task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#C.23
C#
using System.Collections; using System.Collections.Generic; using static System.Console; using static System.Math; using static System.Linq.Enumerable;   public class Solver { private static readonly (int dx, int dy)[] //other puzzle types elided hidatoMoves = {(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)};   private (int dx, int dy)[] moves;   public static void Main() { Print(new Solver(hidatoMoves).Solve(false, new [,] { { 0, 33, 35, 0, 0, -1, -1, -1 }, { 0, 0, 24, 22, 0, -1, -1, -1 }, { 0, 0, 0, 21, 0, 0, -1, -1 }, { 0, 26, 0, 13, 40, 11, -1, -1 }, { 27, 0, 0, 0, 9, 0, 1, -1 }, { -1, -1, 0, 0, 18, 0, 0, -1 }, { -1, -1, -1, -1, 0, 7, 0, 0 }, { -1, -1, -1, -1, -1, -1, 5, 0 } })); }   public Solver(params (int dx, int dy)[] moves) => this.moves = moves;   public int[,] Solve(bool circular, params string[] puzzle) { var (board, given, count) = Parse(puzzle); return Solve(board, given, count, circular); }   public int[,] Solve(bool circular, int[,] puzzle) { var (board, given, count) = Parse(puzzle); return Solve(board, given, count, circular); }   private int[,] Solve(int[,] board, BitArray given, int count, bool circular) { var (height, width) = (board.GetLength(0), board.GetLength(1)); bool solved = false; for (int x = 0; x < height && !solved; x++) { solved = Range(0, width).Any(y => Solve(board, given, circular, (height, width), (x, y), count, (x, y), 1)); if (solved) return board; } return null; }   private bool Solve(int[,] board, BitArray given, bool circular, (int h, int w) size, (int x, int y) start, int last, (int x, int y) current, int n) { var (x, y) = current; if (x < 0 || x >= size.h || y < 0 || y >= size.w) return false; if (board[x, y] < 0) return false; if (given[n - 1]) { if (board[x, y] != n) return false; } else if (board[x, y] > 0) return false; board[x, y] = n; if (n == last) { if (!circular || AreNeighbors(start, current)) return true; } for (int i = 0; i < moves.Length; i++) { var move = moves[i]; if (Solve(board, given, circular, size, start, last, (x + move.dx, y + move.dy), n + 1)) return true; } if (!given[n - 1]) board[x, y] = 0; return false;   bool AreNeighbors((int x, int y) p1, (int x, int y) p2) => moves.Any(m => (p2.x + m.dx, p2.y + m.dy).Equals(p1)); }   private static (int[,] board, BitArray given, int count) Parse(string[] input) { (int height, int width) = (input.Length, input[0].Length); int[,] board = new int[height, width]; int count = 0; for (int x = 0; x < height; x++) { string line = input[x]; for (int y = 0; y < width; y++) { board[x, y] = y < line.Length && char.IsDigit(line[y]) ? line[y] - '0' : -1; if (board[x, y] >= 0) count++; } } BitArray given = Scan(board, count, height, width); return (board, given, count); }   private static (int[,] board, BitArray given, int count) Parse(int[,] input) { (int height, int width) = (input.GetLength(0), input.GetLength(1)); int[,] board = new int[height, width]; int count = 0; for (int x = 0; x < height; x++) for (int y = 0; y < width; y++) if ((board[x, y] = input[x, y]) >= 0) count++; BitArray given = Scan(board, count, height, width); return (board, given, count); }   private static BitArray Scan(int[,] board, int count, int height, int width) { var given = new BitArray(count + 1); for (int x = 0; x < height; x++) for (int y = 0; y < width; y++) if (board[x, y] > 0) given[board[x, y] - 1] = true; return given; }   private static void Print(int[,] board) { if (board == null) { WriteLine("No solution"); } else { int w = board.Cast<int>().Where(i => i > 0).Max(i => (int?)Ceiling(Log10(i+1))) ?? 1; string e = new string('-', w); foreach (int x in Range(0, board.GetLength(0))) WriteLine(string.Join(" ", Range(0, board.GetLength(1)) .Select(y => board[x, y] < 0 ? e : board[x, y].ToString().PadLeft(w, ' ')))); } WriteLine(); }   }
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Julia
Julia
struct BoardState board::String csol::String position::Int end   function move(s::BoardState, dpos) buffer = Vector{UInt8}(deepcopy(s.board)) if s.board[s.position] == '@' buffer[s.position] = ' ' else buffer[s.position] = '.' end newpos = s.position + dpos if s.board[newpos] == ' ' buffer[newpos] = '@' else buffer[newpos] = '+' end String(buffer) end   function push(s::BoardState, dpos) newpos = s.position + dpos boxpos = newpos + dpos if s.board[boxpos] != ' ' && s.board[boxpos] != '.' return "" end buffer = Vector{UInt8}(deepcopy(s.board)) if s.board[s.position] == '@' buffer[s.position] = ' ' else buffer[s.position] = '.' end if s.board[newpos] == '$' buffer[newpos] = '@' else buffer[newpos] = '+' end if s.board[boxpos] == ' ' buffer[boxpos] = '$' else buffer[boxpos] = '*' end String(buffer) end   function solve(board) width = findfirst("\n", board[2:end])[1] + 1 dopt = (u = -width, l = -1, d = width, r = 1) visited = Dict(board => true) open::Vector{BoardState} = [BoardState(board, "", findfirst("@", board)[1])] while length(open) > 0 s1 = open[1] open = open[2:end] for dir in keys(dopt) newpos = s1.position + dopt[dir] x = s1.board[newpos] if x == '$' || x == '*' newboard = push(s1, dopt[dir]) if newboard == "" || haskey(visited, newboard) continue end newsol = s1.csol * uppercase(string(dir)) if findfirst(r"[\.\+]", newboard) == nothing return newsol end elseif x == ' ' || x == '.' newboard = move(s1, dopt[dir]) if haskey(visited, newboard) continue end newsol = s1.csol * string(dir) else continue end open = push!(open, BoardState(newboard, newsol, newpos)) visited[newboard] = true end end "No solution" # we should only get here if no solution to the sokoban end   const testlevel = strip(raw""" ####### # # # # #. # # #. $$ # #.$$ # #.# @# #######""") println("For sokoban level:\n$testlevel\n...solution is :\n$(solve(testlevel))")  
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Kotlin
Kotlin
// version 1.2.0   import java.util.LinkedList   class Sokoban(board: List<String>) { val destBoard: String val currBoard: String val nCols = board[0].length var playerX = 0 var playerY = 0   init { val destBuf = StringBuilder() val currBuf = StringBuilder() for (r in 0 until board.size) { for (c in 0 until nCols) { val ch = board[r][c] destBuf.append(if (ch != '$' && ch != '@') ch else ' ') currBuf.append(if (ch != '.') ch else ' ') if (ch == '@') { playerX = c playerY = r } } } destBoard = destBuf.toString() currBoard = currBuf.toString() }   fun move(x: Int, y: Int, dx: Int, dy: Int, trialBoard: String): String { val newPlayerPos = (y + dy) * nCols + x + dx if (trialBoard[newPlayerPos] != ' ') return "" val trial = trialBoard.toCharArray() trial[y * nCols + x] = ' ' trial[newPlayerPos] = '@' return String(trial) }   fun push(x: Int, y: Int, dx: Int, dy: Int, trialBoard: String): String { val newBoxPos = (y + 2 * dy) * nCols + x + 2 * dx if (trialBoard[newBoxPos] != ' ') return "" val trial = trialBoard.toCharArray() trial[y * nCols + x] = ' ' trial[(y + dy) * nCols + x + dx] = '@' trial[newBoxPos] = '$' return String(trial) }   fun isSolved(trialBoard: String): Boolean { for (i in 0 until trialBoard.length) { if ((destBoard[i] == '.') != (trialBoard[i] == '$')) return false } return true }   fun solve(): String { data class Board(val cur: String, val sol: String, val x: Int, val y: Int) val dirLabels = listOf('u' to 'U', 'r' to 'R', 'd' to 'D', 'l' to 'L') val dirs = listOf(0 to -1, 1 to 0, 0 to 1, -1 to 0) val history = mutableSetOf<String>() history.add(currBoard) val open = LinkedList<Board>() open.add(Board(currBoard, "", playerX, playerY))   while (!open.isEmpty()) { val (cur, sol, x, y) = open.poll() for (i in 0 until dirs.size) { var trial = cur val dx = dirs[i].first val dy = dirs[i].second   // are we standing next to a box ? if (trial[(y + dy) * nCols + x + dx] == '$') {   // can we push it ? trial = push(x, y, dx, dy, trial) if (!trial.isEmpty()) {   // or did we already try this one ? if (trial !in history) { val newSol = sol + dirLabels[i].second if (isSolved(trial)) return newSol open.add(Board(trial, newSol, x + dx, y + dy)) history.add(trial) } } } // otherwise try changing position else { trial = move(x, y, dx, dy, trial) if (!trial.isEmpty() && trial !in history) { val newSol = sol + dirLabels[i].first open.add(Board(trial, newSol, x + dx, y + dy)) history.add(trial) } } } } return "No solution" } }   fun main(args: Array<String>) { val level = listOf( "#######", "# #", "# #", "#. # #", "#. $$ #", "#.$$ #", "#.# @#", "#######" ) println(level.joinToString("\n")) println() println(Sokoban(level).solve()) }
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Lua
Lua
  local p1, p1W = ".xxx.....x.xx....xxxxxxxxxx..x.xx.x..xxxsxxxxxx...xx.x.....xxx..", 8 local p2, p2W = ".....s.x..........x.x.........xxxxx.........xxx.......x..x.x..x..xxxxx...xxxxx..xx.....xx..xxxxx...xxxxx..x..x.x..x.......xxx.........xxxxx.........x.x..........x.x.....", 13 local puzzle, movesCnt, wid = {}, 0, 0 local moves = { { -1, -2 }, { 1, -2 }, { -1, 2 }, { 1, 2 }, { -2, -1 }, { -2, 1 }, { 2, -1 }, { 2, 1 } }   function isValid( x, y ) return( x > 0 and x <= wid and y > 0 and y <= wid and puzzle[x + y * wid - wid] == 0 ) end function solve( x, y, s ) if s > movesCnt then return true end local test, a, b for i = 1, #moves do test = false a = x + moves[i][1]; b = y + moves[i][2] if isValid( a, b ) then puzzle[a + b * wid - wid] = s if solve( a, b, s + 1 ) then return true end puzzle[a + b * wid - wid] = 0 end end return false end function printSolution() local lp for j = 1, wid do for i = 1, wid do lp = puzzle[i + j * wid - wid] if lp == -1 then io.write( " " ) else io.write( string.format( " %.2d", lp ) ) end end print() end print( "\n" ) end local sx, sy function fill( pz, w ) puzzle = {}; wid = w; movesCnt = #pz local lp for i = 1, #pz do lp = pz:sub( i, i ) if lp == "x" then table.insert( puzzle, 0 ) elseif lp == "." then table.insert( puzzle, -1 ); movesCnt = movesCnt - 1 else table.insert( puzzle, 1 ) sx = 1 + ( i - 1 ) % wid; sy = math.floor( ( i + wid - 1 ) / wid ) end end end -- [[ entry point ]] -- print( "\n\n" ); fill( p1, p1W ); if solve( sx, sy, 2 ) then printSolution() end print( "\n\n" ); fill( p2, p2W ); if solve( sx, sy, 2 ) then printSolution() end  
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#Wren
Wren
import "/sort" for Sort import "/fmt" for Fmt   var board = [ ".00.00.", "0000000", "0000000", ".00000.", "..000..", "...0..." ]   var moves = [ [-3, 0], [0, 3], [ 3, 0], [ 0, -3], [ 2, 2], [2, -2], [-2, 2], [-2, -2] ]   var grid = [] var totalToFill = 0   var countNeighbors = Fn.new { |r, c| var num = 0 for (m in moves) if (grid[r + m[1]][c + m[0]] == 0) num = num + 1 return num }   var neighbors = Fn.new { |r, c| var nbrs = [] for (m in moves) { var x = m[0] var y = m[1] if (grid[r + y][c + x] == 0) { var num = countNeighbors.call(r + y, c + x) - 1 nbrs.add([r + y, c + x, num]) } } return nbrs }   var solve // recursive solve = Fn.new { |r, c, count| if (count > totalToFill) return true var nbrs = neighbors.call(r, c) if (nbrs.isEmpty && count != totalToFill) return false var cmp = Fn.new { |n1, n2| (n1[2] - n2[2]).sign } Sort.insertion(nbrs, cmp) // stable sort for (nb in nbrs) { var rr = nb[0] var cc = nb[1] grid[rr][cc] = count if (solve.call(rr, cc, count + 1)) return true grid[rr][cc] = 0 } return false }   var printResult = Fn.new { for (row in grid) { for (i in row) { if (i == -1) { System.write(" ") } else { Fmt.write("$2d ", i) } } System.print() } }   var nRows = board.count + 6 var nCols = board[0].count + 6 grid = List.filled(nRows, null) for (r in 0...nRows) { grid[r] = List.filled(nCols, -1) for (c in 3...nCols - 3) { if (r >= 3 && r < nRows - 3) { if (board[r - 3][c - 3] == "0") { grid[r][c] = 0 totalToFill = totalToFill + 1 } } } } var pos = -1 var r var c while (true) { while (true) { pos = pos + 1 r = (pos / nCols).truncate c = pos % nCols if (grid[r][c] != -1) break } grid[r][c] = 1 if (solve.call(r, c, 2)) break grid[r][c] = 0 if (pos >= nRows * nCols) break } printResult.call()
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#F.23
F#
let persons = [| ("Joe", 120); ("foo", 31); ("bar", 51) |] Array.sortInPlaceBy fst persons printfn "%A" persons
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Factor
Factor
TUPLE: example-pair name value ;   : sort-by-name ( seq -- seq' ) [ [ name>> ] compare ] sort ;
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Kotlin
Kotlin
// version 1.2.0   import kotlin.math.abs   // Holes A=0, B=1, …, H=7 // With connections: const val conn = """ A B /|\ /|\ / | X | \ / |/ \| \ C - D - E - F \ |\ /| / \ | X | / \|/ \|/ G H """   val connections = listOf( 0 to 2, 0 to 3, 0 to 4, // A to C, D, E 1 to 3, 1 to 4, 1 to 5, // B to D, E, F 6 to 2, 6 to 3, 6 to 4, // G to C, D, E 7 to 3, 7 to 4, 7 to 5, // H to D, E, F 2 to 3, 3 to 4, 4 to 5 // C-D, D-E, E-F )   // 'isValid' checks if the pegs are a valid solution. // If the absolute difference between any pair of connected pegs is // greater than one it is a valid solution. fun isValid(pegs: IntArray): Boolean { for ((a, b) in connections) { if (abs(pegs[a] - pegs[b]) <= 1) return false } return true }   fun swap(pegs: IntArray, i: Int, j: Int) { val tmp = pegs[i] pegs[i] = pegs[j] pegs[j] = tmp }   // 'solve' is a simple recursive brute force solver, // it stops at the first found solution. // It returns the solution, the number of positions tested, // and the number of pegs swapped.   fun solve(): Triple<IntArray, Int, Int> { val pegs = IntArray(8) { it + 1 } var tests = 0 var swaps = 0   fun recurse(i: Int): Boolean { if (i >= pegs.size - 1) { tests++ return isValid(pegs) } // Try each remaining peg from pegs[i] onwards for (j in i until pegs.size) { swaps++ swap(pegs, i, j) if (recurse(i + 1)) return true swap(pegs, i, j) } return false }   recurse(0) return Triple(pegs, tests, swaps) }   fun pegsAsString(pegs: IntArray): String { val ca = conn.toCharArray() for ((i, c) in ca.withIndex()) { if (c in 'A'..'H') ca[i] = '0' + pegs[c - 'A'] } return String(ca) }   fun main(args: Array<String>) { val (p, tests, swaps) = solve() println(pegsAsString(p)) println("Tested $tests positions and did $swaps swaps.") }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#FreeBASIC
