|
--- |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: question_id |
|
dtype: int64 |
|
- name: question |
|
dtype: string |
|
- name: answers |
|
sequence: string |
|
- name: data_split |
|
dtype: string |
|
- name: ocr_results |
|
struct: |
|
- name: page |
|
dtype: int64 |
|
- name: clockwise_orientation |
|
dtype: float64 |
|
- name: width |
|
dtype: int64 |
|
- name: height |
|
dtype: int64 |
|
- name: unit |
|
dtype: string |
|
- name: lines |
|
list: |
|
- name: bounding_box |
|
sequence: int64 |
|
- name: text |
|
dtype: string |
|
- name: words |
|
list: |
|
- name: bounding_box |
|
sequence: int64 |
|
- name: text |
|
dtype: string |
|
- name: confidence |
|
dtype: string |
|
- name: other_metadata |
|
struct: |
|
- name: ucsf_document_id |
|
dtype: string |
|
- name: ucsf_document_page_no |
|
dtype: string |
|
- name: doc_id |
|
dtype: int64 |
|
- name: image |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_examples: 39463 |
|
- name: validation |
|
num_examples: 5349 |
|
- name: test |
|
num_examples: 5188 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: validation |
|
path: data/validation-* |
|
- split: test |
|
path: data/test-* |
|
license: mit |
|
task_categories: |
|
- question-answering |
|
language: |
|
- en |
|
size_categories: |
|
- 10K<n<100K |
|
--- |
|
|
|
# Dataset Card for DocVQA Dataset |
|
|
|
## Dataset Description |
|
|
|
- **Point of Contact from curators:** [Minesh Mathew](mailto:[email protected]), [Dimosthenis Karatzas]([email protected]), [C. V. Jawahar]([email protected]) |
|
- **Point of Contact Hugging Face:** [Pablo Montalvo](mailto:[email protected]) |
|
|
|
### Dataset Summary |
|
|
|
DocVQA dataset is a document dