task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#C.2B.2B
C++
  #include <iostream> #include <vector> #include <iomanip>   void primeFactors( unsigned n, std::vector<unsigned>& r ) { int f = 2; if( n == 1 ) r.push_back( 1 ); else { while( true ) { if( !( n % f ) ) { r.push_back( f ); n /= f; if( n == 1 ) return; } else f++; } } } unsigned sumDigits( unsigned n ) { unsigned sum = 0, m; while( n ) { m = n % 10; sum += m; n -= m; n /= 10; } return sum; } unsigned sumDigits( std::vector<unsigned>& v ) { unsigned sum = 0; for( std::vector<unsigned>::iterator i = v.begin(); i != v.end(); i++ ) { sum += sumDigits( *i ); } return sum; } void listAllSmithNumbers( unsigned n ) { std::vector<unsigned> pf; for( unsigned i = 4; i < n; i++ ) { primeFactors( i, pf ); if( pf.size() < 2 ) continue; if( sumDigits( i ) == sumDigits( pf ) ) std::cout << std::setw( 4 ) << i << " "; pf.clear(); } std::cout << "\n\n"; } int main( int argc, char* argv[] ) { listAllSmithNumbers( 10000 ); return 0; }  
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Icon_and_Unicon
Icon and Unicon
global nCells, cMap, best record Pos(r,c)   procedure main(A) puzzle := showPuzzle("Input",readPuzzle()) QMouse(puzzle,findStart(puzzle),&null,0) showPuzzle("Output", solvePuzzle(puzzle)) | write("No solution!") end   procedure readPuzzle() # Start with a reduced puzzle space p := [[-1]] nCells := maxCols := 0 every line := !&input do { put(p,[: -1 | gencells(line) | -1 :]) maxCols <:= *p[-1] } put(p, [-1]) # Now normalize all rows to the same length every i := 1 to *p do p[i] := [: !p[i] | (|-1\(maxCols - *p[i])) :] return p end   procedure gencells(s) static WS, NWS initial { NWS := ~(WS := " \t") cMap := table() # Map to/from internal model cMap["#"] := -1; cMap["_"] := 0 cMap[-1] := " "; cMap[0] := "_" }   s ? while not pos(0) do { w := (tab(many(WS))|"", tab(many(NWS))) | break w := numeric(\cMap[w]|w) if -1 ~= w then nCells +:= 1 suspend w } end   procedure showPuzzle(label, p) write(label," with ",nCells," cells:") every r := !p do { every c := !r do writes(right((\cMap[c]|c),*nCells+1)) write() } return p end   procedure findStart(p) if \p[r := !*p][c := !*p[r]] = 1 then return Pos(r,c) end   procedure solvePuzzle(puzzle) if path := \best then { repeat { loc := path.getLoc() puzzle[loc.r][loc.c] := path.getVal() path := \path.getParent() | break } return puzzle } end   class QMouse(puzzle, loc, parent, val) method getVal(); return val; end method getLoc(); return loc; end method getParent(); return parent; end method atEnd(); return (nCells = val) = puzzle[loc.r][loc.c]; end method goNorth(); return visit(loc.r-1,loc.c); end method goNE(); return visit(loc.r-1,loc.c+1); end method goEast(); return visit(loc.r, loc.c+1); end method goSE(); return visit(loc.r+1,loc.c+1); end method goSouth(); return visit(loc.r+1,loc.c); end method goSW(); return visit(loc.r+1,loc.c-1); end method goWest(); return visit(loc.r, loc.c-1); end method goNW(); return visit(loc.r-1,loc.c-1); end   method visit(r,c) if /best & validPos(r,c) then return Pos(r,c) end   method validPos(r,c) xv := puzzle[r][c] if xv = (val+1) then return if xv = 0 then { # make sure this path hasn't already gone there ancestor := self while xl := (ancestor := \ancestor.getParent()).getLoc() do if (xl.r = r) & (xl.c = c) then fail return } end   initially val +:= 1 if atEnd() then return best := self QMouse(puzzle, goNorth(), self, val) QMouse(puzzle, goNE(), self, val) QMouse(puzzle, goEast(), self, val) QMouse(puzzle, goSE(), self, val) QMouse(puzzle, goSouth(), self, val) QMouse(puzzle, goSW(), self, val) QMouse(puzzle, goWest(), self, val) QMouse(puzzle, goNW(), self, val) end
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Tcl
Tcl
package require Tcl 8.5   proc solveSokoban b { set cols [string length [lindex $b 0]] set dxes [list [expr {-$cols}] $cols -1 1] set i 0 foreach c [split [join $b ""] ""] { switch $c { " " {lappend bdc " "} "#" {lappend bdc "#"} "@" {lappend bdc " ";set startplayer $i } "$" {lappend bdc " ";lappend startbox $i} "." {lappend bdc " "; lappend targets $i} "+" {lappend bdc " ";set startplayer $i; lappend targets $i} "*" {lappend bdc " ";lappend startbox $i;lappend targets $i} } incr i } set q [list [list $startplayer $startbox] {}] set store([lindex $q 0]) {} for {set idx 0} {$idx < [llength $q]} {incr idx 2} { lassign [lindex $q $idx] x boxes foreach dir {U D L R} dx $dxes { if {[set x1 [expr {$x + $dx}]] in $boxes} { if {[lindex $bdc [incr x1 $dx]] ne " " || $x1 in $boxes} { continue } set tmpboxes $boxes set x1 [expr {$x + $dx}] for {set i 0} {$i < [llength $boxes]} {incr i} { if {[lindex $boxes $i] == $x1} { lset tmpboxes $i [expr {$x1 + $dx}] break } } if {$dx == 1 || $dx == -1} { set next [list $x1 $tmpboxes] } else { set next [list $x1 [lsort -integer $tmpboxes]] } if {![info exists store($next)]} { if {$targets eq [lindex $next 1]} { foreach c [lindex $q [expr {$idx + 1}]] { lassign $c ispush olddir if {$ispush} { append solution $olddir } else { append solution [string tolower $olddir] } } return [append solution $dir] } set store($next) {} set nm [lindex $q [expr {$idx + 1}]] lappend q $next lappend q [lappend nm [list 1 $dir]] } } elseif {[lindex $bdc $x1] eq " "} { set next [list [expr {$x + $dx}] $boxes] if {![info exists store($next)]} { set store($next) {} set nm [lindex $q [expr {$idx + 1}]] lappend q $next lappend q [lappend nm [list 0 $dir]] } } } } error "no solution" }
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#REXX
REXX
/*REXX program solves the holy knight's tour problem for a (general) NxN chessboard.*/ blank=pos('//', space(arg(1), 0))\==0 /*see if the pennies are to be shown. */ parse arg ops '/' cent /*obtain the options and the pennies. */ parse var ops N sRank sFile . /*boardsize, starting position, pennys.*/ if N=='' | N=="," then N=8 /*no boardsize specified? Use default.*/ if sRank=='' | sRank=="," then sRank=N /*starting rank given? " " */ if sFile=='' | sFile=="," then sFile=1 /* " file " " " */ NN=N**2; NxN='a ' N"x"N ' chessboard' /*file [↓] [↓] r=rank */ @.=; do r=1 for N; do f=1 for N; @.r.f=.; end /*f*/; end /*r*/ /*[↑] create an empty NxN chessboard.*/ cent=space( translate( cent, , ',') ) /*allow use of comma (,) for separater.*/ cents=0 /*number of pennies on the chessboard. */ do while cent\='' /* [↓] possibly place the pennies. */ parse var cent cr cf x '/' cent /*extract where to place the pennies. */ if x='' then x=1 /*if number not specified, use 1 penny.*/ if cr='' then iterate /*support the "blanking" option. */ do cf=cf for x /*now, place X pennies on chessboard.*/ @.cr.cf= '¢' /*mark chessboard position with a penny*/ end /*cf*/ /* [↑] places X pennies on chessboard.*/ end /*while*/ /* [↑] allows of the placing of X ¢s*/ /* [↓] traipse through the chessboard.*/ do r=1 for N; do f=1 for N; cents=cents + (@.r.f=='¢'); end /*f*/; end /*r*/ /* [↑] count the number of pennies. */ if cents\==0 then say cents 'pennies placed on chessboard.' target=NN - cents /*use this as the number of moves left.*/ Kr = '2 1 -1 -2 -2 -1 1 2' /*the legal "rank" moves for a knight.*/ Kf = '1 2 2 1 -1 -2 -2 -1' /* " " "file" " " " " */ kr.M=words(Kr) /*number of possible moves for a Knight*/ parse var Kr Kr.1 Kr.2 Kr.3 Kr.4 Kr.5 Kr.6 Kr.7 Kr.8 /*parse the legal moves by hand.*/ parse var Kf Kf.1 Kf.2 Kf.3 Kf.4 Kf.5 Kf.6 Kf.7 Kf.8 /* " " " " " " */ beg= '-1-' /* [↑] create the NxN chessboard. */ if @.sRank.sFile ==. then @.sRank.sFile=beg /*the knight's starting position. */ if @.sRank.sFile\==beg then do sRank=1 for N /*find starting rank for the knight.*/ do sFile=1 for N /* " " file " " " */ if @.sRank.sFile\==. then iterate @.sRank.sFile=beg /*the knight's starting position. */ leave sRank /*we have a spot, so leave all this.*/ end /*sFile*/ end /*sRank*/ @hkt= "holy knight's tour" /*a handy─dandy literal for the SAYs. */ if \move(2,sRank,sFile) & \(N==1) then say 'No' @hkt "solution for" NxN'.' else say 'A solution for the' @hkt "on" NxN':'   /*show chessboard with moves and coins.*/ !=left('', 9 * (n<18) ); say /*used for indentation of chessboard. */ _=substr( copies("┼───", N), 2); say  ! translate('┌'_"┐", '┬', "┼") do r=N for N by -1; if r\==N then say ! '├'_"┤"; L=@. do f=1 for N; [email protected]; if ?==target then ?='end'; L=L'│'center(?,3) end /*f*/ if blank then L=translate(L,,'¢') /*blank out the pennies on chessboard ?*/ say ! translate(L'│', , .) /*display a rank of the chessboard. */ end /*r*/ /*19x19 chessboard can be shown 80 cols*/ say  ! translate('└'_"┘", '┴', "┼") /*display the last rank of chessboard. */ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ move: procedure expose @. Kr. Kf. target; parse arg #,rank,file /*obtain move,rank,file.*/ do t=1 for Kr.M; nr=rank+Kr.t; nf=file+Kf.t /*position of the knight*/ if @.nr.nf==. then do; @.nr.nf=# /*Empty? Knight can move*/ if #==target then return 1 /*is this the last move?*/ if move(#+1,nr,nf) then return 1 /* " " " " " */ @.nr.nf=. /*undo the above move. */ end /*try a different move. */ end /*t*/ /* [↑] all moves tried.*/ return 0 /*tour isn't possible. */
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Java
Java
import java.util.Arrays; import java.util.Comparator;   public class SortComp { public static class Pair { public String name; public String value; public Pair(String n, String v) { name = n; value = v; } }   public static void main(String[] args) { Pair[] pairs = {new Pair("06-07", "Ducks"), new Pair("00-01", "Avalanche"), new Pair("02-03", "Devils"), new Pair("01-02", "Red Wings"), new Pair("03-04", "Lightning"), new Pair("04-05", "lockout"), new Pair("05-06", "Hurricanes"), new Pair("99-00", "Devils"), new Pair("07-08", "Red Wings"), new Pair("08-09", "Penguins")};   sortByName(pairs); for (Pair p : pairs) { System.out.println(p.name + " " + p.value); } }   public static void sortByName(Pair[] pairs) { Arrays.sort(pairs, new Comparator<Pair>() { public int compare(Pair p1, Pair p2) { return p1.name.compareTo(p2.name); } }); } }
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Red
Red
Red ["Solve the no connection puzzle"]   points: [a b c d e f g h] ; 'links' series will be scanned by pairs: [a c], [a d] etc. links: [a c a d a e b d b e b f c d c g d e d g d h e f e g e h f h] allpegs: [1 2 3 4 5 6 7 8]   ; check if two points are connected (then game is lost) i.e. ; both are have a value (not zero) and absolute difference is 1 connected: func [x y] [all [ x * y <> 0 1 = absolute (x - y) ]] ; a list of points is valid if no connexion is found isvalid: function [pegs [block!]] [ ; assign pegs values to points, or 0 for remaining points set points append/dup copy pegs 0 8 foreach [x y] links [if connected get x get y [return false]] true ] ; recursively build a list of up to 8 valid points check: function [pegs [block!]] [ if isvalid pegs [ rest: difference allpegs pegs either empty? rest [ print rejoin ["Here is a solution: " pegs] halt ; comment this line to get all solutions ][ foreach peg rest [check append copy pegs peg] ] ] ] ; start with and empty list check []  
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#REXX
REXX
/*REXX program solves the "no─connection" puzzle (the puzzle has eight pegs). */ parse arg limit . /*number of solutions wanted.*/ /* ╔═══════════════════════════╗ */ if limit=='' | limit=="," then limit= 1 /* ║ A B ║ */ /* ║ /│\ /│\ ║ */ @. = /* ║ / │ \/ │ \ ║ */ @.1 = 'A C D E' /* ║ / │ /\ │ \ ║ */ @.2 = 'B D E F' /* ║ / │/ \│ \ ║ */ @.3 = 'C A D G' /* ║ C────D────E────F ║ */ @.4 = 'D A B C E G' /* ║ \ │\ /│ / ║ */ @.5 = 'E A B D F H' /* ║ \ │ \/ │ / ║ */ @.6 = 'F B E H' /* ║ \ │ /\ │ / ║ */ @.7 = 'G C D E' /* ║ \│/ \│/ ║ */ @.8 = 'H D E F' /* ║ G H ║ */ cnt= 0 /* ╚═══════════════════════════╝ */ do pegs=1 while @.pegs\==''; _= word(@.pegs, 1) subs= 0 do #=1 for words(@.pegs) -1 /*create list of node paths.*/ __= word(@.pegs, # + 1); if __>_ then iterate subs= subs + 1;  !._.subs= __ end /*#*/  !._.0= subs /*assign the number of the node paths. */ end /*pegs*/ pegs= pegs - 1 /*the number of pegs to be seated. */ _= ' ' /*_ is used for indenting the output.*/ do a=1 for pegs; if ?('A') then iterate do b=1 for pegs; if ?('B') then iterate do c=1 for pegs; if ?('C') then iterate do d=1 for pegs; if ?('D') then iterate do e=1 for pegs; if ?('E') then iterate do f=1 for pegs; if ?('F') then iterate do g=1 for pegs; if ?('G') then iterate do h=1 for pegs; if ?('H') then iterate say _ 'a='a _ "b="||b _ 'c='c _ "d="d _ 'e='e _ "f="f _ 'g='g _ "h="h cnt= cnt + 1; if cnt==limit then leave a end /*h*/ end /*g*/ end /*f*/ end /*e*/ end /*d*/ end /*c*/ end /*b*/ end /*a*/ say /*display a blank line to the terminal.*/ s= left('s', cnt\==1) /*handle the case of plurals (or not).*/ say 'found ' cnt " solution"s'.' /*display the number of solutions found*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ ?: parse arg node; nn= value(node) nH= nn+1 do cn=c2d('A') to c2d(node)-1; if value( d2c(cn) )==nn then return 1 end /*cn*/ /* [↑] see if there any are duplicates.*/ nL= nn-1 do ch=1 for !.node.0 /* [↓] see if there any ¬= ±1 values.*/ $= !.node.ch; fn= value($) /*the node name and its current peg #.*/ if nL==fn | nH==fn then return 1 /*if ≡ ±1, then the node can't be used.*/ end /*ch*/ /* [↑] looking for suitable number. */ return 0 /*the subroutine arg value passed is OK.*/