FreeBASIC
' version 11-03-2016 ' compile with: fbc -s console   #Include Once "crt/stdlib.bi" ' needed for qsort subroutine   ' Declare Sub qsort (ByVal As Any Ptr, <== point to start of array ' ByVal As size_t, <== size of array ' ByVal As size_t, <== size of array element ' ByVal As Function(ByVal As Any Ptr, ByVal As Any Ptr) As Long) <== callback function ' declare callback function with Cdecl to ensures that the parameters are passed in the correct order ' ' size of long: 4 bytes on 32bit OS, 8 bytes on 64bit OS   ' ascending Function callback Cdecl (ByVal element1 As Any Ptr, ByVal element2 As Any Ptr) As Long Function = *Cast(Long Ptr, element1) - *Cast(Long Ptr, element2) End Function   ' Function callback Cdecl (ByVal element1 As Any Ptr, ByVal element2 As Any Ptr) As Long ' Dim As Long e1 = *Cast(Long Ptr, element1) ' Dim As Long e2 = *Cast(Long Ptr, element2) ' Dim As Long result = Sgn(e1 - e2) ' If Sgn(e1) = -1 And Sgn(e2) = -1 Then result = -result ' Function = result ' End Function   ' ------=< MAIN >=------   Dim As Long i, array(20)   Dim As Long lb = LBound(array) Dim As Long ub = UBound(array)   For i = lb To ub ' fill array array(i) = 10 - i Next   Print Print "unsorted array" For i = lb To ub ' display array Print Using "###";array(i); Next Print : Print   ' sort array qsort(@array(lb), ub - lb +1, SizeOf(array), @callback)   Print "sorted array" For i = lb To ub ' show sorted array Print Using "###";array(i); Next Print   ' empty keyboard buffer While Inkey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#REXX
REXX
/*REXX program performs a sort of OID (Object IDentifiers ◄── used in Network data).*/ call gen /*generate an array (@.) from the OIDs.*/ call show 'before sort ───► ' /*display the @ array before sorting.*/ say copies('░', 79) /* " fence, separate before & after*/ call adj 1 /*expand the $ list of OID numbers. */ call bSort # /*sort " " " " " " */ call adj 0 /*shrink " " " " " " */ call show ' after sort ───► ' /*display the @ array after sorting. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ bSort: procedure expose @.; parse arg n; m=n-1 /*N: is the number of @ array elements.*/ do m=m for m by -1 until ok; ok= 1 /*keep sorting the @ array until done. */ do j=1 for m; _= j + 1 /*calculate the next (index) in @ array*/ if @.j>@._ then parse value @.j @._ 0 with @._ @.j ok end /*j*/ /* [↑] swap two out─of─order elements.*/ end /*m*/ /* [↑] use a simple bubble sort. */ return /*──────────────────────────────────────────────────────────────────────────────────────*/ gen: $= 1.3.6.1.4.1.11.2.17.19.3.4.0.10 , /* ◄──┐ */ 1.3.6.1.4.1.11.2.17.5.2.0.79 , /* ◄──┤ */ 1.3.6.1.4.1.11.2.17.19.3.4.0.4 , /* ◄──┼─◄─ six OID numbers (as a list).*/ 1.3.6.1.4.1.11150.3.4.0.1 , /* ◄──┤ */ 1.3.6.1.4.1.11.2.17.19.3.4.0.1 , /* ◄──┤ */ 1.3.6.1.4.1.11150.3.4.0 /* ◄──┘ */ w= 0 /*W: max length of #'s.*/ #= words($); do i=1 for #; @.i= word($, i); w= max(w, length(@.i) ) end /*i*/ /*W: max length of #'s.*/ return /*──────────────────────────────────────────────────────────────────────────────────────*/ adj: arg LZ; do j=1 for #; x= translate(@.j, , .); y= /*construct X version. */ do k=1 for words(x); _= word(x, k) /*get a number in X. */ if LZ then y= y right(_, w, 0) /*(prepend) leading 0's*/ else y= y (_ + 0) /* (elide) " " */ end /*k*/ @.j = translate( space(y), ., ' ') /*reconstitute number. */ end /*j*/ /*LZ: Leading Zero(s).*/ return /*── ─ ─ */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: do a=1 for #; say right("OID number",20) right(a,length(#)) arg(1) @.a; end; return
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Ksh
Ksh
  #!/bin/ksh   # Sort disjoint sublist   # # Variables: # typeset -a arr_Val=( 7 6 5 4 3 2 1 0 ) typeset -a arr_Ind=( 6 1 7 ) integer i   # # Functions: # # # Function _insertionSort(array) - Insertion sort of array of integers # function _insertionSort { typeset _arr ; nameref _arr="$1" typeset _i _j _val ; integer _i _j _val   for (( _i=1; _i<${#_arr[*]}; _i++ )); do _val=${_arr[_i]} (( _j = _i - 1 )) while (( _j>=0 && _arr[_j]>_val )); do _arr[_j+1]=${_arr[_j]} (( _j-- )) done _arr[_j+1]=${_val} done }   ###### # main # ###### print "Before sort: ${arr_Val[*]}"   typeset -a arr_2sort for ((i=0; i<${#arr_Ind[*]}; i++)); do arr_2sort+=( ${arr_Val[${arr_Ind[i]}]} ) done   _insertionSort arr_2sort # Sort the chosen values _insertionSort arr_Ind # Sort the indices   for ((i=0; i<${#arr_Ind[*]}; i++)); do arr_Val[${arr_Ind[i]}]=${arr_2sort[i]} done   print "After sort: ${arr_Val[*]}"
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Lua
Lua
values = { 7, 6, 5, 4, 3, 2, 1, 0 } indices = { 6, 1, 7 }   i = 1 -- discard duplicates while i < #indices do j = i + 1 while j < #indices do if indices[i] == indices[j] then table.remove( indices[j] ) end j = j + 1 end i = i + 1 end   for i = 1, #indices do indices[i] = indices[i] + 1 -- the tables of lua are one-based end   vals = {} for i = 1, #indices do vals[i] = values[ indices[i] ] end   table.sort( vals ) table.sort( indices )   for i = 1, #indices do values[ indices[i] ] = vals[i] end   for i = 1, #values do io.write( values[i], " " ) end
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Seed7
Seed7
$ include "seed7_05.s7i";   const proc: genSort3 (in type: elemType) is func begin global   const proc: doSort3 (in var elemType: x, in var elemType: y, in var elemType: z) is func local var array elemType: sorted is 0 times elemType.value; begin writeln("BEFORE: x=[" <& x <& "]; y=[" <& y <& "]; z=[" <& z <& "]"); sorted := sort([](x, y, z)); x := sorted[1]; y := sorted[2]; z := sorted[3]; writeln("AFTER: x=[" <& x <& "]; y=[" <& y <& "]; z=[" <& z <& "]"); end func;   end global; end func;   genSort3(integer); genSort3(string);   const proc: main is func begin doSort3(77444, -12, 0); doSort3("lions, tigers, and", "bears, oh my!", "(from the \"Wizard of OZ\")"); end func;
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#SenseTalk
SenseTalk
Set x to "lions, tigers and" Set y to "bears, oh my!" Set z to "(from the Wizard of Oz)" log x log y log z   set RosettaListAlpha to (x,y,z) log RosettaListAlpha sort RosettaListAlpha alphabetically log RosettaListAlpha   LogSuccess "Alphabetical Sort Successful"   set (x,y,z) to RosettaListAlpha log x log y log z   LogSuccess "Sorted Items back into Original Variables"   Set a to "77444" set b to "-12" set c to "0" set d to "62224"   set RosettaListNum to (a,b,c,d) log RosettaListNum sort RosettaListNum numerically log RosettaListNum   LogSuccess "Numerical Sort Successful"   set (a,b,c,d) to RosettaListNum log a log b log c log d   LogSuccess "Sorted Numbers back into Original Variables"
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Sidef
Sidef
func sort_refs(*arr) { arr.map{ *_ }.sort ~Z arr -> each { *_[1] = _[0] } }   var x = 77444 var y = -12 var z = 0   sort_refs(\x, \y, \z)   say x say y say z
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Ol
Ol
  (import (scheme char))   (define (comp a b) (let ((la (string-length a)) (lb (string-length b))) (or (> la lb) (and (= la lb) (string-ci<? a b)))))   (print (sort comp '( "lorem" "ipsum" "dolor" "sit" "amet" "consectetur" "adipiscing" "elit" "maecenas" "varius" "sapien" "vel" "purus" "hendrerit" "vehicula" "integer" "hendrerit" "viverra" "turpis" "ac" "sagittis" "arcu" "pharetra" "id")))  
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#Ursala
Ursala
#import std #import nat   shuffle = @iNX ~&l->r ^jrX/~&l ~&lK8PrC   bogosort = (not ordered nleq)-> shuffle   #cast %nL   example = bogosort <8,50,0,12,47,51>
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Forth
Forth
defer bubble-test ' > is bubble-test   : bubble { addr cnt -- } cnt 1 do addr cnt i - cells bounds do i 2@ bubble-test if i 2@ swap i 2! then cell +loop loop ;
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Phix
Phix
with javascript_semantics function gnomeSort(sequence s) integer i = 1, j = 2 while i<length(s) do object si = s[i], sn = s[i+1] if si<=sn then i = j j += 1 else s[i] = sn s[i+1] = si i -= 1 if i = 0 then i = j j += 1 end if end if end while return s end function ?gnomeSort(shuffle(tagset(10)))
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#ooRexx
ooRexx
/* Rexx */   placesList = .array~of( - "UK London", "US New York" , "US Boston", "US Washington" - , "UK Washington", "US Birmingham" , "UK Birmingham", "UK Boston" - )   sortedList = cocktailSort(placesList~allItems())   lists = .array~of(placesList, sortedList) loop ln = 1 to lists~items() cl = lists[ln] loop ct = 1 to cl~items() say cl[ct] end ct say end ln   return exit   ::routine cocktailSort use arg A   Alength = A~items() swapped = .false loop label swaps until \swapped swapped = .false loop i_ = 1 to Alength - 1 if A[i_] > A[i_ + 1] then do swap = A[i_ + 1] A[i_ + 1] = A[i_] A[i_] = swap swapped = .true end end i_ if \swapped then do leave swaps end swapped = .false loop i_ = Alength - 1 to 1 by -1 if A[i_] > A[i_ + 1] then do swap = A[i_ + 1] A[i_ + 1] = A[i_] A[i_] = swap swapped = .true end end i_ end swaps   return A
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Elixir
Elixir
  defmodule Sockets do require Logger   def send_message(port, message) do {:ok, socket} = :gen_tcp.connect('localhost', port, [])  :gen_tcp.send(socket, message) end end   Sockets.send_message(256, "hello socket world")  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Emacs_Lisp
Emacs Lisp
(let ((proc (make-network-process :name "my sock" :host 'local ;; or hostname string :service 256))) (process-send-string proc "hello socket world") (delete-process proc))
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Phix
Phix
constant iterations = 1_000_000, fmt = """ Wakings over %,d repetitions = %,d Percentage probability of heads on waking = %f%% """ integer heads = 0, wakings = 0 for i=1 to iterations do integer flip = rand(2) -- 1==heads, 2==tails wakings += 1 + (flip==2) heads += (flip==1) end for printf(1,fmt,{iterations,wakings,heads/wakings*100})
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Python
Python
from random import choice   def sleeping_beauty_experiment(repetitions): """ Run the Sleeping Beauty Problem experiment `repetitions` times, checking to see how often we had heads on waking Sleeping Beauty. """ gotheadsonwaking = 0 wakenings = 0 for _ in range(repetitions): coin_result = choice(["heads", "tails"])   # On Monday, we check if we got heads. wakenings += 1 if coin_result == "heads": gotheadsonwaking += 1   # If tails, we do this again, but of course we will not add as if it was heads.. if coin_result == "tails": wakenings += 1 if coin_result == "heads": gotheadsonwaking += 1 # never done     # Show the number of times she was wakened. print("Wakenings over", repetitions, "experiments:", wakenings)   # Return the number of correct bets SB made out of the total number # of times she is awoken over all the experiments with that bet. return gotheadsonwaking / wakenings     CREDENCE = sleeping_beauty_experiment(1_000_000) print("Results of experiment: Sleeping Beauty should estimate a credence of:", CREDENCE)  
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Go
Go
package main   import ( "fmt" "math/big" )   var b = new(big.Int)   func isSPDSPrime(n uint64) bool { nn := n for nn > 0 { r := nn % 10 if r != 2 && r != 3 && r != 5 && r != 7 { return false } nn /= 10 } b.SetUint64(n) if b.ProbablyPrime(0) { // 100% accurate up to 2 ^ 64 return true } return false }   func listSPDSPrimes(startFrom, countFrom, countTo uint64, printOne bool) uint64 { count := countFrom for n := startFrom; ; n += 2 { if isSPDSPrime(n) { count++ if !printOne { fmt.Printf("%2d. %d\n", count, n) } if count == countTo { if printOne { fmt.Println(n) } return n } } } }   func main() { fmt.Println("The first 25 terms of the Smarandache prime-digital sequence are:") fmt.Println(" 1. 2") n := listSPDSPrimes(3, 1, 25, false) fmt.Println("\nHigher terms:") indices := []uint64{25, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000} for i := 1; i < len(indices); i++ { fmt.Printf("%6d. ", indices[i]) n = listSPDSPrimes(n+2, indices[i-1], indices[i], true) } }
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#AutoHotkey
AutoHotkey
