_y_joint"].set_pos(relative_pos[1], drive=False)
self.joints["base_footprint_z_joint"].set_pos(relative_pos[2], drive=False)
self.joints["base_footprint_rx_joint"].set_pos(relative_rpy[0], drive=False)
self.joints["base_footprint_ry_joint"].set_pos(relative_rpy[1], drive=False)
self.joints["base_footprint_rz_joint"].set_pos(relative_rpy[2], drive=False)
# Else, set the pose of the robot frame, and then move the joint frame of the world_base_joint to match it
else:
# Call the super() method to move the robot frame first
super().set_position_orientation(position, orientation)
# Move the joint frame for the world_base_joint
if self._world_base_fixed_joint_prim is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*orientation[[3, 0, 1, 2]].tolist()))
def set_linear_velocity(self, velocity: np.ndarray):
# Transform the desired linear velocity from the world frame to the root_link ("base_footprint_x") frame
# Note that this will also set the target to be the desired linear velocity (i.e. the robot will try to maintain
# such velocity), which is different from the default behavior of set_linear_velocity for all other objects.
orn = self.root_link.get_orientation()
velocity_in_root_link = T.quat2mat(orn).T @ velocity
self.joints["base_footprint_x_joint"].set_vel(velocity_in_root_link[0], drive=False)
self.joints["base_footprint_y_joint"].set_vel(velocity_in_root_link[1], drive=False)
self.joints["base_footprint_z_joint"].set_vel(velocity_in_root_link[2], drive=False)
def get_linear_velocity(self) -> np.ndarray:
# Note that the link we are interested in is self.base_footprint_link, not self.root_link
return self.base_footprint_link.get_linear_velocity()
def set_angular_velocity(self, velocity: np.ndarray) -> None:
# See comments of self.set_linear_velocity
orn = self.root_link.get_orientation()
velocity_in_root_link = T.quat2mat(orn).T @ velocity
self.joints["base_footprint_rx_joint"].set_vel(velocity_in_root_link[0], drive=False)
self.joints["base_footprint_ry_joint"].set_vel(velocity_in_root_link[1], drive=False)
self.joints["base_footprint_rz_joint"].set_vel(velocity_in_root_link[2], drive=False)
def get_angular_velocity(self) -> np.ndarray:
# Note that the link we are interested in is self.base_footprint_link, not self.root_link
return self.base_footprint_link.get_angular_velocity()
@property
def eef_usd_path(self):
return {arm: os.path.join(gm.ASSET_PATH, "models/tiago/tiago_dual_omnidirectional_stanford/tiago_eef.usd") for arm in self.arm_names}
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
action = ManipulationRobot.teleop_data_to_action(self, teleop_action)
action[self.base_action_idx] = teleop_action.base * 0.1
return action
| 36,634 | Python | 46.701823 | 163 | 0.611345 |
StanfordVL/OmniGibson/omnigibson/robots/active_camera_robot.py | from abc import abstractmethod
import numpy as np
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty
class ActiveCameraRobot(BaseRobot):
"""
Robot that is is equipped with an onboard camera that can be moved independently from the robot's other kinematic
joints (e.g.: independent of base and arm for a mobile manipulator).
NOTE: controller_config should, at the minimum, contain:
camera: controller specifications for the controller to control this robot's camera.
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# Make sure a camera controller is specified
assert (
"camera" in self._controllers
), "Controller 'camera' must exist in controllers! Current controllers: {}".format(
list(self._controllers.keys())
)
# run super
super()._validate_configuration()
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add camera pos info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["camera_qpos"] = joint_positions[self.camera_control_idx]
dic["camera_qpos_sin"] = np.sin(joint_positions[self.camera_control_idx])
dic["camera_qpos_cos"] = np.cos(joint_positions[self.camera_control_idx])
dic["camera_qvel"] = joint_velocities[self.camera_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["camera_qpos_sin", "camera_qpos_cos"]
@property
def controller_order(self):
# By default, only camera is supported
return ["camera"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
controllers["camera"] = "JointController"
return controllers
@property
def _default_camera_joint_controller_config(self):
"""
Returns:
dict: Default camera joint controller config to control this robot's camera
"""
return {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"command_output_limits": None,
"motor_type": "position",
"use_delta_commands": True,
"use_impedances": False,
}
@property
def _default_camera_null_joint_controller_config(self):
"""
Returns:
dict: Default null joint controller config to control this robot's camera i.e. dummy controller
"""
return {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"default_command": self.reset_joint_pos[self.camera_control_idx],
"use_impedances": False,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# We additionally add in camera default
cfg["camera"] = {
self._default_camera_joint_controller_config["name"]: self._default_camera_joint_controller_config,
self._default_camera_null_joint_controller_config["name"]: self._default_camera_null_joint_controller_config,
}
return cfg
@property
@abstractmethod
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to camera joints.
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ActiveCameraRobot")
return classes
| 4,464 | Python | 33.882812 | 121 | 0.62948 |
StanfordVL/OmniGibson/omnigibson/robots/vx300s.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
from omnigibson.utils.transform_utils import euler2quat
class VX300S(ManipulationRobot):
"""
The VX300-6DOF arm from Trossen Robotics
(https://www.trossenrobotics.com/docs/interbotix_xsarms/specifications/vx300s.html)
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
**kwargs,
)
@property
def model_name(self):
return "VX300S"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("VX300S does not support discrete actions!")
@property
def controller_order(self):
return [f"arm_{self.default_arm}", f"gripper_{self.default_arm}"]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers[f"arm_{self.default_arm}"] = "InverseKinematicsController"
controllers[f"gripper_{self.default_arm}"] = "MultiFingerGripperController"
return controllers
@property
def _default_joint_pos(self):
return np.array([0.0, -0.849879, 0.258767, 0.0, 1.2831712, 0.0, 0.057, 0.057])
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
# The first 7 joints
return {self.default_arm: np.arange(6)}
@property
def gripper_control_idx(self):
# The last two joints
return {self.default_arm: np.arange(6, 8)}
@property
def disabled_collision_pairs(self):
return [
["gripper_bar_link", "left_finger_link"],
["gripper_bar_link", "right_finger_link"],
["gripper_bar_link", "gripper_link"],
]
@property
def arm_link_names(self):
return {self.default_arm: [
"base_link",
"shoulder_link",
"upper_arm_link",
"upper_forearm_link",
"lower_forearm_link",
"wrist_link",
"gripper_link",
"gripper_bar_link",
]}
@property
def arm_joint_names(self):
return {self.default_arm: [
"waist",
"shoulder",
"elbow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
]}
@property
def eef_link_names(self):
return {self.default_arm: "ee_gripper_link"}
@property
def finger_link_names(self):
return {self.default_arm: ["left_finger_link", "right_finger_link"]}
@property
def finger_joint_names(self):
return {self.default_arm: ["left_finger", "right_finger"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s/vx300s.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s.urdf")
@property
def eef_usd_path(self):
# return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/vx300s/vx300s_eef.usd")}
raise NotImplementedError
@property
def teleop_rotation_offset(self):
return {self.default_arm: euler2quat([-np.pi, 0, 0])}
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name="right_finger_link", position=[0.0, 0.001, 0.057]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name="left_finger_link", position=[0.0, 0.001, 0.057]),
]}
| 9,721 | Python | 40.021097 | 126 | 0.622673 |
StanfordVL/OmniGibson/omnigibson/robots/fetch.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.controllers import ControlType
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.manipulation_robot import GraspingPoint, ManipulationRobot
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
from omnigibson.utils.python_utils import assert_valid_key
from omnigibson.utils.ui_utils import create_module_logger
from omnigibson.utils.transform_utils import euler2quat
from omnigibson.utils.usd_utils import JointType
log = create_module_logger(module_name=__name__)
DEFAULT_ARM_POSES = {
"vertical",
"diagonal15",
"diagonal30",
"diagonal45",
"horizontal",
}
RESET_JOINT_OPTIONS = {
"tuck",
"untuck",
}
class Fetch(ManipulationRobot, TwoWheelRobot, ActiveCameraRobot):
"""
Fetch Robot
Reference: https://fetchrobotics.com/robotics-platforms/fetch-mobile-manipulator/
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=False,
load_config=None,
fixed_base=False,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
disable_grasp_handling=False,
# Unique to Fetch
rigid_trunk=False,
default_trunk_offset=0.365,
default_reset_mode="untuck",
default_arm_pose="vertical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
disable_grasp_handling (bool): If True, will disable all grasp handling for this object. This means that
sticky and assisted grasp modes will not work unless the connection/release methodsare manually called.
rigid_trunk (bool) if True, will prevent the trunk from moving during execution.
default_trunk_offset (float): sets the default height of the robot's trunk
default_reset_mode (str): Default reset mode for the robot. Should be one of: {"tuck", "untuck"}
If reset_joint_pos is not None, this will be ignored (since _default_joint_pos won't be used during initialization).
default_arm_pose (str): Default pose for the robot arm. Should be one of:
{"vertical", "diagonal15", "diagonal30", "diagonal45", "horizontal"}
If either reset_joint_pos is not None or default_reset_mode is "tuck", this will be ignored.
Otherwise the reset_joint_pos will be initialized to the precomputed joint positions that represents default_arm_pose.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store args
self.rigid_trunk = rigid_trunk
self.default_trunk_offset = default_trunk_offset
assert_valid_key(key=default_reset_mode, valid_keys=RESET_JOINT_OPTIONS, name="default_reset_mode")
self.default_reset_mode = default_reset_mode
assert_valid_key(key=default_arm_pose, valid_keys=DEFAULT_ARM_POSES, name="default_arm_pose")
self.default_arm_pose = default_arm_pose
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
disable_grasp_handling=disable_grasp_handling,
**kwargs,
)
@property
def model_name(self):
return "Fetch"
@property
def tucked_default_joint_pos(self):
return np.array(
[
0.0,
0.0, # wheels
0.02, # trunk
0.0,
1.1707963267948966,
0.0, # head
1.4707963267948965,
-0.4,
1.6707963267948966,
0.0,
1.5707963267948966,
0.0, # arm
0.05,
0.05, # gripper
]
)
@property
def untucked_default_joint_pos(self):
pos = np.zeros(self.n_joints)
pos[self.base_control_idx] = 0.0
pos[self.trunk_control_idx] = 0.02 + self.default_trunk_offset
pos[self.camera_control_idx] = np.array([0.0, 0.45])
pos[self.gripper_control_idx[self.default_arm]] = np.array([0.05, 0.05]) # open gripper
# Choose arm based on setting
if self.default_arm_pose == "vertical":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-0.94121, -0.64134, 1.55186, 1.65672, -0.93218, 1.53416, 2.14474]
)
elif self.default_arm_pose == "diagonal15":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-0.95587, -0.34778, 1.46388, 1.47821, -0.93813, 1.4587, 1.9939]
)
elif self.default_arm_pose == "diagonal30":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.06595, -0.22184, 1.53448, 1.46076, -0.84995, 1.36904, 1.90996]
)
elif self.default_arm_pose == "diagonal45":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.11479, -0.0685, 1.5696, 1.37304, -0.74273, 1.3983, 1.79618]
)
elif self.default_arm_pose == "horizontal":
pos[self.arm_control_idx[self.default_arm]] = np.array(
[-1.43016, 0.20965, 1.86816, 1.77576, -0.27289, 1.31715, 2.01226]
)
else:
raise ValueError("Unknown default arm pose: {}".format(self.default_arm_pose))
return pos
def _post_load(self):
super()._post_load()
# Set the wheels back to using sphere approximations
for wheel_name in ["l_wheel_link", "r_wheel_link"]:
log.warning(
"Fetch wheel links are post-processed to use sphere approximation collision meshes."
"Please ignore any previous errors about these collision meshes.")
wheel_link = self.links[wheel_name]
assert set(wheel_link.collision_meshes) == {"collisions"}, "Wheel link should only have 1 collision!"
wheel_link.collision_meshes["collisions"].set_collision_approximation("boundingSphere")
# Also apply a convex decomposition to the torso lift link
torso_lift_link = self.links["torso_lift_link"]
assert set(torso_lift_link.collision_meshes) == {"collisions"}, "Wheel link should only have 1 collision!"
torso_lift_link.collision_meshes["collisions"].set_collision_approximation("convexDecomposition")
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Fetch does not support discrete actions!")
def tuck(self):
"""
Immediately set this robot's configuration to be in tucked mode
"""
self.set_joint_positions(self.tucked_default_joint_pos)
def untuck(self):
"""
Immediately set this robot's configuration to be in untucked mode
"""
self.set_joint_positions(self.untucked_default_joint_pos)
def _initialize(self):
# Run super method first
super()._initialize()
# Set the joint friction for EEF to be higher
for arm in self.arm_names:
for joint in self.finger_joints[arm]:
if joint.joint_type != JointType.JOINT_FIXED:
joint.friction = 500
def _postprocess_control(self, control, control_type):
# Run super method first
u_vec, u_type_vec = super()._postprocess_control(control=control, control_type=control_type)
# Override trunk value if we're keeping the trunk rigid
if self.rigid_trunk:
u_vec[self.trunk_control_idx] = self.untucked_default_joint_pos[self.trunk_control_idx]
u_type_vec[self.trunk_control_idx] = ControlType.POSITION
# Return control
return u_vec, u_type_vec
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Add trunk info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
dic["trunk_qpos"] = joint_positions[self.trunk_control_idx]
dic["trunk_qvel"] = joint_velocities[self.trunk_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["trunk_qpos"]
@property
def controller_order(self):
# Ordered by general robot kinematics chain
return ["base", "camera", "arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# We use multi finger gripper, differential drive, and IK controllers as default
controllers["base"] = "DifferentialDriveController"
controllers["camera"] = "JointController"
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_controller_config(self):
# Grab defaults from super method first
cfg = super()._default_controller_config
# Need to override joint idx being controlled to include trunk in default arm controller configs
for arm_cfg in cfg[f"arm_{self.default_arm}"].values():
arm_control_idx = np.concatenate([self.trunk_control_idx, self.arm_control_idx[self.default_arm]])
arm_cfg["dof_idx"] = arm_control_idx
# Need to modify the default joint positions also if this is a null joint controller
if arm_cfg["name"] == "NullJointController":
arm_cfg["default_command"] = self.reset_joint_pos[arm_control_idx]
# If using rigid trunk, we also clamp its limits
if self.rigid_trunk:
arm_cfg["control_limits"]["position"][0][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
arm_cfg["control_limits"]["position"][1][self.trunk_control_idx] = \
self.untucked_default_joint_pos[self.trunk_control_idx]
return cfg
@property
def _default_joint_pos(self):
return self.tucked_default_joint_pos if self.default_reset_mode == "tuck" else self.untucked_default_joint_pos
@property
def wheel_radius(self):
return 0.0613
@property
def wheel_axle_length(self):
return 0.372
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def assisted_grasp_start_points(self):
return {
self.default_arm: [
GraspingPoint(link_name="r_gripper_finger_link", position=[0.025, -0.012, 0.0]),
GraspingPoint(link_name="r_gripper_finger_link", position=[-0.025, -0.012, 0.0]),
]
}
@property
def assisted_grasp_end_points(self):
return {
self.default_arm: [
GraspingPoint(link_name="l_gripper_finger_link", position=[0.025, 0.012, 0.0]),
GraspingPoint(link_name="l_gripper_finger_link", position=[-0.025, 0.012, 0.0]),
]
}
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([0, 1])
@property
def trunk_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to trunk joint.
