task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#C1R
C1R
100_doors
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Euphoria
Euphoria
  --Arrays task for Rosetta Code wiki --User:Lnettnay   atom dummy --Arrays are sequences -- single dimensioned array of 10 elements sequence xarray = repeat(0,10) xarray[5] = 5 dummy = xarray[5] ? dummy   --2 dimensional array --5 sequences of 10 elements each sequence xyarray = repeat(repeat(0,10),5) xyarray[3][6] = 12 dummy = xyarray[3][6] ? dummy   --dynamic array use (all sequences can be modified at any time) sequence dynarray = {} for x = 1 to 10 do dynarray = append(dynarray, x * x) end for ? dynarray   for x = 1 to 10 do dynarray = prepend(dynarray, x) end for ? dynarray  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#PostScript
PostScript
  %Adding two complex numbers /addcomp{ /x exch def /y exch def /z [0 0] def z 0 x 0 get y 0 get add put z 1 x 1 get y 1 get add put z pstack }def   %Subtracting one complex number from another /subcomp{ /x exch def /y exch def /z [0 0] def z 0 x 0 get y 0 get sub put z 1 x 1 get y 1 get sub put z pstack }def   %Multiplying two complex numbers /mulcomp{ /x exch def /y exch def /z [0 0] def z 0 x 0 get y 0 get mul x 1 get y 1 get mul sub put z 1 x 1 get y 0 get mul x 0 get y 1 get mul add put z pstack }def   %Negating a complex number /negcomp{ /x exch def /z [0 0] def z 0 x 0 get neg put z 1 x 1 get neg put z pstack }def   %Inverting a complex number /invcomp{ /x exch def /z [0 0] def z 0 x 0 get x 0 get 2 exp x 1 get 2 exp add div put z 0 x 1 get neg x 0 get 2 exp x 1 get 2 exp add div put z pstack }def    
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#PowerShell
PowerShell
  class Complex { [Double]$x [Double]$y Complex() { $this.x = 0 $this.y = 0 } Complex([Double]$x, [Double]$y) { $this.x = $x $this.y = $y } [Double]abs2() {return $this.x*$this.x + $this.y*$this.y} [Double]abs() {return [math]::sqrt($this.abs2())} static [Complex]add([Complex]$m,[Complex]$n) {return [Complex]::new($m.x+$n.x, $m.y+$n.y)} static [Complex]mul([Complex]$m,[Complex]$n) {return [Complex]::new($m.x*$n.x - $m.y*$n.y, $m.x*$n.y + $n.x*$m.y)} [Complex]mul([Double]$k) {return [Complex]::new($k*$this.x, $k*$this.y)} [Complex]negate() {return $this.mul(-1)} [Complex]conjugate() {return [Complex]::new($this.x, -$this.y)} [Complex]inverse() {return $this.conjugate().mul(1/$this.abs2())} [String]show() { if(0 -ge $this.y) { return "$($this.x)+$($this.y)i" } else { return "$($this.x)$($this.y)i" } } static [String]show([Complex]$other) { return $other.show() } } $m = [complex]::new(3, 4) $n = [complex]::new(7, 6) "`$m: $($m.show())" "`$n: $($n.show())" "`$m + `$n: $([complex]::show([complex]::add($m,$n)))" "`$m * `$n: $([complex]::show([complex]::mul($m,$n)))" "negate `$m: $($m.negate().show())" "1/`$m: $([complex]::show($m.inverse()))" "conjugate `$m: $([complex]::show($m.conjugate()))"  
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Rust
Rust
use std::cmp::Ordering; use std::ops::{Add, AddAssign, Sub, SubAssign, Mul, MulAssign, Div, DivAssign, Neg};   fn gcd(a: i64, b: i64) -> i64 { match b { 0 => a, _ => gcd(b, a % b), } }   fn lcm(a: i64, b: i64) -> i64 { a / gcd(a, b) * b }   #[derive(Clone, Copy, Debug, Eq, PartialEq, Hash, Ord)] pub struct Rational { numerator: i64, denominator: i64, }   impl Rational { fn new(numerator: i64, denominator: i64) -> Self { let divisor = gcd(numerator, denominator); Rational { numerator: numerator / divisor, denominator: denominator / divisor, } } }   impl Add for Rational { type Output = Self;   fn add(self, other: Self) -> Self { let multiplier = lcm(self.denominator, other.denominator); Rational::new(self.numerator * multiplier / self.denominator + other.numerator * multiplier / other.denominator, multiplier) } }   impl AddAssign for Rational { fn add_assign(&mut self, other: Self) { *self = *self + other; } }   impl Sub for Rational { type Output = Self;   fn sub(self, other: Self) -> Self { self + -other } }   impl SubAssign for Rational { fn sub_assign(&mut self, other: Self) { *self = *self - other; } }   impl Mul for Rational { type Output = Self;   fn mul(self, other: Self) -> Self { Rational::new(self.numerator * other.numerator, self.denominator * other.denominator) } }   impl MulAssign for Rational { fn mul_assign(&mut self, other: Self) { *self = *self * other; } }   impl Div for Rational { type Output = Self;   fn div(self, other: Self) -> Self { self * Rational { numerator: other.denominator, denominator: other.numerator, } } }   impl DivAssign for Rational { fn div_assign(&mut self, other: Self) { *self = *self / other; } }   impl Neg for Rational { type Output = Self;   fn neg(self) -> Self { Rational { numerator: -self.numerator, denominator: self.denominator, } } }   impl PartialOrd for Rational { fn partial_cmp(&self, other: &Self) -> Option<Ordering> { (self.numerator * other.denominator).partial_cmp(&(self.denominator * other.numerator)) } }   impl<T: Into<i64>> From<T> for Rational { fn from(value: T) -> Self { Rational::new(value.into(), 1) } }   fn main() { let max = 1 << 19; for candidate in 2..max { let mut sum = Rational::new(1, candidate); for factor in 2..(candidate as f64).sqrt().ceil() as i64 { if candidate % factor == 0 { sum += Rational::new(1, factor); sum += Rational::new(1, candidate / factor); } }   if sum == 1.into() { println!("{} is perfect", candidate); } } }  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#VBScript
VBScript
  Function agm(a,g) Do Until a = tmp_a tmp_a = a a = (a + g)/2 g = Sqr(tmp_a * g) Loop agm = a End Function   WScript.Echo agm(1,1/Sqr(2))  
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Visual_Basic_.NET
Visual Basic .NET
Imports System.Math Imports System.Console   Module Module1   Function CalcAGM(ByVal a As Double, ByVal b As Double) As Double Dim c As Double, d As Double = 0, ld As Double = 1 While ld <> d : c = a : a = (a + b) / 2 : b = Sqrt(c * b) ld = d : d = a - b : End While : Return b End Function   Function DecSqRoot(ByVal v As Decimal) As Decimal Dim r As Decimal = CDec(Sqrt(CDbl(v))), t As Decimal = 0, d As Decimal = 0, ld As Decimal = 1 While ld <> d : t = v / r : r = (r + t) / 2 ld = d : d = t - r : End While : Return t End Function   Function CalcAGM(ByVal a As Decimal, ByVal b As Decimal) As Decimal Dim c As Decimal, d As Decimal = 0, ld As Decimal = 1 While ld <> d : c = a : a = (a + b) / 2 : b = DecSqRoot(c * b) ld = d : d = a - b : End While : Return b End Function   Sub Main(ByVal args As String()) WriteLine("Double result: {0}", CalcAGM(1.0, DecSqRoot(0.5))) WriteLine("Decimal result: {0}", CalcAGM(1D, DecSqRoot(0.5D))) If System.Diagnostics.Debugger.IsAttached Then ReadKey() End Sub   End Module
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#JavaScript
JavaScript
> Math.pow(0, 0); 1
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#jq
jq
def power(y): y as $y | if $y == 0 then 1 elif . == 0 then 0 else log * $y | exp end;
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Jsish
Jsish
puts(Math.pow(0,0));
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#11l
11l
F yinyang(n = 3) V radii = [1, 3, 6].map(i -> i * @n) V ranges = radii.map(r -> Array(-r .. r)) V squares = ranges.map(rnge -> multiloop(rnge, rnge, (x, y) -> (x, y))) V circles = zip(squares, radii).map((sqrpoints, radius) -> sqrpoints.filter((x, y) -> x*x + y*y <= @radius^2)) V m = Dict(squares.last, (x, y) -> ((x, y), ‘ ’)) L(x, y) circles.last m[(x, y)] = ‘*’ L(x, y) circles.last I x > 0 m[(x, y)] = ‘·’ L(x, y) circles[(len)-2] m[(x, y + 3 * n)] = ‘*’ m[(x, y - 3 * n)] = ‘·’ L(x, y) circles[(len)-3] m[(x, y + 3 * n)] = ‘·’ m[(x, y - 3 * n)] = ‘*’ R ranges.last.map(y -> reversed(@ranges.last).map(x -> @@m[(x, @y)]).join(‘’)).join("\n")   print(yinyang(2)) print(yinyang(1))
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program Ycombi64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   /*******************************************/ /* Structures */ /********************************************/ /* structure function*/ .struct 0 func_fn: // next element .struct func_fn + 8 func_f_: // next element .struct func_f_ + 8 func_num: .struct func_num + 8 func_fin:   /* Initialized data */ .data szMessStartPgm: .asciz "Program start \n" szMessEndPgm: .asciz "Program normal end.\n" szMessError: .asciz "\033[31mError Allocation !!!\n"   szFactorielle: .asciz "Function factorielle : \n" szFibonacci: .asciz "Function Fibonacci : \n" szCarriageReturn: .asciz "\n"   /* datas message display */ szMessResult: .ascii "Result value : @ \n"   /* UnInitialized data */ .bss sZoneConv: .skip 100 /* code section */ .text .global main main: // program start ldr x0,qAdrszMessStartPgm // display start message bl affichageMess adr x0,facFunc // function factorielle address bl YFunc // create Ycombinator mov x19,x0 // save Ycombinator ldr x0,qAdrszFactorielle // display message bl affichageMess mov x20,#1 // loop counter 1: // start loop mov x0,x20 bl numFunc // create number structure cmp x0,#-1 // allocation error ? beq 99f mov x1,x0 // structure number address mov x0,x19 // Ycombinator address bl callFunc // call ldr x0,[x0,#func_num] // load result ldr x1,qAdrsZoneConv // and convert ascii string bl conversion10S // decimal conversion ldr x0,qAdrszMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess // display message final   add x20,x20,#1 // increment loop counter cmp x20,#10 // end ? ble 1b // no -> loop /*********Fibonacci *************/ adr x0,fibFunc // function fibonacci address bl YFunc // create Ycombinator mov x19,x0 // save Ycombinator ldr x0,qAdrszFibonacci // display message bl affichageMess mov x20,#1 // loop counter 2: // start loop mov x0,x20 bl numFunc // create number structure cmp x0,#-1 // allocation error ? beq 99f mov x1,x0 // structure number address mov x0,x19 // Ycombinator address bl callFunc // call ldr x0,[x0,#func_num] // load result ldr x1,qAdrsZoneConv // and convert ascii string bl conversion10S ldr x0,qAdrszMessResult ldr x1,qAdrsZoneConv bl strInsertAtCharInc // insert result at @ character bl affichageMess add x20,x20,#1 // increment loop counter cmp x20,#10 // end ? ble 2b // no -> loop ldr x0,qAdrszMessEndPgm // display end message bl affichageMess b 100f 99: // display error message ldr x0,qAdrszMessError bl affichageMess 100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform system call qAdrszMessStartPgm: .quad szMessStartPgm qAdrszMessEndPgm: .quad szMessEndPgm qAdrszFactorielle: .quad szFactorielle qAdrszFibonacci: .quad szFibonacci qAdrszMessError: .quad szMessError qAdrszCarriageReturn: .quad szCarriageReturn qAdrszMessResult: .quad szMessResult qAdrsZoneConv: .quad sZoneConv /******************************************************************/ /* factorielle function */ /******************************************************************/ /* x0 contains the Y combinator address */ /* x1 contains the number structure */ facFunc: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // save Y combinator address ldr x0,[x1,#func_num] // load number cmp x0,#1 // > 1 ? bgt 1f // yes mov x0,#1 // create structure number value 1 bl numFunc b 100f 1: mov x3,x0 // save number sub x0,x0,#1 // decrement number bl numFunc // and create new structure number cmp x0,#-1 // allocation error ? beq 100f mov x1,x0 // new structure number -> param 1 ldr x0,[x2,#func_f_] // load function address to execute bl callFunc // call ldr x1,[x0,#func_num] // load new result mul x0,x1,x3 // and multiply by precedent bl numFunc // and create new structure number // and return her address in x0 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* fibonacci function */ /******************************************************************/ /* x0 contains the Y combinator address */ /* x1 contains the number structure */ fibFunc: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers stp x4,x5,[sp,-16]! // save registers mov x2,x0 // save Y combinator address ldr x0,[x1,#func_num] // load number cmp x0,#1 // > 1 ? bgt 1f // yes mov x0,#1 // create structure number value 1 bl numFunc b 100f 1: mov x3,x0 // save number sub x0,x0,#1 // decrement number bl numFunc // and create new structure number cmp x0,#-1 // allocation error ? beq 100f mov x1,x0 // new structure number -> param 1 ldr x0,[x2,#func_f_] // load function address to execute bl callFunc // call ldr x4,[x0,#func_num] // load new result sub x0,x3,#2 // new number - 2 bl numFunc // and create new structure number cmp x0,#-1 // allocation error ? beq 100f mov x1,x0 // new structure number -> param 1 ldr x0,[x2,#func_f_] // load function address to execute bl callFunc // call ldr x1,[x0,#func_num] // load new result add x0,x1,x4 // add two results bl numFunc // and create new structure number // and return her address in x0 100: ldp x4,x5,[sp],16 // restaur 2 registers ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* call function */ /******************************************************************/ /* x0 contains the address of the function */ /* x1 contains the address of the function 1 */ callFunc: stp x2,lr,[sp,-16]! // save registers ldr x2,[x0,#func_fn] // load function address to execute blr x2 // and call it ldp x2,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* create Y combinator function */ /******************************************************************/ /* x0 contains the address of the function */ YFunc: stp x1,lr,[sp,-16]! // save registers mov x1,#0 bl newFunc cmp x0,#-1 // allocation error ? beq 100f str x0,[x0,#func_f_] // store function and return in x0 100: ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* create structure number function */ /******************************************************************/ /* x0 contains the number */ numFunc: stp x1,lr,[sp,-16]! // save registers stp x2,x3,[sp,-16]! // save registers mov x2,x0 // save number mov x0,#0 // function null mov x1,#0 // function null bl newFunc cmp x0,#-1 // allocation error ? beq 100f str x2,[x0,#func_num] // store number in new structure 100: ldp x2,x3,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /******************************************************************/ /* new function */ /******************************************************************/ /* x0 contains the function address */ /* x1 contains the function address 1 */ newFunc: stp x1,lr,[sp,-16]! // save registers stp x3,x4,[sp,-16]! // save registers stp x5,x8,[sp,-16]! // save registers mov x4,x0 // save address mov x5,x1 // save adresse 1 // allocation place on the heap mov x0,#0 // allocation place heap mov x8,BRK // call system 'brk' svc #0 mov x6,x0 // save address heap for output string add x0,x0,#func_fin // reservation place one element mov x8,BRK // call system 'brk' svc #0 cmp x0,#-1 // allocation error beq 100f mov x0,x6 str x4,[x0,#func_fn] // store address str x5,[x0,#func_f_] str xzr,[x0,#func_num] // store zero to number 100: ldp x5,x8,[sp],16 // restaur 2 registers ldp x3,x4,[sp],16 // restaur 2 registers ldp x1,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#AppleScript
AppleScript
set n to 5 -- Size of zig-zag matrix (n^2 cells).   -- Create an empty matrix. set m to {} repeat with i from 1 to n set R to {} repeat with j from 1 to n set end of R to 0 end repeat set end of m to R end repeat   -- Populate the matrix in a zig-zag manner. set {x, y, v, d} to {1, 1, 0, 1} repeat while v < (n ^ 2) if 1 ≤ x and x ≤ n and 1 ≤ y and y ≤ n then set {m's item y's item x, x, y, v} to {v, x + d, y - d, v + 1} else if x > n then set {x, y, d} to {n, y + 2, -d} else if y > n then set {x, y, d} to {x + 2, n, -d} else if x < 1 then set {x, y, d} to {1, y, -d} else if y < 1 then set {x, y, d} to {x, 1, -d} end if end repeat --> R = {{0, 1, 5, 6, 14}, {2, 4, 7, 13, 15}, {3, 8, 12, 16, 21}, {9, 11, 17, 20, 22}, {10, 18, 19, 23, 24}}   -- Reformat the matrix into a table for viewing. repeat with i in m repeat with j in i set j's contents to (characters -(length of (n ^ 2 as string)) thru -1 of (" " & j)) as string end repeat set end of i to return end repeat return return & m as string
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Factor
Factor
USING: accessors assocs colors.constants combinators.short-circuit io kernel math prettyprint sequences sets ui ui.gadgets ui.gadgets.charts ui.gadgets.charts.lines ;   : yellowstone? ( n hs seq -- ? ) { [ drop in? not ] [ nip last gcd nip 1 = ] [ nip dup length 2 - swap nth gcd nip 1 > ] } 3&& ;   : next-yellowstone ( hs seq -- n ) [ 4 ] 2dip [ 3dup yellowstone? ] [ [ 1 + ] 2dip ] until 2drop ;   : next ( hs seq -- hs' seq' ) 2dup next-yellowstone [ suffix! ] [ pick adjoin ] bi ;   : <yellowstone> ( n -- seq ) [ HS{ 1 2 3 } clone dup V{ } set-like ] dip dup 3 <= [ head nip ] [ 3 - [ next ] times nip ] if ;     ! Show first 30 Yellowstone numbers.   "First 30 Yellowstone numbers:" print 30 <yellowstone> [ pprint bl ] each nl   ! Plot first 100 Yellowstone numbers.   chart new { { 0 100 } { 0 175 } } >>axes line new COLOR: blue >>color 100 <iota> 100 <yellowstone> zip >>data add-gadget "Yellowstone numbers" open-window
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Forth
Forth
: array create cells allot ; : th cells + ; \ some helper words   30 constant #yellow \ number of yellowstones   #yellow array y \ create array ( n1 n2 -- n3) : gcd dup if tuck mod recurse exit then drop ; : init 3 0 do i 1+ y i th ! loop ; ( --) : show cr #yellow 0 do y i th ? loop ; ( --) : gcd-y[] - cells y + @ over gcd ; ( k i n -- k gcd ) : loop1 begin 1+ over 2 gcd-y[] 1 = >r over 1 gcd-y[] 1 > r> or 0= until ; : loop2 over true swap 0 ?do over y i th @ = if 0= leave then loop ; : yellow #yellow 3 do i 3 begin loop1 loop2 until y rot th ! loop ; : main init yellow show ;   main
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#C.23
C#
