task_url
stringlengths
30
116
task_name
stringlengths
2
86
task_description
stringlengths
0
14.4k
language_url
stringlengths
2
53
language_name
stringlengths
1
52
code
stringlengths
0
61.9k
http://rosettacode.org/wiki/Erd%C3%B6s-Selfridge_categorization_of_primes
Erdös-Selfridge categorization of primes
A prime p is in category 1 if the prime factors of p+1 are 2 and or 3. p is in category 2 if all the prime factors of p+1 are in category 1. p is in category g if all the prime factors of p+1 are in categories 1 to g-1. The task is first to display the first 200 primes allocated to their category, then assign the first million primes to their category, displaying the smallest prime, the largest prime, and the count of primes allocated to each category.
#Sidef
Sidef
func Erdös_Selfridge_class(n, s=1) is cached { var f = factor_exp(n+s) f.last.head > 3 || return 1 f.map {|p| __FUNC__(p.head, s) }.max + 1 }   say "First two hundred primes; Erdös-Selfridge categorized:" 200.pn_primes.group_by(Erdös_Selfridge_class).sort_by{.to_i}.each_2d {|k,v| say "#{k} => #{v}" }   say "\nSummary of first 10^6 primes; Erdös-Selfridge categorized:"; 1e6.pn_primes.group_by(Erdös_Selfridge_class).sort_by{.to_i}.each_2d {|k,v| printf("Category %2d: first: %9s last: %10s count: %s\n", k, v.first, v.last, v.len) }
http://rosettacode.org/wiki/Erd%C3%B6s-Selfridge_categorization_of_primes
Erdös-Selfridge categorization of primes
A prime p is in category 1 if the prime factors of p+1 are 2 and or 3. p is in category 2 if all the prime factors of p+1 are in category 1. p is in category g if all the prime factors of p+1 are in categories 1 to g-1. The task is first to display the first 200 primes allocated to their category, then assign the first million primes to their category, displaying the smallest prime, the largest prime, and the count of primes allocated to each category.
#Wren
Wren
import "./math" for Int import "./fmt" for Fmt   var limit = (1e6.log * 1e6 * 1.2).floor // should be more than enough var primes = Int.primeSieve(limit)   var prevCats = {}   var cat // recursive cat = Fn.new { |p| if (prevCats.containsKey(p)) return prevCats[p] var pf = Int.primeFactors(p+1) if (pf.all { |f| f == 2 || f == 3 }) return 1 if (p > 2) { for (i in pf.count-1..1) { if (pf[i-1] == pf[i]) pf.removeAt(i) } } for (c in 2..11) { if (pf.all { |f| cat.call(f) < c }) { prevCats[p] = c return c } } return 12 }   var es = List.filled(12, null) for (i in 0..11) es[i] = []   System.print("First 200 primes:\n ") for (p in primes[0..199]) { var c = cat.call(p) es[c-1].add(p) } for (c in 1..6) { if (es[c-1].count > 0) { System.print("Category %(c):") System.print(es[c-1]) System.print() } }   System.print("First million primes:\n") for (p in primes[200...1e6]) { var c = cat.call(p) es[c-1].add(p) } for (c in 1..12) { var e = es[c-1] if (e.count > 0) { Fmt.print("Category $-2d: First = $7d Last = $8d Count = $6d", c, e[0], e[-1], e.count) } }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#M4
M4
define(`factorial',`ifelse(`$1',0,1,`eval($1*factorial(decr($1)))')')dnl dnl factorial(5)
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#11l
11l
F is_even(i) R i % 2 == 0   F is_odd(i) R i % 2 == 1
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Common_Lisp
Common Lisp
;; 't' usually means "true" in CL, but we need 't' here for time/temperature. (defconstant true 'cl:t) (shadow 't)     ;; Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and t=a..b and the step size h. (defun euler (f y0 a b h)   ;; Set the initial values and increments of the iteration variables. (do ((t a (+ t h)) (y y0 (+ y (* h (funcall f t y)))))   ;; End the iteration when t reaches the end b of the time interval. ((>= t b) 'DONE)   ;; Print t and y(t) at every step of the do loop. (format true "~6,3F ~6,3F~%" t y)))     ;; Example: Newton's cooling law, f(t,T) = -0.07*(T-20) (defun newton-cooling (time T) (* -0.07 (- T 20)))   ;; Generate the data for all three step sizes (2,5 and 10). (euler #'newton-cooling 100 0 100 2) (euler #'newton-cooling 100 0 100 5) (euler #'newton-cooling 100 0 100 10)
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#360_Assembly
360 Assembly
* Evaluate binomial coefficients - 29/09/2015 BINOMIAL CSECT USING BINOMIAL,R15 set base register SR R4,R4 clear for mult and div LA R5,1 r=1 LA R7,1 i=1 L R8,N m=n LOOP LR R4,R7 do while i<=k C R4,K i<=k BH LOOPEND if not then exit while MR R4,R8 r*m DR R4,R7 r=r*m/i LA R7,1(R7) i=i+1 BCTR R8,0 m=m-1 B LOOP loop while LOOPEND XDECO R5,PG edit r XPRNT PG,12 print r XR R15,R15 set return code BR R14 return to caller N DC F'10' <== input value K DC F'4' <== input value PG DS CL12 buffer YREGS END BINOMIAL
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#ABAP
ABAP
CLASS lcl_binom DEFINITION CREATE PUBLIC.   PUBLIC SECTION. CLASS-METHODS: calc IMPORTING n TYPE i k TYPE i RETURNING VALUE(r_result) TYPE f.   ENDCLASS.   CLASS lcl_binom IMPLEMENTATION.   METHOD calc.   r_result = 1. DATA(i) = 1. DATA(m) = n.   WHILE i <= k. r_result = r_result * m / i. i = i + 1. m = m - 1. ENDWHILE.   ENDMETHOD.   ENDCLASS.
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#TUSCRIPT
TUSCRIPT
  $$ MODE TUSCRIPT ASK "What fibionacci number do you want?": searchfib="" IF (searchfib!='digits') STOP Loop n=0,{searchfib} IF (n==0) THEN fib=fiba=n ELSEIF (n==1) THEN fib=fibb=n ELSE fib=fiba+fibb, fiba=fibb, fibb=fib ENDIF IF (n!=searchfib) CYCLE PRINT "fibionacci number ",n,"=",fib ENDLOOP  
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#C
C
#include <stdio.h> #include <string.h> #include <locale.h>   typedef int bool; typedef unsigned long long ull;   #define TRUE 1 #define FALSE 0   char as_digit(int d) { return (d >= 0 && d <= 9) ? d + '0' : d - 10 + 'a'; }   void revstr(char *str) { int i, len = strlen(str); char t; for (i = 0; i < len/2; ++i) { t = str[i]; str[i] = str[len - i - 1]; str[len - i - 1] = t; } }   char* to_base(char s[], ull n, int b) { int i = 0; while (n) { s[i++] = as_digit(n % b); n /= b; } s[i] = '\0'; revstr(s); return s; }   ull uabs(ull a, ull b) { return a > b ? a - b : b - a; }   bool is_esthetic(ull n, int b) { int i, j; if (!n) return FALSE; i = n % b; n /= b; while (n) { j = n % b; if (uabs(i, j) != 1) return FALSE; n /= b; i = j; } return TRUE; }   ull esths[45000]; int le = 0;   void dfs(ull n, ull m, ull i) { ull d, i1, i2; if (i >= n && i <= m) esths[le++] = i; if (i == 0 || i > m) return; d = i % 10; i1 = i * 10 + d - 1; i2 = i1 + 2; if (d == 0) { dfs(n, m, i2); } else if (d == 9) { dfs(n, m, i1); } else { dfs(n, m, i1); dfs(n, m, i2); } }   void list_esths(ull n, ull n2, ull m, ull m2, int per_line, bool all) { int i; le = 0; for (i = 0; i < 10; ++i) { dfs(n2, m2, i); } printf("Base 10: %'d esthetic numbers between %'llu and %'llu:\n", le, n, m); if (all) { for (i = 0; i < le; ++i) { printf("%llu ", esths[i]); if (!(i+1)%per_line) printf("\n"); } } else { for (i = 0; i < per_line; ++i) printf("%llu ", esths[i]); printf("\n............\n"); for (i = le - per_line; i < le; ++i) printf("%llu ", esths[i]); } printf("\n\n"); }   int main() { ull n; int b, c; char ch[15] = {0}; for (b = 2; b <= 16; ++b) { printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4*b, 6*b); for (n = 1, c = 0; c < 6 * b; ++n) { if (is_esthetic(n, b)) { if (++c >= 4 * b) printf("%s ", to_base(ch, n, b)); } } printf("\n\n"); } char *oldLocale = setlocale(LC_NUMERIC, NULL); setlocale(LC_NUMERIC, "");   // the following all use the obvious range limitations for the numbers in question list_esths(1000, 1010, 9999, 9898, 16, TRUE); list_esths(1e8, 101010101, 13*1e7, 123456789, 9, TRUE); list_esths(1e11, 101010101010, 13*1e10, 123456789898, 7, FALSE); list_esths(1e14, 101010101010101, 13*1e13, 123456789898989, 5, FALSE); list_esths(1e17, 101010101010101010, 13*1e16, 123456789898989898, 4, FALSE); setlocale(LC_NUMERIC, oldLocale); return 0; }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#MAD
MAD
NORMAL MODE IS INTEGER   R CALCULATE FACTORIAL OF N INTERNAL FUNCTION(N) ENTRY TO FACT. RES = 1 THROUGH FACMUL, FOR MUL = 2, 1, MUL.G.N FACMUL RES = RES * MUL FUNCTION RETURN RES END OF FUNCTION   R USE THE FUNCTION TO PRINT 0! THROUGH 12! VECTOR VALUES FMT = $I2,6H ! IS ,I9*$ THROUGH PRNFAC, FOR NUM = 0, 1, NUM.G.12 PRNFAC PRINT FORMAT FMT, NUM, FACT.(NUM)   END OF PROGRAM
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#6502_Assembly
6502 Assembly
  .lf evenodd6502.lst .cr 6502 .tf evenodd6502.obj,ap1 ;------------------------------------------------------ ; Even or Odd for the 6502 by barrym95838 2014.12.10 ; Thanks to sbprojects.com for a very nice assembler! ; The target for this assembly is an Apple II with ; mixed-case output capabilities. Apple IIs like to ; work in '+128' ascii, and this version is tailored ; to that preference. ; Tested and verified on AppleWin 1.20.0.0 ;------------------------------------------------------ ; Constant Section ; CharIn = $fd0c  ;Specific to the Apple II CharOut = $fded  ;Specific to the Apple II ;------------------------------------------------------ ; The main program ; main ldy #sIntro-sbase jsr puts  ;Print Intro loop jsr CharIn  ;Get a char from stdin cmp #$83  ;Ctrl-C? beq done  ; yes: end program jsr CharOut  ;Echo char ldy #sOdd-sbase ;Pre-load odd string lsr  ;LSB of char to carry flag bcs isodd ldy #sEven-sbase isodd jsr puts  ;Print appropriate response beq loop  ;Always taken ; Output NUL-terminated string @ offset Y ; puts lda sbase,y  ;Get string char beq done  ;Done if NUL jsr CharOut  ;Output the char iny  ;Point to next char bne puts  ;Loop up to 255 times done rts  ;Return to caller ;------------------------------------------------------ ; String Constants (in '+128' ascii, Apple II style) ; sbase:  ;String base address sIntro .az -"Hit any key (Ctrl-C to quit):",-#13 sEven .az -" is even.",-#13 sOdd .az -" is odd.",-#13 ;------------------------------------------------------ .en  
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#D
D
import std.stdio, std.range, std.traits;   /// Approximates y(t) in y'(t)=f(t,y) with y(a)=y0 and t=a..b and the step size h. void euler(F)(in F f, in double y0, in double a, in double b, in double h) @safe if (isCallable!F && __traits(compiles, { real r = f(0.0, 0.0); })) { double y = y0; foreach (immutable t; iota(a, b, h)) { writefln("%.3f  %.3f", t, y); y += h * f(t, y); } "done".writeln; }   void main() { /// Example: Newton's cooling law. enum newtonCoolingLaw = (in double time, in double t) pure nothrow @safe @nogc => -0.07 * (t - 20);   euler(newtonCoolingLaw, 100, 0, 100, 2); euler(newtonCoolingLaw, 100, 0, 100, 5); euler(newtonCoolingLaw, 100, 0, 100, 10); }
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#ACL2
ACL2
(defun fac (n) (if (zp n) 1 (* n (fac (1- n)))))   (defun binom (n k) (/ (fac n) (* (fac (- n k)) (fac k)))
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Ada
Ada
  with Ada.Text_IO; use Ada.Text_IO; procedure Test_Binomial is function Binomial (N, K : Natural) return Natural is Result : Natural := 1; M  : Natural; begin if N < K then raise Constraint_Error; end if; if K > N/2 then -- Use symmetry M := N - K; else M := K; end if; for I in 1..M loop Result := Result * (N - M + I) / I; end loop; return Result; end Binomial; begin for N in 0..17 loop for K in 0..N loop Put (Integer'Image (Binomial (N, K))); end loop; New_Line; end loop; end Test_Binomial;  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#UNIX_Shell
UNIX Shell
#!/bin/bash   a=0 b=1 max=$1   for (( n=1; "$n" <= "$max"; $((n++)) )) do a=$(($a + $b)) echo "F($n): $a" b=$(($a - $b)) done
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#C.2B.2B
C++
#include <functional> #include <iostream> #include <sstream> #include <vector>   std::string to(int n, int b) { static auto BASE = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";   std::stringstream ss; while (n > 0) { auto rem = n % b; n = n / b; ss << BASE[rem]; }   auto fwd = ss.str(); return std::string(fwd.rbegin(), fwd.rend()); }   uint64_t uabs(uint64_t a, uint64_t b) { if (a < b) { return b - a; } return a - b; }   bool isEsthetic(uint64_t n, uint64_t b) { if (n == 0) { return false; } auto i = n % b; n /= b; while (n > 0) { auto j = n % b; if (uabs(i, j) != 1) { return false; } n /= b; i = j; } return true; }   void listEsths(uint64_t n, uint64_t n2, uint64_t m, uint64_t m2, int perLine, bool all) { std::vector<uint64_t> esths; const auto dfs = [&esths](uint64_t n, uint64_t m, uint64_t i) { auto dfs_impl = [&esths](uint64_t n, uint64_t m, uint64_t i, auto &dfs_ref) { if (i >= n && i <= m) { esths.push_back(i); } if (i == 0 || i > m) { return; } auto d = i % 10; auto i1 = i * 10 + d - 1; auto i2 = i1 + 2; if (d == 0) { dfs_ref(n, m, i2, dfs_ref); } else if (d == 9) { dfs_ref(n, m, i1, dfs_ref); } else { dfs_ref(n, m, i1, dfs_ref); dfs_ref(n, m, i2, dfs_ref); } }; dfs_impl(n, m, i, dfs_impl); };   for (int i = 0; i < 10; i++) { dfs(n2, m2, i); } auto le = esths.size(); printf("Base 10: %d esthetic numbers between %llu and %llu:\n", le, n, m); if (all) { for (size_t c = 0; c < esths.size(); c++) { auto esth = esths[c]; printf("%llu ", esth); if ((c + 1) % perLine == 0) { printf("\n"); } } printf("\n"); } else { for (int c = 0; c < perLine; c++) { auto esth = esths[c]; printf("%llu ", esth); } printf("\n............\n"); for (size_t i = le - perLine; i < le; i++) { auto esth = esths[i]; printf("%llu ", esth); } printf("\n"); } printf("\n"); }   int main() { for (int b = 2; b <= 16; b++) { printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4 * b, 6 * b); for (int n = 1, c = 0; c < 6 * b; n++) { if (isEsthetic(n, b)) { c++; if (c >= 4 * b) { std::cout << to(n, b) << ' '; } } } printf("\n"); } printf("\n");   // the following all use the obvious range limitations for the numbers in question listEsths(1000, 1010, 9999, 9898, 16, true); listEsths((uint64_t)1e8, 101'010'101, 13 * (uint64_t)1e7, 123'456'789, 9, true); listEsths((uint64_t)1e11, 101'010'101'010, 13 * (uint64_t)1e10, 123'456'789'898, 7, false); listEsths((uint64_t)1e14, 101'010'101'010'101, 13 * (uint64_t)1e13, 123'456'789'898'989, 5, false); listEsths((uint64_t)1e17, 101'010'101'010'101'010, 13 * (uint64_t)1e16, 123'456'789'898'989'898, 4, false); return 0; }
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#MANOOL
MANOOL
  { let rec { Fact = -- compile-time constant binding { proc { N } as -- precondition: N.IsI48[] & (N >= 0)  : if N == 0 then 1 else N * Fact[N - 1] } } in -- use Fact here or just make the whole expression to evaluate to it: Fact }  
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#68000_Assembly
68000 Assembly
BTST D0,#1 BNE isOdd ;else, is even.
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Delphi
Delphi
defmodule Euler do def method(_, _, t, b, _) when t>b, do: :ok def method(f, y, t, b, h) do  :io.format "~7.3f ~7.3f~n", [t,y] method(f, y + h * f.(t,y), t + h, b, h) end end   f = fn _time, temp -> -0.07 * (temp - 20) end Enum.each([10, 5, 2], fn step -> IO.puts "\nStep = #{step}" Euler.method(f, 100.0, 0.0, 100.0, step) end)
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Elixir
Elixir
defmodule Euler do def method(_, _, t, b, _) when t>b, do: :ok def method(f, y, t, b, h) do  :io.format "~7.3f ~7.3f~n", [t,y] method(f, y + h * f.(t,y), t + h, b, h) end end   f = fn _time, temp -> -0.07 * (temp - 20) end Enum.each([10, 5, 2], fn step -> IO.puts "\nStep = #{step}" Euler.method(f, 100.0, 0.0, 100.0, step) end)
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#ALGOL_68
ALGOL 68
PROC factorial = (INT n)INT: ( INT result;   result := 1; FOR i TO n DO result *:= i OD;   result );   PROC choose = (INT n, INT k)INT: ( INT result;   # Note: code can be optimised here as k < n # result := factorial(n) OVER (factorial(k) * factorial(n - k));   result );   test:( print((choose(5, 3), new line)) )
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#UnixPipes
UnixPipes
echo 1 |tee last fib ; tail -f fib | while read x do cat last | tee -a fib | xargs -n 1 expr $x + |tee last done
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#D
D
import std.conv; import std.stdio;   ulong uabs(ulong a, ulong b) { if (a > b) { return a - b; } return b - a; }   bool isEsthetic(ulong n, ulong b) { if (n == 0) { return false; } auto i = n % b; n /= b; while (n > 0) { auto j = n % b; if (uabs(i, j) != 1) { return false; } n /= b; i = j; } return true; }   ulong[] esths;   void dfs(ulong n, ulong m, ulong i) { if (i >= n && i <= m) { esths ~= i; } if (i == 0 || i > m) { return; } auto d = i % 10; auto i1 = i * 10 + d - 1; auto i2 = i1 + 2; if (d == 0) { dfs(n, m, i2); } else if (d == 9) { dfs(n, m, i1); } else { dfs(n, m, i1); dfs(n, m, i2); } }   void listEsths(ulong n, ulong n2, ulong m, long m2, int perLine, bool all) { esths.length = 0; for (auto i = 0; i < 10; i++) { dfs(n2, m2, i); } auto le = esths.length; writefln("Base 10: %s esthetic numbers between %s and %s:", le, n, m); if (all) { foreach (c, esth; esths) { write(esth, ' '); if ((c + 1) % perLine == 0) { writeln; } } writeln; } else { for (auto i = 0; i < perLine; i++) { write(esths[i], ' '); } writeln("\n............"); for (auto i = le - perLine; i < le; i++) { write(esths[i], ' '); } writeln; } writeln; }   void main() { for (auto b = 2; b <= 16; b++) { writefln("Base %d: %dth to %dth esthetic numbers:", b, 4 * b, 6 * b); for (auto n = 1, c = 0; c < 6 * b; n++) { if (isEsthetic(n, b)) { c++; if (c >= 4 * b) { write(to!string(n, b), ' '); } } } writeln; } writeln;   // the following all use the obvious range limitations for the numbers in question listEsths(1000, 1010, 9999, 9898, 16, true); listEsths(cast(ulong) 1e8, 101_010_101, 13*cast(ulong) 1e7, 123_456_789, 9, true); listEsths(cast(ulong) 1e11, 101_010_101_010, 13*cast(ulong) 1e10, 123_456_789_898, 7, false); listEsths(cast(ulong) 1e14, 101_010_101_010_101, 13*cast(ulong) 1e13, 123_456_789_898_989, 5, false); listEsths(cast(ulong) 1e17, 101_010_101_010_101_010, 13*cast(ulong) 1e16, 123_456_789_898_989_898, 4, false); }
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#11l
11l
F eulers_sum_of_powers() V max_n = 250 V pow_5 = (0 .< max_n).map(n -> Int64(n) ^ 5) V pow5_to_n = Dict(0 .< max_n, n -> (Int64(n) ^ 5, n))   L(x0) 1 .< max_n L(x1) 1 .< x0 L(x2) 1 .< x1 L(x3) 1 .< x2 V pow_5_sum = pow_5[x0] + pow_5[x1] + pow_5[x2] + pow_5[x3] I pow_5_sum C pow5_to_n V y = pow5_to_n[pow_5_sum] R (x0, x1, x2, x3, y)   V r = eulers_sum_of_powers() print(‘#.^5 + #.^5 + #.^5 + #.^5 = #.^5’.format(r[0], r[1], r[2], r[3], r[4]))
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Maple
Maple
  > 5!; 120  
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#8080_Assembly
8080 Assembly
CMDLIN: equ 80h ; Location of CP/M command line argument puts: equ 9h ; Syscall to print a string ;;; Check if number given on command line is even or odd org 100h lxi h,CMDLIN ; Find length of argument mov a,m add l ; Look up last character (digit) mov l,a mov a,m ; Retrieve low digit rar ; Rotate low bit into carry flag mvi c,puts ; Prepare to print string lxi d,odd ; If carry is set, then the number is odd jc 5 ; So print 'odd' lxi d,even ; Otherwise, the number is even jmp 5 ; So print 'even' even: db 'Even$' ; Strings odd: db 'Odd$'
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Erlang
Erlang
  -module(euler). -export([main/0, euler/5]).   cooling(_Time, Temperature) -> (-0.07)*(Temperature-20).   euler(_, Y, T, _, End) when End == T -> io:fwrite("\n"), Y;   euler(Func, Y, T, Step, End) -> if T rem 10 == 0 -> io:fwrite("~.3f ",[float(Y)]); true -> ok end, euler(Func, Y + Step * Func(T, Y), T + Step, Step, End).   analytic(T, End) when T == End -> io:fwrite("\n"), T;   analytic(T, End) -> Y = (20 + 80 * math:exp(-0.07 * T)), io:fwrite("~.3f ", [Y]), analytic(T+10, End).   main() -> io:fwrite("Analytic:\n"), analytic(0, 100), io:fwrite("Step 2:\n"), euler(fun cooling/2, 100, 0, 2, 100), io:fwrite("Step 5:\n"), euler(fun cooling/2, 100, 0, 5, 100), io:fwrite("Step 10:\n"), euler(fun cooling/2, 100, 0, 10, 100), ok.  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#ALGOL_W
ALGOL W
begin  % calculates n!/k!  % integer procedure factorialOverFactorial( integer value n, k ) ; if k > n then 0 else if k = n then 1 else % k < n % begin integer f; f := 1; for i := k + 1 until n do f := f * i; f end factorialOverFactorial ;    % calculates n!  % integer procedure factorial( integer value n ) ; begin integer f; f := 1; for i := 2 until n do f := f * i; f end factorial ;    % calculates the binomial coefficient of (n k)  %  % uses the factorialOverFactorial procedure for a slight optimisation  % integer procedure binomialCoefficient( integer value n, k ) ; if ( n - k ) > k then factorialOverFactorial( n, n - k ) div factorial( k ) else factorialOverFactorial( n, k ) div factorial( n - k );    % display the binomial coefficient of (5 3)  % write( binomialCoefficient( 5, 3 ) )   end.
