Datasets:
pretty_name: meter2800
language:
- en
tags:
- audio
- music-classification
- meter-classification
- multi-class-classification
- multi-label-classification
license: mit
task_categories:
- audio-classification
dataset_info:
size_categories:
- 1K<n<10K
source_datasets:
- gtzan
- mag
- own
- fma
configs:
- config_name: 2_classes
default: true
data_files:
- split: train
path: data_train_2_classes.csv
- split: validation
path: data_val_2_classes.csv
- split: test
path: data_test_2_classes.csv
- config_name: 4_classes
data_files:
- split: train
path: data_train_4_classes.csv
- split: validation
path: data_val_4_classes.csv
- split: test
path: data_test_4_classes.csv
Meter2800
Dataset for music time signature/ meter (rhythm) classification, combining tracks from GTZAN, MAG, OWN, and FMA.
Dataset Description
Meter2800 is a curated collection of 2,800 .wav
music audio samples, each annotated with meter (and optionally alt_meter
). It supports both:
- 4-class classification (e.g., 4 genres),
- 2-class classification (binary meter labeling).
Split into train/val/test sets with clear metadata in CSV.
Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction.
Supported Tasks and Usage
Load the dataset via the datasets
library with automatic audio decoding:
from datasets import load_dataset, Audio
meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes")
The output should look like this
DatasetDict({
train: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 1680
})
validation: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 420
})
test: Dataset({
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
num_rows: 700
})
})
meter2800["train"][0]
A sample of the training set
{'filename': 'MAG/00553.wav',
'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/. 73a5809e655e59c99bd79d00033b98b254ca3689f2b9e2c2eba55fe3894b7622/MAG/00553.wav',
'array': array([ 2.87892180e-06, -1.07296364e-05, -3.22661945e-05, ...,
-2.06501483e-13, -5.44009282e-15, 1.38777878e-14]),
'sampling_rate': 16000},
'label': 'three',
'meter': '3',
'alt_meter': '6'
}
Each entry in the dataset contains:
- filename: Path to the audio file.
- label: Genre label (multi-class or binary, depending on split).
- meter: Primary meter annotation (e.g., 4/4, 3/4).
- alt_meter: Optional alternative meter annotation.
- audio: Audio data as a NumPy array and its sampling rate.
The dataset is organized into the following splits:
train_4
,val_4
,test_4
: For 4-class meter classification.train_2
,val_2
,test_2
: For 2-class (binary) meter classification.
All splits are provided as CSV files referencing the audio files in the corresponding folders (GTZAN/
, MAG/
, OWN/
, FMA/
).
Example row in a CSV file:
| filename | label | meter | alt_meter |
|-------------------------|---------|-------|-----------|
| GTZAN/blues.00000.wav | three | 3 | 6 |
Meter2800/
βββ data.tar.gz // contains the audio data
βββ data_train_4_classes.csv
βββ data_val_4_classes.csv
βββ data_test_4_classes.csv
βββ data_train_2_classes.csv
βββ data_val_2_classes.csv
βββ data_test_2_classes.csv
βββ README.md
@misc{meter2800_dataset,
author = {PianistProgrammer},
title = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}
license: "CC0 1.0 Public Domain"