using System; using System.Net; using System.Text.RegularExpressions; using System.Collections.Generic;   class YahooSearch { private string query; private string content; private int page;   const string yahoo = "http://search.yahoo.com/search?";   public YahooSearch(string query) : this(query, 0) { }   public YahooSearch(string query, int page) { this.query = query; this.page = page; this.content = new WebClient() .DownloadString( string.Format(yahoo + "p={0}&b={1}", query, this.page * 10 + 1) ); }   public YahooResult[] Results { get { List<YahooResult> results = new List<YahooResult>();   Func<string, string, string> substringBefore = (str, before) => { int iHref = str.IndexOf(before); return iHref < 0 ? "" : str.Substring(0, iHref); }; Func<string, string, string> substringAfter = (str, after) => { int iHref = str.IndexOf(after); return iHref < 0 ? "" : str.Substring(iHref + after.Length); }; Converter<string, string> getText = p => Regex.Replace(p, "<[^>]*>", x => "");   Regex rx = new Regex(@" <li> <div \s class=""res""> <div> <h3> <a \s (?'LinkAttributes'[^>]+)> (?'LinkText' .*?) (?></a>) </h3> </div> <div \s class=""abstr""> (?'Abstract' .*?) (?></div>) .*? (?></div>) </li>", RegexOptions.IgnorePatternWhitespace | RegexOptions.ExplicitCapture ); foreach (Match e in rx.Matches(this.content)) { string rurl = getText(substringBefore(substringAfter( e.Groups["LinkAttributes"].Value, @"href="""), @"""")); string rtitle = getText(e.Groups["LinkText"].Value); string rcontent = getText(e.Groups["Abstract"].Value);   results.Add(new YahooResult(rurl, rtitle, rcontent)); } return results.ToArray(); } }   public YahooSearch NextPage() { return new YahooSearch(this.query, this.page + 1); }   public YahooSearch GetPage(int page) { return new YahooSearch(this.query, page); } }   class YahooResult { public string URL { get; set; } public string Title { get; set; } public string Content { get; set; }   public YahooResult(string url, string title, string content) { this.URL = url; this.Title = title; this.Content = content; }   public override string ToString() { return string.Format("\nTitle: {0}\nLink: {1}\nText: {2}", Title, URL, Content); } }   // Usage:   class Prog { static void Main() { foreach (int page in new[] { 0, 1 }) { YahooSearch x = new YahooSearch("test", page);   foreach (YahooResult result in x.Results) { Console.WriteLine(result); } } } }  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Scheme
Scheme
  (import (scheme base) (scheme char) (scheme cxr) (scheme write) (srfi 1 lists))   ;; convert a string into a list of tokens (define (string->tokens str) (define (next-token chars) (cond ((member (car chars) (list #\+ #\- #\* #\/) char=?) (values (cdr chars) (cdr (assq (car chars) ; convert char for op into op procedure, using a look up list (list (cons #\+ +) (cons #\- -) (cons #\* *) (cons #\/ /)))))) ((member (car chars) (list #\( #\)) char=?) (values (cdr chars) (if (char=? (car chars) #\() 'open 'close))) (else ; read a multi-digit positive integer (let loop ((rem chars) (res 0)) (if (and (not (null? rem)) (char-numeric? (car rem))) (loop (cdr rem) (+ (* res 10) (- (char->integer (car rem)) (char->integer #\0)))) (values rem res)))))) ; (let loop ((chars (remove char-whitespace? (string->list str))) (tokens '())) (if (null? chars) (reverse tokens) (let-values (((remaining-chars token) (next-token chars))) (loop remaining-chars (cons token tokens))))))   ;; turn list of tokens into an AST ;; -- using recursive descent parsing to obey laws of precedence (define (parse tokens) (define (parse-factor tokens) (if (number? (car tokens)) (values (car tokens) (cdr tokens)) (let-values (((expr rem) (parse-expr (cdr tokens)))) (values expr (cdr rem))))) (define (parse-term tokens) (let-values (((left-expr rem) (parse-factor tokens))) (if (and (not (null? rem)) (member (car rem) (list * /))) (let-values (((right-expr remr) (parse-term (cdr rem)))) (values (list (car rem) left-expr right-expr) remr)) (values left-expr rem)))) (define (parse-part tokens) (let-values (((left-expr rem) (parse-term tokens))) (if (and (not (null? rem)) (member (car rem) (list + -))) (let-values (((right-expr remr) (parse-part (cdr rem)))) (values (list (car rem) left-expr right-expr) remr)) (values left-expr rem)))) (define (parse-expr tokens) (let-values (((expr rem) (parse-part tokens))) (values expr rem))) ; (let-values (((expr rem) (parse-expr tokens))) (if (null? rem) expr (error "Misformed expression"))))   ;; evaluate the AST, returning a number (define (eval-expression ast) (cond ((number? ast) ast) ((member (car ast) (list + - * /)) ((car ast) (eval-expression (cadr ast)) (eval-expression (caddr ast)))) (else (error "Misformed expression"))))   ;; parse and evaluate the given string (define (interpret str) (eval-expression (parse (string->tokens str))))   ;; running some examples (for-each (lambda (str) (display (string-append str " => " (number->string (interpret str)))) (newline)) '("1 + 2" "20+4*5" "1/2+5*(6-3)" "(1+3)/4-1" "(1 - 5) * 2 / (20 + 1)"))  
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Racket
Racket
#lang racket (require math)   (define sqrt5 (sqrt 5)) (define phi (* 0.5 (+ 1 sqrt5)))   ;; What is the nth fibonnaci number, shifted by 2 so that ;; F(0) = 1, F(1) = 2, ...? ;; (define (F n) (fibonacci (+ n 2)))   ;; What is the largest n such that F(n) <= m? ;; (define (F* m) (let ([n (- (inexact->exact (round (/ (log (* m sqrt5)) (log phi)))) 2)]) (if (<= (F n) m) n (sub1 n))))   (define (zeck->natural z) (for/sum ([i (reverse z)] [j (in-naturals)]) (* i (F j))))   (define (natural->zeck n) (if (zero? n) null (for/list ([i (in-range (F* n) -1 -1)]) (let ([f (F i)]) (cond [(>= n f) (set! n (- n f)) 1] [else 0])))))   ; Extend list to the right to a length of len with repeated padding elements ; (define (pad lst len [padding 0]) (append lst (make-list (- len (length lst)) padding)))   ; Strip padding elements from the left of the list ; (define (unpad lst [padding 0]) (cond [(null? lst) lst] [(equal? (first lst) padding) (unpad (rest lst) padding)] [else lst]))   ;; Run a filter function across a window in a list from left to right ;; (define (left->right width fn) (λ (lst) (let F ([a lst]) (if (< (length a) width) a (let ([f (fn (take a width))]) (cons (first f) (F (append (rest f) (drop a width)))))))))   ;; Run a function fn across a window in a list from right to left ;; (define (right->left width fn) (λ (lst) (let F ([a lst]) (if (< (length a) width) a (let ([f (fn (take-right a width))]) (append (F (append (drop-right a width) (drop-right f 1))) (list (last f))))))))   ;; (a0 a1 a2 ... an) -> (a0 a1 a2 ... (fn ... an)) ;; (define (replace-tail width fn) (λ (lst) (append (drop-right lst width) (fn (take-right lst width)))))   (define (rule-a lst) (match lst [(list 0 2 0 x) (list 1 0 0 (add1 x))] [(list 0 3 0 x) (list 1 1 0 (add1 x))] [(list 0 2 1 x) (list 1 1 0 x)] [(list 0 1 2 x) (list 1 0 1 x)] [else lst]))   (define (rule-a-tail lst) (match lst [(list x 0 3 0) (list x 1 1 1)] [(list x 0 2 0) (list x 1 0 1)] [(list 0 1 2 0) (list 1 0 1 0)] [(list x y 0 3) (list x y 1 1)] [(list x y 0 2) (list x y 1 0)] [(list x 0 1 2) (list x 1 0 0)] [else lst]))   (define (rule-b lst) (match lst [(list 0 1 1) (list 1 0 0)] [else lst]))   (define (rule-c lst) (match lst [(list 1 0 0) (list 0 1 1)] [(list 1 -1 0) (list 0 0 1)] [(list 1 -1 1) (list 0 0 2)] [(list 1 0 -1) (list 0 1 0)] [(list 2 0 0) (list 1 1 1)] [(list 2 -1 0) (list 1 0 1)] [(list 2 -1 1) (list 1 0 2)] [(list 2 0 -1) (list 1 1 0)] [else lst]))   (define (zeck-combine op y z [f identity]) (let* ([bits (max (add1 (length y)) (add1 (length z)) 4)] [f0 (λ (x) (pad (reverse x) bits))] [f1 (left->right 4 rule-a)] [f2 (replace-tail 4 rule-a-tail)] [f3 (right->left 3 rule-b)] [f4 (left->right 3 rule-b)]) ((compose1 unpad f4 f3 f2 f1 f reverse) (map op (f0 y) (f0 z)))))   (define (zeck+ y z) (zeck-combine + y z))   (define (zeck- y z) (when (zeck< y z) (error (format "~a" `(zeck-: cannot subtract since ,y < ,z)))) (zeck-combine - y z (left->right 3 rule-c)))   (define (zeck* y z) (define (M ry Zn Zn_1 [acc null]) (if (null? ry) acc (M (rest ry) (zeck+ Zn Zn_1) Zn (if (zero? (first ry)) acc (zeck+ acc Zn))))) (cond [(zeck< z y) (zeck* z y)] [(null? y) null]  ; 0 * z -> 0 [else (M (reverse y) z z)]))   (define (zeck-quotient/remainder y z) (define (M Zn acc) (if (zeck< y Zn) (drop-right acc 1) (M (zeck+ Zn (first acc)) (cons Zn acc)))) (define (D x m [acc null]) (if (null? m) (values (reverse acc) x) (let* ([v (first m)] [smaller (zeck< v x)] [bit (if smaller 1 0)] [x_ (if smaller (zeck- x v) x)]) (D x_ (rest m) (cons bit acc))))) (D y (M z (list z))))   (define (zeck-quotient y z) (let-values ([(quotient _) (zeck-quotient/remainder y z)]) quotient))   (define (zeck-remainder y z) (let-values ([(_ remainder) (zeck-quotient/remainder y z)]) remainder))   (define (zeck-add1 z) (zeck+ z '(1)))   (define (zeck= y z) (equal? (unpad y) (unpad z)))   (define (zeck< y z)  ; Compare equal-length unpadded zecks (define (LT a b) (if (null? a) #f (let ([a0 (first a)] [b0 (first b)]) (if (= a0 b0) (LT (rest a) (rest b)) (= a0 0)))))   (let* ([a (unpad y)] [len-a (length a)] [b (unpad z)] [len-b (length b)]) (cond [(< len-a len-b) #t] [(> len-a len-b) #f] [else (LT a b)])))   (define (zeck> y z) (not (or (zeck= y z) (zeck< y z))))     ;; Examples ;; (define (example op-name op a b) (let* ([y (natural->zeck a)] [z (natural->zeck b)] [x (op y z)] [c (zeck->natural x)]) (printf "~a ~a ~a = ~a ~a ~a = ~a = ~a\n" a op-name b y op-name z x c)))   (example '+ zeck+ 888 111) (example '- zeck- 888 111) (example '* zeck* 8 111) (example '/ zeck-quotient 9876 1000) (example '% zeck-remainder 9876 1000)  
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Raku
Raku
addition: +z subtraction: -z multiplication: *z division: /z (more of a divmod really) post increment: ++z post decrement: --z
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Phix
Phix
function isPartSum(sequence f, integer l, t) if t=0 then return true end if if l=0 then return false end if integer last = f[l] return (t>=last and isPartSum(f, l-1, t-last)) or isPartSum(f, l-1, t) end function function isZumkeller(integer n) sequence f = factors(n,1) integer t = sum(f) -- an odd sum cannot be split into two equal sums if remainder(t,2)=1 then return false end if -- if n is odd use 'abundant odd number' optimization if remainder(n,2)=1 then integer abundance := t - 2*n return abundance>0 and remainder(abundance,2)=0 end if -- if n and t both even check for any partition of t/2 return isPartSum(f, length(f), t/2) end function sequence tests = {{220,1,0,20,"%3d "}, {40,2,0,10,"%5d "}, {40,2,5,8,"%7d "}} integer lim, step, rem, cr; string fmt for t=1 to length(tests) do {lim, step, rem, cr, fmt} = tests[t] string odd = iff(step=1?"":"odd "), wch = iff(rem=0?"":"which don't end in 5 ") printf(1,"The first %d %sZumkeller numbers %sare:\n",{lim,odd,wch}) integer i = step+1, count = 0 while count<lim do if (rem=0 or remainder(i,10)!=rem) and isZumkeller(i) then printf(1,fmt,i) count += 1 if remainder(count,cr)=0 then puts(1,"\n") end if end if i += step end while printf(1,"\n") end for
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Erlang
Erlang
  -module(arbitrary). -compile([export_all]).   pow(B,E) when E > 0 -> pow(B,E,1).   pow(_,0,_) -> 0; pow(B,1,Acc) -> Acc * B; pow(B,P,Acc) when P rem 2 == 0 -> pow(B*B,P div 2, Acc); pow(B,P,Acc) -> pow(B,P-1,Acc*B).   test() -> I = pow(5,pow(4,pow(3,2))), S = integer_to_list(I), L = length(S), Prefix = lists:sublist(S,20), Suffix = lists:sublist(S,L-19,20), io:format("Length: ~b~nPrefix:~s~nSuffix:~s~n",[L,Prefix,Suffix]).  
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Phix
Phix
with javascript_semantics constant n = {{-1,0},{-1,1},{0,1},{1,1},{1,0},{1,-1},{0,-1},{-1,-1},{-1,0}}; function AB(sequence text, integer y, x, step) integer wtb = 0, bn = 0 integer prev = '#', next string p2468 = "" for i=1 to length(n) do next = text[y+n[i][1]][x+n[i][2]] wtb += (prev='.' and next<='#') bn += (i>1 and next<='#') if and_bits(i,1)=0 then p2468 = append(p2468,prev) end if prev = next end for if step=2 then -- make it p6842 p2468 = p2468[3..4]&p2468[1..2] end if return {wtb,bn,p2468} end function procedure Zhang_Suen(sequence text) integer wtb, bn, changed, changes string p2468 -- (p6842 for step 2) text = split(text,'\n') while 1 do changed = 0 for step=1 to 2 do changes = 0 for y=2 to length(text)-1 do for x=2 to length(text[y])-1 do if text[y][x]='#' then {wtb,bn,p2468} = AB(text,y,x,step) if wtb=1 and bn>=2 and bn<=6 and find('.',p2468[1..3]) and find('.',p2468[2..4])then changes = 1 text[y][x] = '!' -- (logically still black) end if end if end for end for if changes then for y=2 to length(text)-1 do text[y] = substitute(text[y],"!",".") end for changed = 1 end if end for if not changed then exit end if end while puts(1,join(text,"\n")) end procedure string small_rc = """ ................................ .#########.......########....... .###...####.....####..####...... .###....###.....###....###...... .###...####.....###............. .#########......###............. .###.####.......###....###...... .###..####..###.####..####.###.. .###...####.###..########..###.. ................................""" Zhang_Suen(small_rc)
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#FreeBASIC
FreeBASIC
' version 17-10-2016 ' compile with: fbc -s console   #Define max 92 ' max for Fibonacci number   Dim Shared As ULongInt fib(max)   fib(0) = 1 fib(1) = 1   For x As Integer = 2 To max fib(x) = fib(x-1) + fib(x-2) Next   Function num2zeck(n As Integer) As String   If n < 0 Then Print "Error: no negative numbers allowed" Beep : Sleep 5000,1 : End End If   If n < 2 Then Return Str(n)   Dim As String zeckendorf   For x As Integer = max To 1 Step -1 If fib(x) <= n Then zeckendorf = zeckendorf + "1" n = n - fib(x) Else zeckendorf = zeckendorf + "0" End If Next   return LTrim(zeckendorf, "0") ' get rid of leading zeroes End Function   ' ------=< MAIN >=------   Dim As Integer x, e Dim As String zeckendorf Print "number zeckendorf"   For x = 0 To 200000   zeckendorf = num2zeck(x) If x <= 20 Then Print x, zeckendorf   ' check for two consecutive Fibonacci numbers If InStr(zeckendorf, "11") <> 0 Then Print " Error: two consecutive Fibonacci numbers "; x, zeckendorf e = e +1 End If Next   Print If e = 0 Then Print " No Zeckendorf numbers with two consecutive Fibonacci numbers found" Else Print e; " error(s) found" End If     ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Cach.C3.A9_ObjectScript
Caché ObjectScript
  for i=1:1:100 { set doors(i) = 0 } for i=1:1:100 { for door=i:i:100 { Set doors(door)='doors(door) } } for i = 1:1:100 { if doors(i)=1 write i_": open",! }  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Explore
Explore
> Array.create 6 'A';; val it : char [] = [|'A'; 'A'; 'A'; 'A'; 'A'; 'A'|] > Array.init 8 (fun i -> i * 10) ;; val it : int [] = [|0; 10; 20; 30; 40; 50; 60; 70|] > let arr = [|0; 1; 2; 3; 4; 5; 6 |] ;; val arr : int [] = [|0; 1; 2; 3; 4; 5; 6|] > arr.[4];; val it : int = 4 > arr.[4] <- 65 ;; val it : unit = () > arr;; val it : int [] = [|0; 1; 2; 3; 65; 5; 6|]
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#PureBasic
PureBasic
Structure Complex real.d imag.d EndStructure   Procedure Add_Complex(*A.Complex, *B.Complex) Protected *R.Complex=AllocateMemory(SizeOf(Complex)) If *R *R\real=*A\real+*B\real *R\imag=*A\imag+*B\imag EndIf ProcedureReturn *R EndProcedure   Procedure Inv_Complex(*A.Complex) Protected *R.Complex=AllocateMemory(SizeOf(Complex)), denom.d If *R denom = *A\real * *A\real + *A\imag * *A\imag *R\real= *A\real / denom *R\imag=-*A\imag / denom EndIf ProcedureReturn *R EndProcedure   Procedure Mul_Complex(*A.Complex, *B.Complex) Protected *R.Complex=AllocateMemory(SizeOf(Complex)) If *R *R\real=*A\real * *B\real - *A\imag * *B\imag *R\imag=*A\real * *B\imag + *A\imag * *B\real EndIf ProcedureReturn *R EndProcedure   Procedure Neg_Complex(*A.Complex) Protected *R.Complex=AllocateMemory(SizeOf(Complex)) If *R *R\real=-*A\real *R\imag=-*A\imag EndIf ProcedureReturn *R EndProcedure   Procedure ShowAndFree(Header$, *Complex.Complex) If *Complex Protected.d i=*Complex\imag, r=*Complex\real Print(LSet(Header$,7)) Print("= "+StrD(r,3)) If i>=0: Print(" + ") Else: Print(" - ") EndIf PrintN(StrD(Abs(i),3)+"i") FreeMemory(*Complex) EndIf EndProcedure   If OpenConsole() Define.Complex a, b, *c a\real=1.0: a\imag=1.0 b\real=#PI: b\imag=1.2 *c=Add_Complex(a,b): ShowAndFree("a+b", *c) *c=Mul_Complex(a,b): ShowAndFree("a*b", *c) *c=Inv_Complex(a): ShowAndFree("Inv(a)", *c) *c=Neg_Complex(a): ShowAndFree("-a", *c) Print(#CRLF$+"Press ENTER to exit"):Input() EndIf
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Scala
Scala
class Rational(n: Long, d:Long) extends Ordered[Rational] { require(d!=0) private val g:Long = gcd(n, d) val numerator:Long = n/g val denominator:Long = d/g   def this(n:Long)=this(n,1)   def +(that:Rational):Rational=new Rational( numerator*that.denominator + that.numerator*denominator, denominator*that.denominator)   def -(that:Rational):Rational=new Rational( numerator*that.denominator - that.numerator*denominator, denominator*that.denominator)   def *(that:Rational):Rational= new Rational(numerator*that.numerator, denominator*that.denominator)   def /(that:Rational):Rational= new Rational(numerator*that.denominator, that.numerator*denominator)   def unary_~ :Rational=new Rational(denominator, numerator)   def unary_- :Rational=new Rational(-numerator, denominator)   def abs :Rational=new Rational(Math.abs(numerator), Math.abs(denominator))   override def compare(that:Rational):Int= (this.numerator*that.denominator-that.numerator*this.denominator).toInt   override def toString()=numerator+"/"+denominator   private def gcd(x:Long, y:Long):Long= if(y==0) x else gcd(y, x%y) }   object Rational { def apply(n: Long, d:Long)=new Rational(n,d) def apply(n:Long)=new Rational(n) implicit def longToRational(i:Long)=new Rational(i) }
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Vlang
Vlang
import math   const ep = 1e-14   fn agm(aa f64, gg f64) f64 { mut a, mut g := aa, gg for math.abs(a-g) > math.abs(a)*ep { t := a a, g = (a+g)*.5, math.sqrt(t*g) } return a }   fn main() { println(agm(1.0, 1.0/math.sqrt2)) }
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#Wren
Wren
var eps = 1e-14   var agm = Fn.new { |a, g| while ((a-g).abs > a.abs * eps) { var t = a a = (a+g)/2 g = (t*g).sqrt } return a }   System.print(agm.call(1, 1/2.sqrt))
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Julia
Julia
using Printf   const types = (Complex, Float64, Rational, Int, Bool)   for Tb in types, Te in types zb, ze = zero(Tb), zero(Te) r = zb ^ ze @printf("%10s ^ %-10s = %7s ^ %-7s = %-12s (%s)\n", Tb, Te, zb, ze, r, typeof(r)) end
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#K
K
  0^0 1.0  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Klingphix
Klingphix
:mypower dup not ( [ drop sign dup 0 equal [ drop 1 ] if ] [ power ] ) if ;   0 0 mypower print nl   "End " input
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#68000_Assembly
68000 Assembly
pushall: MOVEM.L D0-D7/A0-A6,-(SP) popall: MOVEM.L (SP)+,D0-D7/A0-A6 pushWord: MOVE.W <argument>,-(SP) popWord: MOVE.W (SP)+,<argument>
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#Action.21
Action!