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#APL
APL
3!5 10
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Ursa
Ursa
def fibIter (int n) if (< n 2) return n end if decl int fib fibPrev num set fib (set fibPrev 1) for (set num 2) (< num n) (inc num) set fib (+ fib fibPrev) set fibPrev (- fib fibPrev) end for return fib end
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#C.2B.2B
C++
#include <primesieve.hpp>   #include <chrono> #include <iomanip> #include <iostream> #include <locale>   class composite_iterator { public: composite_iterator(); uint64_t next_composite();   private: uint64_t composite; uint64_t prime; primesieve::iterator pi; };   composite_iterator::composite_iterator() { composite = prime = pi.next_prime(); for (; composite == prime; ++composite) prime = pi.next_prime(); }   uint64_t composite_iterator::next_composite() { uint64_t result = composite; while (++composite == prime) prime = pi.next_prime(); return result; }   int main() { std::cout.imbue(std::locale("")); auto start = std::chrono::high_resolution_clock::now(); composite_iterator ci; primesieve::iterator pi; uint64_t prime_sum = pi.next_prime(); uint64_t composite_sum = ci.next_composite(); uint64_t prime_index = 1, composite_index = 1; std::cout << "Sum | Prime Index | Composite Index\n"; std::cout << "------------------------------------------------------\n"; for (int count = 0; count < 11;) { if (prime_sum == composite_sum) { std::cout << std::right << std::setw(21) << prime_sum << " | " << std::setw(12) << prime_index << " | " << std::setw(15) << composite_index << '\n'; composite_sum += ci.next_composite(); prime_sum += pi.next_prime(); ++prime_index; ++composite_index; ++count; } else if (prime_sum < composite_sum) { prime_sum += pi.next_prime(); ++prime_index; } else { composite_sum += ci.next_composite(); ++composite_index; } } auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double> duration(end - start); std::cout << "\nElapsed time: " << duration.count() << " seconds\n"; }
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#F.23
F#
  // Generate Esthetic Numbers. Nigel Galloway: March 21st., 2020 let rec fN Σ n g = match g with h::t -> match List.head h with 0 -> fN ((1::h)::Σ) n t |g when g=n-1 -> fN ((g-1::h)::Σ) n t |g -> fN ((g-1::h)::(g+1::h)::Σ) n t |_ -> Σ   let Esthetic n = let Esthetic, g = fN [] n, [1..n-1] |> List.map(fun n->[n]) Seq.unfold(fun n->Some(n,Esthetic(List.rev n)))(g) |> Seq.concat   let EtoS n = let g = "0123456789abcdef".ToCharArray() n |> List.map(fun n->g.[n]) |> List.rev |> Array.ofList |> System.String  
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#360_Assembly
360 Assembly
EULERCO CSECT USING EULERCO,R13 B 80(R15) DC 17F'0' DC CL8'EULERCO' STM R14,R12,12(R13) ST R13,4(R15) ST R15,8(R13) LR R13,R15 ZAP X1,=P'1' LOOPX1 ZAP PT,MAXN do x1=1 to maxn-4 SP PT,=P'4' CP X1,PT BH ELOOPX1 ZAP PT,X1 AP PT,=P'1' ZAP X2,PT LOOPX2 ZAP PT,MAXN do x2=x1+1 to maxn-3 SP PT,=P'3' CP X2,PT BH ELOOPX2 ZAP PT,X2 AP PT,=P'1' ZAP X3,PT LOOPX3 ZAP PT,MAXN do x3=x2+1 to maxn-2 SP PT,=P'2' CP X3,PT BH ELOOPX3 ZAP PT,X3 AP PT,=P'1' ZAP X4,PT LOOPX4 ZAP PT,MAXN do x4=x3+1 to maxn-1 SP PT,=P'1' CP X4,PT BH ELOOPX4 ZAP PT,X4 AP PT,=P'1' ZAP X5,PT x5=x4+1 ZAP SUMX,=P'0' sumx=0 ZAP PT,X1 x1 BAL R14,POWER5 AP SUMX,PT ZAP PT,X2 x2 BAL R14,POWER5 AP SUMX,PT ZAP PT,X3 x3 BAL R14,POWER5 AP SUMX,PT ZAP PT,X4 x4 BAL R14,POWER5 AP SUMX,PT sumx=x1**5+x2**5+x3**5+x4**5 ZAP PT,X5 x5 BAL R14,POWER5 ZAP VALX,PT valx=x5**5 LOOPX5 CP X5,MAXN while x5<=maxn & valx<=sumx BH ELOOPX5 CP VALX,SUMX BH ELOOPX5 CP VALX,SUMX if valx=sumx BNE NOTEQUAL MVI BUF,C' ' MVC BUF+1(79),BUF clear buffer MVC WC,MASK ED WC,X1 x1 MVC BUF+0(8),WC+8 MVC WC,MASK ED WC,X2 x2 MVC BUF+8(8),WC+8 MVC WC,MASK ED WC,X3 x3 MVC BUF+16(8),WC+8 MVC WC,MASK ED WC,X4 x4 MVC BUF+24(8),WC+8 MVC WC,MASK ED WC,X5 x5 MVC BUF+32(8),WC+8 XPRNT BUF,80 output x1,x2,x3,x4,x5 B ELOOPX1 NOTEQUAL ZAP PT,X5 AP PT,=P'1' ZAP X5,PT x5=x5+1 ZAP PT,X5 BAL R14,POWER5 ZAP VALX,PT valx=x5**5 B LOOPX5 ELOOPX5 AP X4,=P'1' B LOOPX4 ELOOPX4 AP X3,=P'1' B LOOPX3 ELOOPX3 AP X2,=P'1' B LOOPX2 ELOOPX2 AP X1,=P'1' B LOOPX1 ELOOPX1 L R13,4(0,R13) LM R14,R12,12(R13) XR R15,R15 BR R14 POWER5 ZAP PQ,PT ^1 MP PQ,PT ^2 MP PQ,PT ^3 MP PQ,PT ^4 MP PQ,PT ^5 ZAP PT,PQ BR R14 MAXN DC PL8'249' X1 DS PL8 X2 DS PL8 X3 DS PL8 X4 DS PL8 X5 DS PL8 SUMX DS PL8 VALX DS PL8 PT DS PL8 PQ DS PL8 WC DS CL17 MASK DC X'40',13X'20',X'212060' CL17 BUF DS CL80 YREGS END
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Mathematica_.2F_Wolfram_Language
Mathematica / Wolfram Language
factorial[n_Integer] := n*factorial[n-1] factorial[0] = 1
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#8086_Assembly
8086 Assembly
test ax,1 jne isOdd ;else, is even
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#8th
8th
: odd? \ n -- boolean dup 1 n:band 1 n:= ; : even? \ n -- boolean odd? not ;
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Euler_Math_Toolbox
Euler Math Toolbox
  >function dgleuler (f,x,y0) ... $ y=zeros(size(x)); y[1]=y0; $ for i=2 to cols(y); $ y[i]=y[i-1]+f(x[i-1],y[i-1])*(x[i]-x[i-1]); $ end; $ return y; $endfunction >function f(x,y) := -k*(y-TR) >k=0.07; TR=20; TS=100; >x=0:1:100; dgleuler("f",x,TS)[-1] 20.0564137335 >x=0:2:100; dgleuler("f",x,TS)[-1] 20.0424631834 >TR+(TS-TR)*exp(-k*TS) 20.0729505572 >x=0:5:100; plot2d(x,dgleuler("f",x,TS)); ... > plot2d(x,TR+(TS-TR)*exp(-k*x),>add,color=red); >ode("f",x,TS)[-1] // Euler default solver LSODA 20.0729505568 >adaptiverunge("f",x,TS)[-1] // Adaptive Runge Method 20.0729505572  
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#F.23
F#
let euler f (h : float) t0 y0 = (t0, y0) |> Seq.unfold (fun (t, y) -> Some((t,y), ((t + h), (y + h * (f t y)))))   let newtonCoolíng _ y = -0.07 * (y - 20.0)   [<EntryPoint>] let main argv = let f = newtonCoolíng let a = 0.0 let y0 = 100.0 let b = 100.0 let h = 10.0 (euler newtonCoolíng h a y0) |> Seq.takeWhile (fun (t,_) -> t <= b) |> Seq.iter (printfn "%A") 0
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AppleScript
AppleScript
set n to 5 set k to 3   on calculateFactorial(val) set partial_factorial to 1 as integer repeat with i from 1 to val set factorial to i * partial_factorial set partial_factorial to factorial end repeat return factorial end calculateFactorial   set n_factorial to calculateFactorial(n) set k_factorial to calculateFactorial(k) set n_minus_k_factorial to calculateFactorial(n - k)   return n_factorial / (n_minus_k_factorial) * 1 / (k_factorial) as integer  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Ursala
Ursala
#import std #import nat   iterative_fib = ~&/(0,1); ~&r->ll ^|\predecessor ^/~&r sum   recursive_fib = {0,1}^?<a/~&a sum^|W/~& predecessor^~/~& predecessor   analytical_fib =   %np+ -+ mp..round; ..mp2str; sep`+; ^CNC/~&hh take^\~&htt %np@t, (mp..div^|\~& mp..sub+ ~~ @rlX mp..pow_ui)^lrlPGrrPX/~& -+ ^\~& ^(~&,mp..sub/1.E0)+ mp..div\2.E0+ mp..add/1.E0, mp..sqrt+ ..grow/5.E0+-+-
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#F.23
F#
  // Equal prime and composite sums. Nigel Galloway: March 3rd., 2022 let fN(g:seq<int64>)=let g=(g|>Seq.scan(fun(_,n,i) g->(g,n+g,i+1))(0,0L,0)|>Seq.skip 1).GetEnumerator() in (fun()->g.MoveNext()|>ignore; g.Current) let fG n g=let rec fG a b=seq{match a,b with ((_,p,_),(_,c,_)) when p<c->yield! fG(n()) b |((_,p,_),(_,c,_)) when p>c->yield! fG a (g()) |_->yield(a,b); yield! fG(n())(g())} in fG(n())(g()) fG(fN(primes64()))(fN(primes64()|>Seq.pairwise|>Seq.collect(fun(n,g)->[1L+n..g-1L])))|>Seq.take 11|>Seq.iter(fun((n,i,g),(e,_,l))->printfn $"Primes up to %d{n} at position %d{g} and composites up to %d{e} at position %d{l} sum to %d{i}.")  
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#FreeBASIC
FreeBASIC
#include "isprime.bas"   Dim As Integer i = 0 Dim As Integer IndN = 1, IndM = 1 Dim As Integer NumP = 2, NumC = 4 Dim As Integer SumP = 2, SumC = 4 Print " sum prime sum composite sum" Do If SumC > SumP Then Do NumP += 1 Loop Until isPrime(NumP) SumP += NumP IndN += 1 End If If SumP > SumC Then Do NumC += 1 Loop Until Not isPrime(NumC) SumC += NumC IndM += 1 End If If SumP = SumC Then Print Using "##,###,###,###,### - ##,###,### - ##,###,###"; SumP; IndN; IndM i += 1 If i >= 9 Then Exit Do Do NumC += 1 Loop Until Not isPrime(NumC) SumC += NumC IndM += 1 End If Loop
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#Factor
Factor
USING: combinators deques dlists formatting grouping io kernel locals make math math.order math.parser math.ranges math.text.english prettyprint sequences sorting strings ;   :: bfs ( from to num base -- ) DL{ } clone :> q base 1 - :> ld num q push-front [ q deque-empty? ] [ q pop-back :> step-num step-num from to between? [ step-num , ] when step-num zero? step-num to > or [ step-num base mod :> last-digit step-num base * last-digit 1 - + :> a step-num base * last-digit 1 + + :> b   last-digit { { 0 [ b q push-front ] } { ld [ a q push-front ] } [ drop a q push-front b q push-front ] } case   ] unless   ] until ;   :: esthetics ( from to base -- seq ) [ base <iota> [| num | from to num base bfs ] each ] { } make natural-sort ;   : .seq ( seq width -- ) group [ [ dup string? [ write ] [ pprint ] if bl ] each nl ] each nl ;   :: show ( base -- ) base [ 4 * ] [ 6 * ] bi :> ( from to ) from to [ dup ordinal-suffix ] bi@ base "%d%s through %d%s esthetic numbers in base %d\n" printf from to 1 + 0 5000  ! enough for base 16 base esthetics subseq [ base >base ] map 17 .seq ;   2 16 [a,b] [ show ] each   "Base 10 numbers between 1,000 and 9,999:" print 1,000 9,999 10 esthetics 16 .seq   "Base 10 numbers between 100,000,000 and 130,000,000:" print 100,000,000 130,000,000 10 esthetics 9 .seq   "Count of base 10 esthetic numbers between zero and one quadrillion:" print 0 1e15 10 esthetics length .
