Datasets:
Tasks:
Audio Classification
Modalities:
Audio
Languages:
English
Tags:
audio
music-classification
meter-classification
multi-class-classification
multi-label-classification
License:
pretty_name: "meter2800" | |
language: | |
- en | |
tags: | |
- audio | |
- music-classification | |
- meter-classification | |
- multi-class-classification | |
- multi-label-classification | |
license: mit | |
task_categories: | |
- audio-classification | |
dataset_info: | |
size_categories: | |
- 1K<n<10K | |
source_datasets: | |
- gtzan | |
- mag | |
- own | |
- fma | |
configs: | |
- config_name: 2_classes | |
default: true | |
data_files: | |
- split: train | |
path: "data_train_2_classes.csv" | |
- split: validation | |
path: "data_val_2_classes.csv" | |
- split: test | |
path: "data_test_2_classes.csv" | |
- config_name: 4_classes | |
data_files: | |
- split: train | |
path: "data_train_4_classes.csv" | |
- split: validation | |
path: "data_val_4_classes.csv" | |
- split: test | |
path: "data_test_4_classes.csv" | |
# Meter2800 | |
**Dataset for music time signature/ meter (rhythm) classification**, combining tracks from GTZAN, MAG, OWN, and FMA. | |
## Dataset Description | |
Meter2800 is a curated collection of 2,800 `.wav` music audio samples, each annotated with **meter** (and optionally `alt_meter`). It supports both: | |
- **4-class classification** (e.g., 4 genres), | |
- **2-class classification** (binary meter labeling). | |
Split into train/val/test sets with clear metadata in CSV. | |
Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction. | |
## Supported Tasks and Usage | |
Load the dataset via the `datasets` library with automatic audio decoding: | |
```python | |
from datasets import load_dataset, Audio | |
meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes") | |
``` | |
The output should look like this | |
```python | |
DatasetDict({ | |
train: Dataset({ | |
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'], | |
num_rows: 1680 | |
}) | |
validation: Dataset({ | |
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'], | |
num_rows: 420 | |
}) | |
test: Dataset({ | |
features: ['filename', 'audio', 'label', 'meter', 'alt_meter'], | |
num_rows: 700 | |
}) | |
}) | |
``` | |
```python | |
meter2800["train"][0] | |
``` | |
A sample of the training set | |
```python | |
{'filename': 'MAG/00553.wav', | |
'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/. 73a5809e655e59c99bd79d00033b98b254ca3689f2b9e2c2eba55fe3894b7622/MAG/00553.wav', | |
'array': array([ 2.87892180e-06, -1.07296364e-05, -3.22661945e-05, ..., | |
-2.06501483e-13, -5.44009282e-15, 1.38777878e-14]), | |
'sampling_rate': 16000}, | |
'label': 'three', | |
'meter': '3', | |
'alt_meter': '6' | |
} | |
``` | |
Each entry in the dataset contains: | |
- **filename**: Path to the audio file. | |
- **label**: Genre label (multi-class or binary, depending on split). | |
- **meter**: Primary meter annotation (e.g., 4/4, 3/4). | |
- **alt_meter**: Optional alternative meter annotation. | |
- **audio**: Audio data as a NumPy array and its sampling rate. | |
The dataset is organized into the following splits: | |
- `train_4`, `val_4`, `test_4`: For 4-class meter classification. | |
- `train_2`, `val_2`, `test_2`: For 2-class (binary) meter classification. | |
All splits are provided as CSV files referencing the audio files in the corresponding folders (`GTZAN/`, `MAG/`, `OWN/`, `FMA/`). | |
Example row in a CSV file: | |
```code | |
| filename | label | meter | alt_meter | | |
|-------------------------|---------|-------|-----------| | |
| GTZAN/blues.00000.wav | three | 3 | 6 | | |
Meter2800/ | |
βββ data.tar.gz // contains the audio data | |
βββ data_train_4_classes.csv | |
βββ data_val_4_classes.csv | |
βββ data_test_4_classes.csv | |
βββ data_train_2_classes.csv | |
βββ data_val_2_classes.csv | |
βββ data_test_2_classes.csv | |
βββ README.md | |
@misc{meter2800_dataset, | |
author = {PianistProgrammer}, | |
title = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification}, | |
year = {2025}, | |
publisher = {Hugging Face}, | |
url = {https://huggingface.co/datasets/pianistprogrammer/meter2800} | |
} | |
license: "CC0 1.0 Public Domain" | |