"""
return np.array([2])
@property
def camera_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [tilt, pan] camera joints.
"""
return np.array([3, 5])
@property
def arm_control_idx(self):
return {self.default_arm: np.array([4, 6, 7, 8, 9, 10, 11])}
@property
def gripper_control_idx(self):
return {self.default_arm: np.array([12, 13])}
@property
def disabled_collision_pairs(self):
return [
["torso_lift_link", "shoulder_lift_link"],
["torso_lift_link", "torso_fixed_link"],
["torso_lift_link", "estop_link"],
["base_link", "laser_link"],
["base_link", "torso_fixed_link"],
["base_link", "l_wheel_link"],
["base_link", "r_wheel_link"],
["base_link", "estop_link"],
["torso_lift_link", "shoulder_pan_link"],
["torso_lift_link", "head_pan_link"],
["head_pan_link", "head_tilt_link"],
["shoulder_pan_link", "shoulder_lift_link"],
["shoulder_lift_link", "upperarm_roll_link"],
["upperarm_roll_link", "elbow_flex_link"],
["elbow_flex_link", "forearm_roll_link"],
["forearm_roll_link", "wrist_flex_link"],
["wrist_flex_link", "wrist_roll_link"],
["wrist_roll_link", "gripper_link"],
]
@property
def manipulation_link_names(self):
return [
"torso_lift_link",
"head_pan_link",
"head_tilt_link",
"shoulder_pan_link",
"shoulder_lift_link",
"upperarm_roll_link",
"elbow_flex_link",
"forearm_roll_link",
"wrist_flex_link",
"wrist_roll_link",
"gripper_link",
"l_gripper_finger_link",
"r_gripper_finger_link",
]
@property
def arm_link_names(self):
return {self.default_arm: [
"shoulder_pan_link",
"shoulder_lift_link",
"upperarm_roll_link",
"elbow_flex_link",
"forearm_roll_link",
"wrist_flex_link",
"wrist_roll_link",
]}
@property
def arm_joint_names(self):
return {self.default_arm: [
"torso_lift_joint",
"shoulder_pan_joint",
"shoulder_lift_joint",
"upperarm_roll_joint",
"elbow_flex_joint",
"forearm_roll_joint",
"wrist_flex_joint",
"wrist_roll_joint",
]}
@property
def eef_link_names(self):
return {self.default_arm: "gripper_link"}
@property
def finger_link_names(self):
return {self.default_arm: ["r_gripper_finger_link", "l_gripper_finger_link"]}
@property
def finger_joint_names(self):
return {self.default_arm: ["r_gripper_finger_joint", "l_gripper_finger_joint"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/fetch/fetch.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/fetch/fetch_descriptor.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/fetch.urdf")
@property
def arm_workspace_range(self):
return {
self.default_arm : [np.deg2rad(-45), np.deg2rad(45)]
}
@property
def eef_usd_path(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/fetch/fetch/fetch_eef.usd")}
@property
def teleop_rotation_offset(self):
return {self.default_arm: euler2quat([0, np.pi / 2, np.pi])}
| 20,962 | Python | 40.184676 | 134 | 0.60686 |
StanfordVL/OmniGibson/omnigibson/robots/__init__.py | from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.robots.freight import Freight
from omnigibson.robots.husky import Husky
from omnigibson.robots.locobot import Locobot
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.robots.manipulation_robot import ManipulationRobot
from omnigibson.robots.robot_base import REGISTERED_ROBOTS, BaseRobot
from omnigibson.robots.turtlebot import Turtlebot
from omnigibson.robots.fetch import Fetch
from omnigibson.robots.tiago import Tiago
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
from omnigibson.robots.franka import FrankaPanda
from omnigibson.robots.franka_allegro import FrankaAllegro
from omnigibson.robots.franka_leap import FrankaLeap
from omnigibson.robots.vx300s import VX300S
from omnigibson.robots.behavior_robot import BehaviorRobot
| 860 | Python | 49.647056 | 69 | 0.873256 |
StanfordVL/OmniGibson/omnigibson/robots/turtlebot.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
class Turtlebot(TwoWheelRobot):
"""
Turtlebot robot
Reference: http://wiki.ros.org/Robots/TurtleBot
Uses joint velocity control
"""
@property
def wheel_radius(self):
return 0.038
@property
def wheel_axle_length(self):
return 0.23
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([0, 1])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/turtlebot/turtlebot/turtlebot.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/turtlebot/turtlebot.urdf")
| 963 | Python | 21.95238 | 101 | 0.643821 |
StanfordVL/OmniGibson/omnigibson/robots/manipulation_robot.py | from abc import abstractmethod
from collections import namedtuple
import numpy as np
import networkx as nx
import omnigibson as og
import omnigibson.lazy as lazy
from omnigibson.controllers import InverseKinematicsController, MultiFingerGripperController, OperationalSpaceController
from omnigibson.macros import gm, create_module_macros
from omnigibson.object_states import ContactBodies
import omnigibson.utils.transform_utils as T
from omnigibson.controllers import (
IsGraspingState,
ControlType,
ManipulationController,
GripperController,
)
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty, assert_valid_key
from omnigibson.utils.geometry_utils import generate_points_in_volume_checker_function
from omnigibson.utils.constants import JointType, PrimType
from omnigibson.utils.usd_utils import create_joint
from omnigibson.utils.sampling_utils import raytest_batch
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Assisted grasping parameters
m.ASSIST_FRACTION = 1.0
m.ASSIST_GRASP_MASS_THRESHOLD = 10.0
m.ARTICULATED_ASSIST_FRACTION = 0.7
m.MIN_ASSIST_FORCE = 0
m.MAX_ASSIST_FORCE = 100
m.ASSIST_FORCE = m.MIN_ASSIST_FORCE + (m.MAX_ASSIST_FORCE - m.MIN_ASSIST_FORCE) * m.ASSIST_FRACTION
m.CONSTRAINT_VIOLATION_THRESHOLD = 0.1
m.RELEASE_WINDOW = 1 / 30.0 # release window in seconds
AG_MODES = {
"physical",
"assisted",
"sticky",
}
GraspingPoint = namedtuple("GraspingPoint", ["link_name", "position"]) # link_name (str), position (x,y,z tuple)
class ManipulationRobot(BaseRobot):
"""
Robot that is is equipped with grasping (manipulation) capabilities.
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
arm: controller specifications for the controller to control this robot's arm (manipulation).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
grasping_direction="lower",
disable_grasp_handling=False,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers. In this mode,
at least two "fingers" need to touch the object.
If "sticky", will magnetize any object touching the gripper's fingers. In this mode, only one finger
needs to touch the object.
grasping_direction (str): One of {"lower", "upper"}. If "lower", lower limit represents a closed grasp,
otherwise upper limit represents a closed grasp.
disable_grasp_handling (bool): If True, the robot will not automatically handle assisted or sticky grasps.
Instead, you will need to call the grasp handling methods yourself.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store relevant internal vars
assert_valid_key(key=grasping_mode, valid_keys=AG_MODES, name="grasping_mode")
assert_valid_key(key=grasping_direction, valid_keys=["lower", "upper"], name="grasping direction")
self._grasping_mode = grasping_mode
self._grasping_direction = grasping_direction
self._disable_grasp_handling = disable_grasp_handling
# Initialize other variables used for assistive grasping
self._ag_freeze_joint_pos = {
arm: {} for arm in self.arm_names
} # Frozen positions for keeping fingers held still
self._ag_obj_in_hand = {arm: None for arm in self.arm_names}
self._ag_obj_constraints = {arm: None for arm in self.arm_names}
self._ag_obj_constraint_params = {arm: {} for arm in self.arm_names}
self._ag_freeze_gripper = {arm: None for arm in self.arm_names}
self._ag_release_counter = {arm: None for arm in self.arm_names}
self._ag_check_in_volume = {arm: None for arm in self.arm_names}
self._ag_calculate_volume = {arm: None for arm in self.arm_names}
# Call super() method
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
**kwargs,
)
def _validate_configuration(self):
# Iterate over all arms
for arm in self.arm_names:
# We make sure that our arm controller exists and is a manipulation controller
assert (
"arm_{}".format(arm) in self._controllers
), "Controller 'arm_{}' must exist in controllers! Current controllers: {}".format(
arm, list(self._controllers.keys())
)
assert isinstance(
self._controllers["arm_{}".format(arm)], ManipulationController
), "Arm {} controller must be a ManipulationController!".format(arm)
# We make sure that our gripper controller exists and is a gripper controller
assert (
"gripper_{}".format(arm) in self._controllers
), "Controller 'gripper_{}' must exist in controllers! Current controllers: {}".format(
arm, list(self._controllers.keys())
)
assert isinstance(
self._controllers["gripper_{}".format(arm)], GripperController
), "Gripper {} controller must be a GripperController!".format(arm)
# run super
super()._validate_configuration()
def _initialize(self):
super()._initialize()
if gm.AG_CLOTH:
for arm in self.arm_names:
self._ag_check_in_volume[arm], self._ag_calculate_volume[arm] = \
generate_points_in_volume_checker_function(obj=self, volume_link=self.eef_links[arm], mesh_name_prefixes="container")
def is_grasping(self, arm="default", candidate_obj=None):
"""
Returns True if the robot is grasping the target option @candidate_obj or any object if @candidate_obj is None.
Args:
arm (str): specific arm to check for grasping. Default is "default" which corresponds to the first entry
in self.arm_names
candidate_obj (StatefulObject or None): object to check if this robot is currently grasping. If None, then
will be a general (object-agnostic) check for grasping.
Note: if self.grasping_mode is "physical", then @candidate_obj will be ignored completely
Returns:
IsGraspingState: For the specific manipulator appendage, returns IsGraspingState.TRUE if it is grasping
(potentially @candidate_obj if specified), IsGraspingState.FALSE if it is not grasping,
and IsGraspingState.UNKNOWN if unknown.
"""
arm = self.default_arm if arm == "default" else arm
if self.grasping_mode != "physical":
is_grasping_obj = (
self._ag_obj_in_hand[arm] is not None
if candidate_obj is None
else self._ag_obj_in_hand[arm] == candidate_obj
)
is_grasping = (
IsGraspingState.TRUE
if is_grasping_obj and self._ag_release_counter[arm] is None
else IsGraspingState.FALSE
)
else:
# Infer from the gripper controller the state
is_grasping = self._controllers["gripper_{}".format(arm)].is_grasping()
# If candidate obj is not None, we also check to see if our fingers are in contact with the object
if is_grasping == IsGraspingState.TRUE and candidate_obj is not None:
finger_links = {link for link in self.finger_links[arm]}
is_grasping = len(candidate_obj.states[ContactBodies].get_value().intersection(finger_links)) > 0
return is_grasping
def _find_gripper_contacts(self, arm="default", return_contact_positions=False):
"""
For arm @arm, calculate any body IDs and corresponding link IDs that are not part of the robot
itself that are in contact with any of this arm's gripper's fingers
Args:
arm (str): specific arm whose gripper will be checked for contact. Default is "default" which
corresponds to the first entry in self.arm_names
return_contact_positions (bool): if True, will additionally return the contact (x,y,z) position
Returns:
2-tuple:
- set: set of unique contact prim_paths that are not the robot self-collisions.
If @return_contact_positions is True, then returns (prim_path, pos), where pos is the contact
(x,y,z) position
Note: if no objects that are not the robot itself are intersecting, the set will be empty.
- dict: dictionary mapping unique contact objects defined by the contact prim_path to
set of unique robot link prim_paths that it is in contact with
"""
arm = self.default_arm if arm == "default" else arm
robot_contact_links = dict()
contact_data = set()
# Find all objects in contact with all finger joints for this arm
con_results = [con for link in self.finger_links[arm] for con in link.contact_list()]
# Get robot contact links
link_paths = set(self.link_prim_paths)
for con_res in con_results:
# Only add this contact if it's not a robot self-collision
other_contact_set = {con_res.body0, con_res.body1} - link_paths
if len(other_contact_set) == 1:
link_contact, other_contact = (con_res.body0, con_res.body1) if \
list(other_contact_set)[0] == con_res.body1 else (con_res.body1, con_res.body0)
# Add to contact data
contact_data.add((other_contact, tuple(con_res.position)) if return_contact_positions else other_contact)
# Also add robot contact link info
if other_contact not in robot_contact_links:
robot_contact_links[other_contact] = set()
robot_contact_links[other_contact].add(link_contact)
return contact_data, robot_contact_links
def set_position_orientation(self, position=None, orientation=None):
# Store the original EEF poses.
original_poses = {}
for arm in self.arm_names:
original_poses[arm] = (self.get_eef_position(arm), self.get_eef_orientation(arm))
# Run the super method
super().set_position_orientation(position=position, orientation=orientation)
# Now for each hand, if it was holding an AG object, teleport it.
for arm in self.arm_names:
if self._ag_obj_in_hand[arm] is not None:
original_eef_pose = T.pose2mat(original_poses[arm])
inv_original_eef_pose = T.pose_inv(pose_mat=original_eef_pose)
original_obj_pose = T.pose2mat(self._ag_obj_in_hand[arm].get_position_orientation())
new_eef_pose = T.pose2mat((self.get_eef_position(arm), self.get_eef_orientation(arm)))
# New object pose is transform:
# original --> "De"transform the original EEF pose --> "Re"transform the new EEF pose
new_obj_pose = new_eef_pose @ inv_original_eef_pose @ original_obj_pose
self._ag_obj_in_hand[arm].set_position_orientation(*T.mat2pose(hmat=new_obj_pose))
def deploy_control(self, control, control_type, indices=None, normalized=False):
# We intercept the gripper control and replace it with the current joint position if we're freezing our gripper
for arm in self.arm_names:
if self._ag_freeze_gripper[arm]:
control[self.gripper_control_idx[arm]] = self._ag_obj_constraint_params[arm]["gripper_pos"] if \
self.controllers[f"gripper_{arm}"].control_type == ControlType.POSITION else 0.0
super().deploy_control(control=control, control_type=control_type, indices=indices, normalized=normalized)
# Then run assisted grasping
if self.grasping_mode != "physical" and not self._disable_grasp_handling:
self._handle_assisted_grasping()
# Potentially freeze gripper joints
for arm in self.arm_names:
if self._ag_freeze_gripper[arm]:
self._freeze_gripper(arm)
def _release_grasp(self, arm="default"):
"""
Magic action to release this robot's grasp on an object
Args:
arm (str): specific arm whose grasp will be released.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
# Remove joint and filtered collision restraints
og.sim.stage.RemovePrim(self._ag_obj_constraint_params[arm]["ag_joint_prim_path"])
self._ag_obj_constraints[arm] = None
self._ag_obj_constraint_params[arm] = {}
self._ag_freeze_gripper[arm] = False
self._ag_release_counter[arm] = 0
def release_grasp_immediately(self):
"""
Magic action to release this robot's grasp for all arms at once.