INCLUDE "H6:REALMATH.ACT" INCLUDE "D2:CIRCLE.ACT" ;from the Action! Tool Kit   PROC YinYang(INT x BYTE y BYTE r) INT i,a,b,rr,r2,rr2,r5,rr5,y1,y2 REAL tmp1,tmp2   Circle(x,y,r,1)   rr=r*r r2=r/2 rr2=rr/4 Color=1 FOR i=0 TO r DO a=rr-i*i IntToReal(a,tmp1) Sqrt(tmp1,tmp2) a=RealToInt(tmp2)   b=rr2-(i-r2)*(i-r2) IntToReal(b,tmp1) Sqrt(tmp1,tmp2) b=RealToInt(tmp2)   Plot(x+b,y-i) DrawTo(x+a,y-i) Plot(x-b,y+i) DrawTo(x+a,y+i) OD   r5=r/5 rr5=rr/25 y1=y-r2 y2=y+r2 FOR i=0 TO r5 DO a=rr5-i*i IntToReal(a,tmp1) Sqrt(tmp1,tmp2) a=RealToInt(tmp2)   Color=1 Plot(x-a,y1-i) DrawTo(x+a,y1-i) Plot(x-a,y1+i) DrawTo(x+a,y1+i)   Color=0 Plot(x-a,y2-i) DrawTo(x+a,y2-i) Plot(x-a,y2+i) DrawTo(x+a,y2+i) OD RETURN   PROC Main() BYTE CH=$02FC,COLOR1=$02C5,COLOR2=$02C6   Graphics(8+16) MathInit() COLOR1=$00 COLOR2=$0F   YinYang(180,120,60) YinYang(100,40,30)   DO UNTIL CH#$FF OD CH=$FF RETURN
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#ALGOL_68
ALGOL 68
BEGIN MODE F = PROC(INT)INT; MODE Y = PROC(Y)F;   # compare python Y = lambda f: (lambda x: x(x)) (lambda y: f( lambda *args: y(y)(*args)))# PROC y = (PROC(F)F f)F: ( (Y x)F: x(x)) ( (Y z)F: f((INT arg )INT: z(z)( arg )));   PROC fib = (F f)F: (INT n)INT: CASE n IN n,n OUT f(n-1) + f(n-2) ESAC;   FOR i TO 10 DO print(y(fib)(i)) OD END
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#Applesoft_BASIC
Applesoft BASIC
100 S = 5 110 S2 = S ^ 2 : REM SQUARED 120 H = S2 / 2 : REM HALFWAY 130 S2 = S2 - 1 140 DX = 1 : REM INITIAL 150 DY = 0 : REM DIRECTION 160 N = S - 1 170 DIM A%(N, N)   200 FOR I = 0 TO H 210 A%(X, Y) = I 220 A%(N - X, N - Y) = S2 - I 230 X = X + DX 240 Y = Y + DY 250 IF Y = 0 THEN DY = DY + 1 : IF DY THEN DX = -DX 260 IF X = 0 THEN DX = DX + 1 : IF DX THEN DY = -DY 270 NEXT I   300 FOR Y = 0 TO N 310 FOR X = 0 TO N 320 IF X THEN PRINT TAB(X * (LEN(STR$(S2)) + 1) + 1); 330 PRINT A%(X, Y); 340 NEXT X 350 PRINT 360 NEXT Y
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#FreeBASIC
FreeBASIC
function gcd(a as uinteger, b as uinteger) as uinteger if b = 0 then return a return gcd( b, a mod b ) end function   dim as uinteger i, j, k, Y(1 to 100)   Y(1) = 1 : Y(2) = 2: Y(3) = 3   for i = 4 to 100 k = 3 print i do k += 1 if gcd( k, Y(i-2) ) = 1 orelse gcd( k, Y(i-1) ) > 1 then continue do for j = 1 to i-1 if Y(j)=k then continue do next j Y(i) = k exit do loop next i   for i = 1 to 30 print str(Y(i))+" "; next i print screen 13 for i = 1 to 100 pset (i, 200-Y(i)), 31 next i   while inkey="" wend end
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Go
Go
package main   import ( "fmt" "log" "os/exec" )   func gcd(x, y int) int { for y != 0 { x, y = y, x%y } return x }   func yellowstone(n int) []int { m := make(map[int]bool) a := make([]int, n+1) for i := 1; i < 4; i++ { a[i] = i m[i] = true } min := 4 for c := 4; c <= n; c++ { for i := min; ; i++ { if !m[i] && gcd(a[c-1], i) == 1 && gcd(a[c-2], i) > 1 { a[c] = i m[i] = true if i == min { min++ } break } } } return a[1:] }   func check(err error) { if err != nil { log.Fatal(err) } }   func main() { x := make([]int, 100) for i := 0; i < 100; i++ { x[i] = i + 1 } y := yellowstone(100) fmt.Println("The first 30 Yellowstone numbers are:") fmt.Println(y[:30]) g := exec.Command("gnuplot", "-persist") w, err := g.StdinPipe() check(err) check(g.Start()) fmt.Fprintln(w, "unset key; plot '-'") for i, xi := range x { fmt.Fprintf(w, "%d %d\n", xi, y[i]) } fmt.Fprintln(w, "e") w.Close() g.Wait() }
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#D
D
import std.stdio, std.exception, std.regex, std.algorithm, std.string, std.net.curl;   struct YahooResult { string url, title, content;   string toString() const { return "\nTitle: %s\nLink:  %s\nText:  %s" .format(title, url, content); } }   struct YahooSearch { private string query, content; private uint page;   this(in string query_, in uint page_ = 0) { this.query = query_; this.page = page_; this.content = "http://search.yahoo.com/search?p=%s&b=%d" .format(query, page * 10 + 1).get.assumeUnique; }   @property results() const { immutable re = `<li> <div \s class="res"> <div> <h3> <a \s (?P<linkAttributes> [^>]+)> (?P<linkText> .*?) </a> </h3> </div> <div \s class="abstr"> (?P<abstract> .*?) </div> .*? </div> </li>`;   const clean = (string s) => s.replace("<[^>]*>".regex("g"),"");   return content.match(re.regex("gx")).map!(m => YahooResult( clean(m.captures["linkAttributes"] .findSplitAfter(`href="`)[1] .findSplitBefore(`"`)[0]), clean(m.captures["linkText"]), clean(m.captures["abstract"]) )); }   YahooSearch nextPage() const { return YahooSearch(query, page + 1); } }   void main() { writefln("%(%s\n%)", "test".YahooSearch.results); }
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Sidef
Sidef
func evalArithmeticExp(s) {   func evalExp(s) {   func operate(s, op) { s.split(op).map{|c| Number(c) }.reduce(op) }   func add(s) { operate(s.sub(/^\+/,'').sub(/\++/,'+'), '+') }   func subtract(s) { s.gsub!(/(\+-|-\+)/,'-')   if (s ~~ /--/) { return(add(s.sub(/--/,'+'))) }   var b = s.split('-') b.len == 3 ? (-1*Number(b[1]) - Number(b[2]))  : operate(s, '-') }   s.gsub!(/[()]/,'').gsub!(/-\+/, '-')   var reM = /\*/ var reMD = %r"(\d+\.?\d*\s*[*/]\s*[+-]?\d+\.?\d*)"   var reA = /\d\+/ var reAS = /(-?\d+\.?\d*\s*[+-]\s*[+-]?\d+\.?\d*)/   while (var match = reMD.match(s)) { match[0] ~~ reM  ? s.sub!(reMD, operate(match[0], '*').to_s)  : s.sub!(reMD, operate(match[0], '/').to_s) }   while (var match = reAS.match(s)) { match[0] ~~ reA  ? s.sub!(reAS, add(match[0]).to_s)  : s.sub!(reAS, subtract(match[0]).to_s) }   return s }   var rePara = /(\([^\(\)]*\))/ s.split!.join!('').sub!(/^\+/,'')   while (var match = s.match(rePara)) { s.sub!(rePara, evalExp(match[0])) }   return Number(evalExp(s)) }
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Scala
Scala
  import scala.collection.mutable.ListBuffer   object ZeckendorfArithmetic extends App {     val elapsed: (=> Unit) => Long = f => { val s = System.currentTimeMillis   f   (System.currentTimeMillis - s) / 1000 } val add: (Z, Z) => Z = (z1, z2) => z1 + z2 val subtract: (Z, Z) => Z = (z1, z2) => z1 - z2 val multiply: (Z, Z) => Z = (z1, z2) => z1 * z2 val divide: (Z, Z) => Option[Z] = (z1, z2) => z1 / z2 val modulo: (Z, Z) => Option[Z] = (z1, z2) => z1 % z2 val ops = Map(("+", add), ("-", subtract), ("*", multiply), ("/", divide), ("%", modulo)) val calcs = List( (Z("101"), "+", Z("10100")) , (Z("101"), "-", Z("10100")) , (Z("101"), "*", Z("10100")) , (Z("101"), "/", Z("10100")) , (Z("-1010101"), "+", Z("10100")) , (Z("-1010101"), "-", Z("10100")) , (Z("-1010101"), "*", Z("10100")) , (Z("-1010101"), "/", Z("10100")) , (Z("1000101010"), "+", Z("10101010")) , (Z("1000101010"), "-", Z("10101010")) , (Z("1000101010"), "*", Z("10101010")) , (Z("1000101010"), "/", Z("10101010")) , (Z("10100"), "+", Z("1010")) , (Z("100101"), "-", Z("100")) , (Z("1010101010101010101"), "+", Z("-1010101010101")) , (Z("1010101010101010101"), "-", Z("-1010101010101")) , (Z("1010101010101010101"), "*", Z("-1010101010101")) , (Z("1010101010101010101"), "/", Z("-1010101010101")) , (Z("1010101010101010101"), "%", Z("-1010101010101")) , (Z("1010101010101010101"), "+", Z("101010101010101")) , (Z("1010101010101010101"), "-", Z("101010101010101")) , (Z("1010101010101010101"), "*", Z("101010101010101")) , (Z("1010101010101010101"), "/", Z("101010101010101")) , (Z("1010101010101010101"), "%", Z("101010101010101")) , (Z("10101010101010101010"), "+", Z("1010101010101010")) , (Z("10101010101010101010"), "-", Z("1010101010101010")) , (Z("10101010101010101010"), "*", Z("1010101010101010")) , (Z("10101010101010101010"), "/", Z("1010101010101010")) , (Z("10101010101010101010"), "%", Z("1010101010101010")) , (Z("1010"), "%", Z("10")) , (Z("1010"), "%", Z("-10")) , (Z("-1010"), "%", Z("10")) , (Z("-1010"), "%", Z("-10")) , (Z("100"), "/", Z("0")) , (Z("100"), "%", Z("0")) ) val iadd: (BigInt, BigInt) => BigInt = (a, b) => a + b val isub: (BigInt, BigInt) => BigInt = (a, b) => a - b   // just for result checking:   import Z._   val imul: (BigInt, BigInt) => BigInt = (a, b) => a * b val idiv: (BigInt, BigInt) => Option[BigInt] = (a, b) => if (b == 0) None else Some(a / b) val imod: (BigInt, BigInt) => Option[BigInt] = (a, b) => if (b == 0) None else Some(a % b) val iops = Map(("+", iadd), ("-", isub), ("*", imul), ("/", idiv), ("%", imod))   case class Z(var zs: String) {   import Z._   require((zs.toSet -- Set('-', '0', '1') == Set()) && (!zs.contains("11")))   //--- fa(summand1.z,summand2.z) -------------------------- val fa: (BigInt, BigInt) => BigInt = (z1, z2) => { val v = z1.toString.toCharArray.map(_.asDigit).reverse.padTo(5, 0).zipAll(z2.toString.toCharArray.map(_.asDigit).reverse, 0, 0) val arr1 = (v.map(p => p._1 + p._2) :+ 0).reverse (0 to arr1.length - 4) foreach { i => //stage1 val a = arr1.slice(i, i + 4).toList val b = a.foldRight("")("" + _ + _) dropRight 1 val a1 = b match { case "020" => List(1, 0, 0, a(3) + 1) case "030" => List(1, 1, 0, a(3) + 1) case "021" => List(1, 1, 0, a(3)) case "012" => List(1, 0, 1, a(3)) case _ => a } 0 to 3 foreach { j => arr1(j + i) = a1(j) } } val arr2 = arr1.foldRight("")("" + _ + _) .replace("0120", "1010").replace("030", "111").replace("003", "100").replace("020", "101") .replace("003", "100").replace("012", "101").replace("021", "110") .replace("02", "10").replace("03", "11") .reverse.toArray (0 to arr2.length - 3) foreach { i => //stage2, step1 val a = arr2.slice(i, i + 3).toList val b = a.foldRight("")("" + _ + _) val a1 = b match { case "110" => List('0', '0', '1') case _ => a } 0 to 2 foreach { j => arr2(j + i) = a1(j) } } val arr3 = arr2.foldRight("")("" + _ + _).concat("0").reverse.toArray (0 to arr3.length - 3) foreach { i => //stage2, step2 val a = arr3.slice(i, i + 3).toList val b = a.foldRight("")("" + _ + _) val a1 = b match { case "011" => List('1', '0', '0') case _ => a } 0 to 2 foreach { j => arr3(j + i) = a1(j) } } BigInt(arr3.foldRight("")("" + _ + _)) } //--- fs(minuend.z,subtrahend.z) ------------------------- val fs: (BigInt, BigInt) => BigInt = (min, sub) => { val zmvr = min.toString.toCharArray.map(_.asDigit).reverse val zsvr = sub.toString.toCharArray.map(_.asDigit).reverse.padTo(zmvr.length, 0) val v = zmvr.zipAll(zsvr, 0, 0).reverse val last = v.length - 1 val zma = zmvr.reverse.toArray   val zsa = zsvr.reverse.toArray for (i <- (0 to last).reverse) { val e = zma(i) - zsa(i) if (e < 0) { zma(i - 1) = zma(i - 1) - 1 zma(i) = 0 val part = Z(((i to last).map(zma(_))).foldRight("")("" + _ + _)) val carry = Z("1".padTo(last - i, "0").foldRight("")("" + _ + _)) val sum = part + carry   val sums = sum.z.toString (1 to sum.size) foreach { j => zma(last - sum.size + j) = sums(j - 1).asDigit } if (zma(i - 1) < 0) { for (j <- (0 until i).reverse) { if (zma(j) < 0) { zma(j - 1) = zma(j - 1) - 1 zma(j) = 0 val part = Z(((j to last).map(zma(_))).foldRight("")("" + _ + _)) val carry = Z("1".padTo(last - j, "0").foldRight("")("" + _ + _)) val sum = part + carry   val sums = sum.z.toString (1 to sum.size) foreach { k => zma(last - sum.size + k) = sums(k - 1).asDigit } } } } } else zma(i) = e zsa(i) = 0 } BigInt(zma.foldRight("")("" + _ + _)) } //--- fm(multiplicand.z,multplier.z) --------------------- val fm: (BigInt, BigInt) => BigInt = (mc, mp) => { val mct = mt(Z(mc.toString)) val mpxi = mp.toString.reverse.toCharArray.map(_.asDigit).zipWithIndex.filter(_._1 != 0).map(_._2) mpxi.foldRight(Z("0"))((fi, sum) => sum + mct(fi)).z } //--- fd(dividend.z,divisor.z) --------------------------- val fd: (BigInt, BigInt) => BigInt = (dd, ds) => { val dst = dt(Z(dd.toString), Z(ds.toString)).reverse var diff = Z(dd.toString) val zd = ListBuffer[String]() 0 until dst.length foreach { i => if (dst(i) > diff) zd += "0" else { diff = diff - dst(i)   zd += "1" } } BigInt(zd.mkString) } val fasig: (Z, Z) => Int = (z1, z2) => if (z1.z.abs > z2.z.abs) z1.z.signum else z2.z.signum val fssig: (Z, Z) => Int = (z1, z2) => if ((z1.z.abs > z2.z.abs && z1.z.signum > 0) || (z1.z.abs < z2.z.abs && z1.z.signum < 0)) 1 else -1 var z: BigInt = BigInt(zs)   override def toString: String = "" + z + "Z(i:" + z2i(this) + ")"   def size: Int = z.abs.toString.length   def ++ : Z = { val za = this + Z("1")   this.zs = za.zs   this.z = za.z   this }   def +(that: Z): Z = if (this == Z("0")) that else if (that == Z("0")) this else if (this.z.signum == that.z.signum) Z((fa(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * this.z.signum).toString) else if (this.z.abs == that.z.abs) Z("0") else Z((fs(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * fasig(this, that)).toString)   def -- : Z = { val zs = this - Z("1")   this.zs = zs.zs   this.z = zs.z   this }   def -(that: Z): Z = if (this == Z("0")) Z((that.z * (-1)).toString) else if (that == Z("0")) this else if (this.z.signum != that.z.signum) Z((fa(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * this.z.signum).toString) else if (this.z.abs == that.z.abs) Z("0") else Z((fs(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * fssig(this, that)).toString)   def %(that: Z): Option[Z] = if (that == Z("0")) None else if (this == Z("0")) Some(Z("0")) else if (that == Z("1")) Some(Z("0")) else if (this.z.abs < that.z.abs) Some(this) else if (this.z == that.z) Some(Z("0")) else this / that match { case None => None   case Some(z) => Some(this - z * that) }   def *(that: Z): Z = if (this == Z("0") || that == Z("0")) Z("0") else if (this == Z("1")) that else if (that == Z("1")) this else Z((fm(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * this.z.signum * that.z.signum).toString)   def /(that: Z): Option[Z] = if (that == Z("0")) None else if (this == Z("0")) Some(Z("0")) else if (that == Z("1")) Some(Z("1")) else if (this.z.abs < that.z.abs) Some(Z("0")) else if (this.z == that.z) Some(Z("1")) else Some(Z((fd(this.z.abs.max(that.z.abs), this.z.abs.min(that.z.abs)) * this.z.signum * that.z.signum).toString))   def <(that: Z): Boolean = this.z < that.z   def <=(that: Z): Boolean = this.z <= that.z   def >(that: Z): Boolean = this.z > that.z   def >=(that: Z): Boolean = this.z >= that.z   }   object Z { // only for comfort and result checking: val fibs: LazyList[BigInt] = { def series(i: BigInt, j: BigInt): LazyList[BigInt] = i #:: series(j, i + j)   series(1, 0).tail.tail.tail } val z2i: Z => BigInt = z => z.z.abs.toString.toCharArray.map(_.asDigit).reverse.zipWithIndex.map { case (v, i) => v * fibs(i) }.foldRight(BigInt(0))(_ + _) * z.z.signum   var fmts: Map[Z, List[Z]] = Map(Z("0") -> List[Z](Z("0"))) //map of Fibonacci multiples table of divisors   // get division table (division weight vector) def dt(dd: Z, ds: Z): List[Z] = { val wv = new ListBuffer[Z] wv ++= mt(ds) var zs = ds.z.abs.toString val upper = dd.z.abs.toString while ((zs.length < upper.length)) { wv += (wv.toList.last + wv.toList.reverse.tail.head)   zs = "1" + zs } wv.toList }   // get multiply table from fmts def mt(z: Z): List[Z] = { fmts.getOrElse(z, Nil) match { case Nil => val e = mwv(z) fmts = fmts + (z -> e) e case l => l } }   // multiply weight vector def mwv(z: Z): List[Z] = { val wv = new ListBuffer[Z] wv += z wv += (z + z) var zs = "11" val upper = z.z.abs.toString while ((zs.length < upper.length)) { wv += (wv.toList.last + wv.toList.reverse.tail.head)   zs = "1" + zs } wv.toList } }   println("elapsed time: " + elapsed { calcs foreach { case (op1, op, op2) => println("" + op1 + " " + op + " " + op2 + " = " + { (ops(op)) (op1, op2) match { case None => None   case Some(z) => z   case z => z } } .ensuring { x => (iops(op)) (z2i(op1), z2i(op2)) match { case None => None == x   case Some(i) => i == z2i(x.asInstanceOf[Z])   case i => i == z2i(x.asInstanceOf[Z]) } }) } } + " sec" )   }  
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#PicoLisp
PicoLisp
(de propdiv (N) (make (for I N (and (=0 (% N I)) (link I)) ) ) ) (de sum? (G L) (cond ((=0 G) T) ((= (car L) G) T) ((cdr L) (if (> (car L) G) (sum? G (cdr L)) (or (sum? (- G (car L)) (cdr L)) (sum? G (cdr L)) ) ) ) ) ) (de zum? (N) (let (L (propdiv N) S (sum prog L)) (and (not (bit? 1 S)) (if (bit? 1 N) (let A (- S (* 2 N)) (and (gt0 A) (not (bit? 1 A))) ) (sum? (- (/ S 2) (car L)) (cdr L) ) ) ) ) ) (zero C) (for (I 2 (> 220 C) (inc I)) (when (zum? I) (prin (align 3 I) " ") (inc 'C) (and (=0 (% C 20)) (prinl) ) ) ) (prinl) (zero C) (for (I 1 (> 40 C) (inc 'I 2)) (when (zum? I) (prin (align 9 I) " ") (inc 'C) (and (=0 (% C 8)) (prinl) ) ) ) (prinl) (zero C) # cheater (for (I 81079 (> 40 C) (inc 'I 2)) (when (and (<> 5 (% I 10)) (zum? I)) (prin (align 9 I) " ") (inc 'C) (and (=0 (% C 8)) (prinl) ) ) )
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Python
Python
from sympy import divisors   from sympy.combinatorics.subsets import Subset   def isZumkeller(n): d = divisors(n) s = sum(d) if not s % 2 and max(d) <= s/2: for x in range(1, 2**len(d)): if sum(Subset.unrank_binary(x, d).subset) == s/2: return True   return False       def printZumkellers(N, oddonly=False): nprinted = 0 for n in range(1, 10**5): if (oddonly == False or n % 2) and isZumkeller(n): print(f'{n:>8}', end='') nprinted += 1 if nprinted % 10 == 0: print() if nprinted >= N: return     print("220 Zumkeller numbers:") printZumkellers(220) print("\n\n40 odd Zumkeller numbers:") printZumkellers(40, True)  
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#F.23
F#
let () = let answer = 5I **(int (4I ** (int (3I ** 2)))) let sans = answer.ToString() printfn "Length = %d, digits %s ... %s" sans.Length (sans.Substring(0,20)) (sans.Substring(sans.Length-20)) ;; Length = 183231, digits 62060698786608744707 ... 92256259918212890625
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Factor
Factor
USING: formatting kernel math.functions math.parser sequences ; IN: rosettacode.bignums   : test-bignums ( -- ) 5 4 3 2 ^ ^ ^ number>string [ 20 head ] [ 20 tail* ] [ length ] tri "5^4^3^2 is %s...%s and has %d digits\n" printf ;
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#PL.2FI
PL/I