gosub Init Gui, +AlwaysOnTop Gui, font, s12, consolas Gui, add, Edit, vEditGrid x10 y10 ReadOnly, % grid2Text(oGrid) Gui, add, Text, vScore x10 y+10 w200 ReadOnly, % "Your Score = " Score Gui, show,, Snake GuiControl, Focus, Score return ;----------------------------------------- Init: Width := 100, Height := 30 ; set grid size tail := 20, step := 10 Timer := 75 item := 0, direction := "" oTrail := [], Score := 0 xx := generateGrid(width, Height) oGrid := xx.1 row := xx.2, col := xx.3 return ;----------------------------------------- Move: if !item { loop { Random, itemC, 3, % width-2 Random, itemR, 3, % Height-2 } until, !oGrid[itemR, itemC] oGrid[itemR, itemC] := "@" item := true } gosub, crawl return ;----------------------------------------- #IfWinActive, Snake left:: Right:: up:: Down:: if ((A_ThisHotkey = "right") && (Direction = "left")) || ((A_ThisHotkey = "left") && (Direction = "right")) || ((A_ThisHotkey = "up") && (Direction = "Down")) || ((A_ThisHotkey = "Down") && (Direction = "up")) || ((A_ThisHotkey = "right") && (Direction = "right")) || ((A_ThisHotkey = "left") && (Direction = "left")) || ((A_ThisHotkey = "up") && (Direction = "up")) || ((A_ThisHotkey = "Down") && (Direction = "Down")) return   Direction := A_ThisHotkey gosub, crawl return #IfWinActive ;----------------------------------------- crawl: switch, Direction { case "left" : oGrid[row , col--] := 1 case "Right" : oGrid[row , col++] := 1 case "up" : oGrid[row--, col ] := 1 case "Down" : oGrid[row++, col ] := 1 }   ; out of bounds or snake eats itself if oGrid[row, col] = 1 || col < 1 || col > width || row < 1 || row > height gosub, YouLose   ; snake eats item if (oGrid[row, col] = "@") { item := false tail += step GuiControl,, Score, % "Your Score = " ++Score }   ; snake advances oGrid[row, col] := 2 oTrail.Push(row "," col) if (oTrail.count() >= tail) x := StrSplit(oTrail.RemoveAt(1), ","), oGrid[x.1, x.2] := false   GuiControl,, EditGrid, % grid2Text(oGrid) SetTimer, Move, % 0-Timer return ;----------------------------------------- YouLose: SetTimer, Move, Off MsgBox, 262180, ,% "Your Score is " Score "`nPlay Again?" IfMsgBox, No ExitApp   gosub Init GuiControl,, EditGrid, % grid2Text(oGrid) return ;----------------------------------------- grid2Text(oGrid){ for row, obj in oGrid { for col, val in obj ; @=item, 2=Head, 1=tail text .= val = "@" ? "@" : val =2 ? "█" : val = 1 ? "▓" : " " text .= "`n" } return trim(text, "`n") } ;----------------------------------------- generateGrid(width, Height){ global oTrail oGrid := [] loop, % width { col := A_Index loop, % Height row := A_Index, oGrid[row, col] := false } Random, col, 3, % width-2 Random, row, 3, % Height-2 oGrid[row, col] := 2 oTrail.Push(row "," col) return [oGrid, row, col] } ;-----------------------------------------
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Ada
Ada
  with Ada.Text_IO;   procedure smith is type Vector is array (natural range <>) of Positive; empty_vector : constant Vector(1..0):= (others=>1);   function digits_sum (n : Positive) return Positive is (if n < 10 then n else n mod 10 + digits_sum (n / 10));   function prime_factors (n : Positive; d : Positive := 2) return Vector is (if n = 1 then empty_vector elsif n mod d = 0 then prime_factors (n / d, d) & d else prime_factors (n, d + (if d=2 then 1 else 2)));   function vector_digits_sum (v : Vector) return Natural is (if v'Length = 0 then 0 else digits_sum (v(v'First)) + vector_digits_sum (v(v'First+1..v'Last)));   begin for n in 1..10000 loop declare primes : Vector := prime_factors (n); begin if primes'Length > 1 and then vector_digits_sum (primes) = digits_sum (n) then Ada.Text_IO.put (n'img); end if; end; end loop; end smith;  
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#C.2B.2B
C++
  #include <iostream> #include <sstream> #include <iterator> #include <vector>   //------------------------------------------------------------------------------ using namespace std;   //------------------------------------------------------------------------------ struct node { int val; unsigned char neighbors; }; //------------------------------------------------------------------------------ class hSolver { public: hSolver() { dx[0] = -1; dx[1] = 0; dx[2] = 1; dx[3] = -1; dx[4] = 1; dx[5] = -1; dx[6] = 0; dx[7] = 1; dy[0] = -1; dy[1] = -1; dy[2] = -1; dy[3] = 0; dy[4] = 0; dy[5] = 1; dy[6] = 1; dy[7] = 1; }   void solve( vector<string>& puzz, int max_wid ) { if( puzz.size() < 1 ) return; wid = max_wid; hei = static_cast<int>( puzz.size() ) / wid; int len = wid * hei, c = 0; max = 0; arr = new node[len]; memset( arr, 0, len * sizeof( node ) ); weHave = new bool[len + 1]; memset( weHave, 0, len + 1 );   for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ ) { if( ( *i ) == "*" ) { arr[c++].val = -1; continue; } arr[c].val = atoi( ( *i ).c_str() ); if( arr[c].val > 0 ) weHave[arr[c].val] = true; if( max < arr[c].val ) max = arr[c].val; c++; }   solveIt(); c = 0; for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ ) { if( ( *i ) == "." ) { ostringstream o; o << arr[c].val; ( *i ) = o.str(); } c++; } delete [] arr; delete [] weHave; }   private: bool search( int x, int y, int w ) { if( w == max ) return true;   node* n = &arr[x + y * wid]; n->neighbors = getNeighbors( x, y ); if( weHave[w] ) { for( int d = 0; d < 8; d++ ) { if( n->neighbors & ( 1 << d ) ) { int a = x + dx[d], b = y + dy[d]; if( arr[a + b * wid].val == w ) if( search( a, b, w + 1 ) ) return true; } } return false; }   for( int d = 0; d < 8; d++ ) { if( n->neighbors & ( 1 << d ) ) { int a = x + dx[d], b = y + dy[d]; if( arr[a + b * wid].val == 0 ) { arr[a + b * wid].val = w; if( search( a, b, w + 1 ) ) return true; arr[a + b * wid].val = 0; } } } return false; }   unsigned char getNeighbors( int x, int y ) { unsigned char c = 0; int m = -1, a, b; for( int yy = -1; yy < 2; yy++ ) for( int xx = -1; xx < 2; xx++ ) { if( !yy && !xx ) continue; m++; a = x + xx, b = y + yy; if( a < 0 || b < 0 || a >= wid || b >= hei ) continue; if( arr[a + b * wid].val > -1 ) c |= ( 1 << m ); } return c; }   void solveIt() { int x, y; findStart( x, y ); if( x < 0 ) { cout << "\nCan't find start point!\n"; return; } search( x, y, 2 ); }   void findStart( int& x, int& y ) { for( int b = 0; b < hei; b++ ) for( int a = 0; a < wid; a++ ) if( arr[a + wid * b].val == 1 ) { x = a; y = b; return; } x = y = -1; }   int wid, hei, max, dx[8], dy[8]; node* arr; bool* weHave; }; //------------------------------------------------------------------------------ int main( int argc, char* argv[] ) { int wid; string p = ". 33 35 . . * * * . . 24 22 . * * * . . . 21 . . * * . 26 . 13 40 11 * * 27 . . . 9 . 1 * * * . . 18 . . * * * * * . 7 . . * * * * * * 5 ."; wid = 8; //string p = "54 . 60 59 . 67 . 69 . . 55 . . 63 65 . 72 71 51 50 56 62 . * * * * . . . 14 * * 17 . * 48 10 11 * 15 . 18 . 22 . 46 . * 3 . 19 23 . . 44 . 5 . 1 33 32 . . 43 7 . 36 . 27 . 31 42 . . 38 . 35 28 . 30"; wid = 9; //string p = ". 58 . 60 . . 63 66 . 57 55 59 53 49 . 65 . 68 . 8 . . 50 . 46 45 . 10 6 . * * * . 43 70 . 11 12 * * * 72 71 . . 14 . * * * 30 39 . 15 3 17 . 28 29 . . 40 . . 19 22 . . 37 36 . 1 20 . 24 . 26 . 34 33"; wid = 9;   istringstream iss( p ); vector<string> puzz; copy( istream_iterator<string>( iss ), istream_iterator<string>(), back_inserter<vector<string> >( puzz ) ); hSolver s; s.solve( puzz, wid );   int c = 0; for( vector<string>::iterator i = puzz.begin(); i != puzz.end(); i++ ) { if( ( *i ) != "*" && ( *i ) != "." ) { if( atoi( ( *i ).c_str() ) < 10 ) cout << "0"; cout << ( *i ) << " "; } else cout << " "; if( ++c >= wid ) { cout << endl; c = 0; } } cout << endl << endl; return system( "pause" ); } //--------------------------------------------------------------------------------------------------  
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Nim
Nim
import deques, sets, strutils   type   Sokoban = object destBoard: string currBoard: string nCols: Natural playerX: Natural playerY: Natural   Board = tuple[cur, sol: string; x, y: int]     func initSokoban(board: openArray[string]): Sokoban = result.nCols = board[0].len for row in 0..board.high: for col in 0..<result.nCols: let ch = board[row][col] result.destBoard.add if ch notin ['$', '@']: ch else: ' ' result.currBoard.add if ch != '.': ch else: ' ' if ch == '@': result.playerX = col result.playerY = row     func move(sokoban: Sokoban; x, y, dx, dy: int; trialBoard: string): string = let newPlayerPos = (y + dy) * sokoban.nCols + x + dx if trialBoard[newPlayerPos] != ' ': return result = trialBoard result[y * sokoban.nCols + x] = ' ' result[newPlayerPos] = '@'     func push(sokoban: Sokoban; x, y, dx, dy: int; trialBoard: string): string = let newBoxPos = (y + 2 * dy) * sokoban.nCols + x + 2 * dx if trialBoard[newBoxPos] != ' ': return result = trialBoard result[y * sokoban.nCols + x] = ' ' result[(y + dy) * sokoban.nCols + x + dx] = '@' result[newBoxPos] = '$'     func isSolved(sokoban: Sokoban; trialBoard: string): bool = for i in 0..trialBoard.high: if (sokoban.destBoard[i] == '.') != (trialBoard[i] == '$'): return false result = true     func solve(sokoban: Sokoban): string = var history: HashSet[string] history.incl sokoban.currBoard const Dirs = [(0, -1, 'u', 'U'), (1, 0, 'r', 'R'), (0, 1, 'd', 'D'), (-1, 0, 'l', 'L')] var open: Deque[Board] open.addLast (sokoban.currBoard, "", sokoban.playerX, sokoban.playerY)   while open.len != 0: let (cur, sol, x, y) = open.popFirst() for dir in Dirs: var trial = cur let dx = dir[0] let dy = dir[1]   # Are we standing next to a box? if trial[(y + dy) * sokoban.nCols + x + dx] == '$': # Can we push it? trial = sokoban.push(x, y, dx, dy, trial) if trial.len != 0: # Or did we already try this one? if trial notin history: let newSol = sol & dir[3] if sokoban.isSolved(trial): return newSol open.addLast (trial, newSol, x + dx, y + dy) history.incl trial   else: # Try to change position. trial = sokoban.move(x, y, dx, dy, trial) if trial.len != 0 and trial notin history: let newSol = sol & dir[2] open.addLast (trial, newSol, x + dx, y + dy) history.incl trial   result = "no solution"   when isMainModule:   const Level = ["#######", "# #", "# #", "#. # #", "#. $$ #", "#.$$ #", "#.# @#", "#######"]   echo Level.join("\n") echo() echo initSokoban(Level).solve()
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#OCaml
OCaml
type dir = U | D | L | R type move_t = Move of dir | Push of dir   let letter = function | Push(U) -> 'U' | Push(D) -> 'D' | Push(L) -> 'L' | Push(R) -> 'R' | Move(U) -> 'u' | Move(D) -> 'd' | Move(L) -> 'l' | Move(R) -> 'r'   let cols = ref 0 let delta = function U -> -(!cols) | D -> !cols | L -> -1 | R -> 1   let store = Hashtbl.create 251 let mark t = Hashtbl.replace store t () let marked t = Hashtbl.mem store t   let show ml = List.iter (fun c -> print_char (letter c)) (List.rev ml); print_newline()   let gen_moves (x,boxes) bd = let empty i = bd.(i) = ' ' && not (List.mem i boxes) in let check l dir = let dx = delta dir in let x1 = x+dx in if List.mem x1 boxes then ( if empty (x1+dx) then Push(dir) :: l else l ) else ( if bd.(x1) = ' ' then Move(dir) :: l else l ) in (List.fold_left check [] [U; L; R; D])   let do_move (x,boxes) = function | Push(d) -> let dx = delta d in let x1 = x+dx in let x2 = x1+dx in let rec shift = function | [] -> failwith "shift" | h :: t -> if h = x1 then x2 :: t else h :: shift t in x1, List.fast_sort compare (shift boxes) | Move(d) -> (x+(delta d)), boxes   let init_pos bd = let p = ref 0 in let q = ref [] in let check i c = if c = '$' || c = '*' then q := i::!q else if c = '@' then p := i in ( Array.iteri check bd; (!p, List.fast_sort compare !q); )   let final_box bd = let check (i,l) c = if c = '.' || c = '*' then (i+1,i::l) else (i+1,l) in List.fast_sort compare (snd (Array.fold_left check (0,[]) bd))   let array_of_input inp = let r = List.length inp and c = String.length (List.hd inp) in let a = Array.create (r*c) ' ' in ( for i = 0 to pred r do let s = List.nth inp i in for j = 0 to pred c do a.(i*c+j) <- s.[j] done done; cols := c; a)   let solve b = let board = array_of_input b in let targets = final_box board in let solved pos = targets = snd pos in let clear = Array.map (function '#' -> '#' | _ -> ' ') in let bdc = clear board in let q = Queue.create () in let pos1 = init_pos board in begin mark pos1; Queue.add (pos1, []) q; while not (Queue.is_empty q) do let curr, mhist = Queue.pop q in let moves = gen_moves curr bdc in let check m = let next = do_move curr m in if not (marked next) then if solved next then (show (m::mhist); exit 0) else (mark next; Queue.add (next,m::mhist) q) in List.iter check moves done; print_endline "No solution" end;;   let level = ["#######"; "# #"; "# #"; "#. # #"; "#. $$ #"; "#.$$ #"; "#.# @#"; "#######"] in solve level
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
puzzle = " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0"; puzzle = StringSplit[puzzle, "\n"]; puzzle = StringTake[#, {1, -1, 2}] & /@ puzzle; pos0 = Join @@ Table[{i, #} & /@ StringPosition[puzzle[[i]], "0"][[All, 1]], {i, Length@puzzle}]; pos1 = Join @@ Table[{i, #} & /@ StringPosition[puzzle[[i]], "1"][[All, 1]], {i, Length@puzzle}];   allpoints = Join[pos1, pos0]; validmoves = Select[Subsets[allpoints, {2}], Differences /* Norm /* EqualTo[Sqrt[5]]]; g = Graph[UndirectedEdge @@@ validmoves]; e = VertexList[g]; order = FindShortestTour[g][[2]] Graphics[{Red, Disk[#, 0.2] & /@ e, Black, BlockMap[Arrow, e[[order]], 2, 1]}]
http://rosettacode.org/wiki/Solve_a_Hopido_puzzle
Solve a Hopido puzzle
Hopido puzzles are similar to Hidato. The most important difference is that the only moves allowed are: hop over one tile diagonally; and over two tiles horizontally and vertically. It should be possible to start anywhere in the path, the end point isn't indicated and there are no intermediate clues. Hopido Design Post Mortem contains the following: "Big puzzles represented another problem. Up until quite late in the project our puzzle solver was painfully slow with most puzzles above 7×7 tiles. Testing the solution from each starting point could take hours. If the tile layout was changed even a little, the whole puzzle had to be tested again. We were just about to give up the biggest puzzles entirely when our programmer suddenly came up with a magical algorithm that cut the testing process down to only minutes. Hooray!" Knowing the kindness in the heart of every contributor to Rosetta Code, I know that we shall feel that as an act of humanity we must solve these puzzles for them in let's say milliseconds. Example: . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 . . . 0 0 0 . . . . . 0 . . . Extra credits are available for other interesting designs. Related tasks A* search algorithm Solve a Holy Knight's tour Knight's tour N-queens problem Solve a Hidato puzzle Solve a Holy Knight's tour Solve a Numbrix puzzle Solve the no connection puzzle
#zkl
zkl
hi:= // 0==empty cell, X==not a cell #<<< " X 0 0 X 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 X X X 0 0 0 X X X X X 0 X X X"; #<<< adjacent:=T( T(-3,0), T(-2,-2), T(-2,2), T(0,-3), T(0,3), T(2,-2), T(2,2), T(3,0) );   puzzle:=Puzzle(hi,adjacent); puzzle.print_board(); puzzle.solve(); println(); puzzle.print_board(); println();