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Io
Io
mums := list(2,4,3,1,2) sorted := nums sort # returns a new sorted array. 'nums' is unchanged nums sortInPlace # sort 'nums' "in-place"
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#J
J
/:~
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#pascal
pascal
    program disjointsort;   procedure swap(var a, b: Integer); var temp: Integer; begin temp := a; a := b; b := temp; end;   procedure d_sort(var index,arr:array of integer); var n,i,j,num:integer; begin num:=length(index); for n:=1 to 2 do begin for i:=0 to num-1 do begin for j:=i+1 to num-1 do begin if n=1 then if index[j]<index[i] then swap(index[j],index[i]); if n=2 then if arr[index[j]]<arr[index[i]] then swap(arr[index[j]],arr[index[i]]); end; end; end; end;   var i:integer; arr :array[0 .. 7] of integer =(7, 6, 5, 4, 3, 2, 1, 0); index:array[0 .. 2] of integer =(6, 1, 7);     begin writeln('Before'); for i:=0 to 7 do write(arr[i],' '); writeln; d_sort(index,arr); writeln('After'); for i:=0 to 7 do write(arr[i],' '); writeln; readln; end.  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Pop11
Pop11
lvars ls = ['Here' 'are' 'some' 'sample' 'strings' 'to' 'be' 'sorted']; define compare(s1, s2); lvars k = length(s2) - length(s1); if k < 0 then return(true); elseif k > 0 then return(false); else return (alphabefore(uppertolower(s1), uppertolower(s2))); endif; enddefine;   syssort(ls, compare) -> ls;   NOTE: The definition of compare can also be written thus: define compare(s1, s2); lvars l1 = length(s1), l2 = length(s2); l1 > l2 or (l1 == l2 and alphabefore(uppertolower(s1), uppertolower(s2))) enddefine;
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#PowerBASIC
PowerBASIC
FUNCTION Sorter(p1 AS STRING, p2 AS STRING) AS LONG 'if p1 should be first, returns -1 'if p2 should be first, returns 1 ' if they're equal, returns 0 IF LEN(p1) > LEN(p2) THEN FUNCTION = -1 ELSEIF LEN(p2) > LEN(p1) THEN FUNCTION = 1 ELSEIF UCASE$(p1) > UCASE$(p2) THEN 'if we get here, they're of equal length, 'so now we're doing a "normal" string comparison FUNCTION = -1 ELSEIF UCASE$(p2) > UCASE$(p1) THEN FUNCTION = 1 ELSE FUNCTION = 0 END IF END FUNCTION   FUNCTION PBMAIN() DIM x(7) AS STRING ARRAY ASSIGN x() = "Here", "are", "some", "sample", "strings", "to", "be", "sorted"   'pb's built-in sorting; "USING" tells it to use our custom comparator ARRAY SORT x(), USING Sorter() END FUNCTION
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Haxe
Haxe
class BubbleSort { @:generic public static function sort<T>(arr:Array<T>) { var madeChanges = false; var itemCount = arr.length; do { madeChanges = false; itemCount--; for (i in 0...itemCount) { if (Reflect.compare(arr[i], arr[i + 1]) > 0) { var temp = arr[i + 1]; arr[i + 1] = arr[i]; arr[i] = temp; madeChanges = true; } } } while (madeChanges); } }   class Main { static function main() { var integerArray = [1, 10, 2, 5, -1, 5, -19, 4, 23, 0]; var floatArray = [1.0, -3.2, 5.2, 10.8, -5.7, 7.3, 3.5, 0.0, -4.1, -9.5]; var stringArray = ['We', 'hold', 'these', 'truths', 'to', 'be', 'self-evident', 'that', 'all', 'men', 'are', 'created', 'equal']; Sys.println('Unsorted Integers: ' + integerArray); BubbleSort.sort(integerArray); Sys.println('Sorted Integers: ' + integerArray); Sys.println('Unsorted Floats: ' + floatArray); BubbleSort.sort(floatArray); Sys.println('Sorted Floats: ' + floatArray); Sys.println('Unsorted Strings: ' + stringArray); BubbleSort.sort(stringArray); Sys.println('Sorted Strings: ' + stringArray); } }
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Quackery
Quackery
[ dup size times [ i^ 0 > if [ dup i^ 1 - peek over i^ peek 2dup > iff [ dip [ swap i^ poke ] swap i^ 1 - poke -1 step ] else 2drop ] ] ] is gnomesort ( [ --> [ )
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#PL.2FI
PL/I
cocktail: procedure (A); declare A(*) fixed; declare t fixed; declare stable bit (1); declare (i, n) fixed binary (31);   n = hbound(A,1); do until (stable); stable = '1'b; do i = 1 to n-1, n-1 to 1 by -1; if A(i) > A(i+1) then do; stable = '0'b; /* still unsorted, so set false. */ t = A(i); A(i) = A(i+1); A(i+1) = t; end; end; end; end cocktail;
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Lasso
Lasso
local(net) = net_tcp #net->connect('127.0.0.1',256) #net->dowithclose => { #net->writestring('Hello World') }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Lua
Lua
socket = require "socket" host, port = "127.0.0.1", 256   sid = socket.udp() sid:sendto( "hello socket world", host, port ) sid:close()
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Quackery
Quackery
[ true swap [ 10 /mod [ table 1 1 0 0 1 0 1 0 1 1 ] iff [ dip not ] done dup 0 = until ] drop ] is digitsprime ( n --> b )   [ temp put [] 0 [ dup digitsprime if [ dup isprime if [ dup dip join ] ] 1+ over size temp share = until ] drop ] is spds ( n --> [ )   100 spds 25 split swap echo cr cr -1 peek echo
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Raku
Raku
use Lingua::EN::Numbers; use ntheory:from<Perl5> <:all>;   # Implemented as a lazy, extendable list my $spds = grep { .&is_prime }, flat [2,3,5,7], [23,27,33,37,53,57,73,77], -> $p { state $o++; my $oom = 10**(1+$o); [ flat (2,3,5,7).map: -> $l { (|$p).map: $l×$oom + * } ] } … *;   say 'Smarandache prime-digitals:'; printf "%22s: %s\n", ordinal(1+$_).tclc, comma $spds[$_] for flat ^25, 99, 999, 9999, 99999;
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Java
Java
  const L = 1, R = 2, D = 4, U = 8; var block = 24, wid = 30, hei = 20, frameR = 7, fruit, snake; function Snake() { this.length = 1; this.alive = true; this.pos = createVector( 1, 1 ); this.posArray = []; this.posArray.push( createVector( 1, 1 ) ); this.dir = R; this.draw = function() { fill( 130, 190, 0 ); var pos, i = this.posArray.length - 1, l = this.length; while( true ){ pos = this.posArray[i--]; rect( pos.x * block, pos.y * block, block, block ); if( --l == 0 ) break; } } this.eat = function( frut ) { var b = this.pos.x == frut.x && this.pos.y == frut.y; if( b ) this.length++; return b; } this.overlap = function() { var len = this.posArray.length - 1; for( var i = len; i > len - this.length; i-- ) { tp = this.posArray[i]; if( tp.x === this.pos.x && tp.y === this.pos.y ) return true; } return false; } this.update = function() { if( !this.alive ) return; switch( this.dir ) { case L: this.pos.x--; if( this.pos.x < 1 ) this.pos.x = wid - 2; break; case R: this.pos.x++; if( this.pos.x > wid - 2 ) this.pos.x = 1; break; case U: this.pos.y--; if( this.pos.y < 1 ) this.pos.y = hei - 2; break; case D: this.pos.y++; if( this.pos.y > hei - 2 ) this.pos.y = 1; break; } if( this.overlap() ) { this.alive = false; } else { this.posArray.push( createVector( this.pos.x, this.pos.y ) ); if( this.posArray.length > 5000 ) { this.posArray.splice( 0, 1 ); } } } } function Fruit() { this.fruitTime = true; this.pos = createVector(); this.draw = function() { fill( 200, 50, 20 ); rect( this.pos.x * block, this.pos.y * block, block, block ); }   this.setFruit = function() { this.pos.x = floor( random( 1, wid - 1 ) ); this.pos.y = floor( random( 1, hei - 1 ) ); this.fruitTime = false; } } function setup() { createCanvas( block * wid, block * hei ); noStroke(); frameRate( frameR ); snake = new Snake();fruit = new Fruit(); } function keyPressed() { switch( keyCode ) { case LEFT_ARROW: snake.dir = L; break; case RIGHT_ARROW: snake.dir = R; break; case UP_ARROW: snake.dir = U; break; case DOWN_ARROW: snake.dir = D; } } function draw() { background( color( 0, 0x22, 0 ) ); fill( 20, 50, 120 ); for( var i = 0; i < wid; i++ ) { rect( i * block, 0, block, block ); rect( i * block, height - block, block, block ); } for( var i = 1; i < hei - 1; i++ ) { rect( 1, i * block, block, block ); rect( width - block, i * block, block, block ); } if( fruit.fruitTime ) { fruit.setFruit(); frameR += .2; frameRate( frameR ); } fruit.draw(); snake.update(); if( snake.eat( fruit.pos ) ) { fruit.fruitTime = true; } snake.draw(); fill( 200 ); textStyle( BOLD ); textAlign( RIGHT ); textSize( 120 ); text( ""+( snake.length - 1 ), 690, 440 ); if( !snake.alive ) text( "THE END", 630, 250 ); }  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Clojure
Clojure
(defn divisible? [a b] (zero? (mod a b)))   (defn prime? [n] (and (> n 1) (not-any? (partial divisible? n) (range 2 n))))   (defn prime-factors ([n] (prime-factors n 2 '())) ([n candidate acc] (cond (<= n 1) (reverse acc) (zero? (rem n candidate)) (recur (/ n candidate) candidate (cons candidate acc))  :else (recur n (inc candidate) acc))))   (defn sum-digits [n] (reduce + (map #(- (int %) (int \0)) (str n))))   (defn smith-number? [n] (and (not (prime? n)) (= (sum-digits n) (sum-digits (clojure.string/join "" (prime-factors n))))))   (filter smith-number? (range 1 10000))
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Java
Java
import java.util.ArrayList; import java.util.Collections; import java.util.List;   public class Hidato {   private static int[][] board; private static int[] given, start;   public static void main(String[] args) { String[] input = {"_ 33 35 _ _ . . .", "_ _ 24 22 _ . . .", "_ _ _ 21 _ _ . .", "_ 26 _ 13 40 11 . .", "27 _ _ _ 9 _ 1 .", ". . _ _ 18 _ _ .", ". . . . _ 7 _ _", ". . . . . . 5 _"};   setup(input); printBoard(); System.out.println("\nFound:"); solve(start[0], start[1], 1, 0); printBoard(); }   private static void setup(String[] input) { /* This task is not about input validation, so we're going to trust the input to be valid */   String[][] puzzle = new String[input.length][]; for (int i = 0; i < input.length; i++) puzzle[i] = input[i].split(" ");   int nCols = puzzle[0].length; int nRows = puzzle.length;   List<Integer> list = new ArrayList<>(nRows * nCols);   board = new int[nRows + 2][nCols + 2]; for (int[] row : board) for (int c = 0; c < nCols + 2; c++) row[c] = -1;   for (int r = 0; r < nRows; r++) { String[] row = puzzle[r]; for (int c = 0; c < nCols; c++) { String cell = row[c]; switch (cell) { case "_": board[r + 1][c + 1] = 0; break; case ".": break; default: int val = Integer.parseInt(cell); board[r + 1][c + 1] = val; list.add(val); if (val == 1) start = new int[]{r + 1, c + 1}; } } } Collections.sort(list); given = new int[list.size()]; for (int i = 0; i < given.length; i++) given[i] = list.get(i); }   private static boolean solve(int r, int c, int n, int next) { if (n > given[given.length - 1]) return true;   if (board[r][c] != 0 && board[r][c] != n) return false;   if (board[r][c] == 0 && given[next] == n) return false;   int back = board[r][c]; if (back == n) next++;   board[r][c] = n; for (int i = -1; i < 2; i++) for (int j = -1; j < 2; j++) if (solve(r + i, c + j, n + 1, next)) return true;   board[r][c] = back; return false; }   private static void printBoard() { for (int[] row : board) { for (int c : row) { if (c == -1) System.out.print(" . "); else System.out.printf(c > 0 ? "%2d " : "__ ", c); } System.out.println(); } } }
http://rosettacode.org/wiki/Sokoban
Sokoban
Demonstrate how to find a solution to a given Sokoban level. For the purpose of this task (formally, a PSPACE-complete problem) any method may be used. However a move-optimal or push-optimal (or any other -optimal) solutions is preferred. Sokoban levels are usually stored as a character array where space is an empty square # is a wall @ is the player $ is a box . is a goal + is the player on a goal * is a box on a goal ####### # # # # #. # # #. $$ # #.$$ # #.# @# ####### Sokoban solutions are usually stored in the LURD format, where lowercase l, u, r and d represent a move in that (left, up, right, down) direction and capital LURD represents a push. Please state if you use some other format for either the input or output, and why. For more information, see the Sokoban wiki.