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#6502_Assembly
6502 Assembly
; Prove Euler's sum of powers conjecture false by finding ; positive a,b,c,d,e such that a⁵+b⁵+c⁵+d⁵=e⁵.   ; we're only looking for the first counterexample, which occurs with all ; integers less than this value max_value = $fa  ; decimal 250   ; this header turns our code into a LOADable and RUNnable BASIC program .include "basic_header.s"   ; this contains the first 256 integers to the power of 5 broken up into ; 5 tables of one-byte values (power5byte0 with the LSBs through ; power5byte4 with the MSBs) .include "power5table.s"   ; this defines subroutines and macros for printing messages to ; the console, including `puts` for printing out a NUL-terminated string, ; puthex to display a one-byte value in hexadecimal, and putdec through ; putdec5 to display an N-byte value in decimal .include "output.s"   ; label strings for the result output .feature string_escapes success: .asciiz "\r\rFOUND EXAMPLE:\r\r" between: .asciiz "^5 + " penult: .asciiz "^5 = " eqend: .asciiz "^5\r\r(SUM IS "   ; the BASIC loader program prints the elapsed time at the end, so we include a ; label for that, too tilabel: .asciiz ")\r\rTIME:"   ; ZP locations to store the integers to try x0 = $f7 x1 = x0 + 1 x2 = x0 + 2 x3 = x0 + 3   ; we use binary search to find integer roots; current bounds go here low = x0 + 4 hi = x0 + 5   ; sum of powers of current candidate integers sum: .res 5   ; when we find a sum with an integer 5th root, we put it here x4: .res 1   main: ; loop for x0 from 1 to max_value ldx #01 stx x0   loop0: ; loop for x1 from x0+1 to max_value ldx x0 inx stx x1   loop1: ; loop for x2 from x1+1 to max_value ldx x1 inx stx x2   loop2: ; loop for x3 from x2+1 to max_value ldx x2 inx stx x3   loop3: ; add up the fifth powers of the four numbers  ; initialize to 0 lda #00 sta sum sta sum+1 sta sum+2 sta sum+3 sta sum+4    ; we use indexed addressing, taking advantage of the fact that the xn's  ; are consecutive, so x0,1 = x1, etc. ldy #0 addloop: ldx x0,y lda sum clc adc power5byte0,x sta sum lda sum+1 adc power5byte1,x sta sum+1 lda sum+2 adc power5byte2,x sta sum+2 lda sum+3 adc power5byte3,x sta sum+3 lda sum+4 adc power5byte4,x sta sum+4 iny cpy #4 bcc addloop  ; now sum := x₀⁵+x₁⁵+x₂⁵+x₃⁵  ; set initial bounds for binary search ldx x3 inx stx low ldx #max_value dex stx hi   binsearch:  ; compute midpoint lda low cmp hi beq notdone bcs done_search notdone: ldx #0 clc adc hi    ; now a + carry bit = low+hi; rotating right will get the midpoint ror  ; compare square of midpoint to sum tax lda sum+4 cmp power5byte4,x bne notyet lda sum+3 cmp power5byte3,x bne notyet lda sum+2 cmp power5byte2,x bne notyet lda sum+1 cmp power5byte1,x bne notyet lda sum cmp power5byte0,x beq found notyet: bcc sum_lt_guess inx stx low bne endbin beq endbin sum_lt_guess: dex stx hi endbin: bne binsearch beq binsearch   done_search: inc x3 lda x3 cmp #max_value bcs end_loop3 jmp loop3   end_loop3: inc x2 lda x2 cmp #max_value bcs end_loop2 jmp loop2   end_loop2: inc x1 lda x1 cmp #max_value bcs end_loop1 jmp loop1   end_loop1: inc x0 lda x0 cmp #max_value bcs end_loop0 jmp loop0   end_loop0:  ; should never get here, means we didn't find an example. brk   found: stx x4 puts success putdec x0 ldy #1   ploop: puts between putdec {x0,y} iny cpy #4 bcc ploop puts penult putdec {x0,y} puts eqend putdec5 sum puts tilabel rts
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#MATLAB
MATLAB
answer = factorial(N)
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#AArch64_Assembly
AArch64 Assembly
  /* ARM assembly AARCH64 Raspberry PI 3B and android arm 64 bits*/ /* program oddEven64.s */   /*******************************************/ /* Constantes file */ /*******************************************/ /* for this file see task include a file in language AArch64 assembly*/ .include "../includeConstantesARM64.inc"   /*********************************/ /* Initialized data */ /*********************************/ .data sMessResultOdd: .asciz " @ is odd (impair) \n" sMessResultEven: .asciz " @ is even (pair) \n" szCarriageReturn: .asciz "\n"   /*********************************/ /* UnInitialized data */ /*********************************/ .bss sZoneConv: .skip 24 /*********************************/ /* code section */ /*********************************/ .text .global main main: //entry of program   mov x0,#5 bl testOddEven mov x0,#12 bl testOddEven mov x0,#2021 bl testOddEven 100: //standard end of the program mov x0, #0 //return code mov x8, #EXIT //request to exit program svc #0 //perform the system call   qAdrszCarriageReturn: .quad szCarriageReturn qAdrsMessResultOdd: .quad sMessResultOdd qAdrsMessResultEven: .quad sMessResultEven qAdrsZoneConv: .quad sZoneConv /***************************************************/ /* test if number is odd or even */ /***************************************************/ // x0 contains à number testOddEven: stp x1,lr,[sp,-16]! // save registres tst x0,#1 //test bit 0 to one beq 1f //if result are all zéro, go to even ldr x1,qAdrsZoneConv //else display odd message bl conversion10 //call decimal conversion ldr x0,qAdrsMessResultOdd ldr x1,qAdrsZoneConv //insert value conversion in message bl strInsertAtCharInc bl affichageMess b 100f 1: ldr x1,qAdrsZoneConv bl conversion10 //call decimal conversion ldr x0,qAdrsMessResultEven ldr x1,qAdrsZoneConv //insert conversion in message bl strInsertAtCharInc bl affichageMess 100: ldp x1,lr,[sp],16 // restaur des 2 registres ret /********************************************************/ /* File Include fonctions */ /********************************************************/ /* for this file see task include a file in language AArch64 assembly */ .include "../includeARM64.inc"  
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#ABAP
ABAP
  cl_demo_output=>display( VALUE string_table( FOR i = -5 WHILE i < 6 ( COND string( LET r = i MOD 2 IN WHEN r = 0 THEN |{ i } is even| ELSE |{ i } is odd| ) ) ) ).  
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Factor
Factor
USING: formatting fry io kernel locals math math.ranges sequences ; IN: rosetta-code.euler-method   :: euler ( quot y! a b h -- ) a b h <range> [  :> t t y "%7.3f %7.3f\n" printf t y quot call h * y + y! ] each ; inline   : cooling ( t y -- x ) nip 20 - -0.07 * ;   : euler-method-demo ( -- ) 2 5 10 [ '[ [ cooling ] 100 0 100 _ euler ] call nl ] tri@ ;   MAIN: euler-method-demo
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Forth
Forth
: newton-cooling-law ( f: temp -- f: temp' ) 20e f- -0.07e f* ;   : euler ( f: y0 xt step end -- ) 1+ 0 do cr i . fdup f. fdup over execute dup s>f f* f+ dup +loop 2drop fdrop ;   100e ' newton-cooling-law 2 100 euler cr 100e ' newton-cooling-law 5 100 euler cr 100e ' newton-cooling-law 10 100 euler cr
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Arturo
Arturo
factorial: function [n]-> product 1..n binomial: function [x,y]-> (factorial x) / (factorial y) * factorial x-y   print binomial 5 3
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AutoHotkey
AutoHotkey
MsgBox, % Round(BinomialCoefficient(5, 3))   ;--------------------------------------------------------------------------- BinomialCoefficient(n, k) { ;--------------------------------------------------------------------------- r := 1 Loop, % k < n - k ? k : n - k { r *= n - A_Index + 1 r /= A_Index } Return, r }
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#V
V
[fib [small?] [] [pred dup pred] [+] binrec].
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Go
Go
package main   import ( "fmt" "log" "rcu" "sort" )   func ord(n int) string { if n < 0 { log.Fatal("Argument must be a non-negative integer.") } m := n % 100 if m >= 4 && m <= 20 { return fmt.Sprintf("%sth", rcu.Commatize(n)) } m %= 10 suffix := "th" if m == 1 { suffix = "st" } else if m == 2 { suffix = "nd" } else if m == 3 { suffix = "rd" } return fmt.Sprintf("%s%s", rcu.Commatize(n), suffix) }   func main() { limit := int(4 * 1e8) c := rcu.PrimeSieve(limit-1, true) var compSums []int var primeSums []int csum := 0 psum := 0 for i := 2; i < limit; i++ { if c[i] { csum += i compSums = append(compSums, csum) } else { psum += i primeSums = append(primeSums, psum) } }   for i := 0; i < len(primeSums); i++ { ix := sort.SearchInts(compSums, primeSums[i]) if ix < len(compSums) && compSums[ix] == primeSums[i] { cps := rcu.Commatize(primeSums[i]) fmt.Printf("%21s - %12s prime sum, %12s composite sum\n", cps, ord(i+1), ord(ix+1)) } } }
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#J
J
Pn=: +/\ pn=: p: i.1e6 NB. first million primes pn and their running sum Pn Cn=: +/\(4+i.{:pn)-.pn NB. running sum of composites starting at 4 and excluding those primes both=: Pn(e.#[)Cn NB. numbers in both sequences   both,.(Pn i.both),.Cn i.both NB. values, Pn index m, Cn index n 10 2 1 1988 32 50 14697 79 146 83292 174 360 1503397 659 1581 18859052 2142 5698 93952013 4555 12820 89171409882 118784 403340
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#11l
11l
F halve(x) R x I/ 2   F double(x) R x * 2   F even(x) R !(x % 2)   F ethiopian(=multiplier, =multiplicand) V result = 0   L multiplier >= 1 I !even(multiplier) result += multiplicand multiplier = halve(multiplier) multiplicand = double(multiplicand)   R result   print(ethiopian(17, 34))
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#Forth
Forth
\ Returns the next esthetic number in the given base after n, where n is an \ esthetic number in that base or one less than a power of base. : next_esthetic_number { n base -- n } n 1+ base < if n 1+ exit then n base / dup base mod dup n base mod 1+ = if dup 1+ base < if 2drop n 2 + exit then then drop base recurse dup base mod dup 0= if 1+ else 1- then swap base * + ;   : print_esthetic_numbers { min max per_line -- } ." Esthetic numbers in base 10 between " min 1 .r ." and " max 1 .r ." :" cr 0 min 1- 10 next_esthetic_number begin dup max <= while dup 4 .r swap 1+ dup per_line mod 0= if cr else space then swap 10 next_esthetic_number repeat drop cr ." count: " . cr ;   : main 17 2 do i 4 * i 6 * { min max } ." Esthetic numbers in base " i 1 .r ." from index " min 1 .r ." through index " max 1 .r ." :" cr 0 max 1+ 1 do j next_esthetic_number i min >= if dup ['] . j base-execute then loop drop cr cr loop 1000 9999 16 print_esthetic_numbers cr 100000000 130000000 8 print_esthetic_numbers ;   main bye
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#Ada
Ada
with Ada.Text_IO;   procedure Sum_Of_Powers is   type Base is range 0 .. 250; -- A, B, C, D and Y are in that range type Num is range 0 .. 4*(250**5); -- (A**5 + ... + D**5) is in that range subtype Fit is Num range 0 .. 250**5; -- Y**5 is in that range   Modulus: constant Num := 254; type Modular is mod Modulus;   type Result_Type is array(1..5) of Base; -- this will hold A,B,C,D and Y   type Y_Type is array(Modular) of Base; type Y_Sum_Type is array(Modular) of Fit;   Y_Sum: Y_Sum_Type := (others => 0); Y: Y_Type := (others => 0); -- for I in 0 .. 250, we set Y_Sum(I**5 mod Modulus) := I**5 -- and Y(I**5 mod Modulus) := I -- Modulus has been chosen to avoid collisions on (I**5 mod Modulus) -- later we will compute Sum_ABCD := A**5 + B**5 + C**5 + D**5 -- and check if Y_Sum(Sum_ABCD mod modulus) = Sum_ABCD   function Compute_Coefficients return Result_Type is   Sum_A: Fit; Sum_AB, Sum_ABC, Sum_ABCD: Num; Short: Modular;   begin for A in Base(0) .. 246 loop Sum_A := Num(A) ** 5; for B in A .. 247 loop Sum_AB := Sum_A + (Num(B) ** 5); for C in Base'Max(B,1) .. 248 loop -- if A=B=0 then skip C=0 Sum_ABC := Sum_AB + (Num(C) ** 5); for D in C .. 249 loop Sum_ABCD := Sum_ABC + (Num(D) ** 5); Short  := Modular(Sum_ABCD mod Modulus); if Y_Sum(Short) = Sum_ABCD then return A & B & C & D & Y(Short); end if; end loop; end loop; end loop; end loop; return 0 & 0 & 0 & 0 & 0; end Compute_Coefficients;   Tmp: Fit; ABCD_Y: Result_Type;   begin -- main program   -- initialize Y_Sum and Y for I in Base(0) .. 250 loop Tmp := Num(I)**5; if Y_Sum(Modular(Tmp mod Modulus)) /= 0 then raise Program_Error with "Collision: Change Modulus and recompile!"; else Y_Sum(Modular(Tmp mod Modulus)) := Tmp; Y(Modular(Tmp mod Modulus)) := I; end if; end loop;   -- search for a solution (A, B, C, D, Y) ABCD_Y := Compute_Coefficients;   -- output result for Number of ABCD_Y loop Ada.Text_IO.Put(Base'Image(Number)); end loop; Ada.Text_IO.New_Line;   end Sum_Of_Powers;
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Maude
Maude
  fmod FACTORIAL is   protecting INT .   op undefined : -> Int . op _! : Int -> Int .   var n : Int .   eq 0 ! = 1 . eq n ! = if n < 0 then undefined else n * (sd(n, 1) !) fi .   endfm   red 11 ! .  