As opposed to @_release_grasp, this method would byupass the release window mechanism and immediately release.
"""
for arm in self.arm_names:
if self._ag_obj_in_hand[arm] is not None:
self._release_grasp(arm=arm)
self._ag_release_counter[arm] = int(np.ceil(m.RELEASE_WINDOW / og.sim.get_rendering_dt()))
self._handle_release_window(arm=arm)
assert not self._ag_obj_in_hand[arm], "Object still in ag list after release!"
# TODO: Verify not needed!
# for finger_link in self.finger_links[arm]:
# finger_link.remove_filtered_collision_pair(prim=self._ag_obj_in_hand[arm])
def get_control_dict(self):
# In addition to super method, add in EEF states
fcns = super().get_control_dict()
for arm in self.arm_names:
self._add_arm_control_dict(fcns=fcns, arm=arm)
return fcns
def _add_arm_control_dict(self, fcns, arm):
"""
Internally helper function to generate per-arm control dictionary entries. Needed because otherwise generated
functions inadvertently point to the same arm, if directly iterated in a for loop!
Args:
fcns (CachedFunctions): Keyword-mapped control values for this object, mapping names to n-arrays.
arm (str): specific arm to generate necessary control dict entries for
"""
fcns[f"_eef_{arm}_pos_quat_relative"] = lambda: self.get_relative_eef_pose(arm)
fcns[f"eef_{arm}_pos_relative"] = lambda: fcns[f"_eef_{arm}_pos_quat_relative"][0]
fcns[f"eef_{arm}_quat_relative"] = lambda: fcns[f"_eef_{arm}_pos_quat_relative"][1]
fcns[f"eef_{arm}_lin_vel_relative"] = lambda: self.get_relative_eef_lin_vel(arm)
fcns[f"eef_{arm}_ang_vel_relative"] = lambda: self.get_relative_eef_ang_vel(arm)
# -n_joints because there may be an additional 6 entries at the beginning of the array, if this robot does
# not have a fixed base (i.e.: the 6DOF --> "floating" joint)
# see self.get_relative_jacobian() for more info
eef_link_idx = self._articulation_view.get_body_index(self.eef_links[arm].body_name)
fcns[f"eef_{arm}_jacobian_relative"] = lambda: self.get_relative_jacobian(clone=False)[eef_link_idx, :, -self.n_joints:]
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
# Loop over all arms to grab proprio info
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
for arm in self.arm_names:
# Add arm info
dic["arm_{}_qpos".format(arm)] = joint_positions[self.arm_control_idx[arm]]
dic["arm_{}_qpos_sin".format(arm)] = np.sin(joint_positions[self.arm_control_idx[arm]])
dic["arm_{}_qpos_cos".format(arm)] = np.cos(joint_positions[self.arm_control_idx[arm]])
dic["arm_{}_qvel".format(arm)] = joint_velocities[self.arm_control_idx[arm]]
# Add eef and grasping info
dic["eef_{}_pos_global".format(arm)] = self.get_eef_position(arm)
dic["eef_{}_quat_global".format(arm)] = self.get_eef_orientation(arm)
dic["eef_{}_pos".format(arm)] = self.get_relative_eef_position(arm)
dic["eef_{}_quat".format(arm)] = self.get_relative_eef_orientation(arm)
dic["grasp_{}".format(arm)] = np.array([self.is_grasping(arm)])
dic["gripper_{}_qpos".format(arm)] = joint_positions[self.gripper_control_idx[arm]]
dic["gripper_{}_qvel".format(arm)] = joint_velocities[self.gripper_control_idx[arm]]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
for arm in self.arm_names:
obs_keys += [
"arm_{}_qpos_sin".format(arm),
"arm_{}_qpos_cos".format(arm),
"eef_{}_pos".format(arm),
"eef_{}_quat".format(arm),
"gripper_{}_qpos".format(arm),
"grasp_{}".format(arm),
]
return obs_keys
@property
def grasping_mode(self):
"""
Grasping mode of this robot. Is one of AG_MODES
Returns:
str: Grasping mode for this robot
"""
return self._grasping_mode
@property
def controller_order(self):
# Assumes we have arm(s) and corresponding gripper(s)
controllers = []
for arm in self.arm_names:
controllers += ["arm_{}".format(arm), "gripper_{}".format(arm)]
return controllers
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
for arm in self.arm_names:
controllers["arm_{}".format(arm)] = "JointController"
controllers["gripper_{}".format(arm)] = "JointController"
return controllers
@property
def n_arms(self):
"""
Returns:
int: Number of arms this robot has. Returns 1 by default
"""
return 1
@property
def arm_names(self):
"""
Returns:
list of str: List of arm names for this robot. Should correspond to the keys used to index into
arm- and gripper-related dictionaries, e.g.: eef_link_names, finger_link_names, etc.
Default is string enumeration based on @self.n_arms.
"""
return [str(i) for i in range(self.n_arms)]
@property
def default_arm(self):
"""
Returns:
str: Default arm name for this robot, corresponds to the first entry in @arm_names by default
"""
return self.arm_names[0]
@property
def arm_action_idx(self):
arm_action_idx = {}
for arm_name in self.arm_names:
controller_idx = self.controller_order.index(f"arm_{arm_name}")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
arm_action_idx[arm_name] = np.arange(action_start_idx, action_start_idx + self.controllers[f"arm_{arm_name}"].command_dim)
return arm_action_idx
@property
def gripper_action_idx(self):
gripper_action_idx = {}
for arm_name in self.arm_names:
controller_idx = self.controller_order.index(f"gripper_{arm_name}")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
gripper_action_idx[arm_name] = np.arange(action_start_idx, action_start_idx + self.controllers[f"gripper_{arm_name}"].command_dim)
return gripper_action_idx
@property
@abstractmethod
def arm_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding arm link names,
should correspond to specific link names in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def arm_joint_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding arm joint names,
should correspond to specific joint names in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def eef_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding name of the EEF link,
should correspond to specific link name in this robot's underlying model file
"""
raise NotImplementedError
@property
@abstractmethod
def finger_link_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to array of link names corresponding to
this robot's fingers
"""
raise NotImplementedError
@property
@abstractmethod
def finger_joint_names(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to array of joint names corresponding to
this robot's fingers
"""
raise NotImplementedError
@property
@abstractmethod
def arm_control_idx(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to indices in low-level control
vector corresponding to arm joints.
"""
raise NotImplementedError
@property
@abstractmethod
def gripper_control_idx(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to indices in low-level control
vector corresponding to gripper joints.
"""
raise NotImplementedError
@property
def arm_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot links corresponding to
that arm's links
"""
return {arm: [self._links[link] for link in self.arm_link_names[arm]] for arm in self.arm_names}
@property
def eef_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot link corresponding to that arm's
eef link
"""
return {arm: self._links[self.eef_link_names[arm]] for arm in self.arm_names}
@property
def finger_links(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot links corresponding to
that arm's finger links
"""
return {arm: [self._links[link] for link in self.finger_link_names[arm]] for arm in self.arm_names}
@property
def finger_joints(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to robot joints corresponding to
that arm's finger joints
"""
return {arm: [self._joints[joint] for joint in self.finger_joint_names[arm]] for arm in self.arm_names}
@property
def assisted_grasp_start_points(self):
"""
Returns:
dict: Dictionary mapping individual arm appendage names to array of GraspingPoint tuples,
composed of (link_name, position) values specifying valid grasping start points located at
cartesian (x,y,z) coordinates specified in link_name's local coordinate frame.
These values will be used in conjunction with
@self.assisted_grasp_end_points to trigger assisted grasps, where objects that intersect
with any ray starting at any point in @self.assisted_grasp_start_points and terminating at any point in
@self.assisted_grasp_end_points will trigger an assisted grasp (calculated individually for each gripper
appendage). By default, each entry returns None, and must be implemented by any robot subclass that
wishes to use assisted grasping.
"""
return {arm: None for arm in self.arm_names}
@property
def assisted_grasp_end_points(self):
"""
Returns:
dict: Dictionary mapping individual arm appendage names to array of GraspingPoint tuples,
composed of (link_name, position) values specifying valid grasping end points located at
cartesian (x,y,z) coordinates specified in link_name's local coordinate frame.
These values will be used in conjunction with
@self.assisted_grasp_start_points to trigger assisted grasps, where objects that intersect
with any ray starting at any point in @self.assisted_grasp_start_points and terminating at any point in
@self.assisted_grasp_end_points will trigger an assisted grasp (calculated individually for each gripper
appendage). By default, each entry returns None, and must be implemented by any robot subclass that
wishes to use assisted grasping.
"""
return {arm: None for arm in self.arm_names}
@property
def finger_lengths(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to corresponding length of the fingers in that
hand defined from the palm (assuming all fingers in one hand are equally long)
"""
raise NotImplementedError
@property
def arm_workspace_range(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to a tuple indicating the start and end of the
angular range of the arm workspace around the Z axis of the robot, where 0 is facing
forward.
"""
raise NotImplementedError
def get_eef_position(self, arm="default"):
"""
Args:
arm (str): specific arm to grab eef position. Default is "default" which corresponds to the first entry
in self.arm_names
Returns:
3-array: (x,y,z) global end-effector Cartesian position for this robot's end-effector corresponding
to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
return self._links[self.eef_link_names[arm]].get_position()
def get_eef_orientation(self, arm="default"):
"""
Args:
arm (str): specific arm to grab eef orientation. Default is "default" which corresponds to the first entry
in self.arm_names
Returns:
3-array: (x,y,z,w) global quaternion orientation for this robot's end-effector corresponding
to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
return self._links[self.eef_link_names[arm]].get_orientation()
def get_relative_eef_pose(self, arm="default", mat=False):
"""
Args:
arm (str): specific arm to grab eef pose. Default is "default" which corresponds to the first entry
in self.arm_names
mat (bool): whether to return pose in matrix form (mat=True) or (pos, quat) tuple (mat=False)
Returns:
2-tuple or (4, 4)-array: End-effector pose, either in 4x4 homogeneous
matrix form (if @mat=True) or (pos, quat) tuple (if @mat=False), corresponding to arm @arm
"""
arm = self.default_arm if arm == "default" else arm
eef_link_pose = self.eef_links[arm].get_position_orientation()
base_link_pose = self.get_position_orientation()
pose = T.relative_pose_transform(*eef_link_pose, *base_link_pose)
return T.pose2mat(pose) if mat else pose
def get_relative_eef_position(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef pos.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (x,y,z) Cartesian position of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
return self.get_relative_eef_pose(arm=arm)[0]
def get_relative_eef_orientation(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef orientation.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
4-array: (x,y,z,w) quaternion orientation of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
return self.get_relative_eef_pose(arm=arm)[1]
def get_relative_eef_lin_vel(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef linear velocity.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (x,y,z) Linear velocity of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
base_link_quat = self.get_orientation()
return T.quat2mat(base_link_quat).T @ self.eef_links[arm].get_linear_velocity()
def get_relative_eef_ang_vel(self, arm="default"):
"""
Args:
arm (str): specific arm to grab relative eef angular velocity.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
3-array: (ax,ay,az) angular velocity of end-effector relative to robot base frame
"""
arm = self.default_arm if arm == "default" else arm
base_link_quat = self.get_orientation()
return T.quat2mat(base_link_quat).T @ self.eef_links[arm].get_angular_velocity()
def _calculate_in_hand_object_rigid(self, arm="default"):
"""
Calculates which object to assisted-grasp for arm @arm. Returns an (object_id, link_id) tuple or None
if no valid AG-enabled object can be found.
Args:
arm (str): specific arm to calculate in-hand object for.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
None or 2-tuple: If a valid assisted-grasp object is found, returns the corresponding
(object, object_link) (i.e.: (BaseObject, RigidPrim)) pair to the contacted in-hand object.
Otherwise, returns None
"""
arm = self.default_arm if arm == "default" else arm
# If we're not using physical grasping, we check for gripper contact
if self.grasping_mode != "physical":
candidates_set, robot_contact_links = self._find_gripper_contacts(arm=arm)
# If we're using assisted grasping, we further filter candidates via ray-casting
if self.grasping_mode == "assisted":
candidates_set_raycast = self._find_gripper_raycast_collisions(arm=arm)
candidates_set = candidates_set.intersection(candidates_set_raycast)
else:
raise ValueError("Invalid grasping mode for calculating in hand object: {}".format(self.grasping_mode))
# Immediately return if there are no valid candidates
if len(candidates_set) == 0:
return None
# Find the closest object to the gripper center
gripper_center_pos = self.eef_links[arm].get_position()
candidate_data = []
for prim_path in candidates_set:
# Calculate position of the object link. Only allow this for objects currently.
obj_prim_path, link_name = prim_path.rsplit("/", 1)
candidate_obj = og.sim.scene.object_registry("prim_path", obj_prim_path, None)
if candidate_obj is None or link_name not in candidate_obj.links:
continue
candidate_link = candidate_obj.links[link_name]
dist = np.linalg.norm(np.array(candidate_link.get_position()) - np.array(gripper_center_pos))
candidate_data.append((prim_path, dist))
if not candidate_data:
return None
candidate_data = sorted(candidate_data, key=lambda x: x[-1])
ag_prim_path, _ = candidate_data[0]
# Make sure the ag_prim_path is not a self collision
assert ag_prim_path not in self.link_prim_paths, "assisted grasp object cannot be the robot itself!"
# Make sure at least two fingers are in contact with this object
robot_contacts = robot_contact_links[ag_prim_path]
touching_at_least_two_fingers = True if self.grasping_mode == "sticky" else len({link.prim_path for link in self.finger_links[arm]}.intersection(robot_contacts)) >= 2
# TODO: Better heuristic, hacky, we assume the parent object prim path is the prim_path minus the last "/" item
ag_obj_prim_path = "/".join(ag_prim_path.split("/")[:-1])
ag_obj_link_name = ag_prim_path.split("/")[-1]
ag_obj = og.sim.scene.object_registry("prim_path", ag_obj_prim_path)
# Return None if object cannot be assisted grasped or not touching at least two fingers
if ag_obj is None or not touching_at_least_two_fingers:
return None
# Get object and its contacted link
return ag_obj, ag_obj.links[ag_obj_link_name]
def _find_gripper_raycast_collisions(self, arm="default"):
"""
For arm @arm, calculate any prims that are not part of the robot
itself that intersect with rays cast between any of the gripper's start and end points
Args:
arm (str): specific arm whose gripper will be checked for raycast collisions. Default is "default"
which corresponds to the first entry in self.arm_names
Returns:
set[str]: set of prim path of detected raycast intersections that
are not the robot itself. Note: if no objects that are not the robot itself are intersecting,
the set will be empty.