#Wren
Wren
import "/dynamic" for Tuple import "/llist" for DLinkedList import "/set" for Set   var Board = Tuple.create("Board", ["cur", "sol", "x", "y"])   class Sokoban { construct new(board) { _destBoard = "" _currBoard = "" _nCols = board[0].count _playerX = 0 _playerY = 0 for (r in 0...board.count) { for (c in 0..._nCols) { var ch = board[r][c] _destBoard = _destBoard + ((ch != "$" && ch != "@") ? ch : " ") _currBoard = _currBoard + ((ch != ".") ? ch : " ") if (ch == "@") { _playerX = c _playerY = r } } } }   move(x, y, dx, dy, trialBoard) { var newPlayerPos = (y + dy) * _nCols + x + dx if (trialBoard[newPlayerPos] != " ") return "" var trial = trialBoard.toList trial[y * _nCols + x] = " " trial[newPlayerPos] = "@" return trial.join() }   push(x, y, dx, dy, trialBoard) { var newBoxPos = (y + 2 * dy) * _nCols + x + 2 * dx if (trialBoard[newBoxPos] != " ") return "" var trial = trialBoard.toList trial[y * _nCols + x] = " " trial[(y + dy) * _nCols + x + dx] = "@" trial[newBoxPos] = "$" return trial.join("") }   isSolved(trialBoard) { for (i in 0...trialBoard.count) { if ((_destBoard[i] == ".") != (trialBoard[i] == "$")) return false } return true }   solve() { var dirLabels = [ ["u", "U"], ["r", "R"], ["d", "D"], ["l", "L"] ] var dirs = [ [0, -1], [1, 0], [0, 1], [-1, 0] ] var history = Set.new() history.add(_currBoard) var open = DLinkedList.new() open.add(Board.new(_currBoard, "", _playerX, _playerY))   while (!open.isEmpty) { var b = open.removeAt(0) for (i in 0...dirs.count) { var trial = b.cur var dx = dirs[i][0] var dy = dirs[i][1]   // are we standing next to a box ? if (trial[(b.y + dy) * _nCols + b.x + dx] == "$") { // can we push it ? trial = push(b.x, b.y, dx, dy, trial) if (!trial.isEmpty) { // or did we already try this one ? if (!history.contains(trial)) { var newSol = b.sol + dirLabels[i][1] if (isSolved(trial)) return newSol open.add(Board.new(trial, newSol, b.x + dx, b.y + dy)) history.add(trial) } } } else { // otherwise try changing position trial = move(b.x, b.y, dx, dy, trial) if (!trial.isEmpty && !history.contains(trial)) { var newSol = b.sol + dirLabels[i][0] open.add(Board.new(trial, newSol, b.x + dx, b.y + dy)) history.add(trial) } } } } return "No solution" } }   var level = [ "#######", "# #", "# #", "#. # #", "#. $$ #", "#.$$ #", "#.# @#", "#######" ] System.print(level.join("\n")) System.print() System.print(Sokoban.new(level).solve())
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Ruby
Ruby
require 'HLPsolver'   ADJACENT = [[-1,-2],[-2,-1],[-2,1],[-1,2],[1,2],[2,1],[2,-1],[1,-2]]   boardy = <<EOS . . 0 0 0 . . 0 . 0 0 . 0 0 0 0 0 0 0 0 0 0 . . 0 . 0 0 . 0 . . 0 0 0 1 0 0 0 0 0 0 . . 0 0 . 0 . . . 0 0 0 EOS t0 = Time.now HLPsolver.new(boardy).solve puts " #{Time.now - t0} sec"
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#JavaScript
JavaScript
var arr = [ {id: 3, value: "foo"}, {id: 2, value: "bar"}, {id: 4, value: "baz"}, {id: 1, value: 42}, {id: 5, something: "another string"} // Works with any object declaring 'id' as a number. ]; arr = arr.sort(function(a, b) {return a.id - b.id}); // Sort with comparator checking the id.  
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#jq
jq
def example: [ {"name": "Joe", "value": 3}, {"name": "Bill", "value": 4}, {"name": "Alice", "value": 20}, {"name": "Harry", "value": 3} ];
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Ruby
Ruby
  # Solve No Connection Puzzle # # Nigel_Galloway # October 6th., 2014 require 'HLPSolver' ADJACENT = [[0,0]] A,B,C,D,E,F,G,H = [0,1],[0,2],[1,0],[1,1],[1,2],[1,3],[2,1],[2,2]   board1 = <<EOS . 0 0 . 0 0 1 0 . 0 0 .   EOS g = HLPsolver.new(board1) g.board[A[0]][A[1]].adj = [B,G,H,F] g.board[B[0]][B[1]].adj = [A,C,G,H] g.board[C[0]][C[1]].adj = [B,E,F,H] g.board[D[0]][D[1]].adj = [F] g.board[E[0]][E[1]].adj = [C] g.board[F[0]][F[1]].adj = [A,C,D,G] g.board[G[0]][G[1]].adj = [A,B,F,H] g.board[H[0]][H[1]].adj = [A,B,C,G] g.solve  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Java
Java
import java.util.Arrays;   public class Example { public static void main(String[] args) { int[] nums = {2,4,3,1,2}; Arrays.sort(nums); } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#JavaScript
JavaScript
function int_arr(a, b) { return a - b; } var numbers = [20, 7, 65, 10, 3, 0, 8, -60]; numbers.sort(int_arr); document.write(numbers);
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Perl
Perl
#!/usr/bin/perl -w use strict ;   # this function sorts the array in place sub disjointSort { my ( $values , @indices ) = @_ ;   @{$values}[ sort @indices ] = sort @{$values}[ @indices ] ; }   my @values = ( 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 ) ; my @indices = ( 6 , 1 , 7 ) ; disjointSort( \@values , @indices ) ; print "[@values]\n" ;
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#PowerShell
PowerShell
$list = "Here", "are", "some", "sample", "strings", "to", "be", "sorted" $list | Sort-Object {-$_.Length},{$_}
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Prolog
Prolog
rosetta_sort :- L = ["Here", "are", "some", "sample", "strings", "to", "be", "sorted" ], predsort(my_comp, L, L1), writeln('Input list :'), maplist(my_write, L), nl,nl, writeln('Sorted list :'), maplist(my_write, L1).     my_comp(Comp, W1, W2) :- string_length(W1,L1), string_length(W2, L2), ( L1 < L2 -> Comp = '>' ; L1 > L2 -> Comp = '<' ; compare(Comp, W1, W2)).   my_write(W) :- format('~s ', [W]).  
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#HicEst
HicEst
SUBROUTINE Bubble_Sort(a) REAL :: a(1)   DO j = LEN(a)-1, 1, -1 swapped = 0 DO i = 1, j IF (a(i) > a(i+1)) THEN temp = a(i) a(i) = a(i+1) a(i+1) = temp swapped = 1 ENDIF ENDDO IF (swapped == 0) RETURN ENDDO END
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#R
R
gnomesort <- function(x) { i <- 1 j <- 1 while(i < length(x)) { if(x[i] <= x[i+1]) { i <- j j <- j+1 } else { temp <- x[i] x[i] <- x[i+1] x[i+1] <- temp i <- i - 1 if(i == 0) { i <- j j <- j+1 } } } x } gnomesort(c(4, 65, 2, -31, 0, 99, 83, 782, 1)) # -31 0 1 2 4 65 83 99 782
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#PowerShell
PowerShell
function CocktailSort ($a) { $l = $a.Length $m = 0 if( $l -gt 1 ) { $hasChanged = $true :outer while ($hasChanged) { $hasChanged = $false $l-- for ($i = $m; $i -lt $l; $i++) { if ($a[$i] -gt $a[$i+1]) { $a[$i], $a[$i+1] = $a[$i+1], $a[$i] $hasChanged = $true } } if(-not $hasChanged) { break outer } $hasChanged = $false for ($i = $l; $i -gt $m; $i--) { if ($a[$i-1] -gt $a[$i]) { $a[$i-1], $a[$i] = $a[$i], $a[$i-1] $hasChanged = $true } } $m++ } } $a }   $l = 10; CocktailSort ( 1..$l | ForEach-Object { $Rand = New-Object Random }{ $Rand.Next( -( $l - 1 ), $l - 1 ) } )
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#MACRO-10
MACRO-10
    TITLE SOCKET   COMMENT !   Socket Example ** PDP-10 Assembly Language (KJX 2022) Assembler: MACRO-10 Operating System: TOPS-20 V7   On TOPS-20, TCP-connections are made by opening a special file on the "TCP:" device (in this case "TCP:256"). Apart from the funky filename, there is virtually no difference between opening files on disk and creating TCP-connections or endpoints, so we go through the usual sequence of GTJFN (= get file-handle), OPENF (open file), finally followed by CLOSF (close file).   !   SEARCH MONSYM,MACSYM  ;Load symbolic names for syscalls. .REQUIRE SYS:MACREL   STDAC.  ;Define standard register names.   JFN: BLOCK 1  ;File handle for TCP connection. TCPFN: ASCIZ /TCP:256/  ;TCP "filename" STR: ASCIZ /Hello World!/  ;String to send. STRLEN= <.-STR>*5  ;Length of string.   GO:: RESET%  ;Initialize process.    ;; Get a file-handle (JFN) for the TCP-connection:   MOVX T1,GJ%SHT  ;Do "short" GTJFN% call. HRROI T2,TCPFN  ;TCP "filename" into T2. GTJFN%  ;Get file-handle. ERJMPS ERROR  ; Handle errors. MOVEM T1,JFN  ;Store JFN we got.    ;; Open the "file":   HRRZ T1,JFN  ;File-handle without flags into T1. MOVX T2,FLD(8,OF%BSZ)!OF%RD!OF%WR  ;8bit bytes, read+write. OPENF%  ;Open file. ERJMPS ERROR  ; Handle errors.    ;; Write the string.   MOVE T1,JFN  ;File-handle into T1. HRROI T2,STR  ;String-pointer into T2. MOVEI T3,STRLEN  ;Length of string into T3. SOUT%  ;Write string. ERJMPS ERROR  ; Handle errors.    ;; Close file.   HRRZ T1,JFN  ;Get file-handle into T1. CLOSF%  ;Close file. ERJMPS ERROR  ; Handle errors.    ;; End program.   RESET%  ;Reset, to release JFN. HALTF%  ;Halt program. JRST GO  ;Allow for continue-command.    ;;  ;; ERROR: Print standardized error-message by means of ERSTR.  ;; This is similar to perror() in C.  ;;   ERROR: MOVEI T1,.PRIOU  ;Print on standard output. MOVE T2,[.FHSLF,,-1]  ;Own process, last error. SETZ T3  ;No length-limit on error msg. ERSTR%  ;Print error-message. JFCL  ; Ignore errors from ERSTR%. JFCL  ; Dito. RESET%  ;Reset, to release JFN. HALTF%  ;Halt program. JRST GO  ;Allow for continue-command.   END GO  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Mathematica.2FWolfram_Language
Mathematica/Wolfram Language
socket = SocketConnect["localhost:256", "TCP"]; WriteString[socket, "hello socket world"]; Close[socket];
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#REXX
REXX
/*REXX program lists a sequence of SPDS (Smarandache prime-digital sequence) primes.*/ parse arg n q /*get optional number of primes to find*/ if n=='' | n=="," then n= 25 /*Not specified? Then use the default.*/ if q='' then q= 100 1000 /* " " " " " " */ say '═══listing the first' n "SPDS primes═══" call spds n do i=1 for words(q)+1; y=word(q, i); if y=='' | y=="," then iterate say say '═══listing the last of ' y "SPDS primes═══" call spds -y end /*i*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ spds: parse arg x 1 ox; x= abs(x) /*obtain the limit to be used for list.*/ c= 0 /*C number of SPDS primes found so far*/ #= 0 /*# number of primes found so far*/ do j=1 by 2 while c<x; z= j /*start: 1st even prime, then use odd. */ if z==1 then z= 2 /*handle the even prime (special case) */ /* [↓] divide by the primes. ___ */ do k=2 to # while k*k<=z /*divide Z with all primes ≤ √ Z */ if z//@.k==0 then iterate j /*÷ by prev. prime? ¬prime ___ */ end /*j*/ /* [↑] only divide up to √ Z */ #= # + 1; @.#= z /*bump the prime count; assign prime #*/ if verify(z, 2357)>0 then iterate j /*Digits ¬prime? Then skip this prime.*/ c= c + 1 /*bump the number of SPDS primes found.*/ if ox<0 then iterate /*don't display it, display the last #.*/ say right(z, 21) /*maybe display this prime ──► terminal*/ end /*j*/ /* [↑] only display N number of primes*/ if ox<0 then say right(z, 21) /*display one (the last) SPDS prime. */ return
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Ring
Ring
  load "stdlib.ring"   see "First 25 Smarandache primes:" + nl + nl   num = 0 limit = 26 limit100 = 100 for n = 1 to 34000 flag = 0 nStr = string(n) for x = 1 to len(nStr) nx = number(nStr[x]) if isprime(n) and isprime(nx) flag = flag + 1 else exit ok next if flag = len(nStr) num = num + 1 if num < limit see "" + n + " " ok if num = limit100 see nl + nl + "100th Smarandache prime: " + n + nl ok ok next  
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#JavaScript
JavaScript
  const L = 1, R = 2, D = 4, U = 8; var block = 24, wid = 30, hei = 20, frameR = 7, fruit, snake; function Snake() { this.length = 1; this.alive = true; this.pos = createVector( 1, 1 ); this.posArray = []; this.posArray.push( createVector( 1, 1 ) ); this.dir = R; this.draw = function() { fill( 130, 190, 0 ); var pos, i = this.posArray.length - 1, l = this.length; while( true ){ pos = this.posArray[i--]; rect( pos.x * block, pos.y * block, block, block ); if( --l == 0 ) break; } } this.eat = function( frut ) { var b = this.pos.x == frut.x && this.pos.y == frut.y; if( b ) this.length++; return b; } this.overlap = function() { var len = this.posArray.length - 1; for( var i = len; i > len - this.length; i-- ) { tp = this.posArray[i]; if( tp.x === this.pos.x && tp.y === this.pos.y ) return true; } return false; } this.update = function() { if( !this.alive ) return; switch( this.dir ) { case L: this.pos.x--; if( this.pos.x < 1 ) this.pos.x = wid - 2; break; case R: this.pos.x++; if( this.pos.x > wid - 2 ) this.pos.x = 1; break; case U: this.pos.y--; if( this.pos.y < 1 ) this.pos.y = hei - 2; break; case D: this.pos.y++; if( this.pos.y > hei - 2 ) this.pos.y = 1; break; } if( this.overlap() ) { this.alive = false; } else { this.posArray.push( createVector( this.pos.x, this.pos.y ) ); if( this.posArray.length > 5000 ) { this.posArray.splice( 0, 1 ); } } } } function Fruit() { this.fruitTime = true; this.pos = createVector(); this.draw = function() { fill( 200, 50, 20 ); rect( this.pos.x * block, this.pos.y * block, block, block ); }   this.setFruit = function() { this.pos.x = floor( random( 1, wid - 1 ) ); this.pos.y = floor( random( 1, hei - 1 ) ); this.fruitTime = false; } } function setup() { createCanvas( block * wid, block * hei ); noStroke(); frameRate( frameR ); snake = new Snake();fruit = new Fruit(); } function keyPressed() { switch( keyCode ) { case LEFT_ARROW: snake.dir = L; break; case RIGHT_ARROW: snake.dir = R; break; case UP_ARROW: snake.dir = U; break; case DOWN_ARROW: snake.dir = D; } } function draw() { background( color( 0, 0x22, 0 ) ); fill( 20, 50, 120 ); for( var i = 0; i < wid; i++ ) { rect( i * block, 0, block, block ); rect( i * block, height - block, block, block ); } for( var i = 1; i < hei - 1; i++ ) { rect( 1, i * block, block, block ); rect( width - block, i * block, block, block ); } if( fruit.fruitTime ) { fruit.setFruit(); frameR += .2; frameRate( frameR ); } fruit.draw(); snake.update(); if( snake.eat( fruit.pos ) ) { fruit.fruitTime = true; } snake.draw(); fill( 200 ); textStyle( BOLD ); textAlign( RIGHT ); textSize( 120 ); text( ""+( snake.length - 1 ), 690, 440 ); if( !snake.alive ) text( "THE END", 630, 250 ); }  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#CLU