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Action.21
Action!
PROC OddByAnd(INT v) IF (v&1)=0 THEN Print(" even") ELSE Print(" odd ") FI RETURN   PROC OddByMod(INT v)  ;MOD doesn't work properly for negative numbers in Action! IF v<0 THEN v=-v FI IF v MOD 2=0 THEN Print(" even") ELSE Print(" odd ") FI RETURN   PROC OddByDiv(INT v) INT d d=(v/2)*2 IF v=d THEN Print(" even") ELSE Print(" odd ") FI RETURN   PROC Main() INT i   FOR i=-4 TO 4 DO PrintF("%I is",i) OddByAnd(i) OddByMod(i) OddByDiv(i) PutE() OD RETURN
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Fortran
Fortran
program euler_method use iso_fortran_env, only: real64 implicit none   abstract interface ! a derivative dy/dt as function of y and t function derivative(y, t) use iso_fortran_env, only: real64 real(real64) :: derivative real(real64), intent(in) :: t, y end function end interface   real(real64), parameter :: T_0 = 100, T_room = 20, k = 0.07, a = 0, b = 100, & h(3) = [2.0, 5.0, 10.0]   integer :: i   ! loop over all step sizes do i = 1, 3 call euler(newton_cooling, T_0, a, b, h(i)) end do   contains   ! Approximates y(t) in y'(t) = f(y, t) with y(a) = y0 and t = a..b and the ! step size h. subroutine euler(f, y0, a, b, h) procedure(derivative) :: f real(real64), intent(in) :: y0, a, b, h real(real64) :: t, y   if (a > b) return if (h <= 0) stop "negative step size"   print '("# h = ", F0.3)', h   y = y0 t = a   do print *, t, y t = t + h if (t > b) return y = y + h * f(y, t) end do end subroutine     ! Example: Newton's cooling law, f(T, _) = -k*(T - T_room) function newton_cooling(T, unused) result(dTdt) real(real64) :: dTdt real(real64), intent(in) :: T, unused dTdt = -k * (T - T_room) end function   end program
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#AWK
AWK
  # syntax: GAWK -f EVALUATE_BINOMIAL_COEFFICIENTS.AWK BEGIN { main(5,3) main(100,2) main(33,17) exit(0) } function main(n,k, i,r) { r = 1 for (i=1; i<k+1; i++) { r *= (n - i + 1) / i } printf("%d %d = %d\n",n,k,r) }  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Batch_File
Batch File
@echo off & setlocal   if "%~2"=="" ( echo Usage: %~nx0 n k && goto :EOF )   call :binom binom %~1 %~2 1>&2 set /P "=%~1 choose %~2 = "<NUL echo %binom%   goto :EOF   :binom <var_to_set> <N> <K> setlocal set /a coeff=1, nk=%~2 - %~3 + 1 for /L %%I in (%nk%, 1, %~2) do set /a coeff *= %%I for /L %%I in (1, 1, %~3) do set /a coeff /= %%I endlocal && set "%~1=%coeff%" goto :EOF
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#Vala
Vala
  int fibRec(int n){ if (n < 2) return n; else return fibRec(n - 1) + fibRec(n - 2); }  
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#jq
jq
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] +.;   def task($sievesize): {compSums:[], primeSums:[], csum:0, psum:0 } | reduce range(2; $sievesize) as $i (.; if $i|is_prime then .psum += $i | .primeSums += [.psum] else .csum += $i | .compSums += [ .csum ] end) | range(0; .primeSums|length) as $i | .primeSums[$i] as $ps | (.compSums | index( $ps )) as $ix | select($ix >= 0) | "\($ps|lpad(21)) - \($i+1|lpad(21)) prime sum, \($ix+1|lpad(12)) composite sum" ;   task(1E5)
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Julia
Julia
using Primes   function getsequencematches(N, masksize = 1_000_000_000) pmask = primesmask(masksize) found, psum, csum, pindex, cindex, pcount, ccount = 0, 2, 4, 2, 4, 1, 1 incrementpsum() = (pindex += 1; if pmask[pindex] psum += pindex; pcount += 1 end) incrementcsum() = (cindex += 1; if !pmask[cindex] csum += cindex; ccount += 1 end) while found < N while psum < csum pindex >= masksize && return incrementpsum() end if psum == csum println("Primes up to $pindex at position $pcount and composites up to $cindex at position $ccount sum to $psum.") found += 1 while psum == csum incrementpsum() incrementcsum() end end while csum < psum incrementcsum() end end end   @time getsequencematches(11)  
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Perl
Perl
use strict; use warnings; use feature <say state>; use ntheory <is_prime next_prime>;   sub comma { reverse ((reverse shift) =~ s/(.{3})/$1,/gr) =~ s/^,//r } sub suffix { my($d) = $_[0] =~ /(.)$/; $d == 1 ? 'st' : $d == 2 ? 'nd' : $d == 3 ? 'rd' : 'th' }   sub prime_sum { state $s = state $p = 2; state $i = 1; if ($i < (my $n = shift) ) { do { $s += $p = next_prime($p) } until ++$i == $n } $s }   sub composite_sum { state $s = state $c = 4; state $i = 1; if ($i < (my $n = shift) ) { do { 1 until ! is_prime(++$c); $s += $c } until ++$i == $n } $s }   my $ci++; for my $pi (1 .. 5_012_372) { next if prime_sum($pi) < composite_sum($ci); printf( "%20s - %11s prime sum, %12s composite sum\n", comma(prime_sum $pi), comma($pi).suffix($pi), comma($ci).suffix($ci)) and next if prime_sum($pi) == composite_sum($ci); $ci++; redo }
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#8080_Assembly
8080 Assembly
org 100h jmp demo ;;; HL = BC * DE ;;; BC is left column, DE is right column emul: lxi h,0 ; HL will be the accumulator   ztest: mov a,b ; Check if the left column is zero. ora c ; If so, stop. rz   halve: mov a,b ; Halve BC by rotating it right. rar ; We know the carry is zero here because of the ORA. mov b,a ; So rotate the top half first, mov a,c ; Then the bottom half rar ; This leaves the old low bit in the carry flag, mov c,a ; so this also lets us do the even/odd test in one go.   even: jnc $+4 ; If no carry, the number is even, so skip (strikethrough) dad d ; But if odd, add the number in the right column   double: xchg ; Doubling DE is a bit easier since you can add dad h ; HL to itself in one go, and XCHG swaps DE and HL xchg   jmp ztest ; We want to do the whole thing again until BC is zero   ;;; Demo code, print 17 * 34 demo: lxi b,17 ; Load 17 into BC (left column) lxi d,34 ; Load 34 into DE (right column) call emul ; Do the multiplication   print: lxi b,-10 ; Decimal output routine (not very interesting here, lxi d,pbuf ; but without it you can't see the result) push d digit: lxi d,-1 dloop: inx d dad b jc dloop mvi a,58 add l pop h dcx h mov m,a push h xchg mov a,h ora l jnz digit pop d mvi c,9 jmp 5 db '*****' pbuf: db '$'
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#FreeBASIC
FreeBASIC
  dim shared as string*16 digits = "0123456789ABCDEF"   function get_digit( n as uinteger ) as string return mid(digits, n+1, 1) end function   function find_digit( s as string ) as integer for i as uinteger = 1 to len(digits) if s = mid(digits, i, 1) then return i next i return -999 end function   sub make_base( byval n as uinteger, bse as uinteger, byref ret as string ) if n = 0 then ret = "0" else ret = "" dim as uinteger m while n > 0 m = n mod bse ret = mid(digits, m+1, 1) + ret n = (n - m)/bse wend end sub   function is_esthetic( number as string ) as boolean if number = "0" then return false if len(number) = 1 then return true dim as integer curr = find_digit( left(number,1) ), last, i for i = 2 to len(number) last = curr curr = find_digit( mid(number, i, 1) ) if abs( last - curr ) <> 1 then return false next i return true end function   dim as uinteger b, c dim as ulongint i dim as string number for b = 2 to 16 print "BASE ";b i = 0 : c = 0 while c <= 6*b i += 1 make_base i, b, number if is_esthetic( number ) then c += 1 if c >= 4*b then print number;" "; end if wend print next b print "BASE TEN" for i = 1000 to 9999 make_base i, 10, number if is_esthetic(number) then print number;" "; next i print print "STRETCH GOAL" for i = 100000000 to 130000000 make_base i, 10, number if is_esthetic(number) then print number;" "; next i
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#ALGOL_68
ALGOL 68
# max number will be the highest integer we will consider # INT max number = 250;   # Construct a table of the fifth powers of 1 : max number # [ max number ]LONG INT fifth; FOR i TO max number DO LONG INT i2 = i * i; fifth[ i ] := i2 * i2 * i OD;   # find the first a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5 # # as the fifth powers are in order, we can use a binary search to determine # # whether the value is in the table # BOOL found := FALSE; FOR a TO max number WHILE NOT found DO FOR b FROM a TO max number WHILE NOT found DO FOR c FROM b TO max number WHILE NOT found DO FOR d FROM c TO max number WHILE NOT found DO LONG INT sum = fifth[a] + fifth[b] + fifth[c] + fifth[d]; INT low := d; INT high := max number; WHILE low < high AND NOT found DO INT e := ( low + high ) OVER 2; IF fifth[ e ] = sum THEN # the value at e is a fifth power # found := TRUE; print( ( ( whole( a, 0 ) + "^5 + " + whole( b, 0 ) + "^5 + " + whole( c, 0 ) + "^5 + " + whole( d, 0 ) + "^5 = " + whole( e, 0 ) + "^5" ) , newline ) ) ELIF sum < fifth[ e ] THEN high := e - 1 ELSE low := e + 1 FI OD OD OD OD OD
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Maxima
Maxima
n!