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Fantom
Fantom
  class Pair // create a composite structure { Str name Str value new make (Str name, Str value) { this.name = name this.value = value }   override Str toStr () { "(Pair: $name, $value)" } }   class Main { public static Void main () { // samples pairs := [Pair("Fantom", "OO"), Pair("Clojure", "Functional"), Pair("Java", "OO") ]   sorted := pairs.dup // make a copy of original list sorted.sort |Pair a, Pair b -> Int| // sort using custom comparator { a.name <=> b.name } echo ("Started with : " + pairs.join(" ")) echo ("Finished with: " + sorted.join(" ")) } }  
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Fortran
Fortran
PROGRAM EXAMPLE IMPLICIT NONE   TYPE Pair CHARACTER(6) :: name CHARACTER(1) :: value END TYPE Pair   TYPE(Pair) :: rcc(10), temp INTEGER :: i, j   rcc(1) = Pair("Black", "0") rcc(2) = Pair("Brown", "1") rcc(3) = Pair("Red", "2") rcc(4) = Pair("Orange", "3") rcc(5) = Pair("Yellow", "4") rcc(6) = Pair("Green", "5") rcc(7) = Pair("Blue", "6") rcc(8) = Pair("Violet", "7") rcc(9) = Pair("Grey", "8") rcc(10) = Pair("White", "9")   DO i = 2, SIZE(rcc) j = i - 1 temp = rcc(i) DO WHILE (j>=1 .AND. LGT(rcc(j)%name, temp%name)) rcc(j+1) = rcc(j) j = j - 1 END DO rcc(j+1) = temp END DO   WRITE (*,"(2A6)") rcc   END PROGRAM EXAMPLE
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#M2000_Interpreter
M2000 Interpreter
  Module no_connection_puzzle { \\ Holes Inventory Connections="A":="CDE","B":="DEF","C":="ADG", "D":="ABCEGH" Append Connections, "E":="ABDFGH","F":="HEB", "G":="CDE","H":="DEF" Inventory ToDelete, Solutions \\ eliminate double connnections con=each(Connections) While con { m$=eval$(con, con^) c$=eval$(con) If c$="*" Then continue For i=1 to len(C$) { d$=mid$(c$,i,1) r$=Filter$(Connections$(d$), m$) If r$<>"" Then { Return connections, d$:=r$ } else { If m$=connections$(d$) Then { Return connections, d$:="*"  : If not exist(todelete, d$) Then Append todelete, d$ } } } } con=each(todelete) While con { Delete Connections, eval$(con) } Inventory Holes For i=0 to 7 : Append Holes, Chr$(65+i):=i : Next i CheckValid=lambda Holes, Connections (a$, arr) -> { val=Array(arr, Holes(a$)) con$=Connections$(a$) res=True For i=1 to Len(con$) { If Abs(Array(Arr, Holes(mid$(con$,i,1)))-val)<2 Then res=False: Exit } =res } a=(1,2,3,4,5,6,7,8) h=(,) solution=(,) done=False counter=0 Print "Wait..." P(h, a) sol=Each(Solutions) While sol { Print "Solution:";sol^+1 Disp(Eval(Solutions)) aa$=Key$ } Sub P(h, a) If len(a)<=1 Then process(cons(h, a)) : Exit Sub local b=cons(a) For i=1 to len(b) { b=cons(cdr(b),car(b)) P(cons(h,car(b)), cdr(b)) } End Sub Sub Process(a) counter++ Print counter If keypress(32) Then { local sol=Each(Solutions) aa$=Key$ While sol { Print "Solution:";sol^+1 Disp(Eval(Solutions)) aa$=Key$ } } hole=each(Connections) done=True While hole { If not CheckValid(Eval$(hole, hole^), a) Then done=False : Exit } If done Then Append Solutions, Len(Solutions):=a : Print a End Sub Sub Disp(a) Print format$(" {0} {1}", array(a), array(a,1)) Print " /|\ /|\" Print " / | X | \" Print " / |/ \| \" Print Format$("{0} - {1} - {2} - {3}", array(a,2),array(a,3), array(a,4), array(a,5)) Print " \ |\ /| /" Print " \ | X | /" Print " \|/ \|/" Print Format$(" {0} {1}", array(a,6), array(a,7)) End Sub } no_connection_puzzle    
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#m4
m4
divert(-1)   define(`abs',`eval(((( $1 ) < 0) * (-( $1 ))) + ((0 <= ( $1 )) * ( $1 )))')   define(`display_solution', ` substr($1,0,1) substr($1,1,1) /|\ /|\ / | X | \ / |/ \| \ substr($1,2,1)`---'substr($1,3,1)`---'substr($1,4,1)`---'substr($1,5,1) \ |\ /| / \ | X | / \|/ \|/ substr($1,6,1) substr($1,7,1)')   define(`satisfies_constraints', `eval(satisfies_no_duplicates_constraint($1) && satisfies_difference_constraints($1))')   define(`satisfies_no_duplicates_constraint', `eval(index(all_but_last($1),last($1)) == -1)')   define(`satisfies_difference_constraints', `pushdef(`A',ifelse(eval(1 <= len($1)),1,substr($1,0,1),100))`'dnl pushdef(`B',ifelse(eval(2 <= len($1)),1,substr($1,1,1),200))`'dnl pushdef(`C',ifelse(eval(3 <= len($1)),1,substr($1,2,1),300))`'dnl pushdef(`D',ifelse(eval(4 <= len($1)),1,substr($1,3,1),400))`'dnl pushdef(`E',ifelse(eval(5 <= len($1)),1,substr($1,4,1),500))`'dnl pushdef(`F',ifelse(eval(6 <= len($1)),1,substr($1,5,1),600))`'dnl pushdef(`G',ifelse(eval(7 <= len($1)),1,substr($1,6,1),700))`'dnl pushdef(`H',ifelse(eval(8 <= len($1)),1,substr($1,7,1),800))`'dnl eval(1 < abs((A) - (C)) && 1 < abs((A) - (D)) && 1 < abs((A) - (E)) && 1 < abs((C) - (G)) && 1 < abs((D) - (G)) && 1 < abs((E) - (G)) && 1 < abs((B) - (D)) && 1 < abs((B) - (E)) && 1 < abs((B) - (F)) && 1 < abs((D) - (H)) && 1 < abs((E) - (H)) && 1 < abs((F) - (H)) && 1 < abs((C) - (D)) && 1 < abs((D) - (E)) && 1 < abs((E) - (F)))'`dnl popdef(`A',`B',`C',`D',`E',`F',`G',`H')')   define(`all_but_last',`substr($1,0,decr(len($1)))') define(`last',`substr($1,decr(len($1)))')   define(`last_is_eight',`eval((last($1)) == 8)') define(`strip_eights',`ifelse(last_is_eight($1),1,`$0(all_but_last($1))',`$1')')   define(`incr_last',`all_but_last($1)`'incr(last($1))')   define(`solve_puzzle',`_$0(1)') define(`_solve_puzzle', `ifelse(eval(len($1) == 8 && satisfies_constraints($1)),1,`display_solution($1)', satisfies_constraints($1),1,`$0($1`'1)', last_is_eight($1),1,`$0(incr_last(strip_eights($1)))', `$0(incr_last($1))')')   divert`'dnl dnl solve_puzzle
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Frink
Frink
a = [5, 2, 4, 1, 6, 7, 9, 3, 8, 0] sort[a]
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#FunL
FunL
nums = [5, 2, 78, 2, 578, -42] println( sort(nums) ) // sort in ascending order println( nums.sortWith((>)) ) // sort in descending order
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Ring
Ring
    /* +-------------------------------------------------------------- + Program Name : SortOIDNumeric.ring + Date  : 2016-07-14 + Author  : Bert Mariani + Purpose  : Sort OID List in Numeric Order +-------------------------------------------------------------- */   oldOidList = [ ".1.3.6.1.4.1.11.2.17.19.3.4.0.10", ".1.3.6.1.4.1.11.2.17.5.2.0.79", ".1.3.6.1.4.1.11.2.17.19.3.4.0.4", ".1.3.6.1.4.1.11150.3.4.0.1", ".1.3.6.1.4.1.11.2.17.19.3.4.0.1", ".1.3.6.1.4.1.11150.3.4.0" ]   ### SHOW BEFORE SORT See nl + "oldOIDList Before Sort" +nl See oldOidList   #---------------------   delChar = "." nulChar = "" padChar = " " padSize = 6 newDotPadList = []   ### Split list into lines for line in oldOidList   ### Split line by . into components noDotList = str2list( substr(line, delChar, nl) )   ### Pad components with left blanks to make equal size newPadList = PadStringList(noDotList, padChar, padSize)   ### Join the components back to a line newDotPadString = JoinStringList(delChar, newPadList)   ### Create new list - Alpha Add(newDotPadList, newDotPadString) next   ### Sorts Alpha list newDotPadListSorted = sort(newDotPadList)   ### SHOW ALPHA INTERMEDIATE OUTPUT See nl + "newDotPadListSorted Intermediate Sort" +nl See newDotPadListSorted   ### Remove blanks for original look newOidList = RemovePadCharList( newDotPadListSorted, padChar, nulChar)   ###--------------------   ### SHOW AFTER SORT - NUMERIC See nl + "newOIDList Final Sort" +nl See newOidList     ###-------------------------------------------------------------------- ### Function: PadStringList ### newList = PadStringList(oldList, padChar, padSize ) ###--------------------------------------------------------------------   Func PadStringList oldList, padChar, padSize newList = [] for line in oldList newPadSize = padSize - len(line) newLine = Copy( padChar, newPadSize) + line Add(newList, newLine) next   ### First line in all blank because of leading dot - remove Del(newList,1) return newList   ###------------------------------------------------------------ ### FUNC JoinStringList ### newString = JoinStringList( joinChar, oldList) ###------------------------------------------------------------   Func JoinStringList joinChar, OldList newString = "" for line in OldList newString = newString + joinChar + line next return newString   ###--------------------------------------------------------------------- ### FUNC RemovePadCharList ### newOidList = RemovePadCharList( oldList, padChar, nulChar) ###---------------------------------------------------------------------   Func RemovePadCharList oldList, padChar, nulChar newList = [] for line in oldList noPadString = substr(line, padChar, nulChar) Add(newList, noPadString) next return newList ###-----------------------------------------------------------   >;
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Ruby
Ruby
%w[ 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 ] .sort_by{|oid| oid.split(".").map(&:to_i)} .each{|oid| puts oid}
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Maple
Maple
sortDisjoint := proc(values, indices::set) local vals,inds,i: vals := sort([seq(values[i], i in indices)]): inds := sort(convert(indices, Array)): for i to numelems(vals) do values(inds[i]) := vals[i]: od: end proc: tst := Array([7,6,5,4,3,2,1,0]): sortDisjoint(tst,{7,2,8});
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
Values = { 7, 6, 5, 4, 3, 2, 1, 0} ; Indices = { 7, 2, 8 }; Values[[Sort[Indices]]] = Sort[Values[[Indices]]]; Values
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Swift
Swift
func varSort<T: Comparable>(_ x: inout T, _ y: inout T, _ z: inout T) { let res = [x, y, z].sorted()   x = res[0] y = res[1] z = res[2] }   var x = "lions, tigers, and" var y = "bears, oh my!" var z = "(from the \"Wizard of OZ\")"   print("Before:") print("x = \(x)") print("y = \(y)") print("z = \(z)") print()   varSort(&x, &y, &z)   print("After:") print("x = \(x)") print("y = \(y)") print("z = \(z)")
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Tcl
Tcl
  set x {lions, tigers, and} set y {bears, oh my!} set z {(from the "Wizard of OZ")}   lassign [lsort [list $x $y $z]] x y z   puts "x: $x" puts "y: $y" puts "z: $z"     set x 77444 set y -12 set z 0   lassign [lsort [list $x $y $z]] x y z   puts "x: $x" puts "y: $y" puts "z: $z"  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#ooRexx
ooRexx
A=.array~of('The seven deadly sins','Pride','avarice','Wrath','envy','gluttony','sloth','Lust') say 'Sorted in order of descending length, and in ascending lexicographic order' say A~sortWith(.DescLengthAscLexical~new)~makeString   ::class DescLengthAscLexical mixinclass Comparator ::method compare use strict arg left, right if left~length==right~length then return left~caselessCompareTo(right) else return right~length-left~length
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#OxygenBasic
OxygenBasic
  uses generics 'containing sort macros uses console string sdata={"CC","Aa","aAa","bb","bbB","b","B","c","A"} ' int count = countof sdata ' macro filter(f,a) ================= 'sdata[a] f=1 'allow all end macro ' macro compare(f,a,b) ==================== int la=len sdata[a] int lb=len sdata[b] if la<lb f=1 'descending length elseif la>lb ' elseif ucase(sdata[a])>ucase(sdata[b]) f=1 'ascending but case insensitive endif end macro ' NewSortIndex(index,count,rcount,filter,compare) NewSortedData(sorted,sdata,index,rcount) ' print "Count: " rcount cr cr int i for i=1 to rcount print sorted[i] cr next pause  
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#VBA
VBA
Private Function Knuth(a As Variant) As Variant Dim t As Variant, i As Integer If Not IsMissing(a) Then For i = UBound(a) To LBound(a) + 1 Step -1 j = Int((UBound(a) - LBound(a) + 1) * Rnd + LBound(a)) t = a(i) a(i) = a(j) a(j) = t Next i End If Knuth = a End Function   Private Function inOrder(s As Variant) i = 2 Do While i <= UBound(s) If s(i) < s(i - 1) Then inOrder = False Exit Function End If i = i + 1 Loop inOrder = True End Function   Private Function bogosort(ByVal s As Variant) As Variant Do While Not inOrder(s) Debug.Print Join(s, ", ") s = Knuth(s) Loop bogosort = s End Function   Public Sub main() Debug.Print Join(bogosort(Knuth([{1,2,3,4,5,6}])), ", ") End Sub
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Fortran
Fortran
SUBROUTINE Bubble_Sort(a) REAL, INTENT(in out), DIMENSION(:) :: a REAL :: temp INTEGER :: i, j LOGICAL :: swapped   DO j = SIZE(a)-1, 1, -1 swapped = .FALSE. DO i = 1, j IF (a(i) > a(i+1)) THEN temp = a(i) a(i) = a(i+1) a(i+1) = temp swapped = .TRUE. END IF END DO IF (.NOT. swapped) EXIT END DO END SUBROUTINE Bubble_Sort
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#PHP
PHP
function gnomeSort($arr){ $i = 1; $j = 2; while($i < count($arr)){ if ($arr[$i-1] <= $arr[$i]){ $i = $j; $j++; }else{ list($arr[$i],$arr[$i-1]) = array($arr[$i-1],$arr[$i]); $i--; if($i == 0){ $i = $j; $j++; } } } return $arr; } $arr = array(3,1,6,2,9,4,7,8,5); echo implode(',',gnomeSort($arr));
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Oz
Oz
declare proc {CocktailSort Arr} proc {Swap I J} Arr.J := (Arr.I := Arr.J) %% assignment returns the old value end IsSorted = {NewCell false} Up = {List.number {Array.low Arr} {Array.high Arr}-1 1} Down = {Reverse Up} in for until:@IsSorted break:Break do for Range in [Up Down] do IsSorted := true for I in Range do if Arr.I > Arr.(I+1) then IsSorted := false {Swap I I+1} end end if @IsSorted then {Break} end end end end Arr = {Tuple.toArray unit(10 9 8 7 6 5 4 3 2 1)} in {CocktailSort Arr} {Inspect Arr}
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Erlang
Erlang
-module(socket). -export([start/0]).   start() -> {ok, Sock} = gen_tcp:connect("localhost", 256, [binary, {packet, 0}]), ok = gen_tcp:send(Sock, "hello socket world"), ok = gen_tcp:close(Sock).  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Factor