CLU
% Get all digits of a number digits = iter (n: int) yields (int) while n > 0 do yield(n // 10) n := n / 10 end end digits   % Get all prime factors of a number prime_factors = iter (n: int) yields (int)  % Take factors of 2 out first (the compiler should optimize) while n // 2 = 0 do yield(2) n := n/2 end    % Next try odd factors fac: int := 3 while fac <= n do while n // fac = 0 do yield(fac) n := n/fac end fac := fac + 2 end end prime_factors   % See if a number is a Smith number smith = proc (n: int) returns (bool) dsum: int := 0 fac_dsum: int := 0    % Find the sum of the digits for d: int in digits(n) do dsum := dsum + d end    % Find the sum of the digits of all factors nfac: int := 0 for fac: int in prime_factors(n) do nfac := nfac + 1 for d: int in digits(fac) do fac_dsum := fac_dsum + d end end    % The number is a Smith number if these two are equal,  % and the number is not prime (has more than one factor) return(fac_dsum = dsum cand nfac > 1) end smith   % Yield all Smith numbers up to a limit smiths = iter (max: int) yields (int) for i: int in int$from_to(1, max-1) do if smith(i) then yield(i) end end end smiths   % Display all Smith numbers below 10,000 start_up = proc () po: stream := stream$primary_output() count: int := 0 for s: int in smiths(10000) do stream$putright(po, int$unparse(s), 5) count := count + 1 if count // 16 = 0 then stream$putl(po, "") end end stream$putl(po, "\nFound " || int$unparse(count) || " Smith numbers.") end start_up
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Cowgol
Cowgol
include "cowgol.coh"; typedef N is uint16; # 16-bit math is good enough   # Print a value right-justified in a field of length N sub print_right(n: N, width: uint8) is var arr: uint8[16]; var buf := &arr[0]; var nxt := UIToA(n as uint32, 10, buf); var len := (nxt - buf) as uint8; while len < width loop print_char(' '); len := len + 1; end loop; print(buf); end sub;   # Find the sum of the digits of a number sub digit_sum(n: N): (sum: N) is sum := 0; while n > 0 loop sum := sum + n % 10; n := n / 10; end loop; end sub;   # Factorize a number, write the factors into the buffer, # return the amount of factors. sub factorize(n: N, buf: [N]): (count: N) is count := 0; # Take care of the factors of 2 first while n>0 and n & 1 == 0 loop n := n >> 1; count := count + 1; [buf] := 2; buf := @next buf; end loop; # Then do the odd factors var fac: N := 3; while n >= fac loop while n % fac == 0 loop n := n / fac; count := count + 1; [buf] := fac; buf := @next buf; end loop; fac := fac + 2; end loop; end sub;   # See if a number is a Smith number sub smith(n: N): (rslt: uint8) is rslt := 0; var facs: N[16]; var n_facs := factorize(n, &facs[0]) as @indexof facs; if n_facs > 1 then # Only composite numbers are Smith numbers var dsum := digit_sum(n); var facsum: N := 0; var i: @indexof facs := 0; while i < n_facs loop facsum := facsum + digit_sum(facs[i]); i := i + 1; end loop; if facsum == dsum then rslt := 1; end if; end if; end sub;   # Display all Smith numbers below 10000 var i: N := 2; var count: N := 0; while i < 10000 loop if smith(i) != 0 then count := count + 1; print_right(i, 5); if count & 0xF == 0 then print_nl(); end if; end if; i := i + 1; end loop; print_nl(); print("Found "); print_i32(count as uint32); print(" Smith numbers.\n");
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Julia
Julia
module Hidato   export hidatosolve, printboard, hidatoconfigure   function hidatoconfigure(str) lines = split(str, "\n") nrows, ncols = length(lines), length(split(lines[1], r"\s+")) board = fill(-1, (nrows, ncols)) presets = Vector{Int}() starts = Vector{CartesianIndex{2}}() maxmoves = 0 for (i, line) in enumerate(lines), (j, s) in enumerate(split(strip(line), r"\s+")) c = s[1] if c == '_' || (c == '0' && length(s) == 1) board[i, j] = 0 maxmoves += 1 elseif c == '.' continue else # numeral, get 2 digits board[i, j] = parse(Int, s) push!(presets, board[i, j]) if board[i, j] == 1 push!(starts, CartesianIndex(i, j)) end maxmoves += 1 end end board, maxmoves, sort!(presets), length(starts) == 1 ? starts : findall(x -> x == 0, board) end   function hidatosolve(board, maxmoves, movematrix, fixed, row, col, sought) if sought > maxmoves return true elseif (0 != board[row, col] != sought) || (board[row, col] == 0 && sought in fixed) return false end backnum = board[row, col] == sought ? sought : 0 board[row, col] = sought # try board with this cell set to next number for move in movematrix i, j = row + move[1], col + move[2] if (0 < i <= size(board)[1]) && (0 < j <= size(board)[2]) && hidatosolve(board, maxmoves, movematrix, fixed, i, j, sought + 1) return true end end board[row, col] = backnum # return board to original state false end   function printboard(board, emptysquare= "__ ", blocked = " ") d = Dict(-1 => blocked, 0 => emptysquare, -2 => "\n") map(x -> d[x] = rpad(lpad(string(x), 2), 3), 1:maximum(board)) println(join([d[i] for i in hcat(board, fill(-2, size(board)[1]))'], "")) end   end # module  
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Tcl
Tcl
package require Tcl 8.6   oo::class create HKTSolver { variable grid start limit constructor {puzzle} { set grid $puzzle for {set y 0} {$y < [llength $grid]} {incr y} { for {set x 0} {$x < [llength [lindex $grid $y]]} {incr x} { if {[set cell [lindex $grid $y $x]] == 1} { set start [list $y $x] } incr limit [expr {$cell>=0}] } } if {![info exist start]} { return -code error "no starting position found" } } method moves {} { return { -1 -2 1 -2 -2 -1 2 -1 -2 1 2 1 -1 2 1 2 } } method Moves {g r c} { set valid {} foreach {dr dc} [my moves] { set R [expr {$r + $dr}] set C [expr {$c + $dc}] if {[lindex $g $R $C] == 0} { lappend valid $R $C } } return $valid }   method Solve {g r c v} { lset g $r $c [incr v] if {$v >= $limit} {return $g} foreach {r c} [my Moves $g $r $c] { return [my Solve $g $r $c $v] } return -code continue }   method solve {} { while {[incr i]==1} { set grid [my Solve $grid {*}$start 0] return } return -code error "solution not possible" } method solution {} {return $grid} }   proc parsePuzzle {str} { foreach line [split $str "\n"] { if {[string trim $line] eq ""} continue lappend rows [lmap {- c} [regexp -all -inline {(.)\s?} $line] { string map {" " -1} $c }] } set len [tcl::mathfunc::max {*}[lmap r $rows {llength $r}]] for {set i 0} {$i < [llength $rows]} {incr i} { while {[llength [lindex $rows $i]] < $len} { lset rows $i end+1 -1 } } return $rows } proc showPuzzle {grid name} { foreach row $grid {foreach cell $row {incr c [expr {$cell>=0}]}} set len [string length $c] set u [string repeat "_" $len] puts "$name with $c cells" foreach row $grid { puts [format "  %s" [join [lmap c $row { format "%*s" $len [if {$c==-1} list elseif {$c==0} {set u} {set c}] }]]] } }   set puzzle [parsePuzzle { 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 }] showPuzzle $puzzle "Input" HKTSolver create hkt $puzzle hkt solve showPuzzle [hkt solution] "Output"
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Julia
Julia
lst = Pair[Pair("gold", "shiny"), Pair("neon", "inert"), Pair("sulphur", "yellow"), Pair("iron", "magnetic"), Pair("zebra", "striped"), Pair("star", "brilliant"), Pair("apple", "tasty"), Pair("ruby", "red"), Pair("dice", "random"), Pair("coffee", "stimulating"), Pair("book", "interesting")]   println("The original list: \n - ", join(lst, "\n - ")) sort!(lst; by=first) println("\nThe list, sorted by name: \n - ", join(lst, "\n - ")) sort!(lst; by=last) println("\nThe list, sorted by value: \n - ", join(lst, "\n - "))
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Kotlin
Kotlin
// version 1.1   data class Employee(val name: String, var category: String) : Comparable<Employee> { override fun compareTo(other: Employee) = this.name.compareTo(other.name) }   fun main(args: Array<String>) { val employees = arrayOf( Employee("David", "Manager"), Employee("Alice", "Sales"), Employee("Joanna", "Director"), Employee("Henry", "Admin"), Employee("Tim", "Sales"), Employee("Juan", "Admin") ) employees.sort() for ((name, category) in employees) println("${name.padEnd(6)} : $category") }
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Scala
Scala
object NoConnection extends App {   private def links = Seq( Seq(2, 3, 4), // A to C,D,E Seq(3, 4, 5), // B to D,E,F Seq(2, 4), // D to C, E Seq(5), // E to F Seq(2, 3, 4), // G to C,D,E Seq(3, 4, 5)) // H to D,E,F   private def genRandom: LazyList[Seq[Int]] = util.Random.shuffle((1 to 8).toList) #:: genRandom   private def notSolved(links: Seq[Seq[Int]], pegs: Seq[Int]): Boolean = links.indices.forall( i => !links(i).forall(peg => math.abs(pegs(i) - peg) == 1))   private def printResult(pegs: Seq[Int]) = { println(f"${pegs(0)}%3d${pegs(1)}%2d") println(f"${pegs(2)}%1d${pegs(3)}%2d${pegs(4)}%2d${pegs(5)}%2d") println(f"${pegs(6)}%3d${pegs(7)}%2d") }   printResult(genRandom.dropWhile(!notSolved(links, _)).head) }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Jinja
Jinja
  from jinja2 import Template print(Template("{{ [53, 17, 42, 61, 35] | sort }}").render())  
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#jq
jq
[2,1,3] | sort # => [1,2,3]
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Phix
Phix
with javascript_semantics function disjoint_sort(sequence s, sequence idx) idx = unique(idx) integer l = length(idx) sequence copies = repeat(0, l) for i=1 to l do copies[i] = s[idx[i]] end for copies = sort(copies) for i=1 to l do s[idx[i]] = copies[i] end for return s end function ?disjoint_sort({7,6,5,4,3,2,1,0},{7,2,8})
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Python
Python
strings = "here are Some sample strings to be sorted".split()   def mykey(x): return -len(x), x.upper()   print sorted(strings, key=mykey)
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Icon_and_Unicon
Icon and Unicon
procedure main() #: demonstrate various ways to sort a list and string demosort(bubblesort,[3, 14, 1, 5, 9, 2, 6, 3],"qwerty") end   procedure bubblesort(X,op) #: return sorted list local i,swapped   op := sortop(op,X) # select how and what we sort   swapped := 1 while \swapped := &null do # the sort every i := 2 to *X do if op(X[i],X[i-1]) then X[i-1] :=: X[swapped := i] return X end
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Racket
Racket
  #lang racket   ;; Translation of the pseudo code (define (gnome-sort1 a <=?) (define size (vector-length a)) (define (swap i j) (define t (vector-ref a i)) (vector-set! a i (vector-ref a j)) (vector-set! a j t)) (let loop ([i 1] [j 2]) (when (< i size) (if (<=? (vector-ref a (sub1 i)) (vector-ref a i)) (loop j (add1 j)) (begin (swap (sub1 i) i) (let ([i (sub1 i)]) (if (zero? i) (loop j (add1 j)) (loop i j))))))) a) (gnome-sort1 (vector 3 2 1 4 5 6) <=)   ;; a functional version, roughly like the Scheme entry (define (gnome-sort2 l <=?) (match l [(list) l] [(list x xs ...) (let loop ([x `((,x) . ,xs)]) (match x [`(,ps) ps] [`((,p . ,ps) ,n . ,ns) (loop (cond [(<=? n p) `((,n ,p . ,ps) . ,ns)] [(null? ps) `((,n) ,p . ,ns)] [else `(,ps ,n ,p . ,ns)]))]))])) (gnome-sort2 '(3 2 1 4 5 6) <=)  
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Prolog
Prolog
ctail(_, [], Rev, Rev, sorted) :- write(Rev), nl. ctail(fwrd, [A,B|T], In, Rev, unsorted) :- A > B, !, ctail(fwrd, [B,A|T], In, Rev, _). ctail(bkwd, [A,B|T], In, Rev, unsorted) :- A < B, !, ctail(bkwd, [B,A|T], In, Rev, _). ctail(D,[A|T], In, Rev, Ch) :- !, ctail(D, T, [A|In], Rev, Ch).   cocktail([], []). cocktail(In, [Min|Out]) :- ctail(fwrd, In, [], [Max|Rev], SFlag), ( SFlag=sorted->reverse([Max|Rev], [Min|Out]); (ctail(bkwd, Rev, [Max], [Min|Tmp], SortFlag), (SortFlag=sorted->Out=Tmp; !, cocktail(Tmp, Out)))).   test :- In = [8,9,1,3,4,2,6,5,4], writef(' input=%w\n', [In]), cocktail(In, R), writef('-> %w\n', [R]).  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Myrddin
Myrddin
use std   const main = { match std.dial("tcp!localhost!256") | `std.Ok fd: std.write(fd, "hello socket world") std.close(fd) | `std.Err err: std.fatal("could not open fd: {}\n", err) ;; }
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Nanoquery
Nanoquery
import Nanoquery.Net   p = new(Port) p.connect("localhost", 256) p.write("hello socket world") p.close()
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Rust
Rust
fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n % 2 == 0 { return n == 2; } if n % 3 == 0 { return n == 3; } if n % 5 == 0 { return n == 5; } let mut p = 7; const WHEEL: [u32; 8] = [4, 2, 4, 2, 4, 6, 2, 6]; loop { for w in &WHEEL { if p * p > n { return true; } if n % p == 0 { return false; } p += w; } } }   fn next_prime_digit_number(n: u32) -> u32 { if n == 0 { return 2; } match n % 10 { 2 => n + 1, 3 | 5 => n + 2, _ => 2 + next_prime_digit_number(n / 10) * 10, } }   fn smarandache_prime_digital_sequence() -> impl std::iter::Iterator<Item = u32> { let mut n = 0; std::iter::from_fn(move || { loop { n = next_prime_digit_number(n); if is_prime(n) { break; } } Some(n) }) }   fn main() { let limit = 1000000000; let mut seq = smarandache_prime_digital_sequence().take_while(|x| *x < limit); println!("First 25 SPDS primes:"); for i in seq.by_ref().take(25) { print!("{} ", i); } println!(); if let Some(p) = seq.by_ref().nth(99 - 25) { println!("100th SPDS prime: {}", p); } if let Some(p) = seq.by_ref().nth(999 - 100) { println!("1000th SPDS prime: {}", p); } if let Some(p) = seq.by_ref().nth(9999 - 1000) { println!("10,000th SPDS prime: {}", p); } if let Some(p) = seq.last() { println!("Largest SPDS prime less than {}: {}", limit, p); } }
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Ruby
Ruby
require "prime"   smarandache = Enumerator.new do|y| prime_digits = [2,3,5,7] prime_digits.each{|pr| y << pr} # yield the below-tens (1..).each do |n| prime_digits.repeated_permutation(n).each do |perm| c = perm.join.to_i * 10 y << c + 3 if (c+3).prime? y << c + 7 if (c+7).prime? end end end   seq = smarandache.take(100) p seq.first(25) p seq.last  
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Julia
Julia
using Makie   mutable struct SnakeGame height width snake food end   function SnakeGame(;height=6, width=8) snake = [rand(CartesianIndices((height, width)))] food = rand(CartesianIndices((height, width))) while food == snake[1] food = rand(CartesianIndices((height, width))) end SnakeGame(height, width, snake, food) end   function step!(game, direction) next_head = game.snake[1] + direction next_head = CartesianIndex(mod.(next_head.I, Base.OneTo.((game.height, game.width)))) # allow crossing boundry if is_valid(game, next_head) pushfirst!(game.snake, next_head) if next_head == game.food length(game.snake) < game.height * game.width && init_food!(game) else pop!(game.snake) end true else false end end   is_valid(game, position) = position ∉ game.snake   function init_food!(game) p = rand(CartesianIndices((game.height, game.width))) while !is_valid(game, p) p = rand(CartesianIndices((game.height, game.width))) end game.food = p end   function play(;n=10,t=0.5) game = Node(SnakeGame(;width=n,height=n)) scene = Scene(resolution = (1000, 1000), raw = true, camera = campixel!) display(scene)   area = scene.px_area poly!(scene, area)   grid_size = @lift((widths($area)[1] / $game.height, widths($area)[2] / $game.width))   snake_boxes = @lift([FRect2D((p.I .- (1,1)) .* $grid_size , $grid_size) for p in $game.snake]) poly!(scene, snake_boxes, color=:blue, strokewidth = 5, strokecolor = :black)   snake_head_box = @lift(FRect2D(($game.snake[1].I .- (1,1)) .* $grid_size , $grid_size)) poly!(scene, snake_head_box, color=:black) snake_head = @lift((($game.snake[1].I .- 0.5) .* $grid_size)) scatter!(scene, snake_head, marker='◉', color=:blue, markersize=@lift(minimum($grid_size)))   food_position = @lift(($game.food.I .- (0.5,0.5)) .* $grid_size) scatter!(scene, food_position, color=:red, marker='♥', markersize=@lift(minimum($grid_size)))   score_text = @lift("Score: $(length($game.snake)-1)") text!(scene, score_text, color=:gray, position = @lift((widths($area)[1]/2, widths($area)[2])), textsize = 50, align = (:center, :top))   direction = Ref{Any}(nothing)   on(scene.events.keyboardbuttons) do but if ispressed(but, Keyboard.left) direction[] = CartesianIndex(-1,0) elseif ispressed(but, Keyboard.up) direction[] = CartesianIndex(0,1) elseif ispressed(but, Keyboard.down) direction[] = CartesianIndex(0,-1) elseif ispressed(but, Keyboard.right) direction[] = CartesianIndex(1,0) end end   last_dir = nothing while true # avoid turn back if !isnothing(direction[]) && (isnothing(last_dir) || direction[] != -last_dir) last_dir = direction[] end if !isnothing(last_dir) if step!(game[], last_dir) game[] = game[] else break end end sleep(t) end end   play()  
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#D
D
import std.stdio;   void main() { int cnt; for (int n=1; n<10_000; n++) { auto factors = primeFactors(n); if (factors.length > 1) { int sum = sumDigits(n); foreach (f; factors) { sum -= sumDigits(f); } if (sum==0) { writef("%4s ", n); cnt++; } if (cnt==10) { cnt = 0; writeln(); } } } }   auto primeFactors(int n) { import std.array : appender; auto result = appender!(int[]);   for (int i=2; n%i==0; n/=i) { result.put(i); }   for (int i=3; i*i<=n; i+=2) { while (n%i==0) { result.put(i); n/=i; } }   if (n!=1) { result.put(n); }   return result.data; }   int sumDigits(int n) { int sum; while (n > 0) { sum += (n%10); n /= 10; } return sum; }
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Kotlin
Kotlin
// version 1.2.0   lateinit var board: List<IntArray> lateinit var given: IntArray lateinit var start: IntArray   fun setUp(input: List<String>) { val nRows = input.size val puzzle = List(nRows) { input[it].split(" ") } val nCols = puzzle[0].size val list = mutableListOf<Int>() board = List(nRows + 2) { IntArray(nCols + 2) { -1 } } for (r in 0 until nRows) { val row = puzzle[r] for (c in 0 until nCols) { val cell = row[c] if (cell == "_") { board[r + 1][c + 1] = 0 } else if (cell != ".") { val value = cell.toInt() board[r + 1][c + 1] = value list.add(value) if (value == 1) start = intArrayOf(r + 1, c + 1) } } } list.sort() given = list.toIntArray() }   fun solve(r: Int, c: Int, n: Int, next: Int): Boolean { if (n > given[given.lastIndex]) return true val back = board[r][c] if (back != 0 && back != n) return false if (back == 0 && given[next] == n) return false var next2 = next if (back == n) next2++ board[r][c] = n for (i in -1..1) for (j in -1..1) if (solve(r + i, c + j, n + 1, next2)) return true board[r][c] = back return false }   fun printBoard() { for (row in board) { for (c in row) { if (c == -1) print(" . ") else print(if (c > 0) "%2d ".format(c) else "__ ") } println() } }   fun main(args: Array<String>) { var input = listOf( "_ 33 35 _ _ . . .", "_ _ 24 22 _ . . .", "_ _ _ 21 _ _ . .", "_ 26 _ 13 40 11 . .", "27 _ _ _ 9 _ 1 .", ". . _ _ 18 _ _ .", ". . . . _ 7 _ _", ". . . . . . 5 _" ) setUp(input) printBoard() println("\nFound:") solve(start[0], start[1], 1, 0) printBoard() }
http://rosettacode.org/wiki/Solve_a_Holy_Knight%27s_tour
Solve a Holy Knight's tour
Chess coaches have been known to inflict a kind of torture on beginners by taking a chess board, placing pennies on some squares and requiring that a Knight's tour be constructed that avoids the squares with pennies. This kind of knight's tour puzzle is similar to   Hidato. The present task is to produce a solution to such problems. At least demonstrate your program by solving the following: Example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Note that the zeros represent the available squares, not the pennies. Extra credit is available for other interesting examples. Related tasks A* search algorithm Knight's tour N-queens problem Solve a Hidato puzzle Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle
#Wren
Wren
import "/fmt" for Fmt   var moves = [ [-1, -2], [1, -2], [-1, 2], [1, 2], [-2, -1], [-2, 1], [2, -1], [2, 1] ]   var board1 = " xxx " + " x xx " + " xxxxxxx" + "xxx x x" + "x x xxx" + "sxxxxxx " + " xx x " + " xxx "   var board2 = ".....s.x....." + ".....x.x....." + "....xxxxx...." + ".....xxx....." + "..x..x.x..x.." + "xxxxx...xxxxx" + "..xx.....xx.." + "xxxxx...xxxxx" + "..x..x.x..x.." + ".....xxx....." + "....xxxxx...." + ".....x.x....." + ".....x.x....."   var solve // recursive solve = Fn.new { |pz, sz, sx, sy, idx, cnt| if (idx > cnt) return true for (i in 0...moves.count) { var x = sx + moves[i][0] var y = sy + moves[i][1] if ((x >= 0 && x < sz) && (y >= 0 && y < sz) && pz[x][y] == 0) { pz[x][y] = idx if (solve.call(pz, sz, x, y, idx + 1, cnt)) return true pz[x][y] = 0 } } return false }   var findSolution = Fn.new { |b, sz| var pz = List.filled(sz, null) for (i in 0...sz) pz[i] = List.filled(sz, -1) var x = 0 var y = 0 var idx = 0 var cnt = 0 for (j in 0...sz) { for (i in 0...sz) { if (b[idx] == "x") { pz[i][j] = 0 cnt = cnt + 1 } else if (b[idx] == "s") { pz[i][j] = 1 cnt = cnt + 1 x = i y = j } idx = idx + 1 } }   if (solve.call(pz, sz, x, y, 2, cnt)) { for (j in 0...sz) { for (i in 0...sz) { if (pz[i][j] != -1) { Fmt.write("$02d ", pz[i][j]) } else { System.write("-- ") } } System.print() } } else { System.print("Cannot solve this puzzle!") } }   findSolution.call(board1, 8) System.print() findSolution.call(board2, 13)
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Lambdatalk
Lambdatalk
  {def H.sort {def H.sort.i {lambda {:f :x :a} {if {A.empty? :a} then {A.new :x} else {if {:f :x {A.first :a}} then {A.addfirst! :x :a} else {A.addfirst! {A.first :a} {H.sort.i :f :x {A.rest :a}}} }}}} {def H.sort.r {lambda {:f :a1 :a2} {if {A.empty? :a1} then :a2 else {H.sort.r :f {A.rest :a1} {H.sort.i :f {A.first :a1} :a2}} }}} {lambda {:f :a} {H.sort.r :f :a {A.new}} }} -> H.sort   {def H.display {lambda {:h} {table {tr {S.map {{lambda {:h :i} {td {car {A.get :i :h}}}} :h} {S.serie 0 {- {A.length :h} 1}}}} {tr {S.map {{lambda {:h :i} {td {cdr {A.get :i :h}}}} :h} {S.serie 0 {- {A.length :h} 1}}}} }}} -> H.display   1) an array of pairs: {def H {A.new {cons Joe 5531} {cons Adam 2341} {cons Bernie 122} {cons Walter 1234} {cons David 19}}} -> H   2) display sorted by names: {H.display {H.sort {lambda {:a :b} {< {lexicographic {car :a} {car :b}} 0}} {H}}} -> Adam Bernie David Joe Walter 2341 122 19 5531 1234   3) display sorted by values: {H.display {H.sort {lambda {:a :b} {< {cdr :a} {cdr :b}}} {H}}} -> David Bernie Walter Adam Joe 19 122 1234 2341 5531  
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Tcl
Tcl
package require Tcl 8.6 package require struct::list   proc haveAdjacent {a b c d e f g h} { expr { [edge $a $c] || [edge $a $d] || [edge $a $e] || [edge $b $d] || [edge $b $e] || [edge $b $f] || [edge $c $d] || [edge $c $g] || [edge $d $e] || [edge $d $g] || [edge $d $h] || [edge $e $f] || [edge $e $g] || [edge $e $h] || [edge $f $h] } } proc edge {x y} { expr {abs($x-$y) == 1} }   set layout [string trim { A B /|\ /|\ / | X | \ / |/ \| \ C - D - E - F \ |\ /| / \ | X | / \|/ \|/ G H } \n] struct::list foreachperm p {1 2 3 4 5 6 7 8} { if {![haveAdjacent {*}$p]} { puts [string map [join [ lmap name {A B C D E F G H} val $p {list $name $val} ]] $layout] break } }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Julia
Julia
julia> a = [4,2,3,1] 4-element Int32 Array: 4 2 3 1 julia> sort(a) #out-of-place/non-mutating sort 4-element Int32 Array: 1 2 3 4   julia> a 4-element Int32 Array: 4 2 3 1   julia> sort!(a) # in-place/mutating sort 4-element Int32 Array: 1 2 3 4   julia> a 4-element Int32 Array: 1 2 3 4
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#K
K
num: -10?10 / Integers from 0 to 9 in random order 5 9 4 2 0 3 6 1 8 7   srt: {x@<x} / Generalized sort ascending srt num 0 1 2 3 4 5 6 7 8 9
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#PicoLisp
PicoLisp
(let (Values (7 6 5 4 3 2 1 0) Indices (7 2 8)) (mapc '((V I) (set (nth Values I) V)) (sort (mapcar '((N) (get Values N)) Indices)) (sort Indices) ) Values )
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#Prolog
Prolog