"""
arm = self.default_arm if arm == "default" else arm
# First, make sure start and end grasp points exist (i.e.: aren't None)
assert (
self.assisted_grasp_start_points[arm] is not None
), "In order to use assisted grasping, assisted_grasp_start_points must not be None!"
assert (
self.assisted_grasp_end_points[arm] is not None
), "In order to use assisted grasping, assisted_grasp_end_points must not be None!"
# Iterate over all start and end grasp points and calculate their x,y,z positions in the world frame
# (per arm appendage)
# Since we'll be calculating the cartesian cross product between start and end points, we stack the start points
# by the number of end points and repeat the individual elements of the end points by the number of start points
startpoints = []
endpoints = []
for grasp_start_point in self.assisted_grasp_start_points[arm]:
# Get world coordinates of link base frame
link_pos, link_orn = self.links[grasp_start_point.link_name].get_position_orientation()
# Calculate grasp start point in world frame and add to startpoints
start_point, _ = T.pose_transform(link_pos, link_orn, grasp_start_point.position, [0, 0, 0, 1])
startpoints.append(start_point)
# Repeat for end points
for grasp_end_point in self.assisted_grasp_end_points[arm]:
# Get world coordinates of link base frame
link_pos, link_orn = self.links[grasp_end_point.link_name].get_position_orientation()
# Calculate grasp start point in world frame and add to endpoints
end_point, _ = T.pose_transform(link_pos, link_orn, grasp_end_point.position, [0, 0, 0, 1])
endpoints.append(end_point)
# Stack the start points and repeat the end points, and add these values to the raycast dicts
n_startpoints, n_endpoints = len(startpoints), len(endpoints)
raycast_startpoints = startpoints * n_endpoints
raycast_endpoints = []
for endpoint in endpoints:
raycast_endpoints += [endpoint] * n_startpoints
ray_data = set()
# Calculate raycasts from each start point to end point -- this is n_startpoints * n_endpoints total rays
for result in raytest_batch(raycast_startpoints, raycast_endpoints, only_closest=True):
if result["hit"]:
# filter out self body parts (we currently assume that the robot cannot grasp itself)
if self.prim_path not in result["rigidBody"]:
ray_data.add(result["rigidBody"])
return ray_data
def _handle_release_window(self, arm="default"):
"""
Handles releasing an object from arm @arm
Args:
arm (str): specific arm to handle release window.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
self._ag_release_counter[arm] += 1
time_since_release = self._ag_release_counter[arm] * og.sim.get_rendering_dt()
if time_since_release >= m.RELEASE_WINDOW:
self._ag_obj_in_hand[arm] = None
self._ag_release_counter[arm] = None
def _freeze_gripper(self, arm="default"):
"""
Freezes gripper finger joints - used in assisted grasping.
Args:
arm (str): specific arm to freeze gripper.
Default is "default" which corresponds to the first entry in self.arm_names
"""
arm = self.default_arm if arm == "default" else arm
for joint_name, j_val in self._ag_freeze_joint_pos[arm].items():
joint = self._joints[joint_name]
joint.set_pos(pos=j_val)
joint.set_vel(vel=0.0)
@property
def robot_arm_descriptor_yamls(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to files path to the descriptor
of the robot for IK Controller.
"""
raise NotImplementedError
@property
def _default_arm_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config to control that
robot's arm. Uses velocity control by default.
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": None,
"motor_type": "position",
"use_delta_commands": True,
"use_impedances": True,
}
return dic
@property
def _default_arm_ik_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config for an
Inverse kinematics controller to control this robot's arm
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "InverseKinematicsController",
"task_name": f"eef_{arm}",
"robot_description_path": self.robot_arm_descriptor_yamls[arm],
"robot_urdf_path": self.urdf_path,
"eef_name": self.eef_link_names[arm],
"control_freq": self._control_freq,
"reset_joint_pos": self.reset_joint_pos,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": (
np.array([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5]),
np.array([0.2, 0.2, 0.2, 0.5, 0.5, 0.5]),
),
"mode": "pose_delta_ori",
"smoothing_filter_size": 2,
"workspace_pose_limiter": None,
}
return dic
@property
def _default_arm_osc_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config for an
operational space controller to control this robot's arm
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "OperationalSpaceController",
"task_name": f"eef_{arm}",
"control_freq": self._control_freq,
"reset_joint_pos": self.reset_joint_pos,
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_output_limits": (
np.array([-0.2, -0.2, -0.2, -0.5, -0.5, -0.5]),
np.array([0.2, 0.2, 0.2, 0.5, 0.5, 0.5]),
),
"mode": "pose_delta_ori",
"workspace_pose_limiter": None,
}
return dic
@property
def _default_arm_null_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default arm null controller config
to control this robot's arm i.e. dummy controller
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"default_command": self.reset_joint_pos[self.arm_control_idx[arm]],
"use_impedances": False,
}
return dic
@property
def _default_gripper_multi_finger_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default controller config to control
this robot's multi finger gripper. Assumes robot gripper idx has exactly two elements
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "MultiFingerGripperController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_output_limits": "default",
"mode": "binary",
"limit_tolerance": 0.001,
}
return dic
@property
def _default_gripper_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper joint controller config
to control this robot's gripper
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_output_limits": "default",
"use_delta_commands": False,
"use_impedances": False,
}
return dic
@property
def _default_gripper_null_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper null controller config
to control this robot's (non-prehensile) gripper i.e. dummy controller
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"default_command": np.zeros(len(self.gripper_control_idx[arm])),
"use_impedances": False,
}
return dic
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
arm_ik_configs = self._default_arm_ik_controller_configs
arm_osc_configs = self._default_arm_osc_controller_configs
arm_joint_configs = self._default_arm_joint_controller_configs
arm_null_joint_configs = self._default_arm_null_joint_controller_configs
gripper_pj_configs = self._default_gripper_multi_finger_controller_configs
gripper_joint_configs = self._default_gripper_joint_controller_configs
gripper_null_configs = self._default_gripper_null_controller_configs
# Add arm and gripper defaults, per arm
for arm in self.arm_names:
cfg["arm_{}".format(arm)] = {
arm_ik_configs[arm]["name"]: arm_ik_configs[arm],
arm_osc_configs[arm]["name"]: arm_osc_configs[arm],
arm_joint_configs[arm]["name"]: arm_joint_configs[arm],
arm_null_joint_configs[arm]["name"]: arm_null_joint_configs[arm],
}
cfg["gripper_{}".format(arm)] = {
gripper_pj_configs[arm]["name"]: gripper_pj_configs[arm],
gripper_joint_configs[arm]["name"]: gripper_joint_configs[arm],
gripper_null_configs[arm]["name"]: gripper_null_configs[arm],
}
return cfg
def _get_assisted_grasp_joint_type(self, ag_obj, ag_link):
"""
Check whether an object @obj can be grasped. If so, return the joint type to use for assisted grasping.
Otherwise, return None.
Args:
ag_obj (BaseObject): Object targeted for an assisted grasp
ag_link (RigidPrim): Link of the object to be grasped
Returns:
(None or str): If obj can be grasped, returns the joint type to use for assisted grasping.
"""
# Deny objects that are too heavy and are not a non-base link of a fixed-base object)
mass = ag_link.mass
if mass > m.ASSIST_GRASP_MASS_THRESHOLD and not (ag_obj.fixed_base and ag_link != ag_obj.root_link):
return None
# Otherwise, compute the joint type. We use a fixed joint unless the link is a non-fixed link.
# A link is non-fixed if it has any non-fixed parent joints.
joint_type = "FixedJoint"
for edge in nx.edge_dfs(ag_obj.articulation_tree, ag_link.body_name, orientation="reverse"):
joint = ag_obj.articulation_tree.edges[edge]["joint"]
if joint.joint_type != JointType.JOINT_FIXED:
joint_type = "SphericalJoint"
break
return joint_type
def _establish_grasp_rigid(self, arm="default", ag_data=None, contact_pos=None):
"""
Establishes an ag-assisted grasp, if enabled.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
ag_data (None or 2-tuple): if specified, assisted-grasp object, link tuple (i.e. :(BaseObject, RigidPrim)).
Otherwise, does a no-op
contact_pos (None or np.array): if specified, contact position to use for grasp.
"""
arm = self.default_arm if arm == "default" else arm
# Return immediately if ag_data is None
if ag_data is None:
return
ag_obj, ag_link = ag_data
# Get the appropriate joint type
joint_type = self._get_assisted_grasp_joint_type(ag_obj, ag_link)
if joint_type is None:
return
if contact_pos is None:
force_data, _ = self._find_gripper_contacts(arm=arm, return_contact_positions=True)
for c_link_prim_path, c_contact_pos in force_data:
if c_link_prim_path == ag_link.prim_path:
contact_pos = np.array(c_contact_pos)
break
assert contact_pos is not None
# Joint frame set at the contact point
# Need to find distance between robot and contact point in robot link's local frame and
# ag link and contact point in ag link's local frame
joint_frame_pos = contact_pos
joint_frame_orn = np.array([0, 0, 0, 1.0])
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
parent_frame_pos, parent_frame_orn = T.relative_pose_transform(joint_frame_pos, joint_frame_orn, eef_link_pos, eef_link_orn)
obj_link_pos, obj_link_orn = ag_link.get_position_orientation()
child_frame_pos, child_frame_orn = T.relative_pose_transform(joint_frame_pos, joint_frame_orn, obj_link_pos, obj_link_orn)
# Create the joint
joint_prim_path = f"{self.eef_links[arm].prim_path}/ag_constraint"
joint_prim = create_joint(
prim_path=joint_prim_path,
joint_type=joint_type,
body0=self.eef_links[arm].prim_path,
body1=ag_link.prim_path,
enabled=True,
joint_frame_in_parent_frame_pos=parent_frame_pos / self.scale,
joint_frame_in_parent_frame_quat=parent_frame_orn,
joint_frame_in_child_frame_pos=child_frame_pos / ag_obj.scale,
joint_frame_in_child_frame_quat=child_frame_orn,
)
# Save a reference to this joint prim
self._ag_obj_constraints[arm] = joint_prim
# Modify max force based on user-determined assist parameters
# TODO
max_force = m.ASSIST_FORCE if joint_type == "FixedJoint" else m.ASSIST_FORCE * m.ARTICULATED_ASSIST_FRACTION
# joint_prim.GetAttribute("physics:breakForce").Set(max_force)
self._ag_obj_constraint_params[arm] = {
"ag_obj_prim_path": ag_obj.prim_path,
"ag_link_prim_path": ag_link.prim_path,
"ag_joint_prim_path": joint_prim_path,
"joint_type": joint_type,
"gripper_pos": self.get_joint_positions()[self.gripper_control_idx[arm]],
"max_force": max_force,
"contact_pos": contact_pos,
}
self._ag_obj_in_hand[arm] = ag_obj
self._ag_freeze_gripper[arm] = True
for joint in self.finger_joints[arm]:
j_val = joint.get_state()[0][0]
self._ag_freeze_joint_pos[arm][joint.joint_name] = j_val
def _handle_assisted_grasping(self):
"""
Handles assisted grasping by creating or removing constraints.
"""
# Loop over all arms
for arm in self.arm_names:
# We apply a threshold based on the control rather than the command here so that the behavior
# stays the same across different controllers and control modes (absolute / delta). This way,
# a zero action will actually keep the AG setting where it already is.
controller = self._controllers[f"gripper_{arm}"]
controlled_joints = controller.dof_idx
threshold = np.mean([self.joint_lower_limits[controlled_joints], self.joint_upper_limits[controlled_joints]], axis=0)
if controller.control is None:
applying_grasp = False
elif self._grasping_direction == "lower":
applying_grasp = np.any(controller.control < threshold)
else:
applying_grasp = np.any(controller.control > threshold)
# Execute gradual release of object
if self._ag_obj_in_hand[arm]:
if self._ag_release_counter[arm] is not None:
self._handle_release_window(arm=arm)
else:
if gm.AG_CLOTH:
self._update_constraint_cloth(arm=arm)
if not applying_grasp:
self._release_grasp(arm=arm)
elif applying_grasp:
self._establish_grasp(arm=arm, ag_data=self._calculate_in_hand_object(arm=arm))
def _update_constraint_cloth(self, arm="default"):
"""
Update the AG constraint for cloth: for the fixed joint between the attachment point and the world, we set
the local pos to match the current eef link position plus the attachment_point_pos_local offset. As a result,
the joint will drive the attachment point to the updated position, which will then drive the cloth.
See _establish_grasp_cloth for more details.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
"""
attachment_point_pos_local = self._ag_obj_constraint_params[arm]["attachment_point_pos_local"]
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
attachment_point_pos, _ = T.pose_transform(eef_link_pos, eef_link_orn, attachment_point_pos_local, [0, 0, 0, 1])
joint_prim = self._ag_obj_constraints[arm]
joint_prim.GetAttribute("physics:localPos1").Set(lazy.pxr.Gf.Vec3f(*attachment_point_pos.astype(float)))
def _calculate_in_hand_object(self, arm="default"):
if gm.AG_CLOTH:
return self._calculate_in_hand_object_cloth(arm)
else:
return self._calculate_in_hand_object_rigid(arm)
def _establish_grasp(self, arm="default", ag_data=None, contact_pos=None):
if gm.AG_CLOTH:
return self._establish_grasp_cloth(arm, ag_data)
else:
return self._establish_grasp_rigid(arm, ag_data, contact_pos)
def _calculate_in_hand_object_cloth(self, arm="default"):
"""
Same as _calculate_in_hand_object_rigid, except for cloth. Only one should be used at any given time.
Calculates which object to assisted-grasp for arm @arm. Returns an (BaseObject, RigidPrim, np.ndarray) tuple or
None if no valid AG-enabled object can be found.
1) Check if the gripper is closed enough
2) Go through each of the cloth object, and check if its attachment point link position is within the "ghost"
box volume of the gripper link.
Only returns the first valid object and ignore the rest.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
Returns:
None or 3-tuple: If a valid assisted-grasp object is found,
returns the corresponding (object, object_link, attachment_point_position), i.e.