Factor
"localhost" 256 <inet> utf8 [ "hello socket world" print ] with-client
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Quackery
Quackery
[ $ "bigrat.qky" loadfile ] now!   [ say "Number of trials: " dup echo cr 0 ( heads count ) 0 ( sleeps count ) rot times [ 1+ 2 random if [ 1+ dip 1+ ] ] say "Data: heads count: " over echo cr say " sleeps count: " dup echo cr say "Credence of heads: " 2dup 20 point$ echo$ cr say " or approximately: " 10 round vulgar$ echo$ cr ] is trials ( n --> n/d )   1000000 trials
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#R
R
beautyProblem <- function(n) { wakeCount <- headCount <- 0 for(i in seq_len(n)) { wakeCount <- wakeCount + 1 if(sample(c("H", "T"), 1) == "H") headCount <- headCount + 1 else wakeCount <- wakeCount + 1 } headCount/wakeCount } print(beautyProblem(10000000))
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Raku
Raku
sub sleeping-beauty ($trials) { my $gotheadsonwaking = 0; my $wakenings = 0; ^$trials .map: { given <Heads Tails>.roll { ++$wakenings; when 'Heads' { ++$gotheadsonwaking } when 'Tails' { ++$wakenings } } } say "Wakenings over $trials experiments: ", $wakenings; $gotheadsonwaking / $wakenings }   say "Results of experiment: Sleeping Beauty should estimate a credence of: ", sleeping-beauty(1_000_000);
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Haskell
Haskell
{-# LANGUAGE NumericUnderscores #-} import Control.Monad (guard) import Math.NumberTheory.Primes.Testing (isPrime) import Data.List.Split (chunksOf) import Data.List (intercalate) import Text.Printf (printf)   smarandache :: [Integer] smarandache = [2,3,5,7] <> s [2,3,5,7] >>= \x -> guard (isPrime x) >> [x] where s xs = r <> s r where r = xs >>= \x -> [x*10+2, x*10+3, x*10+5, x*10+7]   nextSPDSTerms :: [Int] -> [(String, String)] nextSPDSTerms = go 1 smarandache where go _ _ [] = [] go c (x:xs) terms | c `elem` terms = (commas c, commas x) : go nextCount xs (tail terms) | otherwise = go nextCount xs terms where nextCount = succ c   commas :: Show a => a -> String commas = reverse . intercalate "," . chunksOf 3 . reverse . show   main :: IO () main = do printf "The first 25 SPDS:\n%s\n\n" $ f smarandache mapM_ (uncurry (printf "The %9sth SPDS: %15s\n")) $ nextSPDSTerms [100, 1_000, 10_000, 100_000, 1_000_000] where f = show . take 25
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#BASIC
BASIC
  REM Snake   #define EXTCHAR Chr(255)   Dim Shared As Integer puntos, contar, longitud, posX, posY, oldhi = 0 Dim Shared As Integer x(500), y(500) For contar = 1 To 500 x(contar) = 0 : y(contar) = 0 Next contar Dim Shared As Byte fruitX, fruitY, convida Dim Shared As Single delay Dim Shared As String direccion, usuario   Sub Intro Cls Color 15, 0 Print " _ _ _ _ " Print " / \ / \ / \ / \ " Print " ___________/ _\/ _\/ _\/ _\____________ " Print " __________/ /_/ /_/ /_/ /______________ " Print " | /\ /\ /\ / \ \___ " Print " |/ \_/ \_/ \_/ \ "+Chr(248)+"\ " Print " \___/--< " Color 14, 0 Locate 10, 28: Print "---SNAKE---" Locate 12, 4: Print "Para jugar, usa las teclas de flecha para moverte." Locate 13, 4: Print "Pulsa <1-3> para velocidad, o <Esc> para salir." If puntos > oldhi Then oldhi = puntos Locate 14, 4: Print "M xima puntuaci¢n: "; oldhi usuario = "" While usuario = "" usuario = Inkey Wend If usuario = Chr(27) Then End 'ESC delay = .14 If usuario = "1" Then delay = .26 If usuario = "3" Then delay = .08 Cls longitud = 9 puntos = 0 posX = 40 : posY = 10 direccion = "derecha" convida = true fruitX = Int(Rnd * 79) + 1 fruitY = Int(Rnd * 20) + 1 Locate 22, 1 For contar = 1 To 80 Print Chr(196); ''"-"; Next contar End Sub   Sub MenuPrincipal Dim As Integer num, oldX, oldY Dim As Single tm, tm2   Color 10 Locate 23, 2: Print "SNAKE - <Esc> salir - Puntos: "; puntos If posX = fruitX And posY = fruitY Then longitud += 1 puntos += 1 fruitX = Int(Rnd * 79) + 1 fruitY = Int(Rnd * 21) + 1 End If Locate fruitY, fruitX : Color 12: Print Chr(01) : Color 10'"@" x(0) = posX : y(0) = posY   For contar = 1 To 499 num = 500 - contar x(num) = x(num - 1) y(num) = y(num - 1) Next contar   oldX = x(longitud) : oldY = y(longitud) If oldX > 0 And oldY > 0 Then Locate oldY, oldX : Print " "   Locate posY, posX: Print Chr(219) '"Û" tm = Timer tm2 = tm + delay While tm < tm2 tm = Timer usuario = Inkey If usuario = EXTCHAR & "H" Then direccion = "arriba" If usuario = EXTCHAR & "P" Then direccion = "abajo" If usuario = EXTCHAR & "K" Then direccion = "izquierda" If usuario = EXTCHAR & "M" Then direccion = "derecha" If usuario = Chr(27) Then Intro Wend If direccion = "derecha" Then posX += 1 If posX > 80 Then convida = false If direccion = "izquierda" Then posX -= 1 If posX < 1 Then convida = false If direccion = "arriba" Then posY -= 1 If posY < 1 Then convida = false If direccion = "abajo" Then posY += 1 If posY > 21 Then convida = false   For contar = 0 To longitud If posX = x(contar) And posY = y(contar) Then convida = false Next contar   If convida = false Then Cls : Locate 11, 19: Print "Pulsa <space>..." Locate 10, 18: Print "Has muerto! Con"; puntos; " puntos." : Sleep While Inkey = "": Wend Intro End If MenuPrincipal End Sub   '--- Programa Principal --- Randomize Timer Intro MenuPrincipal End '--------------------------  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#ALGOL_68
ALGOL 68
# sieve of Eratosthene: sets s[i] to TRUE if i is prime, FALSE otherwise # PROC sieve = ( REF[]BOOL s )VOID: BEGIN # start with everything flagged as prime # FOR i TO UPB s DO s[ i ] := TRUE OD; # sieve out the non-primes # s[ 1 ] := FALSE; FOR i FROM 2 TO ENTIER sqrt( UPB s ) DO IF s[ i ] THEN FOR p FROM i * i BY i TO UPB s DO s[ p ] := FALSE OD FI OD END # sieve # ;   # construct a sieve of primes up to the maximum number required for the task # INT max number = 10 000; [ 1 : max number ]BOOL is prime; sieve( is prime );   # returns the sum of the digits of n # OP DIGITSUM = ( INT n )INT: BEGIN INT sum := 0; INT rest := ABS n; WHILE rest > 0 DO sum +:= rest MOD 10; rest OVERAB 10 OD; sum END # DIGITSUM # ;   # returns TRUE if n is a Smith number, FALSE otherwise # # n must be between 1 and max number # PROC is smith = ( INT n )BOOL: IF is prime[ ABS n ] THEN # primes are not Smith numbers # FALSE ELSE # find the factors of n and sum the digits of the factors # INT rest := ABS n; INT factor digit sum := 0; INT factor := 2; WHILE factor < max number AND rest > 1 DO IF NOT is prime[ factor ] THEN # factor isn't a prime # factor +:= 1 ELSE # factor is a prime # IF rest MOD factor /= 0 THEN # factor isn't a factor of n # factor +:= 1 ELSE # factor is a factor of n # rest OVERAB factor; factor digit sum +:= DIGITSUM factor FI FI OD; ( factor digit sum = DIGITSUM n ) FI # is smith # ;   # print all the Smith numbers below the maximum required # INT smith count := 0; FOR n TO max number - 1 DO IF is smith( n ) THEN # have a smith number # print( ( whole( n, -7 ) ) ); smith count +:= 1; IF smith count MOD 10 = 0 THEN print( ( newline ) ) FI FI OD; print( ( newline, "THere are ", whole( smith count, -7 ), " Smith numbers below ", whole( max number, -7 ), newline ) )  
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Curry
Curry
import CLPFD import Constraint (andC, anyC) import Findall (unpack) import Integer (abs)     hidato :: [[Int]] -> Success hidato path = test path inner & domain inner 1 40 & allDifferent inner & andFD [x `near` y | x <- cells, y <- cells] & labeling [] (concat path) where andFD = solve . foldr1 (#/\#) cells = enumerate path inner free   near :: (Int,Int,Int) -> (Int,Int,Int) -> Constraint (x,rx,cx) `near` (y,ry,cy) = x #<=# y #/\# dist (y -# x) #\/# x #># y #/\# dist (x -# y) #\/# x #=# 0 #\/# y #=# 0 where dist d = abs (rx - ry) #<=# d #/\# abs (cx - cy) #<=# d   enumerate :: [[Int]] -> [(Int,Int,Int)] enumerate xss = [(x,row,col) | (xs,row) <- xss `zip` [1..] , (x ,col) <- xs `zip` [1..] ]   test [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ,[ 0, A, 33, 35, B, C, 0, 0, 0, 0] ,[ 0, D, E, 24, 22, F, 0, 0, 0, 0] ,[ 0, G, H, I, 21, J, K, 0, 0, 0] ,[ 0, L, 26, M, 13, 40, 11, 0, 0, 0] ,[ 0, 27, N, O, P, 9, Q, 1, 0, 0] ,[ 0, 0, 0, R, S, 18, T, U, 0, 0] ,[ 0, 0, 0, 0, 0, V, 7, W, X, 0] ,[ 0, 0, 0, 0, 0, 0, 0, 5, Y, 0] ,[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] [ A, 33, 35, B, C , D, E, 24, 22, F , G, H, I, 21, J, K , L, 26, M, 13, 40, 11 , 27, N, O, P, 9, Q, 1 , R, S, 18, T, U , V, 7, W, X , 5, Y ] = success   main = unpack hidato
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Perl
Perl
#!perl use strict; use warnings qw(FATAL all); my @initial = split /\n/, <<''; ############# # # # # $$$$$$$ @# #....... # #############   ####### # # # # #. # # #. $$ # #.$$ # #.# @# #######   =for space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal =cut     my $cols = length($initial[0]); my $initial = join '', @initial; my $size = length($initial); die unless $size == $cols * @initial;   sub WALL() { 1 } sub PLAYER() { 2 } sub BOX() { 4 } sub GOAL() { 8 }   my %input = ( ' ' => 0, '#' => WALL, '@' => PLAYER, '$' => BOX, '.' => GOAL, '+' => PLAYER|GOAL, '*' => BOX|GOAL, ); my %output = reverse(%input);   sub packed_initial { my $ret = ''; vec( $ret, $_, 4 ) = $input{substr $initial, $_, 1} for( 0 .. $size-1 ); $ret; }   sub printable_board { my $board = shift; my @c = @output{map vec($board, $_, 4), 0 .. $size-1}; my $ret = ''; while( my @row = splice @c, 0, $cols ) { $ret .= join '', @row, "\n"; } $ret; }   my $packed = packed_initial();   my @udlr = qw(u d l r); my @UDLR = qw(U D L R); my @deltas = (-$cols, +$cols, -1, +1);   my %fseen; INIT_FORWARD: { $initial =~ /(\@|\+)/ or die; use vars qw(@ftodo @fnext); @ftodo = (["", $packed, $-[0]]); $fseen{$packed} = ''; }   my %rseen; INIT_REVERSE: { my $goal = $packed; vec($goal, $ftodo[0][2], 4) -= PLAYER; my @u = grep { my $t = vec($goal, $_, 4); $t & GOAL and not $t & BOX } 0 .. $size-1; my @b = grep { my $t = vec($goal, $_, 4); $t & BOX and not $t & GOAL } 0 .. $size-1; die unless @u == @b; vec($goal, $_, 4) += BOX for @u; vec($goal, $_, 4) -= BOX for @b; use vars qw(@rtodo @rnext); FINAL_PLACE: for my $player (0 .. $size-1) { next if vec($goal, $player, 4); FIND_GOAL: { vec($goal, $player + $_, 4) & GOAL and last FIND_GOAL for @deltas; next FINAL_PLACE; } my $a_goal = $goal; vec($a_goal, $player, 4) += PLAYER; push @rtodo, ["", $a_goal, $player ]; $rseen{$a_goal} = ''; #print printable_board($a_goal); } }   my $movelen = -1; my ($solution); MAIN: while( @ftodo and @rtodo ) {   FORWARD: { my ($moves, $level, $player) = @{pop @ftodo}; die unless vec($level, $player, 4) & PLAYER;   for my $dir_num (0 .. 3) { my $delta = $deltas[$dir_num]; my @loc = map $player + $delta * $_, 0 .. 2; my @val = map vec($level, $_, 4), @loc;   next if $val[1] & WALL or ($val[1] & BOX and $val[2] & (BOX|WALL));   my $new = $level; vec($new, $loc[0], 4) -= PLAYER; vec($new, $loc[1], 4) += PLAYER; my $nmoves; if( $val[1] & BOX ) { vec($new, $loc[1], 4) -= BOX; vec($new, $loc[2], 4) += BOX; $nmoves = $moves . $UDLR[$dir_num]; } else { $nmoves = $moves . $udlr[$dir_num]; }   next if exists $fseen{$new}; $fseen{$new} = $nmoves;   push @fnext, [ $nmoves, $new, $loc[1] ];   exists $rseen{$new} or next; #print(($val[1] & BOX) ? "Push $UDLR[$dir_num]\n" : "Fwalk $udlr[$dir_num]\n"); $solution = $new; last MAIN; }   last FORWARD if @ftodo; use vars qw(*ftodo *fnext); (*ftodo, *fnext) = (\@fnext, \@ftodo); } # end FORWARD   BACKWARD: { my ($moves, $level, $player) = @{pop @rtodo}; die "<$level>" unless vec($level, $player, 4) & PLAYER;   for my $dir_num (0 .. 3) { my $delta = $deltas[$dir_num]; # look behind and in front of the player. my @loc = map $player + $delta * $_, -1 .. 1; my @val = map vec($level, $_, 4), @loc;   # unlike the forward solution, we cannot push boxes next if $val[0] & (WALL|BOX); my $new = $level; vec($new, $loc[0], 4) += PLAYER; vec($new, $loc[1], 4) -= PLAYER; # unlike the forward solution, if we have a box behind us # we can *either* pull it or not. This means there are # two "successors" to this board. if( $val[2] & BOX ) { my $pull = $new; vec($pull, $loc[2], 4) -= BOX; vec($pull, $loc[1], 4) += BOX; goto RWALK if exists $rseen{$pull}; my $pmoves = $UDLR[$dir_num] . $moves; $rseen{$pull} = $pmoves; push @rnext, [$pmoves, $pull, $loc[0]]; goto RWALK unless exists $fseen{$pull}; print "Doing pull\n"; $solution = $pull; last MAIN; } RWALK: next if exists $rseen{$new}; # next direction. my $wmoves = $udlr[$dir_num] . $moves; $rseen{$new} = $wmoves; push @rnext, [$wmoves, $new, $loc[0]]; next unless exists $fseen{$new}; print "Rwalk\n"; $solution = $new; last MAIN; }   last BACKWARD if @rtodo; use vars qw(*rtodo *rnext); (*rtodo, *rnext) = (\@rnext, \@rtodo); } # end BACKWARD }   if( $solution ) { my $fmoves = $fseen{$solution}; my $rmoves = $rseen{$solution}; print "Solution found!\n"; print "Time: ", (time() - $^T), " seconds\n"; print "Moves: $fmoves $rmoves\n"; print "Move Length: ", length($fmoves . $rmoves), "\n"; print "Middle Board: \n", printable_board($solution); } else { print "No solution found!\n"; } __END__  
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Nim
Nim
import sequtils, strformat   const Moves = [[-1, -2], [1, -2], [-2, -1], [2, -1], [-2, 1], [2, 1], [-1, 2], [1, 2]]   proc solve(pz: var seq[seq[int]]; sx, sy, idx, count: Natural): bool =   if idx > count: return true   var x, y: int for move in Moves: x = sx + move[0] y = sy + move[1] if x in 0..pz.high and y in 0..pz.high and pz[x][y] == 0: pz[x][y] = idx if pz.solve(x, y, idx + 1, count): return true pz[x][y] = 0     proc findSolution(board: openArray[string]) = let sz = board.len var pz = newSeqWith(sz, repeat(-1, sz))   var count = 0 var x, y: int for i in 0..<sz: for j in 0..<sz: case board[i][j] of 'x': pz[i][j] = 0 inc count of 's': pz[i][j] = 1 inc count (x, y) = (i, j) else: discard   if pz.solve(x, y, 2, count): for i in 0..<sz: for j in 0..<sz: if pz[i][j] != -1: stdout.write &"{pz[i][j]:02} " else: stdout.write "-- " stdout.write '\n'   when isMainModule:   const   Board1 = [" xxx ", " x xx ", " xxxxxxx", "xxx x x", "x x xxx", "sxxxxxx ", " xx x ", " xxx "]   Board2 = [".....s.x.....", ".....x.x.....", "....xxxxx....", ".....xxx.....", "..x..x.x..x..", "xxxxx...xxxxx", "..xx.....xx..", "xxxxx...xxxxx", "..x..x.x..x..", ".....xxx.....", "....xxxxx....", ".....x.x.....", ".....x.x....."]   Board1.findSolution() echo() Board2.findSolution()