  % === % Problem description % === % http://rosettacode.org/wiki/Sort_disjoint_sublist % % Given a list of values and a set of integer indices into that value list, % the task is to sort the values at the given indices, while preserving the % values at indices outside the set of those to be sorted. % % Make your example work with the following list of values and set of indices: % % Values: [7, 6, 5, 4, 3, 2, 1, 0] % % Indices: {6, 1, 7} % % Where the correct result would be: % % [7, 0, 5, 4, 3, 2, 1, 6]. % % In case of one-based indexing, rather than the zero-based indexing above, % you would use the indices {7, 2, 8} instead. % % The indices are described as a set rather than a list but any collection-type % of those indices without duplication may be used as long as the example is % insensitive to the order of indices given.     % === % Notes % === % For predicate descriptions, see https://www.swi-prolog.org/pldoc/man?section=preddesc % % Solution using only predicates marked "builtin". % % - sort/2 is a built-in predicate. When called as sort(A,B) then % it sorts A to B according to the "standard order of terms", % (for integers, this means ascending order). It does remove % duplicates. % - msort/2 is the same as sort/2 but does not remove duplicates. % % Everything is a list as there is no "set" datatype in Prolog.     % === % Main predicate (the one that would be exported from a Module) % sort_disjoint_sublist(+Values,+Indexes,?ValuesSorted) % ===   sort_disjoint_sublist(Values,Indexes,ValuesSorted) :- sort(Indexes,IndexesSorted), insert_fresh_vars(0,IndexesSorted,Values,FreshVars,ValsToSort,ValuesFreshened), msort(ValsToSort,ValsSorted), % this is the "sorting of values" % The next two lines could be left out with suitable naming, % but they make explicit what happens: FreshVars = ValsSorted, % fresh variables are unified with sorted variables ValuesSorted = ValuesFreshened. % ValuesFreshend is automatically the sought output   % === % Helper predicate (would not be exported from a Module) % ===   % insert_fresh_vars(+CurIdx,+[I|Is],+[V|Vs],-FreshVars,-ValsToSort,-ValsFreshy) % % CurIdx: Monotonically increasing index into the list of values by % which we iterate. % [I|Is]: Sorted list of indexes of interest. The smallest (leftmost) % element is removed on every "index hit", leaving eventually % an empty list, which gives us the base case. % [V|Vs]: The list of values of interest with the leftmost element the % element with index CurIdx, all elements with lower index % having been discarded. Leftmost element is popped off on % each call. % FreshVars: Constructed as output. If there was an "index hit", the % fresh variable pushed on FreshVars is also pushed on Vars. % ValsToSort: Constructed as output. If there was an "index hit", the % leftmost value from [V|Vs] is pushed on. % ValsFreshy: Constructed as output. If there was an "index hit", a fresh % variable is pushed on. If there was no "index hit", the actual % value from [V|Vs] is pushed on instead.   insert_fresh_vars(CurIdx,[I|Is],[V|Vs],FreshVars,ValsToSort,[V|ValsFreshy]) :- CurIdx<I, % no index hit, CurIdx is still too small, iterate over value !, succ(CurIdx,NextIdx), insert_fresh_vars(NextIdx,[I|Is],Vs,FreshVars,ValsToSort,ValsFreshy).   insert_fresh_vars(CurIdx,[I|Is],[V|Vs],[Fresh|FreshVars],[V|ValsToSort],[Fresh|ValsFreshy]) :- CurIdx=I, % index hit, replace value by fresh variable !, succ(CurIdx,NextIdx), insert_fresh_vars(NextIdx,Is,Vs,FreshVars,ValsToSort,ValsFreshy).   insert_fresh_vars(_,[],V,[],[],V).  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Quackery
Quackery
[ $ "" swap witheach [ upper join ] ] is upper$ ( $ --> )   [ over size over size 2dup = iff [ 2drop upper$ swap upper$ $< ] else [ 2swap 2drop < ] ] is comparator ( $ $ -- b )   $ ‘here are Some sample strings to be sorted’ nest$ sortwith comparator witheach [ echo$ sp ] cr cr $ "sharna pax and hed on a poal when the ardship of Cambry come out of his hoal" nest$ sortwith comparator witheach [ echo$ sp ]
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#R
R
v = c("Here", "are", "some", "sample", "strings", "to", "be", "sorted") print(v[order(-nchar(v), tolower(v))])
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#Io
Io
  List do( bubblesort := method( t := true while( t, t := false for( j, 0, self size - 2, if( self at( j ) start > self at( j+1 ) start, self swapIndices( j,j+1 ) t := true ) ) ) return( self ) ) )  
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Raku
Raku
sub gnome_sort (@a) { my ($i, $j) = 1, 2; while $i < @a { if @a[$i - 1] <= @a[$i] { ($i, $j) = $j, $j + 1; } else { (@a[$i - 1], @a[$i]) = @a[$i], @a[$i - 1]; $i--; ($i, $j) = $j, $j + 1 if $i == 0; } } }
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#PureBasic
PureBasic
;sorts an array of integers Procedure cocktailSort(Array a(1)) Protected index, hasChanged, low, high   low = 0 high = ArraySize(a()) - 1 Repeat hasChanged = #False For index = low To high If a(index) > a(index + 1) Swap a(index), a(index + 1) hasChanged = #True EndIf Next high - 1   If hasChanged = #False Break ;we can exit the outer loop here if no changes were made EndIf     hasChanged = #False For index = high To low Step -1 If a(index) > a(index + 1) Swap a(index), a(index + 1) hasChanged = #True EndIf Next low + 1 Until hasChanged = #False ;if no elements have been changed, then the array is sorted EndProcedure
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Neko
Neko
/** Sockets in Neko Tectonics: nekoc sockets.neko sudo nc -vulp 256 & sudo neko sockets */   var socket_init = $loader.loadprim("std@socket_init", 0); var socket_new = $loader.loadprim("std@socket_new", 1); var host_resolve = $loader.loadprim("std@host_resolve", 1); var socket_connect = $loader.loadprim("std@socket_connect", 3); var socket_write = $loader.loadprim("std@socket_write", 2); var socket_close = $loader.loadprim("std@socket_close", 1);   /* Initialize Neko socket API */ socket_init();   /* true; UDP, false; TCP */ var socket = socket_new(true);   var c = socket_connect(socket, host_resolve("localhost"), 256); socket_write(socket, "hello socket world");   socket_close(socket);
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#Nemerle
Nemerle
using System.Text; using System.Net.Sockets;   module Program { Main() : void { def sock = Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp); sock.Connect("127.0.0.1", 1000); _ = sock.Send(Encoding.ASCII.GetBytes("Hell, world!")); sock.Close(); } }
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Sidef
Sidef
func is_prime_digital(n) { n.is_prime && n.digits.all { .is_prime } }   say is_prime_digital.first(25).join(',') say is_prime_digital.nth(100)
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Swift
Swift
func isPrime(number: Int) -> Bool { if number < 2 { return false } if number % 2 == 0 { return number == 2 } if number % 3 == 0 { return number == 3 } if number % 5 == 0 { return number == 5 } var p = 7 let wheel = [4,2,4,2,4,6,2,6] while true { for w in wheel { if p * p > number { return true } if number % p == 0 { return false } p += w } } }   func nextPrimeDigitNumber(number: Int) -> Int { if number == 0 { return 2 } switch number % 10 { case 2: return number + 1 case 3, 5: return number + 2 default: return 2 + nextPrimeDigitNumber(number: number/10) * 10 } }   let limit = 1000000000 var n = 0 var max = 0 var count = 0 print("First 25 SPDS primes:") while n < limit { n = nextPrimeDigitNumber(number: n) if !isPrime(number: n) { continue } if count < 25 { print(n, terminator: " ") } else if count == 25 { print() } count += 1 if (count == 100) { print("Hundredth SPDS prime: \(n)") } else if (count == 1000) { print("Thousandth SPDS prime: \(n)") } else if (count == 10000) { print("Ten thousandth SPDS prime: \(n)") } max = n } print("Largest SPDS prime less than \(limit): \(max)")
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Wren
Wren
import "/math" for Int   var limit = 1000 var spds = List.filled(limit, 0) spds[0] = 2 var i = 3 var count = 1 while (count < limit) { if (Int.isPrime(i)) { var digits = i.toString if (digits.all { |d| "2357".contains(d) }) { spds[count] = i count = count + 1 } } i = i + 2 if (i > 10) { var j = i % 10 if (j == 1 || j == 5) { i = i + 2 } else if (j == 9) { i = i + 4 } } } System.print("The first 25 SPDS primes are:") System.print(spds.take(25).toList) System.print("\nThe 100th SPDS prime is %(spds[99])") System.print("\nThe 1,000th SPDS prime is %(spds[999])")
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Kotlin
Kotlin
// Kotlin Native v0.5   import kotlinx.cinterop.* import platform.posix.* import platform.windows.*   const val WID = 60 const val HEI = 30 const val MAX_LEN = 600 const val NUL = '\u0000'   enum class Dir { NORTH, EAST, SOUTH, WEST }   class Snake { val console: HANDLE var alive = false val brd = CharArray(WID * HEI) var dir = Dir.NORTH val snk = nativeHeap.allocArray<COORD>(MAX_LEN) lateinit var head: COORD var tailIdx = 0 var headIdx = 0 var points = 0   init { console = GetStdHandle(STD_OUTPUT_HANDLE)!! SetConsoleTitleW("Snake") memScoped { val coord = alloc<COORD>().apply { X = (WID + 1).toShort(); Y = (HEI + 2).toShort() } SetConsoleScreenBufferSize(console, coord.readValue()) val rc = alloc<SMALL_RECT>().apply { Left = 0; Top = 0; Right = WID.toShort(); Bottom = (HEI + 1).toShort() } SetConsoleWindowInfo(console, TRUE, rc.ptr) val ci = alloc<CONSOLE_CURSOR_INFO>().apply { dwSize = 1; bVisible = FALSE } SetConsoleCursorInfo(console, ci.ptr) } }   fun play() { while (true) { createfield() alive = true while (alive) { drawfield() readKey() moveSnake() Sleep(50) } memScoped { val c = alloc<COORD>().apply { X = 0; Y = (HEI + 1).toShort() } SetConsoleCursorPosition(console, c.readValue()) } SetConsoleTextAttribute(console, 0x000b) print("Play again [Y/N]? ") val a = readLine()!!.toLowerCase() if (a.length > 0 && a[0] != 'y') { nativeHeap.free(snk) return } } }   private fun createfield() { memScoped { val coord = alloc<COORD>().apply { X = 0; Y = 0 } val c = alloc<DWORDVar>() FillConsoleOutputCharacterW(console, 32, (HEI + 2) * 80, coord.readValue(), c.ptr) FillConsoleOutputAttribute(console, 0x0000, (HEI + 2) * 80, coord.readValue(), c.ptr) SetConsoleCursorPosition(console, coord.readValue()) } for (x in 0 until WID * HEI) brd[x] = NUL for (x in 0 until WID) { brd[x + WID * (HEI - 1)] = '+' brd[x] = '+' } for (y in 1 until HEI) { brd[WID - 1 + WID * y] = '+' brd[WID * y] = '+' } var xx: Int var yy: Int do { xx = rand() % WID yy = rand() % (HEI shr 1) + (HEI shr 1) } while (brd[xx + WID * yy] != NUL) brd[xx + WID * yy] = '@' tailIdx = 0 headIdx = 4 xx = 3 yy = 2 for (cc in tailIdx until headIdx) { brd[xx + WID * yy] = '#' snk[cc].X = (3 + cc).toShort() snk[cc].Y = 2 } head = snk[3] dir = Dir.EAST points = 0 }   private fun readKey() { if ((GetAsyncKeyState(39).toInt() and 0x8000) != 0) dir = Dir.EAST if ((GetAsyncKeyState(37).toInt() and 0x8000) != 0) dir = Dir.WEST if ((GetAsyncKeyState(38).toInt() and 0x8000) != 0) dir = Dir.NORTH if ((GetAsyncKeyState(40).toInt() and 0x8000) != 0) dir = Dir.SOUTH }   private fun drawfield() { memScoped { val coord = alloc<COORD>() var t = NUL for (y in 0 until HEI) { coord.Y = y.toShort() for (x in 0 until WID) { t = brd[x + WID * y] if (t == NUL) continue coord.X = x.toShort() SetConsoleCursorPosition(console, coord.readValue()) if (coord.X == head.X && coord.Y == head.Y) { SetConsoleTextAttribute(console, 0x002e) print('O') SetConsoleTextAttribute(console, 0x0000) continue } when (t) { '#' -> SetConsoleTextAttribute(console, 0x002a) '+' -> SetConsoleTextAttribute(console, 0x0019) '@' -> SetConsoleTextAttribute(console, 0x004c) } print(t) SetConsoleTextAttribute(console, 0x0000) } } print(t) SetConsoleTextAttribute(console, 0x0007) val c = alloc<COORD>().apply { X = 0; Y = HEI.toShort() } SetConsoleCursorPosition(console, c.readValue()) print("Points: $points") } }   private fun moveSnake() { when (dir) { Dir.NORTH -> head.Y-- Dir.EAST -> head.X++ Dir.SOUTH -> head.Y++ Dir.WEST -> head.X-- } val t = brd[head.X + WID * head.Y] if (t != NUL && t != '@') { alive = false return } brd[head.X + WID * head.Y] = '#' snk[headIdx].X = head.X snk[headIdx].Y = head.Y if (++headIdx >= MAX_LEN) headIdx = 0 if (t == '@') { points++ var x: Int var y: Int do { x = rand() % WID y = rand() % (HEI shr 1) + (HEI shr 1) } while (brd[x + WID * y] != NUL) brd[x + WID * y] = '@' return } SetConsoleCursorPosition(console, snk[tailIdx].readValue()) print(' ') brd[snk[tailIdx].X + WID * snk[tailIdx].Y] = NUL if (++tailIdx >= MAX_LEN) tailIdx = 0 } }   fun main(args: Array<String>) { srand(time(null).toInt()) Snake().play() }
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Delphi
Delphi
/* Find the sum of the digits of a number */ proc nonrec digitsum(word n) word: word sum; sum := 0; while n ~= 0 do sum := sum + n % 10; n := n / 10 od; sum corp   /* Find all prime factors and write them into the given array (which is assumed to be big enough); return the amount of factors. */ proc nonrec factors(word n; [*] word facs) word: word count, fac; count := 0;   /* take out factors of 2 */ while n > 0 and n & 1 = 0 do n := n >> 1; facs[count] := 2; count := count + 1 od;   /* take out odd factors */ fac := 3; while n >= fac do while n % fac = 0 do n := n / fac; facs[count] := fac; count := count + 1; od; fac := fac + 2 od; count corp   /* See if a number is a Smith number */ proc nonrec smith(word n) bool: [32] word facs; /* 32 factors ought to be enough for everyone */ word dsum, facsum, nfacs, i;   nfacs := factors(n, facs); if nfacs = 1 then false /* primes are not Smith numbers */ else dsum := digitsum(n); facsum := 0; for i from 0 upto nfacs-1 do facsum := facsum + digitsum(facs[i]) od; dsum = facsum fi corp   /* Find all Smith numbers below 10000 */ proc nonrec main() void: word i, count; count := 0; for i from 2 upto 9999 do if smith(i) then write(i:5); count := count + 1; if count & 0xF = 0 then writeln() fi fi od; writeln(); writeln("Found ", count, " Smith numbers.") corp
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Draco
Draco