((BaseObject, RigidPrim, np.ndarray)) to the contacted in-hand object. Otherwise, returns None
"""
# TODO (eric): Assume joint_pos = 0 means fully closed
GRIPPER_FINGER_CLOSE_THRESHOLD = 0.03
gripper_finger_pos = self.get_joint_positions()[self.gripper_control_idx[arm]]
gripper_finger_close = np.sum(gripper_finger_pos) < GRIPPER_FINGER_CLOSE_THRESHOLD
if not gripper_finger_close:
return None
cloth_objs = og.sim.scene.object_registry("prim_type", PrimType.CLOTH)
if cloth_objs is None:
return None
# TODO (eric): Only AG one cloth at any given moment.
# Returns the first cloth that overlaps with the "ghost" box volume
for cloth_obj in cloth_objs:
attachment_point_pos = cloth_obj.links["attachment_point"].get_position()
particles_in_volume = self._ag_check_in_volume[arm]([attachment_point_pos])
if particles_in_volume.sum() > 0:
return cloth_obj, cloth_obj.links["attachment_point"], attachment_point_pos
return None
def _establish_grasp_cloth(self, arm="default", ag_data=None):
"""
Same as _establish_grasp_cloth, except for cloth. Only one should be used at any given time.
Establishes an ag-assisted grasp, if enabled.
Create a fixed joint between the attachment point link of the cloth object and the world.
In theory, we could have created a fixed joint to the eef link, but omni doesn't support this as the robot has
an articulation root API attached to it, which is incompatible with the attachment API.
We also store attachment_point_pos_local as the attachment point position in the eef link frame when the fixed
joint is created. As the eef link frame changes its pose, we will use attachment_point_pos_local to figure out
the new attachment_point_pos in the world frame and set the fixed joint to there. See _update_constraint_cloth
for more details.
Args:
arm (str): specific arm to establish grasp.
Default is "default" which corresponds to the first entry in self.arm_names
ag_data (None or 3-tuple): If specified, should be the corresponding
(object, object_link, attachment_point_position), i.e. ((BaseObject, RigidPrim, np.ndarray)) to the]
contacted in-hand object
"""
arm = self.default_arm if arm == "default" else arm
# Return immediately if ag_data is None
if ag_data is None:
return
ag_obj, ag_link, attachment_point_pos = ag_data
# Find the attachment point position in the eef frame
eef_link_pos, eef_link_orn = self.eef_links[arm].get_position_orientation()
attachment_point_pos_local, _ = \
T.relative_pose_transform(attachment_point_pos, [0, 0, 0, 1], eef_link_pos, eef_link_orn)
# Create the joint
joint_prim_path = f"{ag_link.prim_path}/ag_constraint"
joint_type = "FixedJoint"
joint_prim = create_joint(
prim_path=joint_prim_path,
joint_type=joint_type,
body0=ag_link.prim_path,
body1=None,
enabled=False,
joint_frame_in_child_frame_pos=attachment_point_pos,
)
# Save a reference to this joint prim
self._ag_obj_constraints[arm] = joint_prim
# Modify max force based on user-determined assist parameters
# TODO
max_force = m.ASSIST_FORCE
# joint_prim.GetAttribute("physics:breakForce").Set(max_force)
self._ag_obj_constraint_params[arm] = {
"ag_obj_prim_path": ag_obj.prim_path,
"ag_link_prim_path": ag_link.prim_path,
"ag_joint_prim_path": joint_prim_path,
"joint_type": joint_type,
"gripper_pos": self.get_joint_positions()[self.gripper_control_idx[arm]],
"max_force": max_force,
"attachment_point_pos_local": attachment_point_pos_local,
"contact_pos": attachment_point_pos,
}
self._ag_obj_in_hand[arm] = ag_obj
self._ag_freeze_gripper[arm] = True
for joint in self.finger_joints[arm]:
j_val = joint.get_state()[0][0]
self._ag_freeze_joint_pos[arm][joint.joint_name] = j_val
def _dump_state(self):
# Call super first
state = super()._dump_state()
# If we're using actual physical grasping, no extra state needed to save
if self.grasping_mode == "physical":
return state
# Include AG_state
state["ag_obj_constraint_params"] = self._ag_obj_constraint_params.copy()
return state
def _load_state(self, state):
# If there is an existing AG object, remove it
self.release_grasp_immediately()
super()._load_state(state=state)
# No additional loading needed if we're using physical grasping
if self.grasping_mode == "physical":
return
# Include AG_state
# TODO: currently does not take care of cloth objects
# TODO: add unit tests
for arm in state["ag_obj_constraint_params"].keys():
if len(state["ag_obj_constraint_params"][arm]) > 0:
data = state["ag_obj_constraint_params"][arm]
obj = og.sim.scene.object_registry("prim_path", data["ag_obj_prim_path"])
link = obj.links[data["ag_link_prim_path"].split("/")[-1]]
self._establish_grasp(arm=arm, ag_data=(obj, link), contact_pos=data["contact_pos"])
def _serialize(self, state):
# Call super first
state_flat = super()._serialize(state=state)
# No additional serialization needed if we're using physical grasping
if self.grasping_mode == "physical":
return state_flat
# TODO AG
return state_flat
def _deserialize(self, state):
# Call super first
state_dict, idx = super()._deserialize(state=state)
# No additional deserialization needed if we're using physical grasping
if self.grasping_mode == "physical":
return state_dict, idx
# TODO AG
return state_dict, idx
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("ManipulationRobot")
return classes
@property
def eef_usd_path(self):
"""
Returns:
dict(str, str): dict mapping arm name to the path to the eef usd file
"""
raise NotImplementedError
@property
def teleop_rotation_offset(self):
"""
Rotational offset that will be applied for teleoperation
such that [0, 0, 0, 1] as action will keep the robot eef pointing at +x axis
"""
return {arm: np.array([0, 0, 0, 1]) for arm in self.arm_names}
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
NOTE: This implementation only supports IK/OSC controller for arm and MultiFingerGripperController for gripper.
Overwrite this function if the robot is using a different controller.
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data for arm and gripper
"""
action = super().teleop_data_to_action(teleop_action)
hands = ["left", "right"] if self.n_arms == 2 else ["right"]
for i, hand in enumerate(hands):
arm_name = self.arm_names[i]
arm_action = teleop_action[hand]
# arm action
assert \
isinstance(self._controllers[f"arm_{arm_name}"], InverseKinematicsController) or \
isinstance(self._controllers[f"arm_{arm_name}"], OperationalSpaceController), \
f"Only IK and OSC controllers are supported for arm {arm_name}!"
target_pos, target_orn = arm_action[:3], T.quat2axisangle(T.euler2quat(arm_action[3:6]))
action[self.arm_action_idx[arm_name]] = np.r_[target_pos, target_orn]
# gripper action
assert isinstance(self._controllers[f"gripper_{arm_name}"], MultiFingerGripperController), \
f"Only MultiFingerGripperController is supported for gripper {arm_name}!"
action[self.gripper_action_idx[arm_name]] = arm_action[6]
return action
| 69,213 | Python | 45.050566 | 174 | 0.612515 |
StanfordVL/OmniGibson/omnigibson/robots/freight.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
class Freight(TwoWheelRobot):
"""
Freight Robot
Reference: https://fetchrobotics.com/robotics-platforms/freight-base/
Uses joint velocity control
"""
@property
def model_name(self):
return "Freight"
@property
def wheel_radius(self):
return 0.0613
@property
def wheel_axle_length(self):
return 0.372
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([0, 1])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/freight/freight.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/fetch/freight.urdf")
| 1,035 | Python | 21.521739 | 101 | 0.638647 |
StanfordVL/OmniGibson/omnigibson/robots/locobot.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.two_wheel_robot import TwoWheelRobot
class Locobot(TwoWheelRobot):
"""
Locobot robot
Reference: https://www.trossenrobotics.com/locobot-pyrobot-ros-rover.aspx
"""
@property
def model_name(self):
return "Locobot"
@property
def wheel_radius(self):
return 0.038
@property
def wheel_axle_length(self):
return 0.230
@property
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to [Left, Right] wheel joints.
"""
return np.array([1, 0])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/locobot/locobot/locobot.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/locobot/locobot.urdf")
| 1,010 | Python | 21.466666 | 101 | 0.636634 |
StanfordVL/OmniGibson/omnigibson/robots/franka.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
from omnigibson.utils.transform_utils import euler2quat
class FrankaPanda(ManipulationRobot):
"""
The Franka Emika Panda robot
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
**kwargs,
)
@property
def model_name(self):
return "FrankaPanda"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Franka does not support discrete actions!")
def update_controller_mode(self):
super().update_controller_mode()
# overwrite joint params (e.g. damping, stiffess, max_effort) here
@property
def controller_order(self):
return ["arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_joint_pos(self):
return np.array([0.00, -1.3, 0.00, -2.87, 0.00, 2.00, 0.75, 0.00, 0.00])
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
return {self.default_arm: np.arange(7)}
@property
def gripper_control_idx(self):
return {self.default_arm: np.arange(7, 9)}
@property
def arm_link_names(self):
return {self.default_arm: [f"panda_link{i}" for i in range(8)]}
@property
def arm_joint_names(self):
return {self.default_arm: [f"panda_joint_{i+1}" for i in range(7)]}
@property
def eef_link_names(self):
return {self.default_arm: "panda_hand"}
@property
def finger_link_names(self):
return {self.default_arm: ["panda_leftfinger", "panda_rightfinger"]}
@property
def finger_joint_names(self):
return {self.default_arm: ["panda_finger_joint1", "panda_finger_joint2"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_panda.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/franka/franka_panda_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/franka/franka_panda.urdf")
@property
def eef_usd_path(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/franka/franka_panda_eef.usd")}
@property
def teleop_rotation_offset(self):
return {self.default_arm: euler2quat([-np.pi, 0, 0])}
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name="panda_rightfinger", position=[0.0, 0.001, 0.045]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name="panda_leftfinger", position=[0.0, 0.001, 0.045]),
]} | 9,169 | Python | 42.254717 | 126 | 0.637147 |
StanfordVL/OmniGibson/omnigibson/robots/robot_base.py | from abc import abstractmethod
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
from omnigibson.macros import create_module_macros
from omnigibson.sensors import create_sensor, SENSOR_PRIMS_TO_SENSOR_CLS, ALL_SENSOR_MODALITIES, VisionSensor, ScanSensor
from omnigibson.objects.usd_object import USDObject
from omnigibson.objects.object_base import BaseObject
from omnigibson.objects.controllable_object import ControllableObject
from omnigibson.utils.gym_utils import GymObservable
from omnigibson.utils.usd_utils import add_asset_to_stage
from omnigibson.utils.python_utils import classproperty, merge_nested_dicts
from omnigibson.utils.vision_utils import segmentation_to_rgb
from omnigibson.utils.constants import PrimType
# Global dicts that will contain mappings
REGISTERED_ROBOTS = dict()
# Add proprio sensor modality to ALL_SENSOR_MODALITIES
ALL_SENSOR_MODALITIES.add("proprio")
# Create settings for this module
m = create_module_macros(module_path=__file__)
# Name of the category to assign to all robots
m.ROBOT_CATEGORY = "agent"
class BaseRobot(USDObject, ControllableObject, GymObservable):
"""
Base class for USD-based robot agents.
This class handles object loading, and provides method interfaces that should be
implemented by subclassed robots.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
fixed_base=False,
visual_only=False,
self_collisions=False,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to this class
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
fixed_base (bool): whether to fix the base of this object or not
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be at the render frequency by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
# Store inputs
self._obs_modalities = obs_modalities if obs_modalities == "all" else \
{obs_modalities} if isinstance(obs_modalities, str) else set(obs_modalities) # this will get updated later when we fill in our sensors
self._proprio_obs = self.default_proprio_obs if proprio_obs == "default" else list(proprio_obs)
self._sensor_config = sensor_config
# Process abilities
robot_abilities = {"robot": {}}
abilities = robot_abilities if abilities is None else robot_abilities.update(abilities)
# Initialize internal attributes that will be loaded later
self._sensors = None # e.g.: scan sensor, vision sensor
self._dummy = None # Dummy version of the robot w/ fixed base for computing generalized gravity forces
# If specified, make sure scale is uniform -- this is because non-uniform scale can result in non-matching
# collision representations for parts of the robot that were optimized (e.g.: bounding sphere for wheels)
assert scale is None or isinstance(scale, int) or isinstance(scale, float) or np.all(scale == scale[0]), \
f"Robot scale must be uniform! Got: {scale}"
# Run super init
super().__init__(
prim_path=prim_path,
usd_path=self.usd_path,
name=name,
category=m.ROBOT_CATEGORY,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
prim_type=PrimType.RIGID,
include_default_states=True,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
**kwargs,
)
def _load(self):
# Run super first
prim = super()._load()
# Also import dummy object if this robot is not fixed base
if self._use_dummy:
dummy_path = f"{self._prim_path}_dummy"
dummy_prim = add_asset_to_stage(asset_path=self._dummy_usd_path, prim_path=dummy_path)
self._dummy = BaseObject(
name=f"{self.name}_dummy",
prim_path=dummy_path,
scale=self._load_config.get("scale", None),
visible=False,
fixed_base=True,
visual_only=True,
)
return prim
def _post_load(self):
# Run super post load first
super()._post_load()
# Load the sensors
self._load_sensors()
def _initialize(self):
# Initialize the dummy first if it exists
if self._dummy is not None:
self._dummy.initialize()
# Run super
super()._initialize()
# Initialize all sensors
for sensor in self._sensors.values():
sensor.initialize()
# Load the observation space for this robot
self.load_observation_space()
# Validate this robot configuration
self._validate_configuration()
self._reset_joint_pos_aabb_extent = self.aabb_extent
def _load_sensors(self):
"""
Loads sensor(s) to retrieve observations from this object.
Stores created sensors as dictionary mapping sensor names to specific sensor
instances used by this object.