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#FreeBASIC
FreeBASIC
' FB 1.05.0 Win64   Type Pair As String name, value Declare Constructor(name_ As String, value_ As String) Declare Operator Cast() As String End Type   Constructor Pair(name_ As String, value_ As String) name = name_ value = value_ End Constructor   Operator Pair.Cast() As String Return "[" + name + ", " + value + "]" End Operator   ' selection sort, quick enough for sorting small number of pairs Sub sortPairsByName(p() As Pair) Dim As Integer i, j, m For i = LBound(p) To UBound(p) - 1 m = i For j = i + 1 To UBound(p) If p(j).name < p(m).name Then m = j Next j If m <> i Then Swap p(i), p(m) Next i End Sub   Dim As Pair pairs(1 To 4) = _ { _ Pair("grass", "green"), _ Pair("snow", "white" ), _ Pair("sky", "blue"), _ Pair("cherry", "red") _ }   Print "Before sorting :" For i As Integer = 1 To 4 Print Tab(3); pairs(i) Next   sortPairsByName pairs()   Print Print "After sorting by name :" For i As Integer = 1 To 4 Print Tab(3); pairs(i) Next   Print Print "Press any key to quit" Sleep
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
sol = Fold[ Select[#, Function[perm, Abs[perm[[#2[[1]]]] - perm[[#2[[2]]]]] > 1]] &, Permutations[ Range[8]], {{1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 7}, {4, 5}, {4, 7}, {4, 8}, {5, 6}, {5, 7}, {5, 8}, {6, 8}}][[1]]; Print[StringForm[ " `` ``\n /|\\ /|\\\n / | X | \\\n / |/ \\| \\\n`` - `` \ - `` - ``\n \\ |\\ /| /\n \\ | X | /\n \\|/ \\|/\n `` ``", Sequence @@ sol]];
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Nim
Nim
import strformat   const Connections = [(1, 3), (1, 4), (1, 5), # A to C, D, E (2, 4), (2, 5), (2, 6), # B to D, E, F (7, 3), (7, 4), (7, 5), # G to C, D, E (8, 4), (8, 5), (8, 6), # H to D, E, F (3, 4), (4, 5), (5, 6)] # C-D, D-E, E-F   type Peg = 1..8 Pegs = array[1..8, Peg]     func valid(pegs: Pegs): bool = for (src, dst) in Connections: if abs(pegs[src] - pegs[dst]) == 1: return false result = true     proc print(pegs: Pegs; num: Positive) = echo &"----- {num} -----" echo &" {pegs[1]} {pegs[2]}" echo &"{pegs[3]} {pegs[4]} {pegs[5]} {pegs[6]}" echo &" {pegs[7]} {pegs[8]}" echo()     proc findSolution(pegs: var Pegs; left, right: Natural; solCount = 0): Natural = var solCount = solCount if left == right: if pegs.valid(): inc solCount pegs.print(solCount) else: for i in left..right: swap pegs[left], pegs[i] solCount = pegs.findSolution(left + 1, right, solCount) swap pegs[left], pegs[i] result = solCount     when isMainModule:   var pegs = [Peg 1, 2, 3, 4, 5, 6, 7, 8] discard pegs.findSolution(1, 8)
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#F.C5.8Drmul.C3.A6
Fōrmulæ
Public Sub Main() Dim iArray As Integer[] = [8, 2, 5, 9, 1, 3, 6, 7, 4] Dim iTemp As Integer Dim sOutput As String   For Each iTemp In iArray.Sort() sOutput &= iTemp & ", " Next   Print Left(sOutput, -2)   End
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Gambas
Gambas
Public Sub Main() Dim iArray As Integer[] = [8, 2, 5, 9, 1, 3, 6, 7, 4] Dim iTemp As Integer Dim sOutput As String   For Each iTemp In iArray.Sort() sOutput &= iTemp & ", " Next   Print Left(sOutput, -2)   End
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Rust
Rust
fn split(s: &str) -> impl Iterator<Item = u64> + '_ { s.split('.').map(|x| x.parse().unwrap()) }   fn main() { let mut oids = vec![ "1.3.6.1.4.1.11.2.17.19.3.4.0.10", "1.3.6.1.4.1.11.2.17.5.2.0.79", "1.3.6.1.4.1.11.2.17.19.3.4.0.4", "1.3.6.1.4.1.11150.3.4.0.1", "1.3.6.1.4.1.11.2.17.19.3.4.0.1", "1.3.6.1.4.1.11150.3.4.0", ];   oids.sort_by(|a, b| Iterator::cmp(split(a), split(b)));   println!("{:#?}", oids); }
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Sather
Sather
class MAIN is oid_lt (a, b: STR): BOOL is as ::= a.cursor.split('.'); bs ::= b.cursor.split('.'); loop na ::= #INT(as.elt!); nb ::= #INT(bs.elt!); if na /= nb then return na < nb; end; end; return as.size < bs.size; end;   main is sorter: ARR_SORT_ALG{STR, ARRAY{STR}}; input: ARRAY{STR} := |"1.3.6.1.4.1.11.2.17.19.3.4.0.10", "1.3.6.1.4.1.11.2.17.5.2.0.79", "1.3.6.1.4.1.11.2.17.19.3.4.0.4", "1.3.6.1.4.1.11150.3.4.0.1", "1.3.6.1.4.1.11.2.17.19.3.4.0.1", "1.3.6.1.4.1.11150.3.4.0"|; sorted ::= input.copy; sorter.sort_by(sorted, bind(oid_lt(_, _)));   #OUT+"unsorted:\n"; loop #OUT+input.elt! + "\n"; end;   #OUT+"sorted:\n"; loop #OUT+sorted.elt! + "\n"; end; end; end;
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary   runSample(arg) return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method sortDisjoint(oldList, indices) public static newList = oldList.space() if indices.words() > 1 then do -- only do work if we need to subList = ArrayList() idxList = ArrayList() -- pick the input list apart loop ix = 1 to indices.words() iw = indices.word(ix) nw = oldList.word(iw) -- protect against bad outcomes... if iw > oldList.words() then signal ArrayIndexOutOfBoundsException() if iw < 1 then signal ArrayIndexOutOfBoundsException() subList.add(nw) idxList.add(iw) end ix Collections.sort(subList) -- sort sublist Collections.sort(idxList) -- sort indices -- put it all back together loop kx = 0 to subList.size() - 1 kk = Rexx subList.get(kx) ii = Rexx idxList.get(kx) newList = newList.subword(1, ii - 1) kk newList.subword(ii + 1) end kx end return newList   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static parse arg vList ',' iList if vList = '' then vList = 7 6 5 4 3 2 1 0 if iList = '' then iList = 7 2 8 rList = sortDisjoint(vList, iList) say 'In: ' vList.space say 'Out:' rList.space say 'Idx:' iList.space return  
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Visual_Basic_.NET
Visual Basic .NET
Module Module1   Sub Swap(Of T)(ByRef a As T, ByRef b As T) Dim c = a a = b b = c End Sub   Sub Sort(Of T As IComparable(Of T))(ByRef a As T, ByRef b As T, ByRef c As T) If a.CompareTo(b) > 0 Then Swap(a, b) End If If a.CompareTo(c) > 0 Then Swap(a, c) End If If b.CompareTo(c) > 0 Then Swap(b, c) End If End Sub   Sub Main() Dim x = 77444 Dim y = -12 Dim z = 0 Sort(x, y, z) Console.WriteLine((x, y, z))   Dim a = "lions, tigers, and" Dim b = "bears, oh my!" Dim c = "(from the 'Wizard of OZ')" Sort(a, b, c) Console.WriteLine((a, b, c)) End Sub   End Module
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Oz
Oz
declare fun {LexicographicLessThan Xs Ys} for X in {Map Xs Char.toLower} Y in {Map Ys Char.toLower} return:Return default:{Length Xs}<{Length Ys} do if X < Y then {Return true} end end end   fun {LessThan Xs Ys} {Length Xs} > {Length Ys} orelse {Length Xs} == {Length Ys} andthen {LexicographicLessThan Xs Ys} end   Strings = ["Here" "are" "some" "sample" "strings" "to" "be" "sorted"] in {ForAll {Sort Strings LessThan} System.showInfo}
http://rosettacode.org/wiki/Sorting_algorithms/Bogosort
Sorting algorithms/Bogosort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Bogosort a list of numbers. Bogosort simply shuffles a collection randomly until it is sorted. "Bogosort" is a perversely inefficient algorithm only used as an in-joke. Its average run-time is   O(n!)   because the chance that any given shuffle of a set will end up in sorted order is about one in   n   factorial,   and the worst case is infinite since there's no guarantee that a random shuffling will ever produce a sorted sequence. Its best case is   O(n)   since a single pass through the elements may suffice to order them. Pseudocode: while not InOrder(list) do Shuffle(list) done The Knuth shuffle may be used to implement the shuffle part of this algorithm.
#VBScript
VBScript
sub swap( byref a, byref b ) dim tmp tmp = a a = b b = tmp end sub   'knuth shuffle (I think) function shuffle( a ) dim i dim r randomize timer for i = lbound( a ) to ubound( a ) r = int( rnd * ( ubound( a ) + 1 ) ) if r <> i then swap a(i), a(r) end if next shuffle = a end function   function inOrder( a ) dim res dim i for i = 0 to ubound( a ) - 1 res = ( a(i) <= a(i+1) ) if res = false then exit for next inOrder = res end function
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#FreeBASIC
FreeBASIC
' version 21-10-2016 ' compile with: fbc -s console ' for boundry checks on array's compile with: fbc -s console -exx   Sub bubblesort(bs() As Long) ' sort from lower bound to the highter bound ' array's can have subscript range from -2147483648 to +2147483647 Dim As Long lb = LBound(bs) Dim As Long ub = UBound(bs) Dim As Long done, i   Do done = 0 For i = lb To ub -1 ' replace "<" with ">" for downwards sort If bs(i) > bs(i +1) Then Swap bs(i), bs(i +1) done = 1 End If Next Loop Until done = 0   End Sub   ' ------=< MAIN >=------   Dim As Long i, array(-7 To 7)   Dim As Long a = LBound(array), b = UBound(array)   Randomize Timer For i = a To b : array(i) = i  : Next For i = a To b ' little shuffle Swap array(i), array(Int(Rnd * (b - a +1)) + a) Next   Print "unsort "; For i = a To b : Print Using "####"; array(i); : Next : Print bubblesort(array()) ' sort the array Print " sort "; For i = a To b : Print Using "####"; array(i); : Next : Print   ' empty keyboard buffer While InKey <> "" : Wend Print : Print "hit any key to end program" Sleep End
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#PicoLisp
PicoLisp
(de gnomeSort (Lst) (let J (cdr Lst) (for (I Lst (cdr I)) (if (>= (cadr I) (car I)) (setq I J J (cdr J)) (xchg I (cdr I)) (if (== I Lst) (setq I J J (cdr J)) (setq I (prior I Lst)) ) ) ) ) Lst )
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#PARI.2FGP
PARI/GP
cocktailSort(v)={ while(1, my(done=1); for(i=2,#v, if(v[i-1]>v[i], my(t=v[i-1]); v[i-1]=v[i]; v[i]=t; done=0 ) ); if(done, return(v)); done=1; forstep(i=#v,2,-1, if(v[i-1]>v[i], my(t=v[i-1]); v[i-1]=v[i]; v[i]=t; done=0 ) ); if(done, return(v)) ) };
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Fantom
Fantom
  using inet   class Socket { public static Void main () { sock := TcpSocket() sock.connect(IpAddr("localhost"), 256)   sock.out.printLine("hello socket world") sock.out.flush sock.close } }  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Forth
Forth
include unix/socket.fs   s" localhost" 256 open-socket   dup s" hello socket world" rot write-socket   close-socket
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Red
Red
Red ["Sleeping Beauty problem"]   experiments: 1'000'000 heads: awakenings: 0 loop experiments [ awakenings: awakenings + 1 either 1 = random 2 [heads: heads + 1] [awakenings: awakenings + 1] ] print ["Awakenings over" experiments "experiments:" awakenings] print ["Probability of heads on waking:" heads / awakenings]
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#REXX
REXX
/*REXX pgm uses a Monte Carlo estimate for the results for the Sleeping Beauty problem. */ parse arg n seed . /*obtain optional arguments from the CL*/ if n=='' | n=="," then n= 1000000 /*Not specified? Then use the default.*/ if datatype(seed, 'W') then call random ,,seed /* Specified? Then use as RAND seed*/ awake= 0 /* " " " " awakened. */ do #=0 for n /*perform experiment: 1 million times?*/ if random(,1) then awake= awake + 1 /*Sleeping Beauty is awoken. */ else #= # + 1 /* " " keeps sleeping. */ end /*#*/ /* [↑] RANDOM returns: 0 or 1 */   say 'Wakenings over ' commas(n) " repetitions: " commas(#) say 'The percentage probability of heads on awakening: ' (awake / # * 100)"%" exit 0 /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ commas: parse arg ?; do jc=length(?)-3 to 1 by -3; ?=insert(',', ?, jc); end; return ?
http://rosettacode.org/wiki/Sleeping_Beauty_problem
Sleeping Beauty problem
Background on the task In decision theory, The Sleeping Beauty Problem is a problem invented by Arnold Zoboff and first publicized on Usenet. The experimental subject, named Sleeping Beauty, agrees to an experiment as follows: Sleeping Beauty volunteers to be put into a deep sleep on a Sunday. There is then a fair coin toss. If this coin toss comes up heads, Sleeping Beauty wakes once (on Monday) and is asked to estimate the probability that the coin toss was heads. Her estimate is recorded and she is then put back to sleep for 2 days until Wednesday, at which time the experiment's results are tallied. If instead the coin toss is tails, Sleeping Beauty wakes as before on Monday and asked to estimate the probability the coin toss was heads, but is then given a drug which makes her forget that she had been woken on Monday before being put back to sleep again. She then wakes only 1 day later, on Tuesday. She is then asked (on Tuesday) again to guess the probability that the coin toss was heads or tails. She is then put back to sleep and awakes as before 1 day later, on Wednesday. Some decision makers have argued that since the coin toss was fair Sleeping Beauty should always estimate the probability of heads as 1/2, since she does not have any additional information. Others have disagreed, saying that if Sleeping Beauty knows the study design she also knows that she is twice as likely to wake up and be asked to estimate the coin flip on tails than on heads, so the estimate should be 1/3 heads. Task Given the above problem, create a Monte Carlo estimate of the actual results. The program should find the proportion of heads on waking and asking Sleeping Beauty for an estimate, as a credence or as a percentage of the times Sleeping Beauty is asked the question.