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Ada
Ada
-- Ada has bitwise operators in package Interfaces, -- but they work with Interfaces.Unsigned_*** types only. -- Use rem or mod for Integer types, and let the compiler -- optimize it. declare N : Integer := 5; begin if N rem 2 = 0 then Put_Line ("Even number"); elseif N rem 2 /= 0 then Put_Line ("Odd number"); else Put_Line ("Something went really wrong!"); end if; end;
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Futhark
Futhark
  let analytic(t0: f64) (time: f64): f64 = 20.0 + (t0 - 20.0) * f64.exp(-0.07*time)   let cooling(_time: f64) (temperature: f64): f64 = -0.07 * (temperature-20.0)   let main(t0: f64) (a: f64) (b: f64) (h: f64): []f64 = let steps = i32.f64 ((b-a)/h) let temps = replicate steps 0.0 let (_,temps) = loop (t,temps)=(t0,temps) for i < steps do let x = a + f64.i32 i * h let temps[i] = f64.abs(t-analytic t0 x) in (t + h * cooling x t, temps) in temps  
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Go
Go
package main   import ( "fmt" "math" )   // fdy is a type for function f used in Euler's method. type fdy func(float64, float64) float64   // eulerStep computes a single new value using Euler's method. // Note that step size h is a parameter, so a variable step size // could be used. func eulerStep(f fdy, x, y, h float64) float64 { return y + h*f(x, y) }   // Definition of cooling rate. Note that this has general utility and // is not specific to use in Euler's method.   // newCoolingRate returns a function that computes cooling rate // for a given cooling rate constant k. func newCoolingRate(k float64) func(float64) float64 { return func(deltaTemp float64) float64 { return -k * deltaTemp } }   // newTempFunc returns a function that computes the analytical solution // of cooling rate integrated over time. func newTempFunc(k, ambientTemp, initialTemp float64) func(float64) float64 { return func(time float64) float64 { return ambientTemp + (initialTemp-ambientTemp)*math.Exp(-k*time) } }   // newCoolingRateDy returns a function of the kind needed for Euler's method. // That is, a function representing dy(x, y(x)). // // Parameters to newCoolingRateDy are cooling constant k and ambient // temperature. func newCoolingRateDy(k, ambientTemp float64) fdy { crf := newCoolingRate(k) // note that result is dependent only on the object temperature. // there are no additional dependencies on time, so the x parameter // provided by eulerStep is unused. return func(_, objectTemp float64) float64 { return crf(objectTemp - ambientTemp) } }   func main() { k := .07 tempRoom := 20. tempObject := 100. fcr := newCoolingRateDy(k, tempRoom) analytic := newTempFunc(k, tempRoom, tempObject) for _, deltaTime := range []float64{2, 5, 10} { fmt.Printf("Step size = %.1f\n", deltaTime) fmt.Println(" Time Euler's Analytic") temp := tempObject for time := 0.; time <= 100; time += deltaTime { fmt.Printf("%5.1f %7.3f %7.3f\n", time, temp, analytic(time)) temp = eulerStep(fcr, time, temp, deltaTime) } fmt.Println() } }
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#BCPL
BCPL
  GET "libhdr"   LET choose(n, k) = ~(0 <= k <= n) -> 0, 2*k > n -> binomial(n, n - k), binomial(n, k)   AND binomial(n, k) = k = 0 -> 1, binomial(n, k - 1) * (n - k + 1) / k   LET start() = VALOF { LET n, k = ?, ? LET argv = VEC 20 LET sz = ?   sz := rdargs("n/a/n/p,k/a/n/p", argv, 20) UNLESS sz ~= 0 RESULTIS 1   n := !argv!0 k := !argv!1   writef("%d choose %d = %d *n", n, k, choose(n, k)) RESULTIS 0 }  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#BBC_BASIC
BBC BASIC
@%=&1010   PRINT "Binomial (5,3) = "; FNbinomial(5, 3) PRINT "Binomial (100,2) = "; FNbinomial(100, 2) PRINT "Binomial (33,17) = "; FNbinomial(33, 17) END   DEF FNbinomial(N%, K%) LOCAL R%, D% R% = 1 : D% = N% - K% IF D% > K% THEN K% = D% : D% = N% - K% WHILE N% > K% R% *= N% N% -= 1 WHILE D% > 1 AND (R% MOD D%) = 0 R% /= D% D% -= 1 ENDWHILE ENDWHILE = R%  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#VAX_Assembly
VAX Assembly
0000 0000 1 .entry main,0 7E 7CFD 0002 2 clro -(sp) ;result buffer 5E DD 0005 3 pushl sp ;pointer to buffer 10 DD 0007 4 pushl #16 ;descriptor: len of buffer 5B 5E D0 0009 5 movl sp, r11 ;-> descriptor 000C 6 7E 01 7D 000C 7 movq #1, -(sp) ;init 0,1 000F 8 loop: 7E 6E 04 AE C1 000F 9 addl3 4(sp), (sp), -(sp) ;next element on stack 17 1D 0014 10 bvs ret ;vs - overflow set, exit 0016 11 5B DD 0016 12 pushl r11 ;-> descriptor by ref 04 AE DF 0018 13 pushal 4(sp) ;-> fib on stack by ref 00000000'GF 02 FB 001B 14 calls #2, g^ots$cvt_l_ti ;convert integer to string 5B DD 0022 15 pushl r11 ; 00000000'GF 01 FB 0024 16 calls #1, g^lib$put_output ;show result E2 11 002B 17 brb loop 002D 18 ret: 04 002D 19 ret 002E 20 .end main $ run fib ... 14930352 24157817 39088169 63245986 102334155 165580141 267914296 433494437 701408733 1134903170 1836311903 $  
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Phix
Phix
with javascript_semantics atom t0 = time() atom ps = 2, -- current prime sum cs = 4 -- current composite sum integer psn = 1, npi = 1, -- (see below) csn = 1, nci = 3, nc = 4, ncp = 5, found = 0 constant limit = iff(platform()=JS?10:11) while found<limit do integer c = compare(ps,cs) -- {-1,0,+1} if c=0 then printf(1,"%,21d - %,10d%s prime sum, %,10d%s composite sum (%s)\n", {ps, psn, ord(psn), csn, ord(csn), elapsed(time()-t0)}) found += 1 end if if c<=0 then psn += 1 -- prime sum number npi += 1 -- next prime index ps += get_prime(npi) end if if c>=0 then csn += 1 -- composite sum number nc += 1 -- next composite? if nc=ncp then -- "", erm no nci += 1 -- next prime index ncp = get_prime(nci) nc += 1 -- next composite (even!) end if cs += nc end if end while
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Raku
Raku
use Lingua::EN::Numbers:ver<2.8.2+>;   my $prime-sum = [\+] (2..*).grep: *.is-prime; my $composite-sum = [\+] (2..*).grep: !*.is-prime;   my $c-index = 0;   for ^∞ -> $p-index { next if $prime-sum[$p-index] < $composite-sum[$c-index]; printf( "%20s - %11s prime sum, %12s composite sum  %5.2f seconds\n", $prime-sum[$p-index].&comma, ordinal-digit($p-index + 1, :u, :c), ordinal-digit($c-index + 1, :u, :c), now - INIT now ) and next if $prime-sum[$p-index] == $composite-sum[$c-index]; ++$c-index; redo; };
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#ACL2
ACL2
(include-book "arithmetic-3/top" :dir :system)   (defun halve (x) (floor x 2))   (defun double (x) (* x 2))   (defun is-even (x) (evenp x))   (defun multiply (x y) (if (zp (1- x)) y (+ (if (is-even x) 0 y) (multiply (halve x) (double y)))))
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#Go
Go
package main   import ( "fmt" "strconv" )   func uabs(a, b uint64) uint64 { if a > b { return a - b } return b - a }   func isEsthetic(n, b uint64) bool { if n == 0 { return false } i := n % b n /= b for n > 0 { j := n % b if uabs(i, j) != 1 { return false } n /= b i = j } return true }   var esths []uint64   func dfs(n, m, i uint64) { if i >= n && i <= m { esths = append(esths, i) } if i == 0 || i > m { return } d := i % 10 i1 := i*10 + d - 1 i2 := i1 + 2 if d == 0 { dfs(n, m, i2) } else if d == 9 { dfs(n, m, i1) } else { dfs(n, m, i1) dfs(n, m, i2) } }   func listEsths(n, n2, m, m2 uint64, perLine int, all bool) { esths = esths[:0] for i := uint64(0); i < 10; i++ { dfs(n2, m2, i) } le := len(esths) fmt.Printf("Base 10: %s esthetic numbers between %s and %s:\n", commatize(uint64(le)), commatize(n), commatize(m)) if all { for c, esth := range esths { fmt.Printf("%d ", esth) if (c+1)%perLine == 0 { fmt.Println() } } } else { for i := 0; i < perLine; i++ { fmt.Printf("%d ", esths[i]) } fmt.Println("\n............\n") for i := le - perLine; i < le; i++ { fmt.Printf("%d ", esths[i]) } } fmt.Println("\n") }   func commatize(n uint64) string { s := fmt.Sprintf("%d", n) le := len(s) for i := le - 3; i >= 1; i -= 3 { s = s[0:i] + "," + s[i:] } return s }   func main() { for b := uint64(2); b <= 16; b++ { fmt.Printf("Base %d: %dth to %dth esthetic numbers:\n", b, 4*b, 6*b) for n, c := uint64(1), uint64(0); c < 6*b; n++ { if isEsthetic(n, b) { c++ if c >= 4*b { fmt.Printf("%s ", strconv.FormatUint(n, int(b))) } } } fmt.Println("\n") }   // the following all use the obvious range limitations for the numbers in question listEsths(1000, 1010, 9999, 9898, 16, true) listEsths(1e8, 101_010_101, 13*1e7, 123_456_789, 9, true) listEsths(1e11, 101_010_101_010, 13*1e10, 123_456_789_898, 7, false) listEsths(1e14, 101_010_101_010_101, 13*1e13, 123_456_789_898_989, 5, false) listEsths(1e17, 101_010_101_010_101_010, 13*1e16, 123_456_789_898_989_898, 4, false) }
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#ALGOL_W
ALGOL W
begin  % find a, b, c, d, e such that a^5 + b^5 + c^5 + d^5 = e^5  %  % where 1 <= a <= b <= c <= d <= e <= 250  %  % we solve this using the equivalent equation a^5 + b^5 + c^5 = e^5 - d^5  %  % 250^5 is 976 562 500 000 - too large for a 32 bit number so we will use pairs of  %  % integers and constrain their values to be in 0..1 000 000  %  % Note only positive numbers are needed  % integer MAX_NUMBER, MAX_V; MAX_NUMBER := 250; MAX_V  := 1000000; begin  % quick sorts the fifth power differences table  % procedure quickSort5 ( integer value lb, ub ) ; if ub > lb then begin  % more than one element, so must sort  % integer left, right, pivot, pivotLo, pivotHi; left  := lb; right  := ub;  % choosing the middle element of the array as the pivot % pivot  := left + ( ( ( right + 1 ) - left ) div 2 ); pivotLo := loD( pivot ); pivotHi := hiD( pivot ); while begin while left <= ub and begin integer cmp; cmp := hiD( left ) - pivotHi; if cmp = 0 then cmp := loD( left ) - pivotLo; cmp < 0 end do left := left + 1; while right >= lb and begin integer cmp; cmp := hiD( right ) - pivotHi; if cmp = 0 then cmp := loD( right ) - pivotLo; cmp > 0 end do right := right - 1; left <= right end do begin integer swapLo, swapHi, swapD, swapE; swapLo  := loD( left ); swapHi  := hiD( left ); swapD  := Dd( left ); swapE  := De( left ); loD( left ) := loD( right ); hiD( left ) := hiD( right ); Dd( left ) := Dd( right ); De( left ) := De( right ); loD( right ) := swapLo; hiD( right ) := swapHi; Dd( right ) := swapD; De( right ) := swapE; left  := left + 1; right  := right - 1 end while_left_le_right ; quickSort5( lb, right ); quickSort5( left, ub ) end quickSort5 ;  % table of fifth powers  % integer array lo5, hi5 ( 1 :: MAX_NUMBER );  % table if differences between fifth powers  % integer array loD, hiD, De, Dd ( 1 :: MAX_NUMBER * MAX_NUMBER ); integer dUsed, dPos;  % compute fifth powers  % for i := 1 until MAX_NUMBER do begin lo5( i ) := i * i; hi5( i ) := 0; for p := 3 until 5 do begin integer carry; lo5( i ) := lo5( i ) * i; carry  := lo5( i ) div MAX_V; lo5( i ) := lo5( i ) rem MAX_V; hi5( i ) := hi5( i ) * i; hi5( i ) := hi5( i ) + carry end for_p end for_i ;  % compute the differences between fifth powers e^5 - d^5, 1 <= d < e <= MAX_NUMBER  % dUsed := 0; for e := 2 until MAX_NUMBER do begin for d := 1 until e - 1 do begin dUsed := dUsed + 1; De( dUsed ) := e; Dd( dUsed ) := d; loD( dUsed ) := lo5( e ) - lo5( d ); hiD( dUsed ) := hi5( e ) - hi5( d ); if loD( dUsed ) < 0 then begin loD( dUsed ) := loD( dUsed ) + MAX_V; hiD( dUsed ) := hiD( dUsed ) - 1 end if_need_to_borrow end for_d end for_e;  % sort the fifth power differences  % quickSort5( 1, dUsed );  % attempt to find a^5 + b^5 + c^5 = e^5 - d^5  % for a := 1 until MAX_NUMBER do begin integer loA, hiA; loA := lo5( a ); hiA := hi5( a ); for b := a until MAX_NUMBER do begin integer loB, hiB; loB := lo5( b ); hiB := hi5( b ); for c := b until MAX_NUMBER do begin integer low, high, loSum, hiSum; loSum := loA + loB + lo5( c ); hiSum := ( loSum div MAX_V ) + hiA + hiB + hi5( c ); loSum := loSum rem MAX_V;  % look for hiSum,loSum in hiD,loD  % low  := 1; high  := dUsed; while low < high do begin integer mid, cmp; mid := ( low + high ) div 2; cmp := hiD( mid ) - hiSum; if cmp = 0 then cmp := loD( mid ) - loSum; if cmp = 0 then begin  % the value at mid is the difference of two fifth powers  % write( i_w := 1, s_w := 0 , a, "^5 + ", b, "^5 + ", c, "^5 + " , Dd( mid ), "^5 = ", De( mid ), "^5" ); go to found end else if cmp > 0 then high := mid - 1 else low  := mid + 1 end while_low_lt_high end for_c end for_b end for_a ; found : end end.