/* Find the sum of the digits of a number */ proc nonrec digitsum(word n) word: word sum; sum := 0; while n ~= 0 do sum := sum + n % 10; n := n / 10 od; sum corp   /* Find all prime factors and write them into the given array (which is assumed to be big enough); return the amount of factors. */ proc nonrec factors(word n; [*] word facs) word: word count, fac; count := 0;   /* take out factors of 2 */ while n > 0 and n & 1 = 0 do n := n >> 1; facs[count] := 2; count := count + 1 od;   /* take out odd factors */ fac := 3; while n >= fac do while n % fac = 0 do n := n / fac; facs[count] := fac; count := count + 1; od; fac := fac + 2 od; count corp   /* See if a number is a Smith number */ proc nonrec smith(word n) bool: [32] word facs; /* 32 factors ought to be enough for everyone */ word dsum, facsum, nfacs, i;   nfacs := factors(n, facs); if nfacs = 1 then false /* primes are not Smith numbers */ else dsum := digitsum(n); facsum := 0; for i from 0 upto nfacs-1 do facsum := facsum + digitsum(facs[i]) od; dsum = facsum fi corp   /* Find all Smith numbers below 10000 */ proc nonrec main() void: word i, count; count := 0; for i from 2 upto 9999 do if smith(i) then write(i:5); count := count + 1; if count & 0xF = 0 then writeln() fi fi od; writeln(); writeln("Found ", count, " Smith numbers.") corp
http://rosettacode.org/wiki/Solve_a_Hidato_puzzle
Solve a Hidato puzzle
The task is to write a program which solves Hidato (aka Hidoku) puzzles. The rules are: You are given a grid with some numbers placed in it. The other squares in the grid will be blank. The grid is not necessarily rectangular. The grid may have holes in it. The grid is always connected. The number “1” is always present, as is another number that is equal to the number of squares in the grid. Other numbers are present so as to force the solution to be unique. It may be assumed that the difference between numbers present on the grid is not greater than lucky 13. The aim is to place a natural number in each blank square so that in the sequence of numbered squares from “1” upwards, each square is in the wp:Moore neighborhood of the squares immediately before and after it in the sequence (except for the first and last squares, of course, which only have one-sided constraints). Thus, if the grid was overlaid on a chessboard, a king would be able to make legal moves along the path from first to last square in numerical order. A square may only contain one number. In a proper Hidato puzzle, the solution is unique. For example the following problem has the following solution, with path marked on it: Related tasks A* search algorithm N-queens problem Solve a Holy Knight's tour Solve a Knight's tour Solve a Hopido puzzle Solve a Numbrix puzzle Solve the no connection puzzle;
#Mathprog
Mathprog
/*Hidato.mathprog, part of KuKu by Nigel Galloway   Find a solution to a Hidato problem   [email protected] April 1st., 2011 */   param ZBLS; param ROWS; param COLS; param D := 1; set ROWSR := 1..ROWS; set COLSR := 1..COLS; set ROWSV := (1-D)..(ROWS+D); set COLSV := (1-D)..(COLS+D); param Iz{ROWSR,COLSR}, integer, default 0; set ZBLSV := 1..(ZBLS+1); set ZBLSR := 1..ZBLS;   var BR{ROWSV,COLSV,ZBLSV}, binary;   void0{r in ROWSV, z in ZBLSR,c in (1-D)..0}: BR[r,c,z] = 0; void1{r in ROWSV, z in ZBLSR,c in (COLS+1)..(COLS+D)}: BR[r,c,z] = 0; void2{c in COLSV, z in ZBLSR,r in (1-D)..0}: BR[r,c,z] = 0; void3{c in COLSV, z in ZBLSR,r in (ROWS+1)..(ROWS+D)}: BR[r,c,z] = 0; void4{r in ROWSV,c in (1-D)..0}: BR[r,c,ZBLS+1] = 1; void5{r in ROWSV,c in (COLS+1)..(COLS+D)}: BR[r,c,ZBLS+1] = 1; void6{c in COLSV,r in (1-D)..0}: BR[r,c,ZBLS+1] = 1; void7{c in COLSV,r in (ROWS+1)..(ROWS+D)}: BR[r,c,ZBLS+1] = 1;   Izfree{r in ROWSR, c in COLSR, z in ZBLSR : Iz[r,c] = -1}: BR[r,c,z] = 0; Iz1{Izr in ROWSR, Izc in COLSR, r in ROWSR, c in COLSR, z in ZBLSR : Izr=r and Izc=c and Iz[Izr,Izc]=z}: BR[r,c,z] = 1;   rule1{z in ZBLSR}: sum{r in ROWSR, c in COLSR} BR[r,c,z] = 1; rule2{r in ROWSR, c in COLSR}: sum{z in ZBLSV} BR[r,c,z] = 1; rule3{r in ROWSR, c in COLSR, z in ZBLSR}: BR[0,0,z+1] + BR[r-1,c-1,z+1] + BR[r-1,c,z+1] + BR[r-1,c+1,z+1] + BR[r,c-1,z+1] + BR[r,c+1,z+1] + BR[r+1,c-1,z+1] + BR[r+1,c,z+1] + BR[r+1,c+1,z+1] - BR[r,c,z] >= 0;   solve;   for {r in ROWSR} { for {c in COLSR} { printf " %2d", sum{z in ZBLSR} BR[r,c,z]*z; } printf "\n"; } data;   param ROWS := 8; param COLS := 8; param ZBLS := 40; param Iz: 1 2 3 4 5 6 7 8 := 1 . 33 35 . . -1 -1 -1 2 . . 24 22 . -1 -1 -1 3 . . . 21 . . -1 -1 4 . 26 . 13 40 11 -1 -1 5 27 . . . 9 . 1 -1 6 -1 -1 . . 18 . . -1 7 -1 -1 -1 -1 . 7 . . 8 -1 -1 -1 -1 -1 -1 5 .  ;   end;
http://rosettacode.org/wiki/Sort_an_array_of_composite_structures
Sort an array of composite structures
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Sort an array of composite structures by a key. For example, if you define a composite structure that presents a name-value pair (in pseudo-code): Define structure pair such that: name as a string value as a string and an array of such pairs: x: array of pairs then define a sort routine that sorts the array x by the key name. This task can always be accomplished with Sorting Using a Custom Comparator. If your language is not listed here, please see the other article.
#Liberty_BASIC
Liberty BASIC
  N =20 dim IntArray$( N, 2)   print "Original order" for i =1 to N name$ =mid$( "SortArrayOfCompositeStructures", int( 25 *rnd( 1)), 1 +int( 4 *rnd( 1))) IntArray$( i, 1) =name$ print name$, t$ =str$( int( 1000 *rnd( 1))) IntArray$( i, 2) =t$ print t$ next i   sort IntArray$(), 1, N, 1 print "Sorted by name" ' ( we specified column 1) for i =1 to N print IntArray$( i, 1), IntArray$( i, 2) next i  
http://rosettacode.org/wiki/Solve_the_no_connection_puzzle
Solve the no connection puzzle
You are given a box with eight holes labelled   A-to-H,   connected by fifteen straight lines in the pattern as shown below: A B /│\ /│\ / │ X │ \ / │/ \│ \ C───D───E───F \ │\ /│ / \ │ X │ / \│/ \│/ G H You are also given eight pegs numbered   1-to-8. Objective Place the eight pegs in the holes so that the (absolute) difference between any two numbers connected by any line is greater than one. Example In this attempt: 4 7 /│\ /│\ / │ X │ \ / │/ \│ \ 8───1───6───2 \ │\ /│ / \ │ X │ / \│/ \│/ 3 5 Note that   7   and   6   are connected and have a difference of   1,   so it is   not   a solution. Task Produce and show here   one   solution to the puzzle. Related tasks   A* search algorithm   Solve a Holy Knight's tour   Knight's tour   N-queens problem   Solve a Hidato puzzle   Solve a Holy Knight's tour   Solve a Hopido puzzle   Solve a Numbrix puzzle   4-rings or 4-squares puzzle See also No Connection Puzzle (youtube).
#Wren
Wren
import "/dynamic" for Tuple   var Solution = Tuple.create("Solution", ["p", "tests", "swaps"])   // Holes A=0, B=1, …, H=7 // With connections: var conn = " A B /|\\ /|\\ / | X | \\ / |/ \\| \\ C - D - E - F \\ |\\ /| / \\ | X | / \\|/ \\|/ G H "   var connections = [ [0, 2], [0, 3], [0, 4], // A to C, D, E [1, 3], [1, 4], [1, 5], // B to D, E, F [6, 2], [6, 3], [6, 4], // G to C, D, E [7, 3], [7, 4], [7, 5], // H to D, E, F [2, 3], [3, 4], [4, 5] // C-D, D-E, E-F ]   // 'isValid' checks if the pegs are a valid solution. // If the absolute difference between any pair of connected pegs is // greater than one it is a valid solution. var isValid = Fn.new { |pegs| for (c in connections) { if ((pegs[c[0]] - pegs[c[1]]).abs <= 1) return false } return true }   var swap = Fn.new { |pegs, i, j| var tmp = pegs[i] pegs[i] = pegs[j] pegs[j] = tmp }   // 'solve' is a simple recursive brute force solver, // it stops at the first found solution. // It returns the solution, the number of positions tested, // and the number of pegs swapped. var solve solve = Fn.new { var pegs = List.filled(8, 0) for (i in 0..7) pegs[i] = i + 1 var tests = 0 var swaps = 0   var recurse // recursive closure recurse = Fn.new { |i| if (i >= pegs.count - 1) { tests = tests + 1 return isValid.call(pegs) } // Try each remaining peg from pegs[i] onwards for (j in i...pegs.count) { swaps = swaps + 1 swap.call(pegs, i, j) if (recurse.call(i + 1)) return true swap.call(pegs, i, j) } return false }   recurse.call(0) return Solution.new(pegs, tests, swaps) }   var pegsAsString = Fn.new { |pegs| var ca = conn.toList var i = 0 for (c in ca) { if ("ABCDEFGH".contains(c)) ca[i] = String.fromByte(48 + pegs[c.bytes[0] - 65]) i = i + 1 } return ca.join() }   var s = solve.call() System.print(pegsAsString.call(s.p)) System.print("Tested %(s.tests) positions and did %(s.swaps) swaps.")
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Kotlin
Kotlin
// version 1.0.6   fun main(args: Array<String>) { val ints = intArrayOf(6, 2, 7, 8, 3, 1, 10, 5, 4, 9) ints.sort() println(ints.joinToString(prefix = "[", postfix = "]")) }
http://rosettacode.org/wiki/Sort_an_integer_array
Sort an integer array
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of integers in ascending numerical order. Use a sorting facility provided by the language/library if possible.
#Lambdatalk
Lambdatalk
  1) sorting digits in a number returns a new number of ordered digits {W.sort < 51324} -> 12345   2) sorting a sequence of numbers returns a new ordered sequence of these numbers {S.sort < 51 111 33 2 41} -> 2 33 41 51 111   3) sorting an array of numbers returns the same array ordered {A.sort! < {A.new 51 111 33 2 41}} -> [2,33,41,51,111]  
http://rosettacode.org/wiki/Sort_disjoint_sublist
Sort disjoint sublist
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Given a list of values and a set of integer indices into that value list, the task is to sort the values at the given indices, while preserving the values at indices outside the set of those to be sorted. Make your example work with the following list of values and set of indices: Values: [7, 6, 5, 4, 3, 2, 1, 0] Indices: {6, 1, 7} Where the correct result would be: [7, 0, 5, 4, 3, 2, 1, 6]. In case of one-based indexing, rather than the zero-based indexing above, you would use the indices {7, 2, 8} instead. The indices are described as a set rather than a list but any collection-type of those indices without duplication may be used as long as the example is insensitive to the order of indices given. Cf.   Order disjoint list items
#PowerShell
PowerShell
  function sublistsort($values, $indices) { $indices = $indices | sort $sub, $i = ($values[$indices] | sort), 0 $indices | foreach { $values[$_] = $sub[$i++] } $values } $values = 7, 6, 5, 4, 3, 2, 1, 0 $indices = 6, 1, 7 "$(sublistsort $values $indices)"  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Racket
Racket
  #lang racket   ;; Using a combination of the two comparisons (define (sort1 words) (sort words (λ(x y) (define xl (string-length x)) (define yl (string-length y)) (or (> xl yl) (and (= xl yl) (string-ci<? x y)))))) (sort1 '("Some" "pile" "of" "words")) ;; -> '("words" "pile" "Some" "of")   ;; Doing two sorts, relying on `sort's stability (define (sort2 words) (sort (sort words string-ci<?) > #:key string-length)) (sort2 '("Some" "pile" "of" "words")) ;; -> '("words" "pile" "Some" "of")  
http://rosettacode.org/wiki/Sort_using_a_custom_comparator
Sort using a custom comparator
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort Task Sort an array (or list) of strings in order of descending length, and in ascending lexicographic order for strings of equal length. Use a sorting facility provided by the language/library, combined with your own callback comparison function. Note:   Lexicographic order is case-insensitive.
#Raku
Raku
my @strings = <Here are some sample strings to be sorted>; put @strings.sort:{.chars, .lc}; put sort -> $x { $x.chars, $x.lc }, @strings;
http://rosettacode.org/wiki/Sorting_algorithms/Bubble_sort
Sorting algorithms/Bubble sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort A   bubble   sort is generally considered to be the simplest sorting algorithm. A   bubble   sort is also known as a   sinking   sort. Because of its simplicity and ease of visualization, it is often taught in introductory computer science courses. Because of its abysmal O(n2) performance, it is not used often for large (or even medium-sized) datasets. The bubble sort works by passing sequentially over a list, comparing each value to the one immediately after it.   If the first value is greater than the second, their positions are switched.   Over a number of passes, at most equal to the number of elements in the list, all of the values drift into their correct positions (large values "bubble" rapidly toward the end, pushing others down around them).   Because each pass finds the maximum item and puts it at the end, the portion of the list to be sorted can be reduced at each pass.   A boolean variable is used to track whether any changes have been made in the current pass; when a pass completes without changing anything, the algorithm exits. This can be expressed in pseudo-code as follows (assuming 1-based indexing): repeat if itemCount <= 1 return hasChanged := false decrement itemCount repeat with index from 1 to itemCount if (item at index) > (item at (index + 1)) swap (item at index) with (item at (index + 1)) hasChanged := true until hasChanged = false Task Sort an array of elements using the bubble sort algorithm.   The elements must have a total order and the index of the array can be of any discrete type.   For languages where this is not possible, sort an array of integers. References The article on Wikipedia. Dance interpretation.