#Ruby
Ruby
def sleeping_beauty_experiment(n) coin = [:heads, :tails] gotheadsonwaking = 0 wakenings = 0 n.times do wakenings += 1 coin.sample == :heads ? gotheadsonwaking += 1 : wakenings += 1 end puts "Wakenings over #{n} experiments: #{wakenings}" gotheadsonwaking / wakenings.to_f end   puts "Results of experiment: Sleeping Beauty should estimate a credence of: #{sleeping_beauty_experiment(1_000_000)}"  
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#J
J
Filter=: (#~`)(`:6) NB. given a prime y, smarandache y is 1 iff it's a smarandache prime smarandache=: [: -. (0 e. (p:i.4) e.~ 10 #.inv ])&> SP=: smarandache Filter p: i. 1000000 SP {~ i. 25 NB. first 25 Smarandache primes 2 3 5 7 23 37 53 73 223 227 233 257 277 337 353 373 523 557 577 727 733 757 773 2237 2273 99 _1 { SP NB. 100th and largest Smarandache prime of the first million primes 33223 7777753 # SP NB. Tally of Smarandache primes in the first million primes 1903
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Java
Java
  public class SmarandachePrimeDigitalSequence {   public static void main(String[] args) { long s = getNextSmarandache(7); System.out.printf("First 25 Smarandache prime-digital sequence numbers:%n2 3 5 7 "); for ( int count = 1 ; count <= 21 ; s = getNextSmarandache(s) ) { if ( isPrime(s) ) { System.out.printf("%d ", s); count++; } } System.out.printf("%n%n"); for (int i = 2 ; i <=5 ; i++ ) { long n = (long) Math.pow(10, i); System.out.printf("%,dth Smarandache prime-digital sequence number = %d%n", n, getSmarandachePrime(n)); } }   private static final long getSmarandachePrime(long n) { if ( n < 10 ) { switch ((int) n) { case 1: return 2; case 2: return 3; case 3: return 5; case 4: return 7; } } long s = getNextSmarandache(7); long result = 0; for ( int count = 1 ; count <= n-4 ; s = getNextSmarandache(s) ) { if ( isPrime(s) ) { count++; result = s; } } return result; }   private static final boolean isPrime(long test) { if ( test % 2 == 0 ) return false; for ( long i = 3 ; i <= Math.sqrt(test) ; i += 2 ) { if ( test % i == 0 ) { return false; } } return true; }   private static long getNextSmarandache(long n) { // If 3, next is 7 if ( n % 10 == 3 ) { return n+4; } long retVal = n-4;   // Last digit 7. k = largest position from right where we have a 7. int k = 0; while ( n % 10 == 7 ) { k++; n /= 10; }   // Determine first digit from right where digit != 7. long digit = n % 10;   // Digit is 2, 3, or 5. 3-2 = 1, 5-3 = 2, 7-5 = 2, so digit = 2, coefficient = 1, otherwise 2. long coeff = (digit == 2 ? 1 : 2);   // Compute next value retVal += coeff * Math.pow(10, k);   // Subtract values for digit = 7. while ( k > 1 ) { retVal -= 5 * Math.pow(10, k-1); k--; }   // Even works for 777..777 --> 2222...223 return retVal; }   }  
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#C
C
// Snake   // The problem with implementing this task in C is, the language standard // does not cover some details essential for interactive games: // a nonblocking keyboard input, a positional console output, // a and millisecond-precision timer: these things are all system-dependent.   // Therefore the program is split in two pieces, a system-independent // game logic, and a system-dependent UI, separated by a tiny API: char nonblocking_getch(); void positional_putch(int x, int y, char ch); void millisecond_sleep(int n); void init_screen(); void update_screen(); void close_screen();   // The implementation of a system-dependent part. // Requires POSIX IEEE 1003.1-2008 compliant system and ncurses library. #ifdef __linux__ #define _POSIX_C_SOURCE 200809L #include <time.h> // nanosleep #include <ncurses.h> // getch, mvaddch, and others char nonblocking_getch() { return getch(); } void positional_putch(int x, int y, char ch) { mvaddch(x, y, ch); } void millisecond_sleep(int n) { struct timespec t = { 0, n * 1000000 }; nanosleep(&t, 0); // for older POSIX standards, consider usleep() } void update_screen() { refresh(); } void init_screen() { initscr(); noecho(); cbreak(); nodelay(stdscr, TRUE); } void close_screen() { endwin(); } #endif   // An implementation for some other system... #ifdef _WIN32 #error "not implemented" #endif   // The game logic, system-independent #include <time.h> // time #include <stdlib.h> // rand, srand   #define w 80 #define h 40   int board[w * h]; int head; enum Dir { N, E, S, W } dir; int quit;   enum State { SPACE=0, FOOD=1, BORDER=2 }; // negative values denote the snake (a negated time-to-live in given cell)   // reduce a time-to-live, effectively erasing the tail void age() { int i; for(i = 0; i < w * h; ++i) if(board[i] < 0) ++board[i]; }   // put a piece of food at random empty position void plant() { int r; do r = rand() % (w * h); while(board[r] != SPACE); board[r] = FOOD; }   // initialize the board, plant a very first food item void start(void) { int i; for(i = 0; i < w; ++i) board[i] = board[i + (h - 1) * w] = BORDER; for(i = 0; i < h; ++i) board[i * w] = board[i * w + w - 1] = BORDER; head = w * (h - 1 - h % 2) / 2; // screen center for any h board[head] = -5; dir = N; quit = 0; srand(time(0)); plant(); }   void step() { int len = board[head]; switch(dir) { case N: head -= w; break; case S: head += w; break; case W: --head; break; case E: ++head; break; } switch(board[head]) { case SPACE: board[head] = len - 1; // keep in mind len is negative age(); break; case FOOD: board[head] = len - 1; plant(); break; default: quit = 1; } }   void show() { const char * symbol = " @."; int i; for(i = 0; i < w * h; ++i) positional_putch(i / w, i % w, board[i] < 0 ? '#' : symbol[board[i]]); update_screen(); }   int main (int argc, char * argv[]) { init_screen(); start(); do { show(); switch(nonblocking_getch()) { case 'i': dir = N; break; case 'j': dir = W; break; case 'k': dir = S; break; case 'l': dir = E; break; case 'q': quit = 1; break; } step(); millisecond_sleep(100); // beware, this approach // is not suitable for anything but toy projects like this } while(!quit); millisecond_sleep(999); close_screen(); return 0; }
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Arturo
Arturo
digitSum: function [v][ n: new v result: new 0 while [n > 0][ 'result + n % 10 'n / 10 ] return result ]   smith?: function [z][ return (prime? z) ? -> false -> (digitSum z) = sum map factors.prime z 'num [digitSum num] ] found: 0 loop 1..10000 'x [ if smith? x [ found: found + 1 prints (pad to :string x 6) ++ " " if 0 = found % 10 -> print "" ] ] print ""
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#D
D
import std.stdio, std.array, std.conv, std.algorithm, std.string;   int[][] board; int[] given, start;   void setup(string s) { auto lines = s.splitLines; auto cols = lines[0].split.length; auto rows = lines.length; given.length = 0;   board = new int[][](rows + 2, cols + 2); foreach (row; board) row[] = -1;   foreach (r, row; lines) { foreach (c, cell; row.split) { switch (cell) { case "__": board[r + 1][c + 1] = 0; break; case ".": break; default: int val = cell.to!int; board[r + 1][c + 1] = val; given ~= val; if (val == 1) start = [r + 1, c + 1]; } } } given.sort(); }   bool solve(int r, int c, int n, int next = 0) { if (n > given.back) return true;   if (board[r][c] && board[r][c] != n) return false;   if (board[r][c] == 0 && given[next] == n) return false;   int back = board[r][c];   board[r][c] = n; foreach (i; -1 .. 2) foreach (j; -1 .. 2) if (solve(r + i, c + j, n + 1, next + (back == n))) return true;   board[r][c] = back; return false; }   void printBoard() { foreach (row; board) { foreach (c; row) writef(c == -1 ? " . " : c ? "%2d " : "__ ", c); writeln; } }   void main() { auto hi = "__ 33 35 __ __ . . . __ __ 24 22 __ . . . __ __ __ 21 __ __ . . __ 26 __ 13 40 11 . . 27 __ __ __ 9 __ 1 . . . __ __ 18 __ __ . . . . . __ 7 __ __ . . . . . . 5 __";   hi.setup; printBoard; "\nFound:".writeln; solve(start[0], start[1], 1); printBoard; }
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Phix
Phix
-- demo\rosetta\Sokoban.exw integer w, h -- (set from parsing the input grid) sequence moves -- "", as +/-w and +/-1 (udlr) string live -- "", Y if box can go there   function reachable(sequence pushes, string level) integer p = find_any("@+",level) string ok = repeat('N',length(level)) ok[p] = 'Y' while true do p = find('Y',ok) if p=0 then exit end if ok[p] = 'y' for i=1 to length(moves) do integer pn = p+moves[i] if ok[pn]='N' and find(level[pn]," .") then ok[pn] = 'Y' end if end for end while for i=length(pushes)-1 to 1 by -2 do if ok[pushes[i]-pushes[i+1]]!='y' then pushes[i..i+1] = {} end if end for return pushes end function   function pushable(string level) sequence res = {} for i=1 to length(level) do if find(level[i],"$*") then if find(level[i-w]," .@+") and find(level[i+w]," .@+") then if live[i-w]='Y' then res &= {i,-w} end if if live[i+w]='Y' then res &= {i,+w} end if end if if find(level[i-1]," .@+") and find(level[i+1]," .@+") then if live[i-1]='Y' then res &= {i,-1} end if if live[i+1]='Y' then res &= {i,+1} end if end if end if end for return reachable(res,level) end function   function solve(string level) atom t2 = time()+2 integer seen = new_dict() sequence solution = "No solution.", partial = {} sequence todo = {{level,partial,pushable(level)}}, pushes while length(todo) do sequence t1 = todo[1] todo = todo[2..$] {level,partial,pushes} = t1 integer p = find_any("@+",level) while length(pushes) do integer {s,m} = pushes[1..2] pushes = pushes[3..$] level[p] = " ."[find(level[p],"@+")] level[s] = "@+"[find(level[s],"$*")] level[s+m] = "$*"[find(level[s+m]," .")] if getd_index(level,seen)=0 then sequence np = partial&{s,m} if not find('$',level) then solution = np todo = {} pushes = {} exit end if setd(level,true,seen) if time()>t2 then printf(1,"working... (seen %d)\r",dict_size(seen)) t2 = time()+2 end if todo = append(todo,{level,np,pushable(level)}) end if level = t1[1] -- (reset) end while end while destroy_dict(seen) return solution end function   procedure plays(string level, sequence solution) -- This plays push-only solutions (see play() for lurd) string res = level integer p = find_any("@+",level) for i=1 to length(solution) by 2 do integer {s,m} = solution[i..i+1] m+=s level[p] = " ."[find(level[p],"@+")] level[s] = "@+"[find(level[s],"$*")] level[m] = "$*"[find(level[m]," .")] res &= level p = s end for -- (replacing +0 with 1/2/3 may help in some cases) puts(1,join_by(split(res,'\n'),h,floor(80/(w+2))+0)) end procedure   procedure mark_live(integer p, string level) -- (idea cribbed from the C version) if live[p]='N' then live[p] = 'Y' integer l = length(level) if p-w*2>=1 and level[p-w]!='#' and level[p-w*2]!='#' then mark_live(p-w,level) end if if p+w*2<=l and level[p+w]!='#' and level[p+w*2]!='#' then mark_live(p+w,level) end if if p-2 >=1 and level[p-1]!='#' and level[p-2]  !='#' then mark_live(p-1,level) end if if p+2 <=l and level[p+1]!='#' and level[p+2]  !='#' then mark_live(p+1,level) end if end if end procedure   function make_square(string level) -- -- Sets {h, w, moves, live}, and returns an evened-out/rectangular level -- if level[$]!='\n' then level &= '\n' end if -- (for the display) sequence lines = split(level,'\n') h = length(lines)-1 -- set height (ignore trailing \n) sequence ln = repeat(0,h) for i=1 to h do ln[i] = {length(lines[i]),i} for j=1 to length(lines[i]) do -- validate each line, why not if not find(lines[i,j]," #.$@*") then crash("invalid input") end if end for end for ln = sort(ln) w = ln[$][1]+1 -- set width (==longest, inc \n) moves = {-w,+w,-1,+1} -- and make these (udlr) legal ... for i=1 to h do integer {l,n} = ln[i], pad = w-1-l if pad=0 then exit end if lines[n] &= repeat(' ',pad) -- ... by evening up the "grid" end for level = join(lines,'\n') live = join(repeat(repeat('N',w-1),h),'\n') for p=1 to length(level) do if find(level[p],".+*") then mark_live(p,level) end if end for return level end function   constant input = """ ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### """   atom t0 = time() string level = make_square(input) sequence pushset = solve(level) integer pop = length(pushset)/2 if string(pushset) then puts(1,level) printf(1,"%s\n",{pushset}) -- ("No Solution.") else printf(1,"solution of %d pushes (%s)\n",{pop,elapsed(time()-t0)}) plays(level,pushset) end if
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#PicoLisp
PicoLisp
(load "@lib/simul.l")   # Display board (de display () (disp *Board NIL '((This) (pack (if2 (== This *Pos) (memq This *Goals) "+" # Player on goal "@" # Player elsewhere (if (: val) "*" ".") # On gloal (or (: val) " ") ) # Elsewhere " " ) ) ) )   # Initialize (de main (Lst) (mapc '((B L) (mapc '((This C) (case C (" ") ("." (push '*Goals This)) ("@" (setq *Pos This)) ("$" (=: val C) (push '*Boxes This)) (T (=: val C)) ) ) B L ) ) (setq *Board (grid (length (car Lst)) (length Lst))) (apply mapcar (flip (mapcar chop Lst)) list) ) (display) )   # Generate possible push-moves (de pushes () (make (for Box *Boxes (unless (or (; (west Box) val) (; (east Box) val)) (when (moves (east Box)) (link (cons (cons Box (west Box)) *Pos "L" @)) ) (when (moves (west Box)) (link (cons (cons Box (east Box)) *Pos "R" @)) ) ) (unless (or (; (south Box) val) (; (north Box) val)) (when (moves (north Box)) (link (cons (cons Box (south Box)) *Pos "D" @)) ) (when (moves (south Box)) (link (cons (cons Box (north Box)) *Pos "U" @)) ) ) ) ) )   # Moves of player to destination (de moves (Dst Hist) (or (== Dst *Pos) (mini length (extract '((Dir) (with ((car Dir) Dst) (cond ((== This *Pos) (cons (cdr Dir))) ((: val)) ((memq This Hist)) ((moves This (cons Dst Hist)) (cons (cdr Dir) @) ) ) ) ) '((west . "r") (east . "l") (south . "u") (north . "d")) ) ) ) )   # Find solution (de go (Res) (unless (idx '*Hist (sort (copy *Boxes)) T) # No repeated state (if (find '((This) (<> "$" (: val))) *Goals) (pick '((Psh) (setq # Move *Pos (caar Psh) *Boxes (cons (cdar Psh) (delq *Pos *Boxes)) ) (put *Pos 'val NIL) (put (cdar Psh) 'val "$") (prog1 (go (append (cddr Psh) Res)) (setq # Undo move *Pos (cadr Psh) *Boxes (cons (caar Psh) (delq (cdar Psh) *Boxes)) ) (put (cdar Psh) 'val NIL) (put (caar Psh) 'val "$") ) ) (pushes) ) (display) # Display solution (pack (flip Res)) ) ) )
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Perl
Perl