"""
# Populate sensor config
self._sensor_config = self._generate_sensor_config(custom_config=self._sensor_config)
# Search for any sensors this robot might have attached to any of its links
self._sensors = dict()
obs_modalities = set()
for link_name, link in self._links.items():
# Search through all children prims and see if we find any sensor
sensor_counts = {p: 0 for p in SENSOR_PRIMS_TO_SENSOR_CLS.keys()}
for prim in link.prim.GetChildren():
prim_type = prim.GetPrimTypeInfo().GetTypeName()
if prim_type in SENSOR_PRIMS_TO_SENSOR_CLS:
# Infer what obs modalities to use for this sensor
sensor_cls = SENSOR_PRIMS_TO_SENSOR_CLS[prim_type]
sensor_kwargs = self._sensor_config[sensor_cls.__name__]
if "modalities" not in sensor_kwargs:
sensor_kwargs["modalities"] = sensor_cls.all_modalities if self._obs_modalities == "all" else \
sensor_cls.all_modalities.intersection(self._obs_modalities)
obs_modalities = obs_modalities.union(sensor_kwargs["modalities"])
# Create the sensor and store it internally
sensor = create_sensor(
sensor_type=prim_type,
prim_path=str(prim.GetPrimPath()),
name=f"{self.name}:{link_name}:{prim_type}:{sensor_counts[prim_type]}",
**sensor_kwargs,
)
self._sensors[sensor.name] = sensor
sensor_counts[prim_type] += 1
# Since proprioception isn't an actual sensor, we need to possibly manually add it here as well
if self._obs_modalities == "all" or "proprio" in self._obs_modalities:
obs_modalities.add("proprio")
# Update our overall obs modalities
self._obs_modalities = obs_modalities
def _generate_sensor_config(self, custom_config=None):
"""
Generates a fully-populated sensor config, overriding any default values with the corresponding values
specified in @custom_config
Args:
custom_config (None or Dict[str, ...]): nested dictionary mapping sensor class name(s) to specific custom
sensor configurations for this object. This will override any default values specified by this class
Returns:
dict: Fully-populated nested dictionary mapping sensor class name(s) to specific sensor configurations
for this object
"""
sensor_config = {} if custom_config is None else deepcopy(custom_config)
# Merge the sensor dictionaries
sensor_config = merge_nested_dicts(
base_dict=self._default_sensor_config,
extra_dict=sensor_config,
)
return sensor_config
def _validate_configuration(self):
"""
Run any needed sanity checks to make sure this robot was created correctly.
"""
pass
def step(self):
# Skip this step if our articulation view is not valid
if self._articulation_view_direct is None or not self._articulation_view_direct.initialized:
return
# Before calling super, update the dummy robot's kinematic state based on this robot's kinematic state
# This is done prior to any state getter calls, since setting kinematic state results in physx backend
# having to re-fetch tensorized state.
# We do this so we have more optimal runtime performance
if self._use_dummy:
self._dummy.set_joint_positions(self.get_joint_positions())
self._dummy.set_joint_velocities(self.get_joint_velocities())
self._dummy.set_position_orientation(*self.get_position_orientation())
super().step()
def get_obs(self):
"""
Grabs all observations from the robot. This is keyword-mapped based on each observation modality
(e.g.: proprio, rgb, etc.)
Returns:
2-tuple:
dict: Keyword-mapped dictionary mapping observation modality names to
observations (usually np arrays)
dict: Keyword-mapped dictionary mapping observation modality names to
additional info
"""
# Our sensors already know what observation modalities it has, so we simply iterate over all of them
# and grab their observations, processing them into a flat dict
obs_dict = dict()
info_dict = dict()
for sensor_name, sensor in self._sensors.items():
obs_dict[sensor_name], info_dict[sensor_name] = sensor.get_obs()
# Have to handle proprio separately since it's not an actual sensor
if "proprio" in self._obs_modalities:
obs_dict["proprio"], info_dict["proprio"] = self.get_proprioception()
return obs_dict, info_dict
def get_proprioception(self):
"""
Returns:
n-array: numpy array of all robot-specific proprioceptive observations.
dict: empty dictionary, a placeholder for additional info
"""
proprio_dict = self._get_proprioception_dict()
return np.concatenate([proprio_dict[obs] for obs in self._proprio_obs]), {}
def _get_proprioception_dict(self):
"""
Returns:
dict: keyword-mapped proprioception observations available for this robot.
Can be extended by subclasses
"""
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
joint_efforts = self.get_joint_efforts(normalized=False)
pos, ori = self.get_position(), self.get_rpy()
ori_2d = self.get_2d_orientation()
return dict(
joint_qpos=joint_positions,
joint_qpos_sin=np.sin(joint_positions),
joint_qpos_cos=np.cos(joint_positions),
joint_qvel=joint_velocities,
joint_qeffort=joint_efforts,
robot_pos=pos,
robot_ori_cos=np.cos(ori),
robot_ori_sin=np.sin(ori),
robot_2d_ori=ori_2d,
robot_2d_ori_cos=np.cos(ori_2d),
robot_2d_ori_sin=np.sin(ori_2d),
robot_lin_vel=self.get_linear_velocity(),
robot_ang_vel=self.get_angular_velocity(),
)
def _load_observation_space(self):
# We compile observation spaces from our sensors
obs_space = dict()
for sensor_name, sensor in self._sensors.items():
# Load the sensor observation space
obs_space[sensor_name] = sensor.load_observation_space()
# Have to handle proprio separately since it's not an actual sensor
if "proprio" in self._obs_modalities:
obs_space["proprio"] = self._build_obs_box_space(shape=(self.proprioception_dim,), low=-np.inf, high=np.inf, dtype=np.float64)
return obs_space
def add_obs_modality(self, modality):
"""
Adds observation modality @modality to this robot. Note: Should be one of omnigibson.sensors.ALL_SENSOR_MODALITIES
Args:
modality (str): Observation modality to add to this robot
"""
# Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
# then we add it
for sensor in self._sensors.values():
if modality in sensor.all_modalities:
sensor.add_modality(modality=modality)
def remove_obs_modality(self, modality):
"""
Remove observation modality @modality from this robot. Note: Should be one of
omnigibson.sensors.ALL_SENSOR_MODALITIES
Args:
modality (str): Observation modality to remove from this robot
"""
# Iterate over all sensors we own, and if the requested modality is a part of its possible valid modalities,
# then we remove it
for sensor in self._sensors.values():
if modality in sensor.all_modalities:
sensor.remove_modality(modality=modality)
def visualize_sensors(self):
"""
Renders this robot's key sensors, visualizing them via matplotlib plots
"""
frames = dict()
remaining_obs_modalities = deepcopy(self.obs_modalities)
for sensor in self.sensors.values():
obs, _ = sensor.get_obs()
sensor_frames = []
if isinstance(sensor, VisionSensor):
# We check for rgb, depth, normal, seg_instance
for modality in ["rgb", "depth", "normal", "seg_instance"]:
if modality in sensor.modalities:
ob = obs[modality]
if modality == "rgb":
# Ignore alpha channel, map to floats
ob = ob[:, :, :3] / 255.0
elif modality == "seg_instance":
# Map IDs to rgb
ob = segmentation_to_rgb(ob, N=256) / 255.0
elif modality == "normal":
# Re-map to 0 - 1 range
ob = (ob + 1.0) / 2.0
else:
# Depth, nothing to do here
pass
# Add this observation to our frames and remove the modality
sensor_frames.append((modality, ob))
remaining_obs_modalities -= {modality}
else:
# Warn user that we didn't find this modality
print(f"Modality {modality} is not active in sensor {sensor.name}, skipping...")
elif isinstance(sensor, ScanSensor):
# We check for occupancy_grid
occupancy_grid = obs.get("occupancy_grid", None)
if occupancy_grid is not None:
sensor_frames.append(("occupancy_grid", occupancy_grid))
remaining_obs_modalities -= {"occupancy_grid"}
# Map the sensor name to the frames for that sensor
frames[sensor.name] = sensor_frames
# Warn user that any remaining modalities are not able to be visualized
if len(remaining_obs_modalities) > 0:
print(f"Modalities: {remaining_obs_modalities} cannot be visualized, skipping...")
# Write all the frames to a plot
for sensor_name, sensor_frames in frames.items():
n_sensor_frames = len(sensor_frames)
if n_sensor_frames > 0:
fig, axes = plt.subplots(nrows=1, ncols=n_sensor_frames)
if n_sensor_frames == 1:
axes = [axes]
# Dump frames and set each subtitle
for i, (modality, frame) in enumerate(sensor_frames):
axes[i].imshow(frame)
axes[i].set_title(modality)
axes[i].set_axis_off()
# Set title
fig.suptitle(sensor_name)
plt.show(block=False)
# One final plot show so all the figures get rendered
plt.show()
def update_handles(self):
# Call super first
super().update_handles()
# If we have a dummy robot, also update its handles too
if self._dummy is not None:
self._dummy.update_handles()
def remove(self):
"""
Do NOT call this function directly to remove a prim - call og.sim.remove_prim(prim) for proper cleanup
"""
# Remove all sensors
for sensor in self._sensors.values():
sensor.remove()
# Run super
super().remove()
@property
def reset_joint_pos_aabb_extent(self):
"""
This is the aabb extent of the robot in the robot frame after resetting the joints.
Returns:
3-array: Axis-aligned bounding box extent of the robot base
"""
return self._reset_joint_pos_aabb_extent
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generate action data from teleoperation action data
Args:
teleop_action (TeleopAction): teleoperation action data
Returns:
np.ndarray: array of action data filled with update value
"""
return np.zeros(self.action_dim)
def get_generalized_gravity_forces(self, clone=True):
# Override method based on whether we're using a dummy or not
return self._dummy.get_generalized_gravity_forces(clone=clone) \
if self._use_dummy else super().get_generalized_gravity_forces(clone=clone)
@property
def sensors(self):
"""
Returns:
dict: Keyword-mapped dictionary mapping sensor names to BaseSensor instances owned by this robot
"""
return self._sensors
@property
def obs_modalities(self):
"""
Returns:
set of str: Observation modalities used for this robot (e.g.: proprio, rgb, etc.)
"""
assert self._loaded, "Cannot check observation modalities until we load this robot!"
return self._obs_modalities
@property
def proprioception_dim(self):
"""
Returns:
int: Size of self.get_proprioception() vector
"""
return len(self.get_proprioception()[0])
@property
def _default_sensor_config(self):
"""
Returns:
dict: default nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. See kwargs from omnigibson/sensors/__init__/create_sensor for more
details
Expected structure is as follows:
SensorClassName1:
modalities: ...
enabled: ...
noise_type: ...
noise_kwargs:
...
sensor_kwargs:
...
SensorClassName2:
modalities: ...
enabled: ...
noise_type: ...
noise_kwargs:
...
sensor_kwargs:
...
...
"""
return {
"VisionSensor": {
"enabled": True,
"noise_type": None,
"noise_kwargs": None,
"sensor_kwargs": {
"image_height": 128,
"image_width": 128,
},
},
"ScanSensor": {
"enabled": True,
"noise_type": None,
"noise_kwargs": None,
"sensor_kwargs": {
# Basic LIDAR kwargs
"min_range": 0.05,
"max_range": 10.0,
"horizontal_fov": 360.0,
"vertical_fov": 1.0,
"yaw_offset": 0.0,
"horizontal_resolution": 1.0,
"vertical_resolution": 1.0,
"rotation_rate": 0.0,
"draw_points": False,
"draw_lines": False,
# Occupancy Grid kwargs
"occupancy_grid_resolution": 128,
"occupancy_grid_range": 5.0,
"occupancy_grid_inner_radius": 0.5,
"occupancy_grid_local_link": None,
},
},
}
@property
def default_proprio_obs(self):
"""
Returns:
list of str: Default proprioception observations to use
"""
return []
@property
def model_name(self):
"""
Returns:
str: name of this robot model. usually corresponds to the class name of a given robot model
"""
return self.__class__.__name__
@property
@abstractmethod
def usd_path(self):
# For all robots, this must be specified a priori, before we actually initialize the USDObject constructor!
# So we override the parent implementation, and make this an abstract method
raise NotImplementedError
@property
def _dummy_usd_path(self):
"""
Returns:
str: Absolute path to the dummy USD to load for, e.g., computing gravity compensation
"""
# By default, this is just the normal usd path
return self.usd_path
@property
def urdf_path(self):
"""
Returns:
str: file path to the robot urdf file.
"""
raise NotImplementedError
@property
def _use_dummy(self):
"""
Returns:
bool: Whether the robot dummy should be loaded and used for some computations, e.g., gravity compensation
"""
# By default, only load if robot is not fixed base
return not self.fixed_base
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("BaseRobot")
return classes
@classproperty
def _cls_registry(cls):
# Global robot registry -- override super registry
global REGISTERED_ROBOTS
return REGISTERED_ROBOTS
| 27,335 | Python | 41.250386 | 159 | 0.588257 |
StanfordVL/OmniGibson/omnigibson/robots/behavior_robot.py | from abc import ABC
from collections import OrderedDict
import itertools
import numpy as np
import os
from scipy.spatial.transform import Rotation as R
from typing import List, Tuple, Iterable
import omnigibson as og
import omnigibson.lazy as lazy
import omnigibson.utils.transform_utils as T
from omnigibson.macros import gm, create_module_macros
from omnigibson.robots.locomotion_robot import LocomotionRobot
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
from omnigibson.robots.active_camera_robot import ActiveCameraRobot
from omnigibson.objects.usd_object import USDObject
m = create_module_macros(module_path=__file__)
# component suffixes for the 6-DOF arm joint names
m.COMPONENT_SUFFIXES = ['x', 'y', 'z', 'rx', 'ry', 'rz']
# Offset between the body and parts
m.HEAD_TO_BODY_OFFSET = [0, 0, -0.4]
m.HAND_TO_BODY_OFFSET = {
"left": [0, -0.15, -0.4],
"right": [0, 0.15, -0.4]
}
m.BODY_HEIGHT_OFFSET = 0.45
# Hand parameters
m.HAND_GHOST_HAND_APPEAR_THRESHOLD = 0.15
m.THUMB_2_POS = [0, -0.02, -0.05]
m.THUMB_1_POS = [0, -0.015, -0.02]
m.PALM_CENTER_POS = [0, -0.04, 0.01]
m.PALM_BASE_POS = [0, 0, 0.015]
m.FINGER_TIP_POS = [0, -0.025, -0.055]
# Hand link index constants
m.PALM_LINK_NAME = "palm"
m.FINGER_MID_LINK_NAMES = ("Tproximal", "Iproximal", "Mproximal", "Rproximal", "Pproximal")
m.FINGER_TIP_LINK_NAMES = ("Tmiddle", "Imiddle", "Mmiddle", "Rmiddle", "Pmiddle")
m.THUMB_LINK_NAME = "Tmiddle"
# joint parameters
m.BASE_JOINT_STIFFNESS = 1e8
m.BASE_JOINT_MAX_EFFORT = 7500
m.ARM_JOINT_STIFFNESS = 1e6
m.ARM_JOINT_MAX_EFFORT = 300
m.FINGER_JOINT_STIFFNESS = 1e3
m.FINGER_JOINT_MAX_EFFORT = 50
m.FINGER_JOINT_MAX_VELOCITY = np.pi * 4
class BehaviorRobot(ManipulationRobot, LocomotionRobot, ActiveCameraRobot):
"""
A humanoid robot that can be used in VR as an avatar. It has two hands, a body and a head with two cameras.