zhang: procedure options (main); /* 8 July 2014 */   declare pic(10) bit(32) initial ( '00000000000000000000000000000000'b, '01111111110000000111111110000000'b, '01110001111000001111001111000000'b, '01110000111000001110000111000000'b, '01110001111000001110000000000000'b, '01111111110000001110000000000000'b, '01110111100000001110000111000000'b, '01110011110011101111001111011100'b, '01110001111011100111111110011100'b, '00000000000000000000000000000000'b ); declare image (10,32) bit(1) defined pic; declare status (10,32) fixed decimal (1); declare changes bit(1); declare (i, j, k, m, n) fixed binary;   m = hbound(image,1); n = hbound(image,2);   call display;   /* Pixel labelling for pixels surrounding P1, co-ordinates (i,j). */ /* P9 P2 P3 */ /* P8 P1 P4 */ /* P7 P6 P5 */   do k = 1 to 10 until (^changes); changes = '0'b; /* Set conditions as follows: */ /* (0) The pixel is black and has eight neighbours */ /* (1) 2 < = B(P1) < = 6 */ /* (2) A(P1) = 1 */ /* (3) At least one of P2 and P4 and P6 is white */ /* (4) At least one of P4 and P6 and P8 is white */ status = -1; do i = 2 to m-1; do j = 2 to n-1; if image(i,j) then if B(i,j) >= 2 & B(i,j) <= 6 then if A(i,j) = 1 then if ^image(i-1,j) | ^image(i,j+1) | ^image(i+1,j) then if ^image(i,j+1) | ^image(i+1,j) | ^image(i,j-1) then status(i,j) = 4; end; end; /* Having determined a status for every bit in the image, */ /* change those bits to white. */ do i = 2 to m-1; do j = 2 to n-1; if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end; end; end;   /* Set conditions as follows: */ /* (0) The pixel is black and has eight neighbours */ /* (1) 2 < = B(P1) < = 6 */ /* (2) A(P1) = 1 */ /* (3) At least one of P2 and P4 and P8 is white */ /* (4) At least one of P2 and P6 and P8 is white */ status = -1; do i = 2 to m-1; do j = 2 to n-1; if image(i,j) then if B(i,j) >= 2 & B(i,j) <= 6 then if A(i,j) = 1 then if ^image(i-1,j) | ^image(i,j+1) | ^image(i,j-1) then if ^image(i-1,j) | ^image(i+1,j) | ^image(i,j-1) then status(i,j) = 4; end; end; /* Having determined a status for every bit in the image, */ /* change those bits to white. */ do i = 2 to m-1; do j = 2 to n-1; if status(i,j) ^= -1 then do; image(i,j) = '0'b; changes = '1'b; end; end; end;   end; /* of the "until" loop */   put skip list ('Final image after ' || trim(k) || ' iterations:'); call display;   display: procedure; declare (i, j) fixed binary; declare c character (1);   do i = 1 to m; put skip edit ('row:', i) (A, F(3)); do j = 1 to n; if image(i,j) then c = '.'; else c = ' '; put edit (c) (A); end; end; put skip; end;   /* Returns the number of transitions from white to black from P2 through P9 and P2. */ A: procedure (i,j) returns (fixed binary); declare (i,j) fixed binary nonassignable; declare n(2:10) bit(1);   n(2) = image(i-1,j); n(3) = image(i-1,j+1); n(4) = image(i, j+1); n(5) = image(i+1,j+1); n(6) = image(i+1,j); n(7) = image(i+1,j-1); n(8) = image(i,j-1); n(9) = image(i-1,j-1); n(10) = image(i-1,j);   return ( tally(string(n), '01'b) ); end A;   /* Count the pixel neighbors of P1 that are black */ B: procedure (i, j) returns (fixed binary); declare (i,j) fixed binary nonassignable; declare s fixed binary;   s = image(i-1,j-1) + image(i-1,j) + image(i-1,j+1); s = s + image(i,j-1) + image(i,j+1); return ( s + image(i+1,j-1) + image(i+1,j) + image(i+1,j+1) ); end B;   end zhang;
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Python
Python
# -*- coding: utf-8 -*-   # Example from [http://nayefreza.wordpress.com/2013/05/11/zhang-suen-thinning-algorithm-java-implementation/ this blog post]. beforeTxt = '''\ 1100111 1100111 1100111 1100111 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1100110 1111110 0000000\ '''   # Thanks to [http://www.network-science.de/ascii/ this site] and vim for these next two examples smallrc01 = '''\ 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000\ '''   rc01 = '''\ 00000000000000000000000000000000000000000000000000000000000 01111111111111111100000000000000000001111111111111000000000 01111111111111111110000000000000001111111111111111000000000 01111111111111111111000000000000111111111111111111000000000 01111111100000111111100000000001111111111111111111000000000 00011111100000111111100000000011111110000000111111000000000 00011111100000111111100000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111111111111110000000000111111100000000000000000000000 00011111111111111111000000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000111111100000000000000000000000 00011111100000111111100000000011111110000000111111000000000 01111111100000111111100000000001111111111111111111000000000 01111111100000111111101111110000111111111111111111011111100 01111111100000111111101111110000001111111111111111011111100 01111111100000111111101111110000000001111111111111011111100 00000000000000000000000000000000000000000000000000000000000\ '''   def intarray(binstring): '''Change a 2D matrix of 01 chars into a list of lists of ints''' return [[1 if ch == '1' else 0 for ch in line] for line in binstring.strip().split()]   def chararray(intmatrix): '''Change a 2d list of lists of 1/0 ints into lines of 1/0 chars''' return '\n'.join(''.join(str(p) for p in row) for row in intmatrix)   def toTxt(intmatrix): '''Change a 2d list of lists of 1/0 ints into lines of '#' and '.' chars''' return '\n'.join(''.join(('#' if p else '.') for p in row) for row in intmatrix)   def neighbours(x, y, image): '''Return 8-neighbours of point p1 of picture, in order''' i = image x1, y1, x_1, y_1 = x+1, y-1, x-1, y+1 #print ((x,y)) return [i[y1][x], i[y1][x1], i[y][x1], i[y_1][x1], # P2,P3,P4,P5 i[y_1][x], i[y_1][x_1], i[y][x_1], i[y1][x_1]] # P6,P7,P8,P9   def transitions(neighbours): n = neighbours + neighbours[0:1] # P2, ... P9, P2 return sum((n1, n2) == (0, 1) for n1, n2 in zip(n, n[1:]))   def zhangSuen(image): changing1 = changing2 = [(-1, -1)] while changing1 or changing2: # Step 1 changing1 = [] for y in range(1, len(image) - 1): for x in range(1, len(image[0]) - 1): P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image) if (image[y][x] == 1 and # (Condition 0) P4 * P6 * P8 == 0 and # Condition 4 P2 * P4 * P6 == 0 and # Condition 3 transitions(n) == 1 and # Condition 2 2 <= sum(n) <= 6): # Condition 1 changing1.append((x,y)) for x, y in changing1: image[y][x] = 0 # Step 2 changing2 = [] for y in range(1, len(image) - 1): for x in range(1, len(image[0]) - 1): P2,P3,P4,P5,P6,P7,P8,P9 = n = neighbours(x, y, image) if (image[y][x] == 1 and # (Condition 0) P2 * P6 * P8 == 0 and # Condition 4 P2 * P4 * P8 == 0 and # Condition 3 transitions(n) == 1 and # Condition 2 2 <= sum(n) <= 6): # Condition 1 changing2.append((x,y)) for x, y in changing2: image[y][x] = 0 #print changing1 #print changing2 return image     if __name__ == '__main__': for picture in (beforeTxt, smallrc01, rc01): image = intarray(picture) print('\nFrom:\n%s' % toTxt(image)) after = zhangSuen(image) print('\nTo thinned:\n%s' % toTxt(after))
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Go
Go
package main   import "fmt"   func main() { for i := 0; i <= 20; i++ { fmt.Printf("%2d %7b\n", i, zeckendorf(i)) } }   func zeckendorf(n int) int { // initial arguments of fib0 = 1 and fib1 = 1 will produce // the Fibonacci sequence {1, 2, 3,..} on the stack as successive // values of fib1. _, set := zr(1, 1, n, 0) return set }   func zr(fib0, fib1, n int, bit uint) (remaining, set int) { if fib1 > n { return n, 0 } // recurse. // construct sequence on the way in, construct ZR on the way out. remaining, set = zr(fib1, fib0+fib1, n, bit+1) if fib1 <= remaining { set |= 1 << bit remaining -= fib1 } return }
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Ceylon
Ceylon
shared void run() { print("Open doors (naive): ``naive()`` Open doors (optimized): ``optimized()``");   }   shared {Integer*} naive(Integer count = 100) { variable value doors = [ for (_ in 1..count) closed ]; for (step in 1..count) { doors = [for (i->door in doors.indexed) let (index = i+1) if (step == 1 || step.divides(index)) then door.toggle() else door ]; } return doors.indexesWhere((door) => door == opened).map(1.plusInteger); }   shared {Integer*} optimized(Integer count = 100) => { for (i in 1..count) i*i }.takeWhile(count.notSmallerThan);     shared abstract class Door(shared actual String string) of opened | closed { shared formal Door toggle(); } object opened extends Door("opened") { toggle() => closed; } object closed extends Door("closed") { toggle() => opened; }
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#F.23
F#
> Array.create 6 'A';; val it : char [] = [|'A'; 'A'; 'A'; 'A'; 'A'; 'A'|] > Array.init 8 (fun i -> i * 10) ;; val it : int [] = [|0; 10; 20; 30; 40; 50; 60; 70|] > let arr = [|0; 1; 2; 3; 4; 5; 6 |] ;; val arr : int [] = [|0; 1; 2; 3; 4; 5; 6|] > arr.[4];; val it : int = 4 > arr.[4] <- 65 ;; val it : unit = () > arr;; val it : int [] = [|0; 1; 2; 3; 65; 5; 6|]
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Python
Python
>>> z1 = 1.5 + 3j >>> z2 = 1.5 + 1.5j >>> z1 + z2 (3+4.5j) >>> z1 - z2 1.5j >>> z1 * z2 (-2.25+6.75j) >>> z1 / z2 (1.5+0.5j) >>> - z1 (-1.5-3j) >>> z1.conjugate() (1.5-3j) >>> abs(z1) 3.3541019662496847 >>> z1 ** z2 (-1.1024829553277784-0.38306415117199333j) >>> z1.real 1.5 >>> z1.imag 3.0 >>>
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Scheme
Scheme
; simply prints all the perfect numbers (do ((candidate 2 (+ candidate 1))) ((>= candidate (expt 2 19))) (let ((sum (/ 1 candidate))) (do ((factor 2 (+ factor 1))) ((>= factor (sqrt candidate))) (if (= 0 (modulo candidate factor)) (set! sum (+ sum (/ 1 factor) (/ factor candidate))))) (if (= 1 (denominator sum)) (begin (display candidate) (newline)))))
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#XPL0
XPL0
include c:\cxpl\codesi; real A, A1, G; [Format(0, 16); A:= 1.0; G:= 1.0/sqrt(2.0); repeat A1:= (A+G)/2.0; G:= sqrt(A*G); A:= A1; RlOut(0, A); RlOut(0, G); RlOut(0, A-G); CrLf(0); until A=G; ]
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#zkl
zkl
a:=1.0; g:=1.0/(2.0).sqrt(); while(not a.closeTo(g,1.0e-15)){ a1:=(a+g)/2.0; g=(a*g).sqrt(); a=a1; println(a," ",g," ",a-g); }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Kotlin
Kotlin
// version 1.0.6   fun main(args: Array<String>) { println("0 ^ 0 = ${Math.pow(0.0, 0.0)}") }
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Lambdatalk
Lambdatalk
  {pow 0 0} -> 1 {exp 0 0} -> 1  
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#Ada
Ada
with Ada.Text_IO; use Ada.Text_IO; procedure Zebra is type Content is (Beer, Coffee, Milk, Tea, Water, Danish, English, German, Norwegian, Swedish, Blue, Green, Red, White, Yellow, Blend, BlueMaster, Dunhill, PallMall, Prince, Bird, Cat, Dog, Horse, Zebra); type Test is (Drink, Person, Color, Smoke, Pet); type House is (One, Two, Three, Four, Five); type Street is array (Test'Range, House'Range) of Content; type Alley is access all Street;   procedure Print (mat : Alley) is begin for H in House'Range loop Put(H'Img&": "); for T in Test'Range loop Put(T'Img&"="&mat(T,H)'Img&" "); end loop; New_Line; end loop; end Print;   function FinalChecks (mat : Alley) return Boolean is function Diff (A, B : Content; CA , CB : Test) return Integer is begin for H1 in House'Range loop for H2 in House'Range loop if mat(CA,H1) = A and mat(CB,H2) = B then return House'Pos(H1) - House'Pos(H2); end if; end loop; end loop; end Diff; begin if abs(Diff(Norwegian, Blue, Person, Color)) = 1 and Diff(Green, White, Color, Color) = -1 and abs(Diff(Horse, Dunhill, Pet, Smoke)) = 1 and abs(Diff(Water, Blend, Drink, Smoke)) = 1 and abs(Diff(Blend, Cat, Smoke, Pet)) = 1 then return True; end if; return False; end FinalChecks;   function Constrained (mat : Alley; atest : Natural) return Boolean is begin -- Tests seperated into levels for speed, not strictly necessary -- As such, the program finishes in around ~0.02s case Test'Val (atest) is when Drink => -- Drink if mat (Drink, Three) /= Milk then return False; end if; return True; when Person => -- Drink+Person for H in House'Range loop if (mat(Person,H) = Norwegian and H /= One) or (mat(Person,H) = Danish and mat(Drink,H) /= Tea) then return False; end if; end loop; return True; when Color => -- Drink+People+Color for H in House'Range loop if (mat(Person,H) = English and mat(Color,H) /= Red) or (mat(Drink,H) = Coffee and mat(Color,H) /= Green) then return False; end if; end loop; return True; when Smoke => -- Drink+People+Color+Smoke for H in House'Range loop if (mat(Color,H) = Yellow and mat(Smoke,H) /= Dunhill) or (mat(Smoke,H) = BlueMaster and mat(Drink,H) /= Beer) or (mat(Person,H) = German and mat(Smoke,H) /= Prince) then return False; end if; end loop; return True; when Pet => -- Drink+People+Color+Smoke+Pet for H in House'Range loop if (mat(Person,H) = Swedish and mat(Pet,H) /= Dog) or (mat(Smoke,H) = PallMall and mat(Pet,H) /= Bird) then return False; end if; end loop; return FinalChecks(mat); -- Do the next-to checks end case; end Constrained;   procedure Solve (mat : Alley; t, n : Natural) is procedure Swap (I, J : Natural) is temp : constant Content := mat (Test'Val (t), House'Val (J)); begin mat (Test'Val (t), House'Val (J)) := mat (Test'Val (t), House'Val (I)); mat (Test'Val (t), House'Val (I)) := temp; end Swap; begin if n = 1 and Constrained (mat, t) then -- test t passed if t < 4 then Solve (mat, t + 1, 5); -- Onto next test else Print (mat); return; -- Passed and t=4 means a solution end if; end if; for i in 0 .. n - 1 loop -- The permutations part Solve (mat, t, n - 1); if n mod 2 = 1 then Swap (0, n - 1); else Swap (i, n - 1); end if; end loop; end Solve;   myStreet : aliased Street; myAlley : constant Alley := myStreet'Access; begin for i in Test'Range loop for j in House'Range loop -- Init Matrix myStreet (i,j) := Content'Val(Test'Pos(i)*5 + House'Pos(j)); end loop; end loop; Solve (myAlley, 0, 5); -- start at test 0 with 5 options end Zebra;
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B */ /* program xpathXml64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   .equ NBMAXELEMENTS, 100   /*******************************************/ /* Structures */ /********************************************/ /* structure xmlNode*/ .struct 0 xmlNode_private: // application data .struct xmlNode_private + 8 xmlNode_type: // type number, must be second ! .struct xmlNode_type + 8 xmlNode_name: // the name of the node, or the entity .struct xmlNode_name + 8 xmlNode_children: // parent->childs link .struct xmlNode_children + 8 xmlNode_last: // last child link .struct xmlNode_last + 8 xmlNode_parent: // child->parent link .struct xmlNode_parent + 8 xmlNode_next: // next sibling link .struct xmlNode_next + 8 xmlNode_prev: // previous sibling link .struct xmlNode_prev + 8 xmlNode_doc: // the containing document .struct xmlNode_doc + 8 xmlNode_ns: // pointer to the associated namespace .struct xmlNode_ns + 8 xmlNode_content: // the content .struct xmlNode_content + 8 xmlNode_properties: // properties list .struct xmlNode_properties + 8 xmlNode_nsDef: // namespace definitions on this node .struct xmlNode_nsDef + 8 xmlNode_psvi: // for type/PSVI informations .struct xmlNode_psvi + 8 xmlNode_line: // line number .struct xmlNode_line + 4 xmlNode_extra: // extra data for XPath/XSLT .struct xmlNode_extra + 4 xmlNode_fin: /********************************************/ /* structure xmlNodeSet*/ .struct 0 xmlNodeSet_nodeNr: // number of nodes in the set .struct xmlNodeSet_nodeNr + 4 xmlNodeSet_nodeMax: // size of the array as allocated .struct xmlNodeSet_nodeMax + 4 xmlNodeSet_nodeTab: // array of nodes in no particular order .struct xmlNodeSet_nodeTab + 8 xmlNodeSet_fin: /********************************************/ /* structure xmlXPathObject*/ .struct 0 xmlPathObj_type: // .struct xmlPathObj_type + 8 xmlPathObj_nodesetval: // .struct xmlPathObj_nodesetval + 8 xmlPathObj_boolval: // .struct xmlPathObj_boolval + 8 xmlPathObj_floatval: // .struct xmlPathObj_floatval + 8 xmlPathObj_stringval: // .struct xmlPathObj_stringval + 8 xmlPathObj_user: // .struct xmlPathObj_user + 8 xmlPathObj_index: // .struct xmlPathObj_index + 8 xmlPathObj_usex2: // .struct xmlPathObj_usex2 + 8 xmlPathObj_index2: // .struct xmlPathObj_index2 + 8 /*********************************/ /* Initialized data */ /*********************************/ .data szMessEndpgm: .asciz "\nNormal end of program.\n" szMessDisVal: .asciz "\nDisplay set values.\n" szMessDisArea: .asciz "\nDisplay area values.\n" szFileName: .asciz "testXml.xml" szMessError: .asciz "Error detected !!!!. \n"     szLibName: .asciz "name" szLibPrice: .asciz "//price" szLibExtName: .asciz "//name" szCarriageReturn: .asciz "\n"     /*********************************/ /* UnInitialized data */ /*********************************/ .bss .align 4 tbExtract: .skip 8 * NBMAXELEMENTS // result extract area /*********************************/ /* code section */ /*********************************/ .text .global main main: // entry of program ldr x0,qAdrszFileName bl xmlParseFile // create doc cbz x0,99f // error ? mov x19,x0 // doc address mov x0,x19 // doc bl xmlDocGetRootElement // get root bl xmlFirstElementChild // get first section bl xmlFirstElementChild // get first item bl xmlFirstElementChild // get first name bl xmlNodeGetContent // extract content bl affichageMess // for display ldr x0,qAdrszCarriageReturn bl affichageMess   ldr x0,qAdrszMessDisVal bl affichageMess mov x0,x19 ldr x1,qAdrszLibPrice // extract prices bl extractValue mov x0,x19 ldr x1,qAdrszLibExtName // extract names bl extractValue ldr x0,qAdrszMessDisArea bl affichageMess mov x4,#0 // display string result area ldr x5,qAdrtbExtract 1: ldr x0,[x5,x4,lsl #3] cbz x0,2f bl affichageMess ldr x0,qAdrszCarriageReturn bl affichageMess add x4,x4,1 b 1b 2: mov x0,x19 bl xmlFreeDoc bl xmlCleanupParser ldr x0,qAdrszMessEndpgm bl affichageMess b 100f 99: // error ldr x0,qAdrszMessError bl affichageMess 100: // standard end of the program mov x0,0 // return code mov x8,EXIT // request to exit program svc 0 // perform the system call   qAdrszMessError: .quad szMessError qAdrszMessEndpgm: .quad szMessEndpgm qAdrszLibName: .quad szLibName qAdrszLibPrice: .quad szLibPrice qAdrszCarriageReturn: .quad szCarriageReturn qAdrszFileName: .quad szFileName qAdrszLibExtName: .quad szLibExtName qAdrtbExtract: .quad tbExtract qAdrszMessDisVal: .quad szMessDisVal qAdrszMessDisArea: .quad szMessDisArea /******************************************************************/ /* extract value of set */ /******************************************************************/ /* x0 contains the doc address /* x1 contains the address of the libel to extract */ extractValue: stp x19,lr,[sp,-16]! // save registers stp x20,x21,[sp,-16]! // save registers stp x22,x23,[sp,-16]! // save registers mov x20,x1 // save address libel mov x19,x0 // save doc bl xmlXPathNewContext // create context mov x23,x0 // save context mov x1,x0 mov x0,x20 bl xmlXPathEvalExpression mov x21,x0 mov x0,x23 bl xmlXPathFreeContext // free context cmp x21,#0 beq 100f ldr x14,[x21,#xmlPathObj_nodesetval] // values set ldr w23,[x14,#xmlNodeSet_nodeNr] // set size mov x22,#0 // index ldr x20,[x14,#xmlNodeSet_nodeTab] // area of nodes ldr x21,qAdrtbExtract 1: // start loop ldr x3,[x20,x22,lsl #3] // load node mov x0,x19 ldr x1,[x3,#xmlNode_children] // load string value mov x2,#1 bl xmlNodeListGetString str x0,[x21,x22,lsl #3] // store string pointer in area bl affichageMess // and display string result ldr x0,qAdrszCarriageReturn bl affichageMess add x22,x22,1 cmp x22,x23 blt 1b 100: ldp x22,x23,[sp],16 // restaur 2 registers ldp x20,x21,[sp],16 // restaur 2 registers ldp x19,lr,[sp],16 // restaur 2 registers ret // return to address lr x30 /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#Ada