package KT_Locations; # A sequence of locations on a 2-D board whose order might or might not # matter. Suitable for representing a partial tour, a complete tour, or the # required locations to visit. use strict; use overload '""' => "as_string"; use English; # 'locations' must be a reference to an array of 2-element array references, # where the first element is the rank index and the second is the file index. use Class::Tiny qw(N locations); use List::Util qw(all);   sub BUILD { my $self = shift; $self->{N} //= 8; $self->{N} >= 3 or die "N must be at least 3"; all {ref($ARG) eq 'ARRAY' && scalar(@{$ARG}) == 2} @{$self->{locations}} or die "At least one element of 'locations' is invalid"; return; }   sub as_string { my $self = shift; my %idxs; my $idx = 1; foreach my $loc (@{$self->locations}) { $idxs{join(q{K},@{$loc})} = $idx++; } my $str; { my $w = int(log(scalar(@{$self->locations}))/log(10.)) + 2; my $fmt = "%${w}d"; my $N = $self->N; my $non_tour = q{ } x ($w-1) . q{-}; for (my $r=0; $r<$N; $r++) { for (my $f=0; $f<$N; $f++) { my $k = join(q{K}, $r, $f); $str .= exists($idxs{$k}) ? sprintf($fmt, $idxs{$k}) : $non_tour; } $str .= "\n"; } } return $str; }   sub as_idx_hash { my $self = shift; my $N = $self->N; my $result; foreach my $pair (@{$self->locations}) { my ($r, $f) = @{$pair}; $result->{$r * $N + $f}++; } return $result; }   package KnightsTour; use strict; # If supplied, 'str' is parsed to set 'N', 'start_location', and # 'locations_to_visit'. 'legal_move_idxs' is for improving performance. use Class::Tiny qw( N start_location locations_to_visit str legal_move_idxs ); use English; use Parallel::ForkManager; use Time::HiRes qw( gettimeofday tv_interval );   sub BUILD { my $self = shift; if ($self->{str}) { my ($n, $sl, $ltv) = _parse_input_string($self->{str}); $self->{N} = $n; $self->{start_location} = $sl; $self->{locations_to_visit} = $ltv; } $self->{N} //= 8; $self->{N} >= 3 or die "N must be at least 3"; exists($self->{start_location}) or die "Must supply start_location"; die "start_location is invalid" if ref($self->{start_location}) ne 'ARRAY' || scalar(@{$self->{start_location}}) != 2; exists($self->{locations_to_visit}) or die "Must supply locations_to_visit"; ref($self->{locations_to_visit}) eq 'KT_Locations' or die "locations_to_visit must be a KT_Locations instance"; $self->{N} == $self->{locations_to_visit}->N or die "locations_to_visit has mismatched board size"; $self->precompute_legal_moves(); return; }   sub _parse_input_string { my @rows = split(/[\r\n]+/s, shift); my $N = scalar(@rows); my ($start_location, @to_visit); for (my $r=0; $r<$N; $r++) { my $row_r = $rows[$r]; for (my $f=0; $f<$N; $f++) { my $c = substr($row_r, $f, 1); if ($c eq '1') { $start_location = [$r, $f]; } elsif ($c eq '0') { push @to_visit, [$r, $f]; } } } $start_location or die "No starting location provided"; return ($N, $start_location, KT_Locations->new(N => $N, locations => \@to_visit)); }   sub precompute_legal_moves { my $self = shift; my $N = $self->{N}; my $ktl_ixs = $self->{locations_to_visit}->as_idx_hash(); for (my $r=0; $r<$N; $r++) { for (my $f=0; $f<$N; $f++) { my $k = $r * $N + $f; $self->{legal_move_idxs}->{$k} = _precompute_legal_move_idxs($r, $f, $N, $ktl_ixs); } } return; }   sub _precompute_legal_move_idxs { my ($r, $f, $N, $ktl_ixs) = @ARG; my $r_plus_1 = $r + 1; my $r_plus_2 = $r + 2; my $r_minus_1 = $r - 1; my $r_minus_2 = $r - 2; my $f_plus_1 = $f + 1; my $f_plus_2 = $f + 2; my $f_minus_1 = $f - 1; my $f_minus_2 = $f - 2; my @result = grep { exists($ktl_ixs->{$ARG}) } map { $ARG->[0] * $N + $ARG->[1] } grep {$ARG->[0] >= 0 && $ARG->[0] < $N && $ARG->[1] >= 0 && $ARG->[1] < $N} ([$r_plus_2, $f_minus_1], [$r_plus_2, $f_plus_1], [$r_minus_2, $f_minus_1], [$r_minus_2, $f_plus_1], [$r_plus_1, $f_plus_2], [$r_plus_1, $f_minus_2], [$r_minus_1, $f_plus_2], [$r_minus_1, $f_minus_2]); return \@result; }   sub find_tour { my $self = shift; my $num_to_visit = scalar(@{$self->locations_to_visit->locations}); my $N = $self->N; my $start_loc_idx = $self->start_location->[0] * $N + $self->start_location->[1]; my $visited; for (my $i=0; $i<$N*$N; $i++) { vec($visited, $i, 1) = 0; } vec($visited, $start_loc_idx, 1) = 1; # We unwind the search by one level and use Parallel::ForkManager to search # the top-level sub-trees concurrently, assuming there are enough cores. my @next_loc_idxs = @{$self->legal_move_idxs->{$start_loc_idx}}; my $pm = new Parallel::ForkManager(scalar(@next_loc_idxs)); foreach my $next_loc_idx (@next_loc_idxs) { $pm->start and next; # Do the fork my $t0 = [gettimeofday]; vec($visited, $next_loc_idx, 1) = 1; # (The fork cloned $visited.) my $tour = _find_tour_helper($N, $num_to_visit - 1, $next_loc_idx, $visited, $self->legal_move_idxs); my $elapsed = tv_interval($t0); my ($r, $f) = _idx_to_rank_and_file($next_loc_idx, $N); if (defined $tour) { my @tour_locs = map { [_idx_to_rank_and_file($ARG, $N)] } ($start_loc_idx, $next_loc_idx, split(/\s+/s, $tour)); my $kt_locs = KT_Locations->new(N => $N, locations => \@tour_locs); print "Found a tour after first move ($r, $f) ", "in $elapsed seconds:\n", $kt_locs, "\n"; } else { print "No tour found after first move ($r, $f). ", "Took $elapsed seconds.\n"; } $pm->finish; # Do the exit in the child process } $pm->wait_all_children; return; }   sub _idx_to_rank_and_file { my ($idx, $N) = @ARG; my $f = $idx % $N; my $r = ($idx - $f) / $N; return ($r, $f); }   sub _find_tour_helper { my ($N, $num_to_visit, $current_loc_idx, $visited, $legal_move_idxs) = @ARG;   # The performance hot spot. local *inner_helper = sub { my ($num_to_visit, $current_loc_idx, $visited) = @ARG; if ($num_to_visit == 0) { return q{ }; # Solution found. } my @next_loc_idxs = @{$legal_move_idxs->{$current_loc_idx}}; my $num_to_visit2 = $num_to_visit - 1; foreach my $loc_idx2 (@next_loc_idxs) { next if vec($visited, $loc_idx2, 1); my $visited2 = $visited; vec($visited2, $loc_idx2, 1) = 1; my $recursion = inner_helper($num_to_visit2, $loc_idx2, $visited2); return $loc_idx2 . q{ } . $recursion if defined $recursion; } return; };   return inner_helper($num_to_visit, $current_loc_idx, $visited); }   package main; use strict;   solve_size_8_problem(); solve_size_13_problem(); exit 0;   sub solve_size_8_problem { my $problem = <<"END_SIZE_8_PROBLEM"; --000--- --0-00-- -0000000 000--0-0 0-0--000 1000000- --00-0-- ---000-- END_SIZE_8_PROBLEM my $kt = KnightsTour->new(str => $problem); print "Finding a tour for an 8x8 problem...\n"; $kt->find_tour(); return; }   sub solve_size_13_problem { my $problem = <<"END_SIZE_13_PROBLEM"; -----1-0----- -----0-0----- ----00000---- -----000----- --0--0-0--0-- 00000---00000 --00-----00-- 00000---00000 --0--0-0--0-- -----000----- ----00000---- -----0-0----- -----0-0----- END_SIZE_13_PROBLEM my $kt = KnightsTour->new(str => $problem); print "Finding a tour for a 13x13 problem...\n"; $kt->find_tour(); return; }
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Frink
Frink
class Pair { var name var value   new[name is string, value is string] := { this.name = name this.value = value } }   a = [new Pair["one", "1"], new Pair["two", "2"], new Pair["three", "3"]] sort[a, {|a,b| lexicalCompare[a.name, b.name]}]  
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#F.C5.8Drmul.C3.A6
Fōrmulæ
package main   import ( "fmt" "sort" )   type pair struct { name, value string } type csArray []pair   // three methods satisfy sort.Interface func (a csArray) Less(i, j int) bool { return a[i].name < a[j].name } func (a csArray) Len() int { return len(a) } func (a csArray) Swap(i, j int) { a[i], a[j] = a[j], a[i] }   var x = csArray{ pair{"joe", "120"}, pair{"foo", "31"}, pair{"bar", "251"}, }   func main() { sort.Sort(x) for _, p := range x { fmt.Printf("%5s: %s\n", p.name, p.value) } }
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Perl
Perl
#!/usr/bin/perl   use strict; use warnings;   my $gap = qr/.{3}/s;   find( <<terminator ); -AB- CDEF -GH- terminator   sub find { my $p = shift; $p =~ /(\d)$gap.{0,2}(\d)(??{abs $1 - $2 <= 1 ? '' : '(*F)'})/ || $p =~ /^.*\n.*(\d)(\d)(??{abs $1 - $2 <= 1 ? '' : '(*F)'})/ and return; if( $p =~ /[A-H]/ ) { find( $p =~ s/[A-H]/$_/r ) for grep $p !~ $_, 1 .. 8; } else { print $p =~ tr/-/ /r; exit; } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#GAP
GAP
a := [ 8, 2, 5, 9, 1, 3, 6, 7, 4 ]; # Make a copy (with "b := a;", b and a would point to the same list) b := ShallowCopy(a);   # Sort in place Sort(a); a; # [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]   # Sort without changing the argument SortedList(b); # [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] b; # [ 8, 2, 5, 9, 1, 3, 6, 7, 4 ]
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Go
Go
package main import "fmt" import "sort"   func main() { nums := []int {2, 4, 3, 1, 2} sort.Ints(nums) fmt.Println(nums) }
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Sidef
Sidef
func sort_OIDs(ids) { ids.sort_by { |id| id.split('.').map { Num(_) } } }   var OIDs = %w( 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 )   sort_OIDs(OIDs).each { .say }
http://rosettacode.org/wiki/Sort_a_list_of_object_identifiers
Sort a list of object identifiers
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Object identifiers (OID) Task Show how to sort a list of OIDs, in their natural sort order. Details An OID consists of one or more non-negative integers in base 10, separated by dots. It starts and ends with a number. Their natural sort order is lexicographical with regard to the dot-separated fields, using numeric comparison between fields. Test case Input (list of strings) Output (list of strings) 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11150.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11.2.17.5.2.0.79 1.3.6.1.4.1.11.2.17.19.3.4.0.1 1.3.6.1.4.1.11.2.17.19.3.4.0.4 1.3.6.1.4.1.11.2.17.19.3.4.0.10 1.3.6.1.4.1.11150.3.4.0 1.3.6.1.4.1.11150.3.4.0.1 Related tasks Natural sorting Sort using a custom comparator
#Swift
Swift
import Foundation   public struct OID { public var val: String   public init(_ val: String) { self.val = val } }   extension OID: CustomStringConvertible { public var description: String { return val } }   extension OID: Comparable { public static func < (lhs: OID, rhs: OID) -> Bool { let split1 = lhs.val.components(separatedBy: ".").compactMap(Int.init) let split2 = rhs.val.components(separatedBy: ".").compactMap(Int.init) let minSize = min(split1.count, split2.count)   for i in 0..<minSize { if split1[i] < split2[i] { return true } else if split1[i] > split2[i] { return false } }   return split1.count < split2.count }   public static func == (lhs: OID, rhs: OID) -> Bool { return lhs.val == rhs.val } }   let ids = [ "1.3.6.1.4.1.11.2.17.19.3.4.0.10", "1.3.6.1.4.1.11.2.17.5.2.0.79", "1.3.6.1.4.1.11.2.17.19.3.4.0.4", "1.3.6.1.4.1.11150.3.4.0.1", "1.3.6.1.4.1.11.2.17.19.3.4.0.1", "1.3.6.1.4.1.11150.3.4.0" ].map(OID.init)   for id in ids.sorted() { print(id) }
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Nial
Nial
  values := [7, 6, 5, 4, 3, 2, 1, 0] indices := sortup [6, 1, 7] values#indices := sortup values#indices 7 0 5 4 3 2 1 6  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Nim
Nim
import algorithm   proc sortDisjoinSublist[T](data: var seq[T], indices: seq[int]) = var indices = indices sort indices, cmp[T]   var values: seq[T] = @[] for i in indices: values.add data[i] sort values, cmp[T]   for j, i in indices: data[i] = values[j]   var d = @[7, 6, 5, 4, 3, 2, 1, 0] sortDisjoinSublist(d, @[6, 1, 7]) echo d
http://rosettacode.org/wiki/Sort_three_variables
Sort three variables
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort   (the values of)   three variables   (X,   Y,   and   Z)   that contain any value   (numbers and/or literals). If that isn't possible in your language, then just sort numbers   (and note if they can be floating point, integer, or other). I.E.:   (for the three variables   x,   y,   and   z),   where: x = 'lions, tigers, and' y = 'bears, oh my!' z = '(from the "Wizard of OZ")' After sorting, the three variables would hold: x = '(from the "Wizard of OZ")' y = 'bears, oh my!' z = 'lions, tigers, and' For numeric value sorting, use: I.E.:   (for the three variables   x,   y,   and   z),   where: x = 77444 y = -12 z = 0 After sorting, the three variables would hold: x = -12 y = 0 z = 77444 The variables should contain some form of a number, but specify if the algorithm used can be for floating point or integers.   Note any limitations. The values may or may not be unique. The method used for sorting can be any algorithm;   the goal is to use the most idiomatic in the computer programming language used. More than one algorithm could be shown if one isn't clearly the better choice. One algorithm could be: • store the three variables   x, y, and z into an array (or a list)   A   • sort (the three elements of) the array   A   • extract the three elements from the array and place them in the variables x, y, and z   in order of extraction Another algorithm   (only for numeric values): x= 77444 y= -12 z= 0 low= x mid= y high= z x= min(low, mid, high) /*determine the lowest value of X,Y,Z. */ z= max(low, mid, high) /* " " highest " " " " " */ y= low + mid + high - x - z /* " " middle " " " " " */ Show the results of the sort here on this page using at least the values of those shown above.
#Wren
Wren
import "/sort" for Sort import "/fmt" for Fmt   var sort3 = Fn.new { |x, y, z| var a = [x, y, z] Sort.insertion(a) x = a[0] y = a[1] z = a[2] Fmt.print(" x = $s\n y = $s\n z = $s", x, y, z) }   System.print("After sorting strings:") var x = "lions, tigers, and" var y = "bears, oh my!" var z = "(from the \"Wizard of OZ\")" sort3.call(x, y, z)   System.print("\nAfter sorting integers:") x = 77444 y = -12 z = 0 sort3.call(x, y, z)   System.print("\nAfter sorting floats:") x = 11.3 y = -9.7 z = 11.17 sort3.call(x, y, z)
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#PARI.2FGP
PARI/GP
cmp(a,b)=if(#a<#b,1,if(#a>#b,-1,lex(a,b))); vecsort(v,cmp)
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Pascal
Pascal
use feature 'say';   @strings = qw/Here are some sample strings to be sorted/;   # with a subroutine: sub mycmp { length $b <=> length $a || lc $a cmp lc $b } say join ' ', sort mycmp @strings;   # inline: say join ' ', sort {length $b <=> length $a || lc $a cmp lc $b} @strings   # for large inputs, can be faster with a 'Schwartzian' transform: say join ' ', map { $_->[0] } sort { $b->[1] <=> $a->[1] || $a->[2] cmp $b->[2] } map { [ $_, length, lc ] } @strings;