#J
J
bubbleSort=: (([ (<. , >.) {.@]) , }.@])/^:_
http://rosettacode.org/wiki/Sorting_algorithms/Gnome_sort
Sorting algorithms/Gnome sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Gnome sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Gnome sort is a sorting algorithm which is similar to Insertion sort, except that moving an element to its proper place is accomplished by a series of swaps, as in Bubble Sort. The pseudocode for the algorithm is: function gnomeSort(a[0..size-1]) i := 1 j := 2 while i < size do if a[i-1] <= a[i] then // for descending sort, use >= for comparison i := j j := j + 1 else swap a[i-1] and a[i] i := i - 1 if i = 0 then i := j j := j + 1 endif endif done Task Implement the Gnome sort in your language to sort an array (or list) of numbers.
#Rascal
Rascal
import List;   public list[int] gnomeSort(a){ i = 1; j = 2; while(i < size(a)){ if(a[i-1] <= a[i]){ i = j; j += 1;} else{ temp = a[i-1]; a[i-1] = a[i]; a[i] = temp; i = i - 1; if(i == 0){ i = j; j += 1;}}} return a; }
http://rosettacode.org/wiki/Sorting_algorithms/Cocktail_sort
Sorting algorithms/Cocktail sort
Sorting Algorithm This is a sorting algorithm.   It may be applied to a set of data in order to sort it.     For comparing various sorts, see compare sorts.   For other sorting algorithms,   see sorting algorithms,   or: O(n logn) sorts Heap sort | Merge sort | Patience sort | Quick sort O(n log2n) sorts Shell Sort O(n2) sorts Bubble sort | Cocktail sort | Cocktail sort with shifting bounds | Comb sort | Cycle sort | Gnome sort | Insertion sort | Selection sort | Strand sort other sorts Bead sort | Bogo sort | Common sorted list | Composite structures sort | Custom comparator sort | Counting sort | Disjoint sublist sort | External sort | Jort sort | Lexicographical sort | Natural sorting | Order by pair comparisons | Order disjoint list items | Order two numerical lists | Object identifier (OID) sort | Pancake sort | Quickselect | Permutation sort | Radix sort | Ranking methods | Remove duplicate elements | Sleep sort | Stooge sort | [Sort letters of a string] | Three variable sort | Topological sort | Tree sort This page uses content from Wikipedia. The original article was at Cocktail sort. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) The cocktail shaker sort is an improvement on the Bubble Sort. The improvement is basically that values "bubble" both directions through the array, because on each iteration the cocktail shaker sort bubble sorts once forwards and once backwards. Pseudocode for the algorithm (from wikipedia): function cocktailSort( A : list of sortable items ) do swapped := false for each i in 0 to length( A ) - 2 do if A[ i ] > A[ i+1 ] then // test whether the two // elements are in the wrong // order swap( A[ i ], A[ i+1 ] ) // let the two elements // change places swapped := true; if swapped = false then // we can exit the outer loop here if no swaps occurred. break do-while loop; swapped := false for each i in length( A ) - 2 down to 0 do if A[ i ] > A[ i+1 ] then swap( A[ i ], A[ i+1 ] ) swapped := true; while swapped; // if no elements have been swapped, // then the list is sorted Related task   cocktail sort with shifting bounds
#Python
Python
def cocktailSort(A): up = range(len(A)-1) while True: for indices in (up, reversed(up)): swapped = False for i in indices: if A[i] > A[i+1]: A[i], A[i+1] = A[i+1], A[i] swapped = True if not swapped: return
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#NetRexx
NetRexx
/* NetRexx */ options replace format comments java crossref symbols nobinary import java.net.   runSample(arg) return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method runSample(arg) private static parse arg host':'port':'message if host = '' then host = 'localhost' if port = '' then port = 256 if message = '' then message = 'hello socket world' sendToSocket(host, port, message) return   -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ method sendToSocket(host, port, message) public static do sokt = Socket(host, port) soks = sokt.getOutputStream() soks.write((String message).getBytes()) soks.flush() sokt.close() catch ix = IOException ix.printStackTrace() end return  
http://rosettacode.org/wiki/Sockets
Sockets
For this exercise a program is open a socket to localhost on port 256 and send the message "hello socket world" before closing the socket. Catching any exceptions or errors is not required.
#NewLISP
NewLISP
  (set 'socket (net-connect "localhost" 256)) (net-send socket "hello socket world") (net-close socket) (exit)  
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#XPL0
XPL0
func IsPrime(N); \Return 'true' if N is prime int N, I; [if N <= 2 then return N = 2; if (N&1) = 0 then \even >2\ return false; for I:= 3 to sqrt(N) do [if rem(N/I) = 0 then return false; I:= I+1; ]; return true; ];   func PrimeDigits(N); \Return 'true' if all digits are prime int N; [repeat N:= N/10; case rem(0) of 0, 1, 4, 6, 8, 9: return false other []; until N = 0; return true; ];   int C, N; [C:= 0; N:= 2; loop [if IsPrime(N) then if PrimeDigits(N) then [C:= C+1; if C <= 25 then [IntOut(0, N); ChOut(0, ^ )]; if C = 100 then [Text(0, "^m^j100th: "); IntOut(0, N)]; if C = 1000 then quit; ]; N:= N+1; ]; Text(0, "^m^j1000th: "); IntOut(0, N); CrLf(0); ]
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#Yabasic
Yabasic
num = 0 limit = 26 limit100 = 100   print "First 25 Smarandache primes:\n" for n = 1 to 34000 flag = 0 nStr$ = str$(n) for x = 1 to len(nStr$) nx = val(mid$(nStr$,x,1)) if isPrime(n) and isPrime(nx) then flag = flag + 1 else break end if next if flag = len(nStr$) then num = num + 1 if num < limit print "", n, " "; if num = limit100 print "\n\n100th Smarandache prime: ", n end if next n end   sub isPrime(v) if v < 2 return False if mod(v, 2) = 0 return v = 2 if mod(v, 3) = 0 return v = 3 d = 5 while d * d <= v if mod(v, d) = 0 then return False else d = d + 2 : fi wend return True end sub
http://rosettacode.org/wiki/Smarandache_prime-digital_sequence
Smarandache prime-digital sequence
The Smarandache prime-digital sequence (SPDS for brevity) is the sequence of primes whose digits are themselves prime. For example 257 is an element of this sequence because it is prime itself and its digits: 2, 5 and 7 are also prime. Task Show the first 25 SPDS primes. Show the hundredth SPDS prime. See also OEIS A019546: Primes whose digits are primes. https://www.scribd.com/document/214851583/On-the-Smarandache-prime-digital-subsequence-sequences
#zkl
zkl
var [const] BI=Import("zklBigNum"); // libGMP   spds:=Walker.zero().tweak(fcn(ps){ var [const] nps=T(0,0,1,1,0,1,0,1,0,0); // 2,3,5,7 p:=ps.nextPrime().toInt(); if(p.split().filter( fcn(n){ 0==nps[n] }) ) return(Void.Skip); p // 733 --> (7,3,3) --> () --> good, 29 --> (2,9) --> (9) --> bad }.fp(BI(1)));
http://rosettacode.org/wiki/Snake
Snake
This page uses content from Wikipedia. The original article was at Snake_(video_game). The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance) Snake is a game where the player maneuvers a line which grows in length every time the snake reaches a food source. Task Implement a variant of the Snake game, in any interactive environment, in which a sole player attempts to eat items by running into them with the head of the snake. Each item eaten makes the snake longer and a new item is randomly generated somewhere else on the plane. The game ends when the snake attempts to eat himself.
#Lua
Lua
UP, RIGHT, DOWN, LEFT = 1, 2, 3, 4 UpdateTime=0.200 Timer = 0 GridSize = 30 GridWidth, GridHeight = 20, 10   local directions = { [UP] = {x= 0, y=-1}, [RIGHT] = {x= 1, y= 0}, [DOWN] = {x= 0, y= 1}, [LEFT] = {x=-1, y= 0}, }   local function isPositionInBody(x, y) for i = 1, #Body-3, 2 do -- skip tail, it moves before we get in if x == Body[i] and y == Body[i+1] then return true end end return false end   local function isPositionInApple(x, y) if x == Apple.x and y == Apple.y then return true end return false end   local function newApple () local ApplePlaced = false while not ApplePlaced do local x = GridSize*math.random (GridWidth) local y = GridSize*math.random (GridHeight) if not isPositionInBody(x, y) then Apple = {x=x, y=y} ApplePlaced = true end end end   local function newGame () Score = 0 GameOver = false local x = GridSize*math.floor(math.random (0.25*GridWidth, 0.75*GridWidth)) print (x) local y = GridSize*math.floor(math.random (0.25*GridHeight, 0.75*GridHeight)) print (y) local iDirection = math.random(4) local d = directions[iDirection] Head = { x=x, y=y, iDirection = iDirection, nextDirection = iDirection, } Body = {x, y, x-GridSize*d.x, y-GridSize*d.y} Apples = {} newApple () end   function love.load() newGame () end   local function moveSnake (x, y, iDirection, longer) table.insert (Body, 1, x) table.insert (Body, 2, y) Head.x = x Head.y = y Head.iDirection = iDirection if not longer then -- remove last pair table.remove(Body) table.remove(Body) end if x <= 0 or x > GridSize*(GridWidth) or y <= 0 or y > GridSize*(GridHeight) then GameOver = true end end   function love.update(dt) Timer = Timer + dt if Timer < UpdateTime then return end Timer = Timer - UpdateTime   local iDirection = Head.nextDirection local d = directions[iDirection] local x, y = Head.x+GridSize*d.x, Head.y+GridSize*d.y if isPositionInBody(x, y) then GameOver = true elseif isPositionInApple(x, y) then Score = Score + 1 newApple () moveSnake (x, y, iDirection, true) else moveSnake (x, y, iDirection, false) end end   function drawHead () -- position, length, width and angle love.graphics.push() love.graphics.translate(Head.x, Head.y) love.graphics.rotate((Head.iDirection-2)*math.pi/2) love.graphics.polygon("fill", -GridSize/3, -GridSize /3, -GridSize/3, GridSize /3, GridSize/3, 0) love.graphics.pop() end   function love.draw() love.graphics.setColor(0,1,0) love.graphics.print ('Score: '..tostring(Score), 10, 10) if GameOver then love.graphics.print ('Game Over: '..tostring(GameOver)..'. Press "Space" to continue', 10, 30) else love.graphics.translate(GridSize, GridSize) love.graphics.setColor(0.6,0.6,0.6) love.graphics.setLineWidth(0.25) for x = GridSize, GridSize*GridWidth, GridSize do love.graphics.line (x, GridSize, x, GridSize*GridHeight) end for y = GridSize, GridSize*GridHeight, GridSize do love.graphics.line (GridSize, y, GridSize*GridWidth, y) end love.graphics.setLineWidth((GridSize/4)+0.5) love.graphics.setColor(1,1,1) love.graphics.line (Body) drawHead () love.graphics.setColor(1,0,0) love.graphics.circle ('fill', Apple.x, Apple.y, GridSize/4) end end   function love.keypressed(key, scancode, isrepeat) if false then elseif key == "space" then if GameOver then GameOver = false newGame () end elseif key == "escape" then love.event.quit() else local iDirection = Head.iDirection if iDirection == UP or iDirection == DOWN then local right = love.keyboard.isScancodeDown ("d") local left = love.keyboard.isScancodeDown ("a") if right and not left then iDirection = RIGHT elseif left and not right then iDirection = LEFT end else -- right or left local down = love.keyboard.isScancodeDown ("s") local up = love.keyboard.isScancodeDown ("w") if up and not down then iDirection = UP elseif down and not up then iDirection = DOWN end end Head.nextDirection = iDirection end end
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#Elixir
Elixir
defmodule Smith do def number?(n) do d = decomposition(n) length(d)>1 and sum_digits(n) == Enum.map(d, &sum_digits/1) |> Enum.sum end   defp sum_digits(n) do Integer.digits(n) |> Enum.sum end   defp decomposition(n, k\\2, acc\\[]) defp decomposition(n, k, acc) when n < k*k, do: [n | acc] defp decomposition(n, k, acc) when rem(n, k) == 0, do: decomposition(div(n, k), k, [k | acc]) defp decomposition(n, k, acc), do: decomposition(n, k+1, acc) end   m = 10000 smith = Enum.filter(1..m, &Smith.number?/1) IO.puts "#{length(smith)} smith numbers below #{m}:" IO.puts "First 10: #{Enum.take(smith,10) |> Enum.join(", ")}" IO.puts "Last 10: #{Enum.take(smith,-10) |> Enum.join(", ")}"
http://rosettacode.org/wiki/Smith_numbers
Smith numbers
Smith numbers are numbers such that the sum of the decimal digits of the integers that make up that number is the same as the sum of the decimal digits of its prime factors excluding 1. By definition, all primes are excluded as they (naturally) satisfy this condition! Smith numbers are also known as   joke   numbers. Example Using the number 166 Find the prime factors of 166 which are: 2 x 83 Then, take those two prime factors and sum all their decimal digits: 2 + 8 + 3 which is 13 Then, take the decimal digits of 166 and add their decimal digits: 1 + 6 + 6 which is 13 Therefore, the number 166 is a Smith number. Task Write a program to find all Smith numbers below 10000. See also from Wikipedia:   [Smith number]. from MathWorld:   [Smith number]. from OEIS A6753:   [OEIS sequence A6753]. from OEIS A104170:   [Number of Smith numbers below 10^n]. from The Prime pages:   [Smith numbers].
#F.23
F#
  // Generate Smith Numbers. Nigel Galloway: November 6th., 2020 let fN g=Seq.unfold(fun n->match n with 0->None |_->Some(n%10,n/10)) g |> Seq.sum let rec fG(n,g) p=match g%p with 0->fG (n+fN p,g/p) p |_->(n,g) primes32()|>Seq.pairwise|>Seq.collect(fun(n,g)->[n+1..g-1])|>Seq.takeWhile(fun n->n<10000) |>Seq.filter(fun g->fN g=fst(primes32()|>Seq.scan(fun n g->fG n g)(0,g)|>Seq.find(fun(_,n)->n=1))) |>Seq.chunkBySize 20|>Seq.iter(fun n->Seq.iter(printf "%4d ") n; printfn "")