Ada
with Glib; use Glib; with Cairo; use Cairo; with Cairo.Png; use Cairo.Png; with Cairo.Image_Surface; use Cairo.Image_Surface;   procedure YinYang is subtype Dub is Glib.Gdouble;   procedure Draw (C : Cairo_Context; x : Dub; y : Dub; r : Dub) is begin Arc (C, x, y, r + 1.0, 1.571, 7.854); Set_Source_Rgb (C, 0.0, 0.0, 0.0); Fill (C); Arc_Negative (C, x, y - r / 2.0, r / 2.0, 1.571, 4.712); Arc (C, x, y + r / 2.0, r / 2.0, 1.571, 4.712); Arc_Negative (C, x, y, r, 4.712, 1.571); Set_Source_Rgb (C, 1.0, 1.0, 1.0); Fill (C); Arc (C, x, y - r / 2.0, r / 5.0, 1.571, 7.854); Set_Source_Rgb (C, 0.0, 0.0, 0.0); Fill (C); Arc (C, x, y + r / 2.0, r / 5.0, 1.571, 7.854); Set_Source_Rgb (C, 1.0, 1.0, 1.0); Fill (C); end Draw;   Surface : Cairo_Surface; Context : Cairo_Context; Status : Cairo_Status; begin Surface := Create (Cairo_Format_ARGB32, 200, 200); Context := Create (Surface); Draw (Context, 120.0, 120.0, 75.0); Draw (Context, 35.0, 35.0, 30.0); Status := Write_To_Png (Surface, "YinYangAda.png"); pragma Assert (Status = Cairo_Status_Success); end YinYang;
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#AppleScript
AppleScript
-- Y COMBINATOR ---------------------------------------------------------------   on |Y|(f) script on |λ|(y) script on |λ|(x) y's |λ|(y)'s |λ|(x) end |λ| end script   f's |λ|(result) end |λ| end script   result's |λ|(result) end |Y|     -- TEST ----------------------------------------------------------------------- on run   -- Factorial script fact on |λ|(f) script on |λ|(n) if n = 0 then return 1 n * (f's |λ|(n - 1)) end |λ| end script end |λ| end script     -- Fibonacci script fib on |λ|(f) script on |λ|(n) if n = 0 then return 0 if n = 1 then return 1 (f's |λ|(n - 2)) + (f's |λ|(n - 1)) end |λ| end script end |λ| end script   {facts:map(|Y|(fact), enumFromTo(0, 11)), fibs:map(|Y|(fib), enumFromTo(0, 20))}   --> {facts:{1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800},   --> fibs:{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, -- 1597, 2584, 4181, 6765}}   end run     -- GENERIC FUNCTIONS FOR TEST -------------------------------------------------   -- map :: (a -> b) -> [a] -> [b] on map(f, xs) tell mReturn(f) set lng to length of xs set lst to {} repeat with i from 1 to lng set end of lst to |λ|(item i of xs, i, xs) end repeat return lst end tell end map   -- enumFromTo :: Int -> Int -> [Int] on enumFromTo(m, n) if n < m then set d to -1 else set d to 1 end if set lst to {} repeat with i from m to n by d set end of lst to i end repeat return lst end enumFromTo   -- Lift 2nd class handler function into 1st class script wrapper -- mReturn :: Handler -> Script on mReturn(f) if class of f is script then f else script property |λ| : f end script end if end mReturn
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#Arturo
Arturo
zigzag: function [n][ result: map 1..n 'x -> map 1..n => 0   x: 1, y: 1, v: 0, d: 1   while [v < n^2][ if? all? @[1 =< x x =< n 1 =< y y =< n][ set get result (y-1) (x-1) v x: x + d, y: y - d, v: v + 1 ] else[if? x > n [x: n, y: y + 2, d: neg d] else[if? y > n [x: x + 2, y: n, d: neg d] else[if? x < 1 [x: 1, d: neg d] else[if y < 1 [y: 1, d: neg d] ] ] ] ] ] result ]   zz: zigzag 5 loop zz 'row -> print map row 'col [pad to :string col 3]
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Haskell
Haskell
import Data.List (unfoldr)   yellowstone :: [Integer] yellowstone = 1 : 2 : 3 : unfoldr (Just . f) (2, 3, [4 ..]) where f :: (Integer, Integer, [Integer]) -> (Integer, (Integer, Integer, [Integer])) f (p2, p1, rest) = (next, (p1, next, rest_)) where (next, rest_) = select rest select :: [Integer] -> (Integer, [Integer]) select (x : xs) | gcd x p1 == 1 && gcd x p2 /= 1 = (x, xs) | otherwise = (y, x : ys) where (y, ys) = select xs   main :: IO () main = print $ take 30 yellowstone
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Gambas
Gambas
Public Sub Form_Open() Dim hWebView As WebView   Me.Arrangement = Arrange.Fill Me.Maximized = True Me.Title = "Yahoo! search interface"   hWebView = New WebView(Me) hWebView.Expand = True hWebView.URL = "https://www.yahoo.com"   End
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Go
Go
package main   import ( "fmt" "golang.org/x/net/html" "io/ioutil" "net/http" "regexp" "strings" )   var ( expr = `<h3 class="title"><a class=.*?href="(.*?)".*?>(.*?)</a></h3>` + `.*?<div class="compText aAbs" ><p class=.*?>(.*?)</p></div>` rx = regexp.MustCompile(expr) )   type YahooResult struct { title, url, content string }   func (yr YahooResult) String() string { return fmt.Sprintf("Title  : %s\nUrl  : %s\nContent: %s\n", yr.title, yr.url, yr.content) }   type YahooSearch struct { query string page int }   func (ys YahooSearch) results() []YahooResult { search := fmt.Sprintf("http://search.yahoo.com/search?p=%s&b=%d", ys.query, ys.page*10+1) resp, _ := http.Get(search) body, _ := ioutil.ReadAll(resp.Body) s := string(body) defer resp.Body.Close() var results []YahooResult for _, f := range rx.FindAllStringSubmatch(s, -1) { yr := YahooResult{} yr.title = html.UnescapeString(strings.ReplaceAll(strings.ReplaceAll(f[2], "<b>", ""), "</b>", "")) yr.url = f[1] yr.content = html.UnescapeString(strings.ReplaceAll(strings.ReplaceAll(f[3], "<b>", ""), "</b>", "")) results = append(results, yr) } return results }   func (ys YahooSearch) nextPage() YahooSearch { return YahooSearch{ys.query, ys.page + 1} }   func main() { ys := YahooSearch{"rosettacode", 0} // Limit output to first 5 entries, say, from pages 1 and 2. fmt.Println("PAGE 1 =>\n") for _, res := range ys.results()[0:5] { fmt.Println(res) } fmt.Println("PAGE 2 =>\n") for _, res := range ys.nextPage().results()[0:5] { fmt.Println(res) } }
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Standard_ML
Standard ML
(* AST *) datatype expression = Con of int (* constant *) | Add of expression * expression (* addition *) | Mul of expression * expression (* multiplication *) | Sub of expression * expression (* subtraction *) | Div of expression * expression (* division *)   (* Evaluator *) fun eval (Con x) = x | eval (Add (x, y)) = (eval x) + (eval y) | eval (Mul (x, y)) = (eval x) * (eval y) | eval (Sub (x, y)) = (eval x) - (eval y) | eval (Div (x, y)) = (eval x) div (eval y)   (* Lexer *) datatype token = CON of int | ADD | MUL | SUB | DIV | LPAR | RPAR   fun lex nil = nil | lex (#"+" :: cs) = ADD :: lex cs | lex (#"*" :: cs) = MUL :: lex cs | lex (#"-" :: cs) = SUB :: lex cs | lex (#"/" :: cs) = DIV :: lex cs | lex (#"(" :: cs) = LPAR :: lex cs | lex (#")" :: cs) = RPAR :: lex cs | lex (#"~" :: cs) = if null cs orelse not (Char.isDigit (hd cs)) then raise Domain else lexDigit (0, cs, ~1) | lex (c  :: cs) = if Char.isDigit c then lexDigit (0, c :: cs, 1) else raise Domain   and lexDigit (a, cs, s) = if null cs orelse not (Char.isDigit (hd cs)) then CON (a*s) :: lex cs else lexDigit (a * 10 + (ord (hd cs))- (ord #"0") , tl cs, s)   (* Parser *) exception Error of string   fun match (a,ts) t = if null ts orelse hd ts <> t then raise Error "match" else (a, tl ts)   fun extend (a,ts) p f = let val (a',tr) = p ts in (f(a,a'), tr) end   fun parseE ts = parseE' (parseM ts) and parseE' (e, ADD :: ts) = parseE' (extend (e, ts) parseM Add) | parseE' (e, SUB :: ts) = parseE' (extend (e, ts) parseM Sub) | parseE' s = s   and parseM ts = parseM' (parseP ts) and parseM' (e, MUL :: ts) = parseM' (extend (e, ts) parseP Mul) | parseM' (e, DIV :: ts) = parseM' (extend (e, ts) parseP Div) | parseM' s = s   and parseP (CON c :: ts) = (Con c, ts) | parseP (LPAR  :: ts) = match (parseE ts) RPAR | parseP _ = raise Error "parseP"     (* Test *) fun lex_parse_eval (str:string) = case parseE (lex (explode str)) of (exp, nil) => eval exp | _ => raise Error "not parseable stuff at the end"
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Tailspin
Tailspin
  def ops: ['+','-','*','/'];   data binaryExpression <{left: <node>, op: <?($ops <[<=$::raw>]>)>, right: <node>}> data node <binaryExpression|"1">   composer parseArithmetic (<WS>?) <addition|multiplication|term> (<WS>?) rule addition: {left:<addition|multiplication|term> (<WS>?) op:<'[+-]'> (<WS>?) right:<multiplication|term>} rule multiplication: {left:<multiplication|term> (<WS>?) op:<'[*/]'> (<WS>?) right:<term>} rule term: <INT"1"|parentheses> rule parentheses: (<'\('> <WS>?) <addition|multiplication|term> (<WS>? <'\)'>) end parseArithmetic   templates evaluateArithmetic <{op: <='+'>}> ($.left -> evaluateArithmetic) + ($.right -> evaluateArithmetic) ! <{op: <='-'>}> ($.left -> evaluateArithmetic) - ($.right -> evaluateArithmetic) ! <{op: <='*'>}> ($.left -> evaluateArithmetic) * ($.right -> evaluateArithmetic) ! <{op: <='/'>}> ($.left -> evaluateArithmetic) ~/ ($.right -> evaluateArithmetic) ! otherwise $ ! end evaluateArithmetic   def ast: '(100 - 5 * (2+3*4) + 2) / 2' -> parseArithmetic; '$ast; ' -> !OUT::write '$ast -> evaluateArithmetic; ' -> !OUT::write  
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Tcl
Tcl
namespace eval zeckendorf { # Want to use alternate symbols? Change these variable zero "0" variable one "1"   # Base operations: increment and decrement proc zincr var { upvar 1 $var a namespace upvar [namespace current] zero 0 one 1 if {![regsub "$0$" $a $1$0 a]} {append a $1} while {[regsub "$0$1$1" $a "$1$0$0" a] || [regsub "^$1$1" $a "$1$0$0" a]} {} regsub ".$" $a "" a return $a } proc zdecr var { upvar 1 $var a namespace upvar [namespace current] zero 0 one 1 regsub "^$0+(.+)$" [subst [regsub "${1}($0*)$" $a "$0\[ string repeat {$1$0} \[regsub -all .. {\\1} {} x]]\[ string repeat {$1} \[expr {\$x ne {}}]]"] ] {\1} a return $a }   # Exported operations proc eq {a b} { expr {$a eq $b} } proc add {a b} { variable zero while {![eq $b $zero]} { zincr a zdecr b } return $a } proc sub {a b} { variable zero while {![eq $b $zero]} { zdecr a zdecr b } return $a } proc mul {a b} { variable zero variable one if {[eq $a $zero] || [eq $b $zero]} {return $zero} if {[eq $a $one]} {return $b} if {[eq $b $one]} {return $a} set c $a while {![eq [zdecr b] $zero]} { set c [add $c $a] } return $c } proc div {a b} { variable zero variable one if {[eq $b $zero]} {error "div zero"} if {[eq $a $zero] || [eq $b $one]} {return $a} set r $zero while {![eq $a $zero]} { if {![eq $a [add [set a [sub $a $b]] $b]]} break zincr r } return $r } # Note that there aren't any ordering operations in this version   # Assemble into a coherent API namespace export \[a-y\]* namespace ensemble create }
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Racket
Racket
#lang racket   (require math/number-theory)   (define (zum? n) (let* ((set (divisors n)) (sum (apply + set))) (cond [(odd? sum) #f] [(odd? n) ; if n is odd use 'abundant odd number' optimization (let ((abundance (- sum (* n 2)))) (and (positive? abundance) (even? abundance)))] [else (let ((sum/2 (quotient sum 2))) (let loop ((acc (car set)) (set (cdr set))) (cond [(= acc sum/2) #t] [(> acc sum/2) #f] [(null? set) #f] [else (or (loop (+ (car set) acc) (cdr set)) (loop acc (cdr set)))])))])))   (define (first-n-matching-naturals count pred) (for/list ((i count) (j (stream-filter pred (in-naturals 1)))) j))   (define (tabulate title ns (row-width 132)) (displayln title) (let* ((cell-width (+ 2 (order-of-magnitude (apply max ns)))) (cells/row (quotient row-width cell-width))) (let loop ((ns ns) (col cells/row)) (cond [(null? ns) (unless (= col cells/row) (newline))] [(zero? col) (newline) (loop ns cells/row)] [else (display (~a #:width cell-width #:align 'right (car ns))) (loop (cdr ns) (sub1 col))]))))     (tabulate "First 220 Zumkeller numbers:" (first-n-matching-naturals 220 zum?)) (newline) (tabulate "First 40 odd Zumkeller numbers:" (first-n-matching-naturals 40 (λ (n) (and (odd? n) (zum? n))))) (newline) (tabulate "First 40 odd Zumkeller numbers not ending in 5:" (first-n-matching-naturals 40 (λ (n) (and (odd? n) (not (= 5 (modulo n 10))) (zum? n)))))
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#Raku
Raku
use ntheory:from<Perl5> <factor is_prime>;   sub zumkeller ($range) { $range.grep: -> $maybe { next if $maybe < 3 or $maybe.&is_prime; my @divisors = $maybe.&factor.combinations».reduce( &[×] ).unique.reverse; next unless [and] @divisors > 2, @divisors %% 2, (my $sum = @divisors.sum) %% 2, ($sum /= 2) ≥ $maybe; my $zumkeller = False; if $maybe % 2 { $zumkeller = True } else { TEST: for 1 ..^ @divisors/2 -> $c { @divisors.combinations($c).map: -> $d { next if $d.sum != $sum; $zumkeller = True and last TEST } } } $zumkeller } }   say "First 220 Zumkeller numbers:\n" ~ zumkeller(^Inf)[^220].rotor(20)».fmt('%3d').join: "\n";   put "\nFirst 40 odd Zumkeller numbers:\n" ~ zumkeller((^Inf).map: * × 2 + 1)[^40].rotor(10)».fmt('%7d').join: "\n";   # Stretch. Slow to calculate. (minutes) put "\nFirst 40 odd Zumkeller numbers not divisible by 5:\n" ~ zumkeller(flat (^Inf).map: {my \p = 10 * $_; p+1, p+3, p+7, p+9} )[^40].rotor(10)».fmt('%7d').join: "\n";
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Forth
Forth
388c388 < CREATE big_string 256 CHARS ALLOT --- > CREATE big_string 500000 CHARS ALLOT 394c394 < big_string 256 CHARS + bighld ! ; \ Haydon p 67 --- > big_string 500000 CHARS + bighld ! ; \ Haydon p 67 403c403 < big_string 256 CHARS + \ One past end of string --- > big_string 500000 CHARS + \ One past end of string
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#Fortran
Fortran
program bignum use fmzm implicit none type(im) :: a integer :: n   call fm_set(50) a = to_im(5)**(to_im(4)**(to_im(3)**to_im(2))) n = to_int(floor(log10(to_fm(a)))) call im_print(a / to_im(10)**(n - 19)) call im_print(mod(a, to_im(10)**20)) end program
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Racket
Racket
#lang racket (define (img-01string->vector str) (define lines (regexp-split "\n" str)) (define h (length lines)) (define w (if (zero? h) 0 (string-length (car lines)))) (define v (for*/vector #:length (* w h) ((l (in-list lines)) (p (in-string l))) (match p (#\0 0) (#\1 1) (#\# 1) (#\. 0)))) (values v h w))   ; Task (2) asks for "or an ASCII-art image of space/non-space characters." ; Spaces don't really impress where the borders are, so we'll use a dot. (define cell->display-char (match-lambda (0 ".") (1 "#") (else "?")))   (define (display-img v w) (for ((p (in-vector v)) (col (in-naturals))) (printf "~a" (cell->display-char p)) (when (= (modulo col w) (sub1 w)) (newline))))   ; returns vector of ([P1's idx] P1 P2 ... P9) (define (Pns v w r c) (define i (+ c (* r w))) (define-syntax-rule (vi+ x) (vector-ref v (+ i x))) (define-syntax-rule (vi- x) (vector-ref v (- i x))) (vector i (vi+ 0) (vi- w) (vi+ (- 1 w)) (vi+ 1) (vi+ (+ w 1)) (vi+ w) (vi+ (- w 1)) (vi- 1) (vi- (+ w 1))))   ; Second argument to in-vector is the start offset; ; We skip offset 0 (idx) and 1 (P1) (define (B Ps) (for/sum ((Pn (in-vector Ps 2))) Pn))   (define (A Ps) (define P2 (vector-ref Ps 2)) (define-values (rv _) (for/fold ((acc 0) (Pn-1 P2)) ((Pn (in-sequences (in-vector Ps 3) (in-value P2)))) (values (+ acc (if (and (= 0 Pn-1) (= 1 Pn)) 1 0)) Pn))) rv)   (define-syntax-rule (not-all-black? Pa Pb Pc) (zero? (* Pa Pb Pc))) (define (z-s-thin v h w)  ; return idx when thin necessary, #f otherwise (define (thin? Ps n/bour-check-1 n/bour-check-2) (match-define (vector idx P1 P2 _ P4 _ P6 _ P8 _) Ps) (and (= P1 1) (<= 2 (B Ps) 6) (= (A Ps) 1) (n/bour-check-1 P2 P4 P6 P8) (n/bour-check-2 P2 P4 P6 P8) idx))   (define (has-white?-246 P2 P4 P6 P8) (not-all-black? P2 P4 P6)) (define (has-white?-468 P2 P4 P6 P8) (not-all-black? P4 P6 P8)) (define (has-white?-248 P2 P4 P6 P8) (not-all-black? P2 P4 P8)) (define (has-white?-268 P2 P4 P6 P8) (not-all-black? P2 P6 P8)) (define (step-n even-Pn-check-1 even-Pn-check-2) (for*/list ((r (in-range 1 (- h 1))) (c (in-range 1 (- w 1))) (idx (in-value (thin? (Pns v w r c) even-Pn-check-1 even-Pn-check-2))) #:when idx) idx))   (define (step-1) (step-n has-white?-246 has-white?-468)) (define (step-2) (step-n has-white?-248 has-white?-268)) (define (inner-z-s-thin) (define changed-list-1 (step-1)) (for ((idx (in-list changed-list-1))) (vector-set! v idx 0)) (define changed-list-2 (step-2)) (for ((idx (in-list changed-list-2))) (vector-set! v idx 0)) (unless (and (null? changed-list-1) (null? changed-list-2)) (inner-z-s-thin))) (inner-z-s-thin))   (define (read-display-thin-display-image img-str) (define-values (v h w) (img-01string->vector img-str)) (printf "Original image:~%") (display-img v w) (z-s-thin v h w) (printf "Thinned image:~%") (display-img v w))   (define e.g.-image #<<EOS 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 EOS )   (define e.g.-image/2 #<<EOS ##..### ##..### ##..### ##..### ##..##. ##..##. ##..##. ##..##. ##..##. ##..##. ##..##. ##..##. ######. ....... EOS )   (module+ main  ; (read-display-thin-display-image e.g.-image/2)  ; (newline) (read-display-thin-display-image e.g.-image))