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#MAXScript
MAXScript
fn factorial n = ( if n == 0 then return 1 local fac = 1 for i in 1 to n do ( fac *= i ) fac )
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Agda
Agda
even : ℕ → Bool odd  : ℕ → Bool   even zero = true even (suc n) = odd n   odd zero = false odd (suc n) = even n
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#Aime
Aime
if (x & 1) { # x is odd } else { # x is even }
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Groovy
Groovy
def eulerStep = { xn, yn, h, dydx -> (yn + h * dydx(xn, yn)) as BigDecimal }   Map eulerMapping = { x0, y0, h, dydx, stopCond = { xx, yy, hh, xx0 -> abs(xx - xx0) > (hh * 100) }.rcurry(h, x0) -> Map yMap = [:] yMap[x0] = y0 as BigDecimal def x = x0 while (!stopCond(x, yMap[x])) { yMap[x + h] = eulerStep(x, yMap[x], h, dydx) x += h } yMap } assert eulerMapping.maximumNumberOfParameters == 5
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Bracmat
Bracmat
(binomial= n k coef .  !arg:(?n,?k) & (!n+-1*!k:<!k:?k|) & 1:?coef & whl ' ( !k:>0 & !coef*!n*!k^-1:?coef & !k+-1:?k & !n+-1:?n ) & !coef );   binomial$(5,3) 10  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#Burlesque
Burlesque
  blsq ) 5 3nr 10  
http://rosettacode.org/wiki/Fibonacci_sequence
Fibonacci sequence
The Fibonacci sequence is a sequence   Fn   of natural numbers defined recursively: F0 = 0 F1 = 1 Fn = Fn-1 + Fn-2, if n>1 Task Write a function to generate the   nth   Fibonacci number. Solutions can be iterative or recursive (though recursive solutions are generally considered too slow and are mostly used as an exercise in recursion). The sequence is sometimes extended into negative numbers by using a straightforward inverse of the positive definition: Fn = Fn+2 - Fn+1, if n<0 support for negative     n     in the solution is optional. Related tasks   Fibonacci n-step number sequences‎   Leonardo numbers References   Wikipedia, Fibonacci number   Wikipedia, Lucas number   MathWorld, Fibonacci Number   Some identities for r-Fibonacci numbers   OEIS Fibonacci numbers   OEIS Lucas numbers
#VBA
VBA
Public Function Fib(ByVal n As Integer) As Variant Dim fib0 As Variant, fib1 As Variant, sum As Variant Dim i As Integer fib0 = 0 fib1 = 1 For i = 1 To n sum = fib0 + fib1 fib0 = fib1 fib1 = sum Next i Fib = fib0 End Function
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Sidef
Sidef
func f(n) {   var ( p = 2, sp = p, c = 4, sc = c, )   var res = []   while (res.len < n) { if (sc == sp) { res << [sp, c.composite_count, p.prime_count] sc += c.next_composite! } while (sp < sc) { sp += p.next_prime! } while (sc < sp) { sc += c.next_composite! } }   return res }   f(8).each_2d {|n, ci, pi| printf("%12s = %-9s = %s\n", n, "P(#{pi})", "C(#{ci})") }
http://rosettacode.org/wiki/Equal_prime_and_composite_sums
Equal prime and composite sums
Suppose we have a sequence of prime sums, where each term Pn is the sum of the first n primes. P = (2), (2 + 3), (2 + 3 + 5), (2 + 3 + 5 + 7), (2 + 3 + 5 + 7 + 11), ... P = 2, 5, 10, 17, 28, etc. Further; suppose we have a sequence of composite sums, where each term Cm is the sum of the first m composites. C = (4), (4 + 6), (4 + 6 + 8), (4 + 6 + 8 + 9), (4 + 6 + 8 + 9 + 10), ... C = 4, 10, 18, 27, 37, etc. Notice that the third term of P; P3 (10) is equal to the second term of C; C2 (10); Task Find and display the indices (n, m) and value of at least the first 6 terms of the sequence of numbers that are both the sum of the first n primes and the first m composites. See also OEIS:A007504 - Sum of the first n primes OEIS:A053767 - Sum of first n composite numbers OEIS:A294174 - Numbers that can be expressed both as the sum of first primes and as the sum of first composites
#Wren
Wren
import "./math" for Int import "./sort" for Find import "/fmt" for Fmt   var limit = 4 * 1e8 var c = Int.primeSieve(limit - 1, false) var compSums = [] var primeSums = [] var csum = 0 var psum = 0 for (i in 2...limit) { if (c[i]) { csum = csum + i compSums.add(csum) } else { psum = psum + i primeSums.add(psum) } }   for (i in 0...primeSums.count) { var ix if ((ix = Find.first(compSums, primeSums[i])) >= 0) { Fmt.print("$,21d - $,12r prime sum, $,12r composite sum", primeSums[i], i+1, ix+1) } }
http://rosettacode.org/wiki/Ethiopian_multiplication
Ethiopian multiplication
Ethiopian multiplication is a method of multiplying integers using only addition, doubling, and halving. Method: Take two numbers to be multiplied and write them down at the top of two columns. In the left-hand column repeatedly halve the last number, discarding any remainders, and write the result below the last in the same column, until you write a value of 1. In the right-hand column repeatedly double the last number and write the result below. stop when you add a result in the same row as where the left hand column shows 1. Examine the table produced and discard any row where the value in the left column is even. Sum the values in the right-hand column that remain to produce the result of multiplying the original two numbers together For example:   17 × 34 17 34 Halving the first column: 17 34 8 4 2 1 Doubling the second column: 17 34 8 68 4 136 2 272 1 544 Strike-out rows whose first cell is even: 17 34 8 68 4 136 2 272 1 544 Sum the remaining numbers in the right-hand column: 17 34 8 -- 4 --- 2 --- 1 544 ==== 578 So 17 multiplied by 34, by the Ethiopian method is 578. Task The task is to define three named functions/methods/procedures/subroutines: one to halve an integer, one to double an integer, and one to state if an integer is even. Use these functions to create a function that does Ethiopian multiplication. References Ethiopian multiplication explained (BBC Video clip) A Night Of Numbers - Go Forth And Multiply (Video) Russian Peasant Multiplication Programming Praxis: Russian Peasant Multiplication
#Action.21
Action!
INT FUNC EthopianMult(INT a,b) INT res   PrintF("Ethopian multiplication %I by %I:%E",a,b) res=0 WHILE a>=1 DO IF a MOD 2=0 THEN PrintF("%I %I strike%E",a,b) ELSE PrintF("%I %I keep%E",a,b) res==+b FI a==/2 b==*2 OD RETURN (res)   PROC Main() INT res   res=EthopianMult(17,34) PrintF("Result is %I",res) RETURN
http://rosettacode.org/wiki/Equilibrium_index
Equilibrium index
An equilibrium index of a sequence is an index into the sequence such that the sum of elements at lower indices is equal to the sum of elements at higher indices. For example, in a sequence   A {\displaystyle A} :   A 0 = − 7 {\displaystyle A_{0}=-7}   A 1 = 1 {\displaystyle A_{1}=1}   A 2 = 5 {\displaystyle A_{2}=5}   A 3 = 2 {\displaystyle A_{3}=2}   A 4 = − 4 {\displaystyle A_{4}=-4}   A 5 = 3 {\displaystyle A_{5}=3}   A 6 = 0 {\displaystyle A_{6}=0} 3   is an equilibrium index, because:   A 0 + A 1 + A 2 = A 4 + A 5 + A 6 {\displaystyle A_{0}+A_{1}+A_{2}=A_{4}+A_{5}+A_{6}} 6   is also an equilibrium index, because:   A 0 + A 1 + A 2 + A 3 + A 4 + A 5 = 0 {\displaystyle A_{0}+A_{1}+A_{2}+A_{3}+A_{4}+A_{5}=0} (sum of zero elements is zero) 7   is not an equilibrium index, because it is not a valid index of sequence A {\displaystyle A} . Task; Write a function that, given a sequence, returns its equilibrium indices (if any). Assume that the sequence may be very long.