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=False,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="rgb",
proprio_obs="default",
# Unique to ManipulationRobot
grasping_mode="assisted",
# unique to BehaviorRobot
use_ghost_hands=True,
**kwargs
):
"""
Initializes BehaviorRobot
Args:
use_ghost_hands (bool): whether to show ghost hand when the robot hand is too far away from the controller
"""
super(BehaviorRobot, self).__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=True,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
grasping_mode=grasping_mode,
grasping_direction="upper",
**kwargs,
)
# setup eef parts
self.parts = OrderedDict()
for arm_name in self.arm_names:
self.parts[arm_name] = BRPart(
name=arm_name, parent=self, prim_path=f"{arm_name}_palm", eef_type="hand",
offset_to_body=m.HAND_TO_BODY_OFFSET[arm_name], **kwargs
)
self.parts["head"] = BRPart(
name="head", parent=self, prim_path="eye", eef_type="head",
offset_to_body=m.HEAD_TO_BODY_OFFSET, **kwargs
)
# whether to use ghost hands (visual markers to help visualize current vr hand pose)
self._use_ghost_hands = use_ghost_hands
# prim for the world_base_fixed_joint, used to reset the robot pose
self._world_base_fixed_joint_prim = None
# whether hand or body is in contact with other objects (we need this since checking contact list is costly)
self._part_is_in_contact = {hand_name: False for hand_name in self.arm_names + ["body"]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/behavior_robot/usd/BehaviorRobot.usd")
@property
def model_name(self):
return "BehaviorRobot"
@property
def n_arms(self):
return 2
@property
def arm_names(self):
return ["left", "right"]
@property
def eef_link_names(self):
dic = {arm: f"{arm}_{m.PALM_LINK_NAME}" for arm in self.arm_names}
dic["head"] = "head"
return dic
@property
def arm_link_names(self):
"""The head counts as a arm since it has the same 33 joint configuration"""
return {arm: [f"{arm}_{component}" for component in m.COMPONENT_SUFFIXES] for arm in self.arm_names + ['head']}
@property
def finger_link_names(self):
return {
arm: [f"{arm}_{link_name}" for link_name in itertools.chain(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
for arm in self.arm_names
}
@property
def base_joint_names(self):
return [f"base_{component}_joint" for component in m.COMPONENT_SUFFIXES]
@property
def arm_joint_names(self):
"""The head counts as a arm since it has the same 33 joint configuration"""
return {eef: [f"{eef}_{component}_joint" for component in m.COMPONENT_SUFFIXES] for eef in self.arm_names + ["head"]}
@property
def finger_joint_names(self):
return {
arm: (
# palm-to-proximal joints.
[f"{arm}_{to_link}__{arm}_{m.PALM_LINK_NAME}" for to_link in m.FINGER_MID_LINK_NAMES]
+
# proximal-to-tip joints.
[f"{arm}_{to_link}__{arm}_{from_link}" for from_link, to_link in zip(m.FINGER_MID_LINK_NAMES, m.FINGER_TIP_LINK_NAMES)]
)
for arm in self.arm_names
}
@property
def base_control_idx(self):
joints = list(self.joints.keys())
return [joints.index(joint) for joint in self.base_joint_names]
@property
def arm_control_idx(self):
joints = list(self.joints.keys())
return {
arm: [joints.index(f"{arm}_{component}_joint") for component in m.COMPONENT_SUFFIXES]
for arm in self.arm_names
}
@property
def gripper_control_idx(self):
joints = list(self.joints.values())
return {arm: [joints.index(joint) for joint in arm_joints] for arm, arm_joints in self.finger_joints.items()}
@property
def camera_control_idx(self):
joints = list(self.joints.keys())
return [joints.index(f"head_{component}_joint") for component in m.COMPONENT_SUFFIXES]
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def controller_order(self):
controllers = ["base", "camera"]
for arm_name in self.arm_names:
controllers += [f"arm_{arm_name}", f"gripper_{arm_name}"]
return controllers
@property
def _default_controllers(self):
controllers = {
"base": "JointController",
"camera": "JointController"
}
controllers.update({f"arm_{arm_name}": "JointController" for arm_name in self.arm_names})
controllers.update({f"gripper_{arm_name}": "MultiFingerGripperController" for arm_name in self.arm_names})
return controllers
@property
def _default_base_joint_controller_config(self):
return {
"name": "JointController",
"control_freq": self._control_freq,
"control_limits": self.control_limits,
"use_delta_commands": False,
"motor_type": "position",
"dof_idx": self.base_control_idx,
"command_input_limits": None,
}
@property
def _default_arm_joint_controller_configs(self):
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.arm_control_idx[arm],
"command_input_limits": None,
"use_delta_commands": False,
}
return dic
@property
def _default_gripper_multi_finger_controller_configs(self):
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "MultiFingerGripperController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_input_limits": None,
"mode": "independent",
}
return dic
@property
def _default_camera_joint_controller_config(self):
return {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.camera_control_idx,
"command_input_limits": None,
"use_delta_commands": False,
}
@property
def _default_gripper_joint_controller_configs(self):
"""
Returns:
dict: Dictionary mapping arm appendage name to default gripper joint controller config
to control this robot's gripper
"""
dic = {}
for arm in self.arm_names:
dic[arm] = {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "position",
"control_limits": self.control_limits,
"dof_idx": self.gripper_control_idx[arm],
"command_input_limits": None,
"use_delta_commands": False,
}
return dic
@property
def _default_controller_config(self):
controllers = {
"base": {"JointController": self._default_base_joint_controller_config},
"camera": {"JointController": self._default_camera_joint_controller_config},
}
controllers.update(
{
f"arm_{arm_name}": {"JointController": self._default_arm_joint_controller_configs[arm_name]}
for arm_name in self.arm_names
}
)
controllers.update(
{
f"gripper_{arm_name}": {
"MultiFingerGripperController": self._default_gripper_multi_finger_controller_configs[arm_name],
"JointController": self._default_gripper_joint_controller_configs[arm_name],
}
for arm_name in self.arm_names
}
)
return controllers
def load(self):
prim = super(BehaviorRobot, self).load()
for part in self.parts.values():
part.load()
return prim
def _post_load(self):
super()._post_load()
def _create_discrete_action_space(self):
raise ValueError("BehaviorRobot does not support discrete actions!")
def update_controller_mode(self):
super().update_controller_mode()
# set base joint properties
for joint_name in self.base_joint_names:
self.joints[joint_name].stiffness = m.BASE_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.BASE_JOINT_MAX_EFFORT
# set arm joint properties
for arm in self.arm_joint_names:
for joint_name in self.arm_joint_names[arm]:
self.joints[joint_name].stiffness = m.ARM_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.ARM_JOINT_MAX_EFFORT
# set finger joint properties
for arm in self.finger_joint_names:
for joint_name in self.finger_joint_names[arm]:
self.joints[joint_name].stiffness = m.FINGER_JOINT_STIFFNESS
self.joints[joint_name].max_effort = m.FINGER_JOINT_MAX_EFFORT
self.joints[joint_name].max_velocity = m.FINGER_JOINT_MAX_VELOCITY
@property
def base_footprint_link_name(self):
"""
Name of the actual root link that we are interested in.
"""
return "base"
@property
def base_footprint_link(self):
"""
Returns:
RigidPrim: base footprint link of this object prim
"""
return self._links[self.base_footprint_link_name]
def get_position_orientation(self):
return self.base_footprint_link.get_position_orientation()
def set_position_orientation(self, position=None, orientation=None):
super().set_position_orientation(position, orientation)
# Move the joint frame for the world_base_joint
if self._world_base_fixed_joint_prim is not None:
if position is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localPos0").Set(tuple(position))
if orientation is not None:
self._world_base_fixed_joint_prim.GetAttribute("physics:localRot0").Set(lazy.pxr.Gf.Quatf(*np.float_(orientation)[[3, 0, 1, 2]]))
@property
def assisted_grasp_start_points(self):
side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
return {
arm: [
GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_BASE_POS),
GraspingPoint(link_name=f"{arm}_{m.PALM_LINK_NAME}", position=m.PALM_CENTER_POS * side_coefficients[arm]),
GraspingPoint(
link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_1_POS * side_coefficients[arm]
),
GraspingPoint(
link_name=f"{arm}_{m.THUMB_LINK_NAME}", position=m.THUMB_2_POS * side_coefficients[arm]
),
]
for arm in self.arm_names
}
@property
def assisted_grasp_end_points(self):
side_coefficients = {"left": np.array([1, -1, 1]), "right": np.array([1, 1, 1])}
return {
arm: [
GraspingPoint(link_name=f"{arm}_{finger}", position=m.FINGER_TIP_POS * side_coefficients[arm])
for finger in m.FINGER_TIP_LINK_NAMES
]
for arm in self.arm_names
}
def update_hand_contact_info(self):
"""
Helper function that updates the contact info for the hands and body.
Can be used in the future with device haptics to provide collision feedback.
"""
self._part_is_in_contact["body"] = len(self.links["body"].contact_list()) > 0
for hand_name in self.arm_names:
self._part_is_in_contact[hand_name] = len(self.eef_links[hand_name].contact_list()) > 0 \
or np.any([len(finger.contact_list()) > 0 for finger in self.finger_links[hand_name]])
def teleop_data_to_action(self, teleop_action) -> np.ndarray:
"""
Generates an action for the BehaviorRobot to perform based on teleop action data dict.
Action space (all non-normalized values that will be clipped if they are too large)
Body:
- 6DOF pose - relative to body frame from previous frame
Eye:
- 6DOF pose - relative to body frame (where the body will be after applying this frame's action)
Left hand, right hand (in that order):
- 6DOF pose - relative to body frame (same as above)
- 10DOF gripper joint rotation
Total size: 44
"""
# Actions are stored as 1D numpy array
action = np.zeros(self.action_dim)
# Update body action space
if teleop_action.is_valid["head"]:
head_pos, head_orn = teleop_action.head[:3], T.euler2quat(teleop_action.head[3:6])
des_body_pos = head_pos - np.array([0, 0, m.BODY_HEIGHT_OFFSET])
des_body_rpy = np.array([0, 0, R.from_quat(head_orn).as_euler("XYZ")[2]])
des_body_orn = T.euler2quat(des_body_rpy)
else:
des_body_pos, des_body_orn = self.get_position_orientation()
des_body_rpy = R.from_quat(des_body_orn).as_euler("XYZ")
action[self.controller_action_idx["base"]] = np.r_[des_body_pos, des_body_rpy]
# Update action space for other VR objects
for part_name, eef_part in self.parts.items():
# Process local transform adjustments
hand_data = 0
if teleop_action.is_valid[part_name]:
des_world_part_pos, des_world_part_orn = teleop_action[part_name][:3], T.euler2quat(teleop_action[part_name][3:6])
if part_name in self.arm_names:
# compute gripper action
if hasattr(teleop_action, "hand_data"):
# hand tracking mode, compute joint rotations for each independent hand joint
hand_data = teleop_action.hand_data[part_name]
hand_data = hand_data[:, :2].T.reshape(-1)
else:
# controller mode, map trigger fraction from [0, 1] to [-1, 1] range.
hand_data = teleop_action[part_name][6] * 2 - 1
action[self.controller_action_idx[f"gripper_{part_name}"]] = hand_data
# update ghost hand if necessary
if self._use_ghost_hands:
self.parts[part_name].update_ghost_hands(des_world_part_pos, des_world_part_orn)
else:
des_world_part_pos, des_world_part_orn = eef_part.local_position_orientation
# Get local pose with respect to the new body frame
des_local_part_pos, des_local_part_orn = T.relative_pose_transform(
des_world_part_pos, des_world_part_orn, des_body_pos, des_body_orn
)
# apply shoulder position offset to the part transform to get final destination pose
des_local_part_pos, des_local_part_orn = T.pose_transform(
eef_part.offset_to_body, [0, 0, 0, 1], des_local_part_pos, des_local_part_orn
)
des_part_rpy = R.from_quat(des_local_part_orn).as_euler("XYZ")
controller_name = "camera" if part_name == "head" else "arm_" + part_name
action[self.controller_action_idx[controller_name]] = np.r_[des_local_part_pos, des_part_rpy]
# If we reset, teleop the robot parts to the desired pose
if part_name in self.arm_names and teleop_action.reset[part_name]:
self.parts[part_name].set_position_orientation(des_local_part_pos, des_part_rpy)
return action
class BRPart(ABC):
"""This is the interface that all BehaviorRobot eef parts must implement."""
def __init__(self, name: str, parent: BehaviorRobot, prim_path: str, eef_type: str, offset_to_body: List[float]) -> None:
"""
Create an object instance with the minimum information of class ID and rendering parameters.
Args:
name (str): unique name of this BR part
parent (BehaviorRobot): the parent BR object
prim_path (str): prim path to the root link of the eef
eef_type (str): type of eef. One of hand, head
offset_to_body (List[float]): relative POSITION offset between the rz link and the eef link.
"""
self.name = name
self.parent = parent
self.prim_path = prim_path
self.eef_type = eef_type
self.offset_to_body = offset_to_body
self.ghost_hand = None
self._root_link = None
def load(self) -> None:
self._root_link = self.parent.links[self.prim_path]
# setup ghost hand
if self.eef_type == "hand" and self.parent._use_ghost_hands:
gh_name = f"ghost_hand_{self.name}"
self.ghost_hand = USDObject(
prim_path=f"/World/{gh_name}",
usd_path=os.path.join(gm.ASSET_PATH, f"models/behavior_robot/usd/{gh_name}.usd"),
name=gh_name,
scale=0.001,
visible=False,
visual_only=True,
)
og.sim.import_object(self.ghost_hand)
@property
def local_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
"""
Get local position and orientation w.r.t. to the body
Returns:
Tuple[Array[x, y, z], Array[x, y, z, w]]
"""
return T.relative_pose_transform(*self.get_position_orientation(), *self.parent.get_position_orientation())
def get_position_orientation(self) -> Tuple[Iterable[float], Iterable[float]]:
"""
Get position and orientation in the world space
Returns:
Tuple[Array[x, y, z], Array[x, y, z, w]]
"""
return self._root_link.get_position_orientation()
def set_position_orientation(self, pos: Iterable[float], orn: Iterable[float]) -> None:
"""
Call back function to set the base's position
"""
self.parent.joints[f"{self.name}_x_joint"].set_pos(pos[0], drive=False)
self.parent.joints[f"{self.name}_y_joint"].set_pos(pos[1], drive=False)
self.parent.joints[f"{self.name}_z_joint"].set_pos(pos[2], drive=False)
self.parent.joints[f"{self.name}_rx_joint"].set_pos(orn[0], drive=False)
self.parent.joints[f"{self.name}_ry_joint"].set_pos(orn[1], drive=False)
self.parent.joints[f"{self.name}_rz_joint"].set_pos(orn[2], drive=False)
def update_ghost_hands(self, pos: Iterable[float], orn: Iterable[float]) -> None:
"""
Updates ghost hand to track real hand and displays it if the real and virtual hands are too far apart.