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#Raku
Raku
my $source = qq:to/EOD/; ................................ .#########.......########....... .###...####.....####..####...... .###....###.....###....###...... .###...####.....###............. .#########......###............. .###.####.......###....###...... .###..####..###.####..####.###.. .###...####.###..########..###.. ................................ EOD   my @lines = ([.ords X+& 1] for $source.split("\n")); # The low bits Just Work. my \v = +@lines; my \h = +@lines[0]; my @black = flat @lines.map: *.values; # Flatten to 1-dimensional.   my \p8 = [-h-1, -h+0, -h+1, # Flatland distances to 8 neighbors. 0-1, 0+1, h-1, h+0, h+1].[1,2,4,7,6,5,3,0]; # (in cycle order)   # Candidates have 8 neighbors and are known black my @cand = grep { @black[$_] }, do for 1..v-2 X 1..h-2 -> (\y,\x) { y*h + x }   repeat while my @goners1 or my @goners2 { sub seewhite (\w1,\w2) { sub cycles (@neighbors) { [+] @neighbors Z< @neighbors[].rotate } sub blacks (@neighbors) { [+] @neighbors }   my @prior = @cand; @cand = ();   gather for @prior -> \p { my \n = @black[p8 X+ p]; if cycles(n) == 1 and 2 <= blacks(n) <= 6 and n[w1].any == 0 and n[w2].any == 0 { take p } else { @cand.push: p } } }   @goners1 = seewhite (0,2,4), (2,4,6); @black[@goners1] = 0 xx *; say "Ping: {[+] @black} remaining after removing ", @goners1;   @goners2 = seewhite (0,2,6), (0,4,6); @black[@goners2] = 0 xx *; say "Pong: {[+] @black} remaining after removing ", @goners2; }   say @black.splice(0,h).join.trans('01' => '.#') while @black;
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#Haskell
Haskell
import Data.Bits import Numeric   zeckendorf = map b $ filter ones [0..] where ones :: Int -> Bool ones x = 0 == x .&. (x `shiftR` 1) b x = showIntAtBase 2 ("01"!!) x ""   main = mapM_ putStrLn $ take 21 zeckendorf
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Clarion
Clarion
  program   map end   MAX_DOOR_NUMBER equate(100) CRLF equate('<13,10>')   Doors byte,dim(MAX_DOOR_NUMBER) Pass byte DoorNumber byte DisplayString cstring(2000)   ResultWindow window('Result'),at(,,133,291),center,double,auto prompt('Door states:'),at(8,4),use(?PromptTitle) text,at(8,16,116,266),use(DisplayString),boxed,vscroll,font('Courier New',,,,CHARSET:ANSI),readonly end   code   Doors :=: false loop Pass = 1 to MAX_DOOR_NUMBER loop DoorNumber = Pass to MAX_DOOR_NUMBER by Pass Doors[DoorNumber] = choose(Doors[DoorNumber], false, true) end end   clear(DisplayString) loop DoorNumber = 1 to MAX_DOOR_NUMBER DisplayString = DisplayString & format(DoorNumber, @n3) & ' is ' & choose(Doors[DoorNumber], 'opened', 'closed') & CRLF end open(ResultWindow) accept end close(ResultWindow)   return  
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#Factor
Factor
{ 1 2 3 } { [ "The initial array: " write . ] [ [ 42 1 ] dip set-nth ] [ "Modified array: " write . ] [ "The element we modified: " write [ 1 ] dip nth . ] } cleave
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#R
R
z1 <- 1.5 + 3i z2 <- 1.5 + 1.5i print(z1 + z2) # 3+4.5i print(z1 - z2) # 0+1.5i print(z1 * z2) # -2.25+6.75i print(z1 / z2) # 1.5+0.5i print(-z1) # -1.5-3i print(Conj(z1)) # 1.5-3i print(abs(z1)) # 3.354102 print(z1^z2) # -1.102483-0.383064i print(exp(z1)) # -4.436839+0.632456i print(Re(z1)) # 1.5 print(Im(z1)) # 3
http://rosettacode.org/wiki/Arithmetic/Rational
Arithmetic/Rational
Task Create a reasonably complete implementation of rational arithmetic in the particular language using the idioms of the language. Example Define a new type called frac with binary operator "//" of two integers that returns a structure made up of the numerator and the denominator (as per a rational number). Further define the appropriate rational unary operators abs and '-', with the binary operators for addition '+', subtraction '-', multiplication '×', division '/', integer division '÷', modulo division, the comparison operators (e.g. '<', '≤', '>', & '≥') and equality operators (e.g. '=' & '≠'). Define standard coercion operators for casting int to frac etc. If space allows, define standard increment and decrement operators (e.g. '+:=' & '-:=' etc.). Finally test the operators: Use the new type frac to find all perfect numbers less than 219 by summing the reciprocal of the factors. Related task   Perfect Numbers
#Seed7
Seed7
$ include "seed7_05.s7i"; include "rational.s7i";   const func boolean: isPerfect (in integer: candidate) is func result var boolean: isPerfect is FALSE; local var integer: divisor is 0; var rational: sum is rational.value; begin sum := 1 / candidate; for divisor range 2 to sqrt(candidate) do if candidate mod divisor = 0 then sum +:= 1 / divisor + 1 / (candidate div divisor); end if; end for; isPerfect := sum = rat(1); end func;   const proc: main is func local var integer: candidate is 0; begin for candidate range 2 to 2 ** 19 - 1 do if isPerfect(candidate) then writeln(candidate <& " is perfect"); end if; end for; end func;
http://rosettacode.org/wiki/Arithmetic-geometric_mean
Arithmetic-geometric mean
This page uses content from Wikipedia. The original article was at Arithmetic-geometric mean. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Task Write a function to compute the arithmetic-geometric mean of two numbers. The arithmetic-geometric mean of two numbers can be (usefully) denoted as a g m ( a , g ) {\displaystyle \mathrm {agm} (a,g)} , and is equal to the limit of the sequence: a 0 = a ; g 0 = g {\displaystyle a_{0}=a;\qquad g_{0}=g} a n + 1 = 1 2 ( a n + g n ) ; g n + 1 = a n g n . {\displaystyle a_{n+1}={\tfrac {1}{2}}(a_{n}+g_{n});\quad g_{n+1}={\sqrt {a_{n}g_{n}}}.} Since the limit of a n − g n {\displaystyle a_{n}-g_{n}} tends (rapidly) to zero with iterations, this is an efficient method. Demonstrate the function by calculating: a g m ( 1 , 1 / 2 ) {\displaystyle \mathrm {agm} (1,1/{\sqrt {2}})} Also see   mathworld.wolfram.com/Arithmetic-Geometric Mean
#ZX_Spectrum_Basic
ZX Spectrum Basic
10 LET a=1: LET g=1/SQR 2 20 LET ta=a 30 LET a=(a+g)/2 40 LET g=SQR (ta*g) 50 IF a<ta THEN GO TO 20 60 PRINT a  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Liberty_BASIC
Liberty BASIC
  '******** print 0^0 '********  
http://rosettacode.org/wiki/Zero_to_the_zero_power
Zero to the zero power
Some computer programming languages are not exactly consistent   (with other computer programming languages)   when   raising zero to the zeroth power:     00 Task Show the results of raising   zero   to the   zeroth   power. If your computer language objects to     0**0     or     0^0     at compile time,   you may also try something like: x = 0 y = 0 z = x**y say 'z=' z Show the result here. And of course use any symbols or notation that is supported in your computer programming language for exponentiation. See also The Wiki entry: Zero to the power of zero. The Wiki entry: History of differing points of view. The MathWorld™ entry: exponent laws. Also, in the above MathWorld™ entry, see formula (9): x 0 = 1 {\displaystyle x^{0}=1} . The OEIS entry: The special case of zero to the zeroth power
#Locomotive_Basic
Locomotive Basic
print 0🠅0
http://rosettacode.org/wiki/Zebra_puzzle
Zebra puzzle
Zebra puzzle You are encouraged to solve this task according to the task description, using any language you may know. The Zebra puzzle, a.k.a. Einstein's Riddle, is a logic puzzle which is to be solved programmatically. It has several variants, one of them this:   There are five houses.   The English man lives in the red house.   The Swede has a dog.   The Dane drinks tea.   The green house is immediately to the left of the white house.   They drink coffee in the green house.   The man who smokes Pall Mall has birds.   In the yellow house they smoke Dunhill.   In the middle house they drink milk.   The Norwegian lives in the first house.   The man who smokes Blend lives in the house next to the house with cats.   In a house next to the house where they have a horse, they smoke Dunhill.   The man who smokes Blue Master drinks beer.   The German smokes Prince.   The Norwegian lives next to the blue house.   They drink water in a house next to the house where they smoke Blend. The question is, who owns the zebra? Additionally, list the solution for all the houses. Optionally, show the solution is unique. Related tasks   Dinesman's multiple-dwelling problem   Twelve statements
#ALGOL_68
ALGOL 68
BEGIN # attempt to solve Einstein's Riddle - the Zebra puzzle # INT unknown = 0, same = -1; INT english = 1, swede = 2, dane = 3, norwegian = 4, german = 5; INT dog = 1, birds = 2, cats = 3, horse = 4, zebra = 5; INT red = 1, green = 2, white = 3, yellow = 4, blue = 5; INT tea = 1, coffee = 2, milk = 3, beer = 4, water = 5; INT pall mall = 1, dunhill = 2, blend = 3, blue master = 4, prince = 5; []STRING nationality = ( "unknown", "english", "swede", "dane", "norwegian", "german" ); []STRING animal = ( "unknown", "dog", "birds", "cats", "horse", "ZEBRA" ); []STRING colour = ( "unknown", "red", "green", "white", "yellow", "blue" ); []STRING drink = ( "unknown", "tea", "coffee", "milk", "beer", "water" ); []STRING smoke = ( "unknown", "pall mall", "dunhill", "blend", "blue master", "prince" ); MODE HOUSE = STRUCT( INT nationality, animal, colour, drink, smoke ); # returns TRUE if a field in a house could be set to value, FALSE otherwise # PROC can set = ( INT field, INT value )BOOL: field = unknown OR value = same; # returns TRUE if the fields of house h could be set to those of # # suggestion s, FALSE otherwise # OP XOR = ( HOUSE h, HOUSE s )BOOL: ( can set( nationality OF h, nationality OF s ) AND can set( animal OF h, animal OF s ) AND can set( colour OF h, colour OF s ) AND can set( drink OF h, drink OF s ) AND can set( smoke OF h, smoke OF s ) ) # XOR # ; # sets a field in a house to value if it is unknown # PROC set = ( REF INT field, INT value )VOID: IF field = unknown AND value /= same THEN field := value FI; # sets the unknown fields in house h to the non-same fields of suggestion s # OP +:= = ( REF HOUSE h, HOUSE s )VOID: ( set( nationality OF h, nationality OF s ); set( animal OF h, animal OF s ) ; set( colour OF h, colour OF s ); set( drink OF h, drink OF s ) ; set( smoke OF h, smoke OF s ) ) # +:= # ; # sets a field in a house to unknown if the value is not same # PROC reset = ( REF INT field, INT value )VOID: IF value /= same THEN field := unknown FI; # sets fields in house h to unknown if the suggestion s is not same # OP -:= = ( REF HOUSE h, HOUSE s )VOID: ( reset( nationality OF h, nationality OF s ); reset( animal OF h, animal OF s ) ; reset( colour OF h, colour OF s ); reset( drink OF h, drink OF s ) ; reset( smoke OF h, smoke OF s ) ) # -:= # ; # attempts a partial solution for the house at pos # PROC try = ( INT pos, HOUSE suggestion, PROC VOID continue )VOID: IF pos >= LWB house AND pos <= UPB house THEN IF house[ pos ] XOR suggestion THEN house[ pos ] +:= suggestion; continue; house[ pos ] -:= suggestion FI FI # try # ; # attempts a partial solution for the neighbours of a house # PROC left or right = ( INT pos, BOOL left, BOOL right, HOUSE neighbour suggestion , PROC VOID continue )VOID: ( IF left THEN try( pos - 1, neighbour suggestion, continue ) FI ; IF right THEN try( pos + 1, neighbour suggestion, continue ) FI ) # left or right # ; # attempts a partial solution for all houses and possibly their neighbours # PROC any2 = ( REF INT number, HOUSE suggestion , BOOL left, BOOL right, HOUSE neighbour suggestion , PROC VOID continue )VOID: FOR pos TO UPB house DO IF house[ pos ] XOR suggestion THEN number := pos; house[ number ] +:= suggestion; IF NOT left AND NOT right THEN # neighbours not involved # continue ELSE # try one or both neighbours # left or right( pos, left, right, neighbour suggestion, continue ) FI; house[ number ] -:= suggestion FI OD # any2 # ; # attempts a partial solution for all houses # PROC any = ( HOUSE suggestion, PROC VOID continue )VOID: any2( LOC INT, suggestion, FALSE, FALSE, SKIP, continue ); # find solution(s) # INT blend pos; INT solutions := 0; # There are five houses. # [ 1 : 5 ]HOUSE house; FOR h TO UPB house DO house[ h ] := ( unknown, unknown, unknown, unknown, unknown ) OD; # In the middle house they drink milk. # drink OF house[ 3 ] := milk; # The Norwegian lives in the first house. # nationality OF house[ 1 ] := norwegian; # The Norwegian lives next to the blue house. # colour OF house[ 2 ] := blue; # They drink coffee in the green house. # # The green house is immediately to the left of the white house. # any2( LOC INT, ( same, same, green, coffee, same ) , FALSE, TRUE, ( same, same, white, same, same ), VOID: # In a house next to the house where they have a horse, # # they smoke Dunhill. # # In the yellow house they smoke Dunhill. # any2( LOC INT, ( same, horse, same, same, same ) , TRUE, TRUE, ( same, same, yellow, same, dunhill ), VOID: # The English man lives in the red house. # any( ( english, same, red, same, same ), VOID: # The man who smokes Blend lives in the house next to the # # house with cats. # any2( blend pos, ( same, same, same, same, blend ) , TRUE, TRUE, ( same, cats, same, same, same ), VOID: # They drink water in a house next to the house where # # they smoke Blend. # left or right( blend pos, TRUE, TRUE, ( same, same, same, water, same ), VOID: # The Dane drinks tea. # any( ( dane, same, same, tea, same ), VOID: # The man who smokes Blue Master drinks beer. # any( ( same, same, same, beer, blue master ), VOID: # The Swede has a dog. # any( ( swede, dog, same, same, same ), VOID: # The German smokes Prince. # any( ( german, same, same, same, prince ), VOID: # The man who smokes Pall Mall has birds. # any( ( same, birds, same, same, pall mall ), VOID: # if we can place the zebra, we have a solution # any( ( same, zebra, same, same, same ), VOID: ( solutions +:= 1; FOR h TO UPB house DO print( ( whole( h, 0 ) , " ", nationality[ 1 + nationality OF house[ h ] ] , ", ", animal [ 1 + animal OF house[ h ] ] , ", ", colour [ 1 + colour OF house[ h ] ] , ", ", drink [ 1 + drink OF house[ h ] ] , ", ", smoke [ 1 + smoke OF house[ h ] ] , newline ) ) OD; print( ( newline ) ) ) ) # zebra # ) # pall mall # ) # german # ) # swede # ) # beer # ) # dane # ) # blend L/R # ) # blend # ) # red # ) # horse # ) # green # ; print( ( "solutions: ", whole( solutions, 0 ), newline ) ) END  
http://rosettacode.org/wiki/XML/XPath
XML/XPath
Perform the following three XPath queries on the XML Document below: //item[1]: Retrieve the first "item" element //price/text(): Perform an action on each "price" element (print it out) //name: Get an array of all the "name" elements XML Document: <inventory title="OmniCorp Store #45x10^3"> <section name="health"> <item upc="123456789" stock="12"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc="445322344" stock="18"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name="food"> <item upc="485672034" stock="653"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc="132957764" stock="44"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>
#AppleScript
AppleScript
set theXMLdata to "<inventory title=\"OmniCorp Store #45x10^3\"> <section name=\"health\"> <item upc=\"123456789\" stock=\"12\"> <name>Invisibility Cream</name> <price>14.50</price> <description>Makes you invisible</description> </item> <item upc=\"445322344\" stock=\"18\"> <name>Levitation Salve</name> <price>23.99</price> <description>Levitate yourself for up to 3 hours per application</description> </item> </section> <section name=\"food\"> <item upc=\"485672034\" stock=\"653\"> <name>Blork and Freen Instameal</name> <price>4.95</price> <description>A tasty meal in a tablet; just add water</description> </item> <item upc=\"132957764\" stock=\"44\"> <name>Grob winglets</name> <price>3.56</price> <description>Tender winglets of Grob. Just add water</description> </item> </section> </inventory>"   on getElementValuesByName(theXML, theNameToFind) set R to {} tell application "System Events" repeat with i in theXML set {theName, theElements} to {i's name, i's XML elements} if (count of theElements) > 0 then set R to R & my getElementValuesByName(theElements, theNameToFind) if theName = theNameToFind then set R to R & i's value end repeat end tell return R end getElementValuesByName   on getBlock(theXML, theItem, theInstance) set text item delimiters to "" repeat with i from 1 to theInstance set {R, blockStart, blockEnd} to {{}, "<" & theItem & space, "</" & theItem & ">"} set x to offset of blockStart in theXML if x = 0 then exit repeat set y to offset of blockEnd in (characters x thru -1 of theXML as string) if y = 0 then exit repeat set R to characters x thru (x + y + (length of blockEnd) - 2) of theXML as string set theXML to characters (y + (length of blockEnd)) thru -1 of theXML as string end repeat return R end getBlock   tell application "System Events" set xmlData to make new XML data with properties {name:"xmldata", text:theXMLdata}   return my getBlock(xmlData's text, "item", 1) -- Solution to part 1 of problem. return my getElementValuesByName(xmlData's contents, "name") -- Solution to part 2 of problem. return my getElementValuesByName(xmlData's contents, "price") -- Solution to part 3 of problem.   end tell
http://rosettacode.org/wiki/Yin_and_yang
Yin and yang
One well-known symbol of the philosophy of duality known as yin and yang is the taijitu. Task   Create a function that, given a parameter representing size, generates such a symbol scaled to the requested size.   Generate and display the symbol for two different (small) sizes.