#11l
11l
F eqindex(arr) R (0 .< arr.len).filter(i -> sum(@arr[0.<i]) == sum(@arr[i+1..]))   print(eqindex([-7, 1, 5, 2, -4, 3, 0]))
http://rosettacode.org/wiki/Environment_variables
Environment variables
Task Show how to get one of your process's environment variables. The available variables vary by system;   some of the common ones available on Unix include:   PATH   HOME   USER
#11l
11l
print(os:getenv(‘HOME’))
http://rosettacode.org/wiki/Esthetic_numbers
Esthetic numbers
An esthetic number is a positive integer where every adjacent digit differs from its neighbour by 1. E.G. 12 is an esthetic number. One and two differ by 1. 5654 is an esthetic number. Each digit is exactly 1 away from its neighbour. 890 is not an esthetic number. Nine and zero differ by 9. These examples are nominally in base 10 but the concept extends easily to numbers in other bases. Traditionally, single digit numbers are included in esthetic numbers; zero may or may not be. For our purposes, for this task, do not include zero (0) as an esthetic number. Do not include numbers with leading zeros. Esthetic numbers are also sometimes referred to as stepping numbers. Task Write a routine (function, procedure, whatever) to find esthetic numbers in a given base. Use that routine to find esthetic numbers in bases 2 through 16 and display, here on this page, the esthectic numbers from index (base × 4) through index (base × 6), inclusive. (E.G. for base 2: 8th through 12th, for base 6: 24th through 36th, etc.) Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1000 and 9999. Stretch: Find and display, here on this page, the base 10 esthetic numbers with a magnitude between 1.0e8 and 1.3e8. Related task   numbers with equal rises and falls See also OEIS A033075 - Positive numbers n such that all pairs of consecutive decimal digits differ by 1 Numbers Aplenty - Esthetic numbers Geeks for Geeks - Stepping numbers
#Haskell
Haskell
import Data.List (unfoldr, genericIndex) import Control.Monad (replicateM, foldM, mzero)   -- a predicate for esthetic numbers isEsthetic b = all ((== 1) . abs) . differences . toBase b where differences lst = zipWith (-) lst (tail lst)   -- Monadic solution, inefficient for small bases. esthetics_m b = do differences <- (\n -> replicateM n [-1, 1]) <$> [0..] firstDigit <- [1..b-1] differences >>= fromBase b <$> scanl (+) firstDigit   -- Much more efficient iterative solution (translation from Python). -- Uses simple list as an ersatz queue. esthetics b = tail $ fst <$> iterate step (undefined, q) where q = [(d, d) | d <- [1..b-1]] step (_, queue) = let (num, lsd) = head queue new_lsds = [d | d <- [lsd-1, lsd+1], d < b, d >= 0] in (num, tail queue ++ [(num*b + d, d) | d <- new_lsds])   -- representation of numbers as digits fromBase b = foldM f 0 where f r d | d < 0 || d >= b = mzero | otherwise = pure (r*b + d)   toBase b = reverse . unfoldr f where f 0 = Nothing f n = let (q, r) = divMod n b in Just (r, q)   showInBase b = foldMap (pure . digit) . toBase b where digit = genericIndex (['0'..'9'] <> ['a'..'z'])  
http://rosettacode.org/wiki/Euler%27s_sum_of_powers_conjecture
Euler's sum of powers conjecture
There is a conjecture in mathematics that held for over two hundred years before it was disproved by the finding of a counterexample in 1966 by Lander and Parkin. Euler's (disproved) sum of powers   conjecture At least k positive kth powers are required to sum to a kth power, except for the trivial case of one kth power: yk = yk In 1966,   Leon J. Lander   and   Thomas R. Parkin   used a brute-force search on a   CDC 6600   computer restricting numbers to those less than 250. Task Write a program to search for an integer solution for: x05 + x15 + x25 + x35 == y5 Where all   xi's   and   y   are distinct integers between   0   and   250   (exclusive). Show an answer here. Related tasks   Pythagorean quadruples.   Pythagorean triples.
#Arturo
Arturo
eulerSumOfPowers: function [top][ p5: map 0..top => [& ^ 5]   loop 4..top 'a [ loop 3..a-1 'b [ loop 2..b-1 'c [ loop 1..c-1 'd [ s: (get p5 a) + (get p5 b) + (get p5 c) + (get p5 d) if integer? index p5 s -> return ~"|a|^5 + |b|^5 + |c|^5 + |d|^5 = |index p5 s|^5" ] ] ] ]   return "not found" ; shouldn't reach here ]   print eulerSumOfPowers 249
http://rosettacode.org/wiki/Factorial
Factorial
Definitions   The factorial of   0   (zero)   is defined as being   1   (unity).   The   Factorial Function   of a positive integer,   n,   is defined as the product of the sequence: n,   n-1,   n-2,   ...   1 Task Write a function to return the factorial of a number. Solutions can be iterative or recursive. Support for trapping negative   n   errors is optional. Related task   Primorial numbers
#Mercury
Mercury
:- module factorial.   :- interface. :- import_module integer.   :- func factorial(integer) = integer.   :- implementation.   :- pragma memo(factorial/1).   factorial(N) = ( N =< integer(0) -> integer(1)  ; factorial(N - integer(1)) * N ).
http://rosettacode.org/wiki/Even_or_odd
Even or odd
Task Test whether an integer is even or odd. There is more than one way to solve this task: Use the even and odd predicates, if the language provides them. Check the least significant digit. With binary integers, i bitwise-and 1 equals 0 iff i is even, or equals 1 iff i is odd. Divide i by 2. The remainder equals 0 iff i is even. The remainder equals +1 or -1 iff i is odd. Use modular congruences: i ≡ 0 (mod 2) iff i is even. i ≡ 1 (mod 2) iff i is odd.
#ALGOL_68
ALGOL 68
# Algol 68 has a standard operator: ODD which returns TRUE if its integer # # operand is odd and FALSE if it is even # # E.g.: #   INT n; print( ( "Enter an integer: " ) ); read( ( n ) ); print( ( whole( n, 0 ), " is ", IF ODD n THEN "odd" ELSE "even" FI, newline ) )  
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Haskell
Haskell
-- the solver dsolveBy _ _ [] _ = error "empty solution interval" dsolveBy method f mesh x0 = zip mesh results where results = scanl (method f) x0 intervals intervals = zip mesh (tail mesh)
http://rosettacode.org/wiki/Euler_method
Euler method
Euler's method numerically approximates solutions of first-order ordinary differential equations (ODEs) with a given initial value.   It is an explicit method for solving initial value problems (IVPs), as described in the wikipedia page. The ODE has to be provided in the following form: d y ( t ) d t = f ( t , y ( t ) ) {\displaystyle {\frac {dy(t)}{dt}}=f(t,y(t))} with an initial value y ( t 0 ) = y 0 {\displaystyle y(t_{0})=y_{0}} To get a numeric solution, we replace the derivative on the   LHS   with a finite difference approximation: d y ( t ) d t ≈ y ( t + h ) − y ( t ) h {\displaystyle {\frac {dy(t)}{dt}}\approx {\frac {y(t+h)-y(t)}{h}}} then solve for y ( t + h ) {\displaystyle y(t+h)} : y ( t + h ) ≈ y ( t ) + h d y ( t ) d t {\displaystyle y(t+h)\approx y(t)+h\,{\frac {dy(t)}{dt}}} which is the same as y ( t + h ) ≈ y ( t ) + h f ( t , y ( t ) ) {\displaystyle y(t+h)\approx y(t)+h\,f(t,y(t))} The iterative solution rule is then: y n + 1 = y n + h f ( t n , y n ) {\displaystyle y_{n+1}=y_{n}+h\,f(t_{n},y_{n})} where   h {\displaystyle h}   is the step size, the most relevant parameter for accuracy of the solution.   A smaller step size increases accuracy but also the computation cost, so it has always has to be hand-picked according to the problem at hand. Example: Newton's Cooling Law Newton's cooling law describes how an object of initial temperature   T ( t 0 ) = T 0 {\displaystyle T(t_{0})=T_{0}}   cools down in an environment of temperature   T R {\displaystyle T_{R}} : d T ( t ) d t = − k Δ T {\displaystyle {\frac {dT(t)}{dt}}=-k\,\Delta T} or d T ( t ) d t = − k ( T ( t ) − T R ) {\displaystyle {\frac {dT(t)}{dt}}=-k\,(T(t)-T_{R})} It says that the cooling rate   d T ( t ) d t {\displaystyle {\frac {dT(t)}{dt}}}   of the object is proportional to the current temperature difference   Δ T = ( T ( t ) − T R ) {\displaystyle \Delta T=(T(t)-T_{R})}   to the surrounding environment. The analytical solution, which we will compare to the numerical approximation, is T ( t ) = T R + ( T 0 − T R ) e − k t {\displaystyle T(t)=T_{R}+(T_{0}-T_{R})\;e^{-kt}} Task Implement a routine of Euler's method and then to use it to solve the given example of Newton's cooling law with it for three different step sizes of:   2 s   5 s       and   10 s and to compare with the analytical solution. Initial values   initial temperature   T 0 {\displaystyle T_{0}}   shall be   100 °C   room temperature   T R {\displaystyle T_{R}}   shall be   20 °C   cooling constant     k {\displaystyle k}     shall be   0.07   time interval to calculate shall be from   0 s   ──►   100 s A reference solution (Common Lisp) can be seen below.   We see that bigger step sizes lead to reduced approximation accuracy.
#Icon_and_Unicon
Icon and Unicon
  invocable "newton_cooling" # needed to use the 'proc' procedure   procedure euler (f, y0, a, b, h) t := a y := y0 until (t >= b) do { write (right(t, 4) || " " || left(y, 7)) t +:= h y +:= h * (proc(f) (t, y)) # 'proc' applies procedure named in f to (t, y) } write ("DONE") end   procedure newton_cooling (time, T) return -0.07 * (T - 20) end   procedure main () # generate data for all three step sizes [2, 5, 10] every (step_size := ![2,5,10]) do euler ("newton_cooling", 100, 0, 100, step_size) end  
http://rosettacode.org/wiki/Evaluate_binomial_coefficients
Evaluate binomial coefficients
This programming task, is to calculate ANY binomial coefficient. However, it has to be able to output   ( 5 3 ) {\displaystyle {\binom {5}{3}}} ,   which is   10. This formula is recommended: ( n k ) = n ! ( n − k ) ! k ! = n ( n − 1 ) ( n − 2 ) … ( n − k + 1 ) k ( k − 1 ) ( k − 2 ) … 1 {\displaystyle {\binom {n}{k}}={\frac {n!}{(n-k)!k!}}={\frac {n(n-1)(n-2)\ldots (n-k+1)}{k(k-1)(k-2)\ldots 1}}} See Also: Combinations and permutations Pascal's triangle The number of samples of size k from n objects. With   combinations and permutations   generation tasks. Order Unimportant Order Important Without replacement ( n k ) = n C k = n ( n − 1 ) … ( n − k + 1 ) k ( k − 1 ) … 1 {\displaystyle {\binom {n}{k}}=^{n}\operatorname {C} _{k}={\frac {n(n-1)\ldots (n-k+1)}{k(k-1)\dots 1}}} n P k = n ⋅ ( n − 1 ) ⋅ ( n − 2 ) ⋯ ( n − k + 1 ) {\displaystyle ^{n}\operatorname {P} _{k}=n\cdot (n-1)\cdot (n-2)\cdots (n-k+1)} Task: Combinations Task: Permutations With replacement ( n + k − 1 k ) = n + k − 1 C k = ( n + k − 1 ) ! ( n − 1 ) ! k ! {\displaystyle {\binom {n+k-1}{k}}=^{n+k-1}\operatorname {C} _{k}={(n+k-1)! \over (n-1)!k!}} n k {\displaystyle n^{k}} Task: Combinations with repetitions Task: Permutations with repetitions
#C
C
#include <stdio.h> #include <limits.h>   /* We go to some effort to handle overflow situations */   static unsigned long gcd_ui(unsigned long x, unsigned long y) { unsigned long t; if (y < x) { t = x; x = y; y = t; } while (y > 0) { t = y; y = x % y; x = t; /* y1 <- x0 % y0 ; x1 <- y0 */ } return x; }   unsigned long binomial(unsigned long n, unsigned long k) { unsigned long d, g, r = 1; if (k == 0) return 1; if (k == 1) return n; if (k >= n) return (k == n); if (k > n/2) k = n-k; for (d = 1; d <= k; d++) { if (r >= ULONG_MAX/n) { /* Possible overflow */ unsigned long nr, dr; /* reduced numerator / denominator */ g = gcd_ui(n, d); nr = n/g; dr = d/g; g = gcd_ui(r, dr); r = r/g; dr = dr/g; if (r >= ULONG_MAX/nr) return 0; /* Unavoidable overflow */ r *= nr; r /= dr; n--; } else { r *= n--; r /= d; } } return r; }   int main() { printf("%lu\n", binomial(5, 3)); printf("%lu\n", binomial(40, 19)); printf("%lu\n", binomial(67, 31)); return 0; }