Args:
pos (Iterable[float]): list of positions [x, y, z]
orn (Iterable[float]): list of rotations [x, y, z, w]
"""
assert self.eef_type == "hand", "ghost hand is only valid for BR hand!"
# Ghost hand tracks real hand whether it is hidden or not
self.ghost_hand.set_position_orientation(pos, orn)
# If distance between hand and controller is greater than threshold,
# ghost hand appears
dist_to_real_controller = np.linalg.norm(pos - self.get_position_orientation()[0])
should_visible = dist_to_real_controller > m.HAND_GHOST_HAND_APPEAR_THRESHOLD
# Only toggle visibility if we are transition from hidden to unhidden, or the other way around
if self.ghost_hand.visible is not should_visible:
self.ghost_hand.visible = should_visible
| 23,460 | Python | 39.035836 | 145 | 0.587127 |
StanfordVL/OmniGibson/omnigibson/robots/franka_leap.py | import os
import numpy as np
from typing import Dict, Iterable
import omnigibson.utils.transform_utils as T
from omnigibson.macros import gm
from omnigibson.robots.manipulation_robot import ManipulationRobot, GraspingPoint
class FrankaLeap(ManipulationRobot):
"""
Franka Robot with Leap right hand
"""
def __init__(
self,
# Shared kwargs in hierarchy
name,
hand="right",
prim_path=None,
uuid=None,
scale=None,
visible=True,
visual_only=False,
self_collisions=True,
load_config=None,
fixed_base=True,
# Unique to USDObject hierarchy
abilities=None,
# Unique to ControllableObject hierarchy
control_freq=None,
controller_config=None,
action_type="continuous",
action_normalize=True,
reset_joint_pos=None,
# Unique to BaseRobot
obs_modalities="all",
proprio_obs="default",
sensor_config=None,
# Unique to ManipulationRobot
grasping_mode="physical",
**kwargs,
):
"""
Args:
name (str): Name for the object. Names need to be unique per scene
hand (str): One of {"left", "right"} - which hand to use, default is right
prim_path (None or str): global path in the stage to this object. If not specified, will automatically be
created at /World/<name>
uuid (None or int): Unique unsigned-integer identifier to assign to this object (max 8-numbers).
If None is specified, then it will be auto-generated
scale (None or float or 3-array): if specified, sets either the uniform (float) or x,y,z (3-array) scale
for this object. A single number corresponds to uniform scaling along the x,y,z axes, whereas a
3-array specifies per-axis scaling.
visible (bool): whether to render this object or not in the stage
visual_only (bool): Whether this object should be visual only (and not collide with any other objects)
self_collisions (bool): Whether to enable self collisions for this object
load_config (None or dict): If specified, should contain keyword-mapped values that are relevant for
loading this prim at runtime.
abilities (None or dict): If specified, manually adds specific object states to this object. It should be
a dict in the form of {ability: {param: value}} containing object abilities and parameters to pass to
the object state instance constructor.
control_freq (float): control frequency (in Hz) at which to control the object. If set to be None,
simulator.import_object will automatically set the control frequency to be 1 / render_timestep by default.
controller_config (None or dict): nested dictionary mapping controller name(s) to specific controller
configurations for this object. This will override any default values specified by this class.
action_type (str): one of {discrete, continuous} - what type of action space to use
action_normalize (bool): whether to normalize inputted actions. This will override any default values
specified by this class.
reset_joint_pos (None or n-array): if specified, should be the joint positions that the object should
be set to during a reset. If None (default), self._default_joint_pos will be used instead.
Note that _default_joint_pos are hardcoded & precomputed, and thus should not be modified by the user.
Set this value instead if you want to initialize the robot with a different rese joint position.
obs_modalities (str or list of str): Observation modalities to use for this robot. Default is "all", which
corresponds to all modalities being used.
Otherwise, valid options should be part of omnigibson.sensors.ALL_SENSOR_MODALITIES.
Note: If @sensor_config explicitly specifies `modalities` for a given sensor class, it will
override any values specified from @obs_modalities!
proprio_obs (str or list of str): proprioception observation key(s) to use for generating proprioceptive
observations. If str, should be exactly "default" -- this results in the default proprioception
observations being used, as defined by self.default_proprio_obs. See self._get_proprioception_dict
for valid key choices
sensor_config (None or dict): nested dictionary mapping sensor class name(s) to specific sensor
configurations for this object. This will override any default values specified by this class.
grasping_mode (str): One of {"physical", "assisted", "sticky"}.
If "physical", no assistive grasping will be applied (relies on contact friction + finger force).
If "assisted", will magnetize any object touching and within the gripper's fingers.
If "sticky", will magnetize any object touching the gripper's fingers.
kwargs (dict): Additional keyword arguments that are used for other super() calls from subclasses, allowing
for flexible compositions of various object subclasses (e.g.: Robot is USDObject + ControllableObject).
"""
self.hand = hand
# Run super init
super().__init__(
prim_path=prim_path,
name=name,
uuid=uuid,
scale=scale,
visible=visible,
fixed_base=fixed_base,
visual_only=visual_only,
self_collisions=self_collisions,
load_config=load_config,
abilities=abilities,
control_freq=control_freq,
controller_config=controller_config,
action_type=action_type,
action_normalize=action_normalize,
reset_joint_pos=reset_joint_pos,
obs_modalities=obs_modalities,
proprio_obs=proprio_obs,
sensor_config=sensor_config,
grasping_mode=grasping_mode,
grasping_direction="upper",
**kwargs,
)
@property
def model_name(self):
return f"FrankaLeap{self.hand.capitalize()}"
@property
def discrete_action_list(self):
# Not supported for this robot
raise NotImplementedError()
def _create_discrete_action_space(self):
# Fetch does not support discrete actions
raise ValueError("Franka does not support discrete actions!")
@property
def controller_order(self):
return ["arm_{}".format(self.default_arm), "gripper_{}".format(self.default_arm)]
@property
def _default_controllers(self):
controllers = super()._default_controllers
controllers["arm_{}".format(self.default_arm)] = "InverseKinematicsController"
controllers["gripper_{}".format(self.default_arm)] = "MultiFingerGripperController"
return controllers
@property
def _default_gripper_multi_finger_controller_configs(self):
conf = super()._default_gripper_multi_finger_controller_configs
conf[self.default_arm]["mode"] = "independent"
conf[self.default_arm]["command_input_limits"] = None
return conf
@property
def _default_joint_pos(self):
# position where the hand is parallel to the ground
return np.r_[[0.86, -0.27, -0.68, -1.52, -0.18, 1.29, 1.72], np.zeros(16)]
@property
def assisted_grasp_start_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"palm_center", position=[0, -0.025, 0.035]),
GraspingPoint(link_name=f"palm_center", position=[0, 0.03, 0.035]),
GraspingPoint(link_name=f"fingertip_4", position=[-0.0115, -0.07, -0.015]),
]}
@property
def assisted_grasp_end_points(self):
return {self.default_arm: [
GraspingPoint(link_name=f"fingertip_1", position=[-0.0115, -0.06, 0.015]),
GraspingPoint(link_name=f"fingertip_2", position=[-0.0115, -0.06, 0.015]),
GraspingPoint(link_name=f"fingertip_3", position=[-0.0115, -0.06, 0.015]),
]}
@property
def finger_lengths(self):
return {self.default_arm: 0.1}
@property
def arm_control_idx(self):
return {self.default_arm: np.arange(7)}
@property
def gripper_control_idx(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: np.array([8, 12, 16, 20, 7, 11, 15, 19, 9, 13, 17, 21, 10, 14, 18, 22])}
@property
def arm_link_names(self):
return {self.default_arm: [f"panda_link{i}" for i in range(8)]}
@property
def arm_joint_names(self):
return {self.default_arm: [f"panda_joint_{i+1}" for i in range(7)]}
@property
def eef_link_names(self):
return {self.default_arm: "palm_center"}
@property
def finger_link_names(self):
links = ["mcp_joint", "pip", "dip", "fingertip", "realtip"]
return {self.default_arm: [f"{link}_{i}" for i in range(1, 5) for link in links]}
@property
def finger_joint_names(self):
# thumb.proximal, ..., thumb.tip, ..., ring.tip
return {self.default_arm: [f"finger_joint_{i}" for i in [12, 13, 14, 15, 1, 0, 2, 3, 5, 4, 6, 7, 9, 8, 10, 11]]}
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, f"models/franka/franka_leap_{self.hand}.usd")
@property
def robot_arm_descriptor_yamls(self):
return {self.default_arm: os.path.join(gm.ASSET_PATH, "models/franka/franka_leap_description.yaml")}
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, f"models/franka/franka_leap_{self.hand}.urdf")
@property
def teleop_rotation_offset(self):
return {self.default_arm: T.euler2quat(np.array([0, np.pi, np.pi / 2]))}
| 10,090 | Python | 43.650442 | 122 | 0.629534 |
StanfordVL/OmniGibson/omnigibson/robots/locomotion_robot.py | from abc import abstractmethod
import numpy as np
from transforms3d.euler import euler2quat
from transforms3d.quaternions import qmult, quat2mat
from omnigibson.controllers import LocomotionController
from omnigibson.robots.robot_base import BaseRobot
from omnigibson.utils.python_utils import classproperty
class LocomotionRobot(BaseRobot):
"""
Robot that is is equipped with locomotive (navigational) capabilities.
Provides common interface for a wide variety of robots.
NOTE: controller_config should, at the minimum, contain:
base: controller specifications for the controller to control this robot's base (locomotion).
Should include:
- name: Controller to create
- <other kwargs> relevant to the controller being created. Note that all values will have default
values specified, but setting these individual kwargs will override them
"""
def _validate_configuration(self):
# We make sure that our base controller exists and is a locomotion controller
assert (
"base" in self._controllers
), "Controller 'base' must exist in controllers! Current controllers: {}".format(list(self._controllers.keys()))
assert isinstance(
self._controllers["base"], LocomotionController
), "Base controller must be a LocomotionController!"
# run super
super()._validate_configuration()
def _get_proprioception_dict(self):
dic = super()._get_proprioception_dict()
joint_positions = self.get_joint_positions(normalized=False)
joint_velocities = self.get_joint_velocities(normalized=False)
# Add base info
dic["base_qpos"] = joint_positions[self.base_control_idx]
dic["base_qpos_sin"] = np.sin(joint_positions[self.base_control_idx])
dic["base_qpos_cos"] = np.cos(joint_positions[self.base_control_idx])
dic["base_qvel"] = joint_velocities[self.base_control_idx]
return dic
@property
def default_proprio_obs(self):
obs_keys = super().default_proprio_obs
return obs_keys + ["base_qpos_sin", "base_qpos_cos", "robot_lin_vel", "robot_ang_vel"]
@property
def controller_order(self):
# By default, only base is supported
return ["base"]
@property
def _default_controllers(self):
# Always call super first
controllers = super()._default_controllers
# For best generalizability use, joint controller as default
controllers["base"] = "JointController"
return controllers
@property
def _default_base_joint_controller_config(self):
"""
Returns:
dict: Default base joint controller config to control this robot's base. Uses velocity
control by default.
"""
return {
"name": "JointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
"command_output_limits": "default",
"use_delta_commands": False,
}
@property
def _default_base_null_joint_controller_config(self):
"""
Returns:
dict: Default null joint controller config to control this robot's base i.e. dummy controller
"""
return {
"name": "NullJointController",
"control_freq": self._control_freq,
"motor_type": "velocity",
"control_limits": self.control_limits,
"dof_idx": self.base_control_idx,
"default_command": np.zeros(len(self.base_control_idx)),
"use_impedances": False,
}
@property
def _default_controller_config(self):
# Always run super method first
cfg = super()._default_controller_config
# Add supported base controllers
cfg["base"] = {
self._default_base_joint_controller_config["name"]: self._default_base_joint_controller_config,
self._default_base_null_joint_controller_config["name"]: self._default_base_null_joint_controller_config,
}
return cfg
def move_by(self, delta):
"""
Move robot base without physics simulation
Args:
delta (float):float], (x,y,z) cartesian delta base position
"""
new_pos = np.array(delta) + self.get_position()
self.set_position(position=new_pos)
def move_forward(self, delta=0.05):
"""
Move robot base forward without physics simulation
Args:
delta (float): delta base position forward
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([delta, 0, 0])))
def move_backward(self, delta=0.05):
"""
Move robot base backward without physics simulation
Args:
delta (float): delta base position backward
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([-delta, 0, 0])))
def move_left(self, delta=0.05):
"""
Move robot base left without physics simulation
Args:
delta (float): delta base position left
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([0, -delta, 0])))
def move_right(self, delta=0.05):
"""
Move robot base right without physics simulation
Args:
delta (float): delta base position right
"""
self.move_by(quat2mat(self.get_orientation()).dot(np.array([0, delta, 0])))
def turn_left(self, delta=0.03):
"""
Rotate robot base left without physics simulation
Args:
delta (float): delta angle to rotate the base left
"""
quat = self.get_orientation()
quat = qmult((euler2quat(-delta, 0, 0)), quat)
self.set_orientation(quat)
def turn_right(self, delta=0.03):
"""
Rotate robot base right without physics simulation
Args:
delta (float): angle to rotate the base right
"""
quat = self.get_orientation()
quat = qmult((euler2quat(delta, 0, 0)), quat)
self.set_orientation(quat)
@property
def base_action_idx(self):
controller_idx = self.controller_order.index("base")
action_start_idx = sum([self.controllers[self.controller_order[i]].command_dim for i in range(controller_idx)])
return np.arange(action_start_idx, action_start_idx + self.controllers["base"].command_dim)
@property
@abstractmethod
def base_control_idx(self):
"""
Returns:
n-array: Indices in low-level control vector corresponding to base joints.
"""
raise NotImplementedError
@classproperty
def _do_not_register_classes(cls):
# Don't register this class since it's an abstract template
classes = super()._do_not_register_classes
classes.add("LocomotionRobot")
return classes
| 7,069 | Python | 32.990384 | 120 | 0.618758 |
StanfordVL/OmniGibson/omnigibson/robots/husky.py | import os
import numpy as np
from omnigibson.macros import gm
from omnigibson.robots.locomotion_robot import LocomotionRobot
class Husky(LocomotionRobot):
"""
Husky robot
Reference: https://clearpathrobotics.com/, http://wiki.ros.org/Robots/Husky
"""
def _create_discrete_action_space(self):
raise ValueError("Husky does not support discrete actions!")
@property
def base_control_idx(self):
return np.array([0, 1, 2, 3])
@property
def _default_joint_pos(self):
return np.zeros(self.n_joints)
@property
def usd_path(self):
return os.path.join(gm.ASSET_PATH, "models/husky/husky/husky.usd")
@property
def urdf_path(self):
return os.path.join(gm.ASSET_PATH, "models/husky/husky.urdf")
| 782 | Python | 23.468749 | 79 | 0.671355 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.