#ALGOL_68
ALGOL 68
INT scale x=2, scale y=1; CHAR black="#", white=".", clear=" ";   PROC print yin yang = (REAL radius)VOID:(   PROC in circle = (REAL centre x, centre y, radius, x, y)BOOL: (x-centre x)**2+(y-centre y)**2 <= radius**2;   PROC (REAL, REAL)BOOL in big circle = in circle(0, 0, radius, , ), in white semi circle = in circle(0, +radius/2, radius/2, , ), in small black circle = in circle(0, +radius/2, radius/6, , ), in black semi circle = in circle(0, -radius/2, radius/2, , ), in small white circle = in circle(0, -radius/2, radius/6, , );   FOR sy FROM +ROUND(radius * scale y) BY -1 TO -ROUND(radius * scale y) DO FOR sx FROM -ROUND(radius * scale x) TO +ROUND(radius * scale x) DO REAL x=sx/scale x, y=sy/scale y; print( IF in big circle(x, y) THEN IF in white semi circle(x, y) THEN IF in small black circle(x, y) THEN black ELSE white FI ELIF in black semi circle(x, y) THEN IF in small white circle(x, y) THEN white ELSE black FI ELIF x < 0 THEN white ELSE black FI ELSE clear FI ) OD; print(new line) OD );   main:( print yin yang(17); print yin yang(8) )
http://rosettacode.org/wiki/Y_combinator
Y combinator
In strict functional programming and the lambda calculus, functions (lambda expressions) don't have state and are only allowed to refer to arguments of enclosing functions. This rules out the usual definition of a recursive function wherein a function is associated with the state of a variable and this variable's state is used in the body of the function. The   Y combinator   is itself a stateless function that, when applied to another stateless function, returns a recursive version of the function. The Y combinator is the simplest of the class of such functions, called fixed-point combinators. Task Define the stateless   Y combinator   and use it to compute factorials and Fibonacci numbers from other stateless functions or lambda expressions. Cf Jim Weirich: Adventures in Functional Programming
#ARM_Assembly
ARM Assembly
    /* ARM assembly Raspberry PI */ /* program Ycombi.s */   /* REMARK 1 : this program use routines in a include file see task Include a file language arm assembly for the routine affichageMess conversion10 see at end of this program the instruction include */   /* Constantes */ .equ STDOUT, 1 @ Linux output console .equ EXIT, 1 @ Linux syscall .equ WRITE, 4 @ Linux syscall     /*******************************************/ /* Structures */ /********************************************/ /* structure function*/ .struct 0 func_fn: @ next element .struct func_fn + 4 func_f_: @ next element .struct func_f_ + 4 func_num: .struct func_num + 4 func_fin:   /* Initialized data */ .data szMessStartPgm: .asciz "Program start \n" szMessEndPgm: .asciz "Program normal end.\n" szMessError: .asciz "\033[31mError Allocation !!!\n"   szFactorielle: .asciz "Function factorielle : \n" szFibonacci: .asciz "Function Fibonacci : \n" szCarriageReturn: .asciz "\n"   /* datas message display */ szMessResult: .ascii "Result value :" sValue: .space 12,' ' .asciz "\n"   /* UnInitialized data */ .bss   /* code section */ .text .global main main: @ program start ldr r0,iAdrszMessStartPgm @ display start message bl affichageMess adr r0,facFunc @ function factorielle address bl YFunc @ create Ycombinator mov r5,r0 @ save Ycombinator ldr r0,iAdrszFactorielle @ display message bl affichageMess mov r4,#1 @ loop counter 1: @ start loop mov r0,r4 bl numFunc @ create number structure cmp r0,#-1 @ allocation error ? beq 99f mov r1,r0 @ structure number address mov r0,r5 @ Ycombinator address bl callFunc @ call ldr r0,[r0,#func_num] @ load result ldr r1,iAdrsValue @ and convert ascii string bl conversion10 ldr r0,iAdrszMessResult @ display result message bl affichageMess add r4,#1 @ increment loop counter cmp r4,#10 @ end ? ble 1b @ no -> loop /*********Fibonacci *************/ adr r0,fibFunc @ function factorielle address bl YFunc @ create Ycombinator mov r5,r0 @ save Ycombinator ldr r0,iAdrszFibonacci @ display message bl affichageMess mov r4,#1 @ loop counter 2: @ start loop mov r0,r4 bl numFunc @ create number structure cmp r0,#-1 @ allocation error ? beq 99f mov r1,r0 @ structure number address mov r0,r5 @ Ycombinator address bl callFunc @ call ldr r0,[r0,#func_num] @ load result ldr r1,iAdrsValue @ and convert ascii string bl conversion10 ldr r0,iAdrszMessResult @ display result message bl affichageMess add r4,#1 @ increment loop counter cmp r4,#10 @ end ? ble 2b @ no -> loop ldr r0,iAdrszMessEndPgm @ display end message bl affichageMess b 100f 99: @ display error message ldr r0,iAdrszMessError bl affichageMess 100: @ standard end of the program mov r0, #0 @ return code mov r7, #EXIT @ request to exit program svc 0 @ perform system call iAdrszMessStartPgm: .int szMessStartPgm iAdrszMessEndPgm: .int szMessEndPgm iAdrszFactorielle: .int szFactorielle iAdrszFibonacci: .int szFibonacci iAdrszMessError: .int szMessError iAdrszCarriageReturn: .int szCarriageReturn iAdrszMessResult: .int szMessResult iAdrsValue: .int sValue /******************************************************************/ /* factorielle function */ /******************************************************************/ /* r0 contains the Y combinator address */ /* r1 contains the number structure */ facFunc: push {r1-r3,lr} @ save registers mov r2,r0 @ save Y combinator address ldr r0,[r1,#func_num] @ load number cmp r0,#1 @ > 1 ? bgt 1f @ yes mov r0,#1 @ create structure number value 1 bl numFunc b 100f 1: mov r3,r0 @ save number sub r0,#1 @ decrement number bl numFunc @ and create new structure number cmp r0,#-1 @ allocation error ? beq 100f mov r1,r0 @ new structure number -> param 1 ldr r0,[r2,#func_f_] @ load function address to execute bl callFunc @ call ldr r1,[r0,#func_num] @ load new result mul r0,r1,r3 @ and multiply by precedent bl numFunc @ and create new structure number @ and return her address in r0 100: pop {r1-r3,lr} @ restaur registers bx lr @ return /******************************************************************/ /* fibonacci function */ /******************************************************************/ /* r0 contains the Y combinator address */ /* r1 contains the number structure */ fibFunc: push {r1-r4,lr} @ save registers mov r2,r0 @ save Y combinator address ldr r0,[r1,#func_num] @ load number cmp r0,#1 @ > 1 ? bgt 1f @ yes mov r0,#1 @ create structure number value 1 bl numFunc b 100f 1: mov r3,r0 @ save number sub r0,#1 @ decrement number bl numFunc @ and create new structure number cmp r0,#-1 @ allocation error ? beq 100f mov r1,r0 @ new structure number -> param 1 ldr r0,[r2,#func_f_] @ load function address to execute bl callFunc @ call ldr r4,[r0,#func_num] @ load new result sub r0,r3,#2 @ new number - 2 bl numFunc @ and create new structure number cmp r0,#-1 @ allocation error ? beq 100f mov r1,r0 @ new structure number -> param 1 ldr r0,[r2,#func_f_] @ load function address to execute bl callFunc @ call ldr r1,[r0,#func_num] @ load new result add r0,r1,r4 @ add two results bl numFunc @ and create new structure number @ and return her address in r0 100: pop {r1-r4,lr} @ restaur registers bx lr @ return /******************************************************************/ /* call function */ /******************************************************************/ /* r0 contains the address of the function */ /* r1 contains the address of the function 1 */ callFunc: push {r2,lr} @ save registers ldr r2,[r0,#func_fn] @ load function address to execute blx r2 @ and call it pop {r2,lr} @ restaur registers bx lr @ return /******************************************************************/ /* create Y combinator function */ /******************************************************************/ /* r0 contains the address of the function */ YFunc: push {r1,lr} @ save registers mov r1,#0 bl newFunc cmp r0,#-1 @ allocation error ? strne r0,[r0,#func_f_] @ store function and return in r0 pop {r1,lr} @ restaur registers bx lr @ return /******************************************************************/ /* create structure number function */ /******************************************************************/ /* r0 contains the number */ numFunc: push {r1,r2,lr} @ save registers mov r2,r0 @ save number mov r0,#0 @ function null mov r1,#0 @ function null bl newFunc cmp r0,#-1 @ allocation error ? strne r2,[r0,#func_num] @ store number in new structure pop {r1,r2,lr} @ restaur registers bx lr @ return /******************************************************************/ /* new function */ /******************************************************************/ /* r0 contains the function address */ /* r1 contains the function address 1 */ newFunc: push {r2-r7,lr} @ save registers mov r4,r0 @ save address mov r5,r1 @ save adresse 1 @ allocation place on the heap mov r0,#0 @ allocation place heap mov r7,#0x2D @ call system 'brk' svc #0 mov r3,r0 @ save address heap for output string add r0,#func_fin @ reservation place one element mov r7,#0x2D @ call system 'brk' svc #0 cmp r0,#-1 @ allocation error beq 100f mov r0,r3 str r4,[r0,#func_fn] @ store address str r5,[r0,#func_f_] mov r2,#0 str r2,[r0,#func_num] @ store zero to number 100: pop {r2-r7,lr} @ restaur registers bx lr @ return /***************************************************/ /* ROUTINES INCLUDE */ /***************************************************/ .include "../affichage.inc"    
http://rosettacode.org/wiki/Zig-zag_matrix
Zig-zag matrix
Task Produce a zig-zag array. A   zig-zag   array is a square arrangement of the first   N2   natural numbers,   where the numbers increase sequentially as you zig-zag along the array's   anti-diagonals. For a graphical representation, see   JPG zigzag   (JPG uses such arrays to encode images). For example, given   5,   produce this array: 0 1 5 6 14 2 4 7 13 15 3 8 12 16 21 9 11 17 20 22 10 18 19 23 24 Related tasks   Spiral matrix   Identity matrix   Ulam spiral (for primes) See also   Wiktionary entry:   anti-diagonals
#ATS
ATS
  (* ****** ****** *) // #include "share/atspre_define.hats" // defines some names #include "share/atspre_staload.hats" // for targeting C #include "share/HATS/atspre_staload_libats_ML.hats" // for ... // (* ****** ****** *) // extern fun Zig_zag_matrix(n: int): void // (* ****** ****** *)   fun max(a: int, b: int): int = if a > b then a else b   fun movex(n: int, x: int, y: int): int = if y < n-1 then max(0, x-1) else x+1   fun movey(n: int, x: int, y: int): int = if y < n-1 then y+1 else y   fun zigzag(n: int, i: int, row: int, x: int, y: int): void = if i = n*n then () else let val () = (if x = row then begin print i; print ','; end else ()) //val () = (begin print x; print ' '; print y; print ' '; print i; print ' '; end) val nextX: int = if ((x+y) % 2) = 0 then movex(n, x, y) else movey(n, y, x) val nextY: int = if ((x+y) % 2) = 0 then movey(n, x, y) else movex(n, y, x) in zigzag(n, i+1, row, nextX, nextY) end   implement Zig_zag_matrix(n) = let fun loop(row: int): void = if row = n then () else let val () = zigzag(n, 0, row, 0, 0) val () = println!(" ") in loop(row + 1) end in loop(0) end   (* ****** ****** *)   implement main0() = () where { val () = Zig_zag_matrix(5) } (* end of [main0] *)   (* ****** ****** *)  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#J
J
  Until=: 2 :'u^:(0-:v)^:_' assert 44 -: >:Until(>&43) 32 NB. increment until exceeding 43 gcd=: +. coprime=: 1 = gcd prepare=:1 2 3"_ NB. start with the vector 1 2 3 condition=: 0 1 -: (coprime _2&{.) NB. trial coprime most recent 2, nay and yay append=: , NB. concatenate novel=: -.@e. NB. x is not a member of y term=: >:@:]Until((condition *. novel)~) 4: ys=: (append term)@]^:(0 >. _3+[) prepare assert (ys 30) -: 1 2 3 4 9 8 15 14 5 6 25 12 35 16 7 10 21 20 27 22 39 11 13 33 26 45 28 51 32 17  
http://rosettacode.org/wiki/Yellowstone_sequence
Yellowstone sequence
The Yellowstone sequence, also called the Yellowstone permutation, is defined as: For n <= 3, a(n) = n For n >= 4, a(n) = the smallest number not already in sequence such that a(n) is relatively prime to a(n-1) and is not relatively prime to a(n-2). The sequence is a permutation of the natural numbers, and gets its name from what its authors felt was a spiking, geyser like appearance of a plot of the sequence. Example a(4) is 4 because 4 is the smallest number following 1, 2, 3 in the sequence that is relatively prime to the entry before it (3), and is not relatively prime to the number two entries before it (2). Task Find and show as output the first  30  Yellowstone numbers. Extra Demonstrate how to plot, with x = n and y coordinate a(n), the first 100 Yellowstone numbers. Related tasks   Greatest common divisor.   Plot coordinate pairs. See also   The OEIS entry:   A098550 The Yellowstone permutation.   Applegate et al, 2015: The Yellowstone Permutation [1].
#Java
Java
  import java.util.ArrayList; import java.util.List;   public class YellowstoneSequence {   public static void main(String[] args) { System.out.printf("First 30 values in the yellowstone sequence:%n%s%n", yellowstoneSequence(30)); }   private static List<Integer> yellowstoneSequence(int sequenceCount) { List<Integer> yellowstoneList = new ArrayList<Integer>(); yellowstoneList.add(1); yellowstoneList.add(2); yellowstoneList.add(3); int num = 4; List<Integer> notYellowstoneList = new ArrayList<Integer>(); int yellowSize = 3; while ( yellowSize < sequenceCount ) { int found = -1; for ( int index = 0 ; index < notYellowstoneList.size() ; index++ ) { int test = notYellowstoneList.get(index); if ( gcd(yellowstoneList.get(yellowSize-2), test) > 1 && gcd(yellowstoneList.get(yellowSize-1), test) == 1 ) { found = index; break; } } if ( found >= 0 ) { yellowstoneList.add(notYellowstoneList.remove(found)); yellowSize++; } else { while ( true ) { if ( gcd(yellowstoneList.get(yellowSize-2), num) > 1 && gcd(yellowstoneList.get(yellowSize-1), num) == 1 ) { yellowstoneList.add(num); yellowSize++; num++; break; } notYellowstoneList.add(num); num++; } } } return yellowstoneList; }   private static final int gcd(int a, int b) { if ( b == 0 ) { return a; } return gcd(b, a%b); }   }  
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#GUISS
GUISS
Start,Programs,Applications,Mozilla Firefox,Inputbox:address bar>www.yahoo.co.uk, Button:Go,Area:browser window,Inputbox:searchbox>elephants,Button:Search
http://rosettacode.org/wiki/Yahoo!_search_interface
Yahoo! search interface
Create a class for searching Yahoo! results. It must implement a Next Page method, and read URL, Title and Content from results.
#Haskell
Haskell
import Network.HTTP import Text.Parsec   data YahooSearchItem = YahooSearchItem { itemUrl, itemTitle, itemContent :: String }   data YahooSearch = YahooSearch { searchQuery :: String, searchPage :: Int, searchItems :: [YahooSearchItem] }   -- URL for Yahoo! searches, without giving a page number yahooUrl = "http://search.yahoo.com/search?p="   -- make an HTTP request and return a YahooSearch yahoo :: String -> IO YahooSearch yahoo q = simpleHTTP (getRequest $ yahooUrl ++ q) >>= getResponseBody >>= return . YahooSearch q 1 . items   -- get some results and return the next page of results next :: YahooSearch -> IO YahooSearch next (YahooSearch q p _) = simpleHTTP (getRequest $ -- add the page number to the search yahooUrl ++ q ++ "&b=" ++ show (p + 1)) >>= getResponseBody >>= return . YahooSearch q (p + 1) . items   printResults :: YahooSearch -> IO () printResults (YahooSearch q p items) = do putStrLn $ "Showing Yahoo! search results for query: " ++ q putStrLn $ "Page: " ++ show p putChar '\n' mapM_ printOne items where printOne (YahooSearchItem itemUrl itemTitle itemContent) = do putStrLn $ "URL  : " ++ itemUrl putStrLn $ "Title : " ++ itemTitle putStrLn $ "Abstr : " ++ itemContent putChar '\n'   urlTag, titleTag, contentTag1, contentTag2, ignoreTag, ignoreText :: Parsec String () String   -- parse a tag containing the URL of a search result urlTag = do { string "<a id=\"link-"; many digit; string "\" class=\"yschttl spt\" href=\""; url <- manyTill anyChar (char '"'); manyTill anyChar (char '>'); return url }   -- the title comes after the URL tag, so parse it first, discard it -- and get the title text titleTag = do { urlTag; manyTill anyChar (try (string "</a>")) }   -- parse a tag containing the description of the search result -- the tag can be named "sm-abs" or "abstr" contentTag1 = do { string "<div class=\"sm-abs\">"; manyTill anyChar (try (string "</div>")) }   contentTag2 = do { string "<div class=\"abstr\">"; manyTill anyChar (try (string "</div>")) }   -- parse a tag and discard it ignoreTag = do { char ('<'); manyTill anyChar (char '>'); return "" }   -- parse some text and discard it ignoreText = do { many1 (noneOf "<"); return "" }   -- return only non-empty strings nonempty :: [String] -> Parsec String () [String] nonempty xs = return [ x | x <- xs, not (null x) ]   -- a template to parse a whole source file looking for items of the -- same class parseCategory x = do res <- many x eof nonempty res   urls, titles, contents :: Parsec String () [String]   -- parse HTML source looking for URL tags of the search results urls = parseCategory url where url = (try urlTag) <|> ignoreTag <|> ignoreText   -- parse HTML source looking for titles of the search results titles = parseCategory title where title = (try titleTag) <|> ignoreTag <|> ignoreText   -- parse HTML source looking for descriptions of the search results contents = parseCategory content where content = (try contentTag1) <|> (try contentTag2) <|> ignoreTag <|> ignoreText   -- parse the HTML source three times looking for URL, title and -- description of all search results and return them as a list of -- YahooSearchItem items :: String -> [YahooSearchItem] items q = let ignoreOrKeep = either (const []) id us = ignoreOrKeep $ parse urls "" q ts = ignoreOrKeep $ parse titles "" q cs = ignoreOrKeep $ parse contents "" q in [ YahooSearchItem { itemUrl = u, itemTitle = t, itemContent = c } | (u, t, c) <- zip3 us ts cs ]  
http://rosettacode.org/wiki/Arithmetic_evaluation
Arithmetic evaluation
Create a program which parses and evaluates arithmetic expressions. Requirements An abstract-syntax tree (AST) for the expression must be created from parsing the input. The AST must be used in evaluation, also, so the input may not be directly evaluated (e.g. by calling eval or a similar language feature.) The expression will be a string or list of symbols like "(1+3)*7". The four symbols + - * / must be supported as binary operators with conventional precedence rules. Precedence-control parentheses must also be supported. Note For those who don't remember, mathematical precedence is as follows: Parentheses Multiplication/Division (left to right) Addition/Subtraction (left to right) C.f 24 game Player. Parsing/RPN calculator algorithm. Parsing/RPN to infix conversion.
#Tcl
Tcl
namespace import tcl::mathop::*   proc ast str { # produce abstract syntax tree for an expression regsub -all {[-+*/()]} $str { & } str ;# "tokenizer" s $str } proc s {args} { # parse "(a + b) * c + d" to "+ [* [+ a b] c] d" if {[llength $args] == 1} {set args [lindex $args 0]} if [regexp {[()]} $args] { eval s [string map {( "\[s " ) \]} $args] } elseif {"*" in $args} { s [s_group $args *] } elseif {"/" in $args} { s [s_group $args /] } elseif {"+" in $args} { s [s_group $args +] } elseif {"-" in $args} { s [s_group $args -] } else { string map {\{ \[ \} \]} [join $args] } } proc s_group {list op} { # turn ".. a op b .." to ".. {op a b} .." set pos [lsearch -exact $list $op] set p_1 [- $pos 1] set p1 [+ $pos 1] lreplace $list $p_1 $p1 \ [list $op [lindex $list $p_1] [lindex $list $p1]] } #-- Test suite foreach test [split { ast 2-2 ast 1-2-3 ast (1-2)-3 ast 1-(2-3) ast (1+2)*3 ast (1+2)/3-4*5 ast ((1+2)/3-4)*5 } \n] { puts "$test ..... [eval $test] ..... [eval [eval $test]]" }
http://rosettacode.org/wiki/Zeckendorf_arithmetic
Zeckendorf arithmetic
This task is a total immersion zeckendorf task; using decimal numbers will attract serious disapprobation. The task is to implement addition, subtraction, multiplication, and division using Zeckendorf number representation. Optionally provide decrement, increment and comparitive operation functions. Addition Like binary 1 + 1 = 10, note carry 1 left. There the similarity ends. 10 + 10 = 101, note carry 1 left and 1 right. 100 + 100 = 1001, note carry 1 left and 2 right, this is the general case. Occurrences of 11 must be changed to 100. Occurrences of 111 may be changed from the right by replacing 11 with 100, or from the left converting 111 to 100 + 100; Subtraction 10 - 1 = 1. The general rule is borrow 1 right carry 1 left. eg: abcde 10100 - 1000 _____ 100 borrow 1 from a leaves 100 + 100 add the carry _____ 1001 A larger example: abcdef 100100 - 1000 ______ 1*0100 borrow 1 from b + 100 add the carry ______ 1*1001 Sadly we borrowed 1 from b which didn't have it to lend. So now b borrows from a: 1001 + 1000 add the carry ____ 10100 Multiplication Here you teach your computer its zeckendorf tables. eg. 101 * 1001: a = 1 * 101 = 101 b = 10 * 101 = a + a = 10000 c = 100 * 101 = b + a = 10101 d = 1000 * 101 = c + b = 101010 1001 = d + a therefore 101 * 1001 = 101010 + 101 ______ 1000100 Division Lets try 1000101 divided by 101, so we can use the same table used for multiplication. 1000101 - 101010 subtract d (1000 * 101) _______ 1000 - 101 b and c are too large to subtract, so subtract a ____ 1 so 1000101 divided by 101 is d + a (1001) remainder 1 Efficient algorithms for Zeckendorf arithmetic is interesting. The sections on addition and subtraction are particularly relevant for this task.
#Visual_Basic_.NET
Visual Basic .NET
Imports System.Text   Module Module1   Class Zeckendorf Implements IComparable(Of Zeckendorf)   Private Shared ReadOnly dig As String() = {"00", "01", "10"} Private Shared ReadOnly dig1 As String() = {"", "1", "10"}   Private dVal As Integer = 0 Private dLen As Integer = 0   Public Sub New(Optional x As String = "0") Dim q = 1 Dim i = x.Length - 1 dLen = i \ 2   Dim z = Asc("0") While i >= 0 Dim a = Asc(x(i)) dVal += (a - z) * q q *= 2 i -= 1 End While End Sub   Private Sub A(n As Integer) Dim i = n While True If dLen < i Then dLen = i End If Dim j = (dVal >> (i * 2)) And 3 If j = 0 OrElse j = 1 Then Return ElseIf j = 2 Then If ((dVal >> ((i + 1) * 2)) And 1) <> 1 Then Return End If dVal += 1 << (i * 2 + 1) Return ElseIf j = 3 Then Dim temp = 3 << (i * 2) temp = temp Xor -1 dVal = dVal And temp B((i + 1) * 2) End If i += 1 End While End Sub   Private Sub B(pos As Integer) If pos = 0 Then Inc() Return End If If ((dVal >> pos) And 1) = 0 Then dVal += 1 << pos A(pos \ 2) If pos > 1 Then A(pos \ 2 - 1) End If Else Dim temp = 1 << pos temp = temp Xor -1 dVal = dVal And temp B(pos + 1) B(pos - If(pos > 1, 2, 1)) End If End Sub   Private Sub C(pos As Integer) If ((dVal >> pos) And 1) = 1 Then Dim temp = 1 << pos temp = temp Xor -1 dVal = dVal And temp Return End If C(pos + 1) If pos > 0 Then B(pos - 1) Else Inc() End If End Sub   Public Function Inc() As Zeckendorf dVal += 1 A(0) Return Me End Function   Public Function Copy() As Zeckendorf Dim z As New Zeckendorf With { .dVal = dVal, .dLen = dLen } Return z End Function   Public Sub PlusAssign(other As Zeckendorf) Dim gn = 0 While gn < (other.dLen + 1) * 2 If ((other.dVal >> gn) And 1) = 1 Then B(gn) End If gn += 1 End While End Sub   Public Sub MinusAssign(other As Zeckendorf) Dim gn = 0 While gn < (other.dLen + 1) * 2 If ((other.dVal >> gn) And 1) = 1 Then C(gn) End If gn += 1 End While While (((dVal >> dLen * 2) And 3) = 0) OrElse dLen = 0 dLen -= 1 End While End Sub   Public Sub TimesAssign(other As Zeckendorf) Dim na = other.Copy Dim nb = other.Copy Dim nt As Zeckendorf Dim nr As New Zeckendorf Dim i = 0 While i < (dLen + 1) * 2 If ((dVal >> i) And 1) > 0 Then nr.PlusAssign(nb) End If nt = nb.Copy nb.PlusAssign(na) na = nt.Copy i += 1 End While dVal = nr.dVal dLen = nr.dLen End Sub   Public Function CompareTo(other As Zeckendorf) As Integer Implements IComparable(Of Zeckendorf).CompareTo Return dVal.CompareTo(other.dVal) End Function   Public Overrides Function ToString() As String If dVal = 0 Then Return "0" End If   Dim idx = (dVal >> (dLen * 2)) And 3 Dim sb As New StringBuilder(dig1(idx)) Dim i = dLen - 1 While i >= 0 idx = (dVal >> (i * 2)) And 3 sb.Append(dig(idx)) i -= 1 End While Return sb.ToString End Function End Class   Sub Main() Console.WriteLine("Addition:") Dim g As New Zeckendorf("10") g.PlusAssign(New Zeckendorf("10")) Console.WriteLine(g) g.PlusAssign(New Zeckendorf("10")) Console.WriteLine(g) g.PlusAssign(New Zeckendorf("1001")) Console.WriteLine(g) g.PlusAssign(New Zeckendorf("1000")) Console.WriteLine(g) g.PlusAssign(New Zeckendorf("10101")) Console.WriteLine(g) Console.WriteLine()   Console.WriteLine("Subtraction:") g = New Zeckendorf("1000") g.MinusAssign(New Zeckendorf("101")) Console.WriteLine(g) g = New Zeckendorf("10101010") g.MinusAssign(New Zeckendorf("1010101")) Console.WriteLine(g) Console.WriteLine()   Console.WriteLine("Multiplication:") g = New Zeckendorf("1001") g.TimesAssign(New Zeckendorf("101")) Console.WriteLine(g) g = New Zeckendorf("101010") g.PlusAssign(New Zeckendorf("101")) Console.WriteLine(g) End Sub   End Module
http://rosettacode.org/wiki/Zumkeller_numbers
Zumkeller numbers
Zumkeller numbers are the set of numbers whose divisors can be partitioned into two disjoint sets that sum to the same value. Each sum must contain divisor values that are not in the other sum, and all of the divisors must be in one or the other. There are no restrictions on how the divisors are partitioned, only that the two partition sums are equal. E.G. 6 is a Zumkeller number; The divisors {1 2 3 6} can be partitioned into two groups {1 2 3} and {6} that both sum to 6. 10 is not a Zumkeller number; The divisors {1 2 5 10} can not be partitioned into two groups in any way that will both sum to the same value. 12 is a Zumkeller number; The divisors {1 2 3 4 6 12} can be partitioned into two groups {1 3 4 6} and {2 12} that both sum to 14. Even Zumkeller numbers are common; odd Zumkeller numbers are much less so. For values below 10^6, there is at least one Zumkeller number in every 12 consecutive integers, and the vast majority of them are even. The odd Zumkeller numbers are very similar to the list from the task Abundant odd numbers; they are nearly the same except for the further restriction that the abundance (A(n) = sigma(n) - 2n), must be even: A(n) mod 2 == 0 Task Write a routine (function, procedure, whatever) to find Zumkeller numbers. Use the routine to find and display here, on this page, the first 220 Zumkeller numbers. Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers. Optional, stretch goal: Use the routine to find and display here, on this page, the first 40 odd Zumkeller numbers that don't end with 5. See Also OEIS:A083207 - Zumkeller numbers to get an impression of different partitions OEIS:A083206 Zumkeller partitions OEIS:A174865 - Odd Zumkeller numbers Related Tasks Abundant odd numbers Abundant, deficient and perfect number classifications Proper divisors , Factors of an integer
#REXX
REXX
/*REXX pgm finds & shows Zumkeller numbers: 1st N; 1st odd M; 1st odd V not ending in 5.*/ parse arg n m v . /*obtain optional arguments from the CL*/ if n=='' | n=="," then n= 220 /*Not specified? Then use the default.*/ if m=='' | m=="," then m= 40 /* " " " " " " */ if v=='' | v=="," then v= 40 /* " " " " " " */ @zum= ' Zumkeller numbers are: ' /*literal used for displaying messages.*/ sw= linesize() - 1 /*obtain the usable screen width. */ say if n>0 then say center(' The first ' n @zum, sw, "═") #= 0 /*the count of Zumkeller numbers so far*/ $= /*initialize the $ list (to a null).*/ do j=1 until #==n /*traipse through integers 'til done. */ if \Zum(j) then iterate /*if not a Zumkeller number, then skip.*/ #= # + 1; call add$ /*bump Zumkeller count; add to $ list.*/ end /*j*/   if $\=='' then say $ /*Are there any residuals? Then display*/ say if m>0 then say center(' The first odd ' m @zum, sw, "═") #= 0 /*the count of Zumkeller numbers so far*/ $= /*initialize the $ list (to a null).*/ do j=1 by 2 until #==m /*traipse through integers 'til done. */ if \Zum(j) then iterate /*if not a Zumkeller number, then skip.*/ #= # + 1; call add$ /*bump Zumkeller count; add to $ list.*/ end /*j*/   if $\=='' then say $ /*Are there any residuals? Then display*/ say if v>0 then say center(' The first odd ' v " (not ending in 5) " @zum, sw, '═') #= 0 /*the count of Zumkeller numbers so far*/ $= /*initialize the $ list (to a null).*/ do j=1 by 2 until #==v /*traipse through integers 'til done. */ if right(j,1)==5 then iterate /*skip if odd number ends in digit "5".*/ if \Zum(j) then iterate /*if not a Zumkeller number, then skip.*/ #= # + 1; call add$ /*bump Zumkeller count; add to $ list.*/ end /*j*/   if $\=='' then say $ /*Are there any residuals? Then display*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ add$: _= strip($ j, 'L'); if length(_)<sw then do; $= _; return; end /*add to $*/ say strip($, 'L'); $= j; return /*say, add*/ /*──────────────────────────────────────────────────────────────────────────────────────*/ iSqrt: procedure; parse arg x; r= 0; q= 1; do while q<=x; q=q*4; end do while q>1; q= q%4; _= x-r-q; r= r%2; if _>=0 then do; x= _; r= r+q; end; end return r /*R is the integer square root of X. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ PDaS: procedure; parse arg x 1 b; odd= x//2 /*obtain X and B (the 1st argument).*/ if x==1 then return 1 1 /*handle special case for unity. */ r= iSqrt(x) /*calculate integer square root of X. */ a= 1 /* [↓] use all, or only odd numbers. */ sig= a + b /*initialize the sigma (so far) ___ */ do j=2+odd by 1+odd to r - (r*r==x) /*divide by some integers up to √ X */ if x//j==0 then do; a=a j; b= x%j b /*if ÷, add both divisors to α & ß. */ sig= sig +j +x%j /*bump the sigma (the sum of divisors).*/ end end /*j*/ /* [↑]  % is the REXX integer division*/ /* [↓] adjust for a square. ___*/ if j*j==x then return sig+j a j b /*Was X a square? If so, add √ X */ return sig a b /*return the divisors (both lists). */ /*──────────────────────────────────────────────────────────────────────────────────────*/ Zum: procedure; parse arg x . /*obtain a # to be tested for Zumkeller*/ if x<6 then return 0 /*test if X is too low " " */ if x<945 then if x//2==1 then return 0 /* " " " " " " for odd " */ parse value PDaS(x) with sigma pdivs /*obtain sigma and the proper divisors.*/ if sigma//2 then return 0 /*Is the sigma odd? Not Zumkeller.*/ #= words(pdivs) /*count the number of divisors for X. */ if #<3 then return 0 /*Not enough divisors? " " */ if x//2 then do; _= sigma - x - x /*use abundant optimization for odd #'s*/ return _>0 & _//2==0 /*Abundant is > 0 and even? It's a Zum*/ end if #>23 then return 1 /*# divisors is 24 or more? It's a Zum*/   do i=1 for #; @.i= word(pdivs, i) /*assign proper divisors to the @ array*/ end /*i*/ c=0; u= 2**#;  !.= . do p=1 for u-2; b= x2b(d2x(p)) /*convert P──►binary with leading zeros*/ b= right(strip(b, 'L', 0), #, 0) /*ensure enough leading zeros for B. */ r= reverse(b); if !.r\==. then iterate /*is this binary# a palindrome of prev?*/ c= c + 1; yy.c= b;  !.b= /*store this particular combination. */ end /*p*/   do part=1 for c; p1= 0; p2= 0 /*test of two partitions add to same #.*/ _= yy.part /*obtain one method of partitioning. */ do cp=1 for # /*obtain the sums of the two partitions*/ if substr(_, cp, 1) then p1= p1 + @.cp /*if a one, then add it to P1.*/ else p2= p2 + @.cp /* " " zero, " " " " P2.*/ end /*cp*/ if p1==p2 then return 1 /*Partition sums equal? Then X is Zum.*/ end /*part*/ return 0 /*no partition sum passed. X isn't Zum*/
http://rosettacode.org/wiki/Arbitrary-precision_integers_(included)
Arbitrary-precision integers (included)
Using the in-built capabilities of your language, calculate the integer value of: 5 4 3 2 {\displaystyle 5^{4^{3^{2}}}} Confirm that the first and last twenty digits of the answer are: 62060698786608744707...92256259918212890625 Find and show the number of decimal digits in the answer. Note: Do not submit an implementation of arbitrary precision arithmetic. The intention is to show the capabilities of the language as supplied. If a language has a single, overwhelming, library of varied modules that is endorsed by its home site – such as CPAN for Perl or Boost for C++ – then that may be used instead. Strictly speaking, this should not be solved by fixed-precision numeric libraries where the precision has to be manually set to a large value; although if this is the only recourse then it may be used with a note explaining that the precision must be set manually to a large enough value. Related tasks   Long multiplication   Exponentiation order   exponentiation operator   Exponentiation with infix operators in (or operating on) the base
#FreeBASIC
FreeBASIC
#Include once "gmp.bi" Dim Shared As Zstring * 100000000 outtext   Function Power(number As String,n As Uinteger) As String'automate precision #define dp 3321921 Dim As __mpf_struct _number,FloatAnswer Dim As Ulongint ln=Len(number)*(n)*4 If ln>dp Then ln=dp mpf_init2(@FloatAnswer,ln) mpf_init2(@_number,ln) mpf_set_str(@_number,number,10) mpf_pow_ui(@Floatanswer,@_number,n) gmp_sprintf( @outtext,"%." & Str(n) & "Ff",@FloatAnswer ) Var outtxt=Trim(outtext) If Instr(outtxt,".") Then outtxt= Rtrim(outtxt,"0"):outtxt=Rtrim(outtxt,".") Return Trim(outtxt) End Function   Extern gmp_version Alias "__gmp_version" As Zstring Ptr Print "GMP version ";*gmp_version Print   var ans=power("5",(4^(3^2))) Print Left(ans,20) + " ... "+Right(ans,20) Print "Number of digits ";Len(ans) Sleep
http://rosettacode.org/wiki/Zhang-Suen_thinning_algorithm
Zhang-Suen thinning algorithm
This is an algorithm used to thin a black and white i.e. one bit per pixel images. For example, with an input image of: ################# ############# ################## ################ ################### ################## ######## ####### ################### ###### ####### ####### ###### ###### ####### ####### ################# ####### ################ ####### ################# ####### ###### ####### ####### ###### ####### ####### ###### ####### ####### ###### ######## ####### ################### ######## ####### ###### ################## ###### ######## ####### ###### ################ ###### ######## ####### ###### ############# ###### It produces the thinned output: # ########## ####### ## # #### # # # ## # # # # # # # # # ############ # # # # # # # # # # # # # # ## # ############ ### ### Algorithm Assume black pixels are one and white pixels zero, and that the input image is a rectangular N by M array of ones and zeroes. The algorithm operates on all black pixels P1 that can have eight neighbours. The neighbours are, in order, arranged as:   P9     P2     P3     P8     P1     P4     P7     P6     P5   Obviously the boundary pixels of the image cannot have the full eight neighbours. Define A ( P 1 ) {\displaystyle A(P1)} = the number of transitions from white to black, (0 -> 1) in the sequence P2,P3,P4,P5,P6,P7,P8,P9,P2. (Note the extra P2 at the end - it is circular). Define B ( P 1 ) {\displaystyle B(P1)} = The number of black pixel neighbours of P1. ( = sum(P2 .. P9) ) Step 1 All pixels are tested and pixels satisfying all the following conditions (simultaneously) are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P6 is white (4) At least one of P4 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 1 conditions, all these condition satisfying pixels are set to white. Step 2 All pixels are again tested and pixels satisfying all the following conditions are just noted at this stage. (0) The pixel is black and has eight neighbours (1) 2 <= B ( P 1 ) <= 6 {\displaystyle 2<=B(P1)<=6} (2) A(P1) = 1 (3) At least one of P2 and P4 and P8 is white (4) At least one of P2 and P6 and P8 is white After iterating over the image and collecting all the pixels satisfying all step 2 conditions, all these condition satisfying pixels are again set to white. Iteration If any pixels were set in this round of either step 1 or step 2 then all steps are repeated until no image pixels are so changed. Task Write a routine to perform Zhang-Suen thinning on an image matrix of ones and zeroes. Use the routine to thin the following image and show the output here on this page as either a matrix of ones and zeroes, an image, or an ASCII-art image of space/non-space characters. 00000000000000000000000000000000 01111111110000000111111110000000 01110001111000001111001111000000 01110000111000001110000111000000 01110001111000001110000000000000 01111111110000001110000000000000 01110111100000001110000111000000 01110011110011101111001111011100 01110001111011100111111110011100 00000000000000000000000000000000 Reference Zhang-Suen Thinning Algorithm, Java Implementation by Nayef Reza. "Character Recognition Systems: A Guide for Students and Practitioners" By Mohamed Cheriet, Nawwaf Kharma, Cheng-Lin Liu, Ching Suen
#REXX
REXX
/*REXX program thins a NxM character grid using the Zhang-Suen thinning algorithm.*/ parse arg iFID .; if iFID=='' then iFID='ZHANG_SUEN.DAT' white=' '; @.=white /* [↓] read the input character grid. */ do row=1 while lines(iFID)\==0; _=linein(iFID) _=translate(_,,.0); cols.row=length(_) do col=1 for cols.row; @.row.col=substr(_,col,1) end /*col*/ /* [↑] assign whole row of characters.*/ end /*row*/ rows=row-1 /*adjust ROWS because of the DO loop. */ call show@ 'input file ' iFID " contents:" /*display show the input character grid*/   do until changed==0; changed=0 /*keep slimming until we're finished. */ do step=1 for 2 /*keep track of step one or step two.*/ do r=1 for rows /*process all the rows and columns. */ do c=1 for cols.r;  [email protected] /*assign an alternate grid. */ if r==1|r==rows|c==1|c==cols.r then iterate /*is this an edge?*/ if @.r.c==white then iterate /*Is the character white? Then skip it*/ call Ps; b=b() /*define Ps and also "b". */ if b<2 | b>6 then iterate /*is B within the range ? */ if a()\==1 then iterate /*count the number of transitions. */ /* ╔══╦══╦══╗ */ if step==1 then if (p2 & p4 & p6) | p4 & p6 & p8 then iterate /* ║p9║p2║p3║ */ if step==2 then if (p2 & p4 & p8) | p2 & p6 & p8 then iterate /* ╠══╬══╬══╣ */  !.r.c=white /*set a grid character to white. */ /* ║p8║p1║p4║ */ changed=1 /*indicate a character was changed. */ /* ╠══╬══╬══╣ */ end /*c*/ /* ║p7║p6║p5║ */ end /*r*/ /* ╚══╩══╩══╝ */ call copy! /*copy the alternate to working grid. */ end /*step*/ end /*until changed==0*/   call show@ 'slimmed output:' /*display the slimmed character grid. */ exit /*stick a fork in it, we're all done. */ /*─────────────────────────────────────────────────────────────────────────────────────────────────────────────*/ a: return (\p2==p3&p3)+(\p3==p4&p4)+(\p4==p5&p5)+(\p5==p6&p6)+(\p6==p7&p7)+(\p7==p8&p8)+(\p8==p9&p9)+(\p9==p2&p2) b: return p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 copy!: do r=1 for rows; do c=1 for cols.r; @.r.c=!.r.c; end; end; return show@: say; say arg(1); say; do r=1 for rows; _=; do c=1 for cols.r; _=_ || @.r.c; end; say _; end; return /*──────────────────────────────────────────────────────────────────────────────────────*/ Ps: rm=r-1; rp=r+1; cm=c-1; cp=c+1 /*calculate some shortcuts.*/ [email protected]\==white; [email protected]\==white; [email protected]\==white; [email protected]\==white [email protected]\==white; [email protected]\==white; [email protected]\==white; [email protected]\==white; return
http://rosettacode.org/wiki/Zeckendorf_number_representation
Zeckendorf number representation
Just as numbers can be represented in a positional notation as sums of multiples of the powers of ten (decimal) or two (binary); all the positive integers can be represented as the sum of one or zero times the distinct members of the Fibonacci series. Recall that the first six distinct Fibonacci numbers are: 1, 2, 3, 5, 8, 13. The decimal number eleven can be written as 0*13 + 1*8 + 0*5 + 1*3 + 0*2 + 0*1 or 010100 in positional notation where the columns represent multiplication by a particular member of the sequence. Leading zeroes are dropped so that 11 decimal becomes 10100. 10100 is not the only way to make 11 from the Fibonacci numbers however; 0*13 + 1*8 + 0*5 + 0*3 + 1*2 + 1*1 or 010011 would also represent decimal 11. For a true Zeckendorf number there is the added restriction that no two consecutive Fibonacci numbers can be used which leads to the former unique solution. Task Generate and show here a table of the Zeckendorf number representations of the decimal numbers zero to twenty, in order. The intention in this task to find the Zeckendorf form of an arbitrary integer. The Zeckendorf form can be iterated by some bit twiddling rather than calculating each value separately but leave that to another separate task. Also see   OEIS A014417   for the the sequence of required results.   Brown's Criterion - Numberphile Related task   Fibonacci sequence
#J
J
  fib=: 3 : 0 " 0 mp=. +/ .* {.{: mp/ mp~^:(I.|.#:y) 2 2$0 1 1 1x )   phi=: -:1+%:5   fi =: 3 : 'n - y<fib n=. 0>.(1=y)-~>.(phi^.%:5)+phi^.y'   fsum=: 3 : 0 z=. 0$r=. y while. 3<r do. m=. fib fi r z=. z,m r=. r-m end. z,r$~(*r)+.0=y )   Filter=: (#~`)(`:6)   ' '&~:Filter@:":@:#:@:#.@:((|. fib 2+i.8) e. fsum)&.>i.3 7 ┌──────┬──────┬──────┬──────┬──────┬──────┬──────┐ │0 │1 │10 │100 │101 │1000 │1001 │ ├──────┼──────┼──────┼──────┼──────┼──────┼──────┤ │1010 │10000 │10001 │10010 │10100 │10101 │100000│ ├──────┼──────┼──────┼──────┼──────┼──────┼──────┤ │100001│100010│100100│100101│101000│101001│101010│ └──────┴──────┴──────┴──────┴──────┴──────┴──────┘  
http://rosettacode.org/wiki/100_doors
100 doors
There are 100 doors in a row that are all initially closed. You make 100 passes by the doors. The first time through, visit every door and  toggle  the door  (if the door is closed,  open it;   if it is open,  close it). The second time, only visit every 2nd door   (door #2, #4, #6, ...),   and toggle it. The third time, visit every 3rd door   (door #3, #6, #9, ...), etc,   until you only visit the 100th door. Task Answer the question:   what state are the doors in after the last pass?   Which are open, which are closed? Alternate: As noted in this page's   discussion page,   the only doors that remain open are those whose numbers are perfect squares. Opening only those doors is an   optimization   that may also be expressed; however, as should be obvious, this defeats the intent of comparing implementations across programming languages.
#Clio
Clio
fn visit-doors doors step: if step > 100: doors else: [1:100] -> * fn index: if index % step: doors[(index - 1)] else: not doors[(index - 1)] -> visit-doors (step + 1)   [1:100] -> * n: false -> visit-doors 1 => doors [1:100] -> * (@eager) fn i: doors[(i - 1)] -> if = true: #open else: #closed -> print #Door i #is @
http://rosettacode.org/wiki/Arrays
Arrays
This task is about arrays. For hashes or associative arrays, please see Creating an Associative Array. For a definition and in-depth discussion of what an array is, see Array. Task Show basic array syntax in your language. Basically, create an array, assign a value to it, and retrieve an element   (if available, show both fixed-length arrays and dynamic arrays, pushing a value into it). Please discuss at Village Pump:   Arrays. Please merge code in from these obsolete tasks:   Creating an Array   Assigning Values to an Array   Retrieving an Element of an Array Related tasks   Collections   Creating an Associative Array   Two-dimensional array (runtime)
#FBSL
FBSL
create MyArray 1 , 2 , 3 , 4 , 5 , 5 cells allot here constant MyArrayEnd   30 MyArray 7 cells + ! MyArray 7 cells + @ . \ 30   : .array MyArrayEnd MyArray do I @ . cell +loop ;
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Racket
Racket
  #lang racket   (define a 3+4i) (define b 8+0i)   (+ a b)  ; addition (- a b)  ; subtraction (/ a b)  ; division (* a b)  ; multiplication (- a)  ; negation (/ 1 a)  ; reciprocal (conjugate a) ; conjugation  
http://rosettacode.org/wiki/Arithmetic/Complex
Arithmetic/Complex
A   complex number   is a number which can be written as: a + b × i {\displaystyle a+b\times i} (sometimes shown as: b + a × i {\displaystyle b+a\times i} where   a {\displaystyle a}   and   b {\displaystyle b}   are real numbers,   and   i {\displaystyle i}   is   √ -1  Typically, complex numbers are represented as a pair of real numbers called the "imaginary part" and "real part",   where the imaginary part is the number to be multiplied by i {\displaystyle i} . Task Show addition, multiplication, negation, and inversion of complex numbers in separate functions. (Subtraction and division operations can be made with pairs of these operations.) Print the results for each operation tested. Optional: Show complex conjugation. By definition, the   complex conjugate   of a + b i {\displaystyle a+bi} is a − b i {\displaystyle a-bi} Some languages have complex number libraries available.   If your language does, show the operations.   If your language does not, also show the definition of this type.
#Raku
Raku
my $a = 1 + i; my $b = pi + 1.25i;   .say for $a + $b, $a * $b, -$a, 1 / $a, $a.conj; .say for $a.abs, $a.sqrt, $a.re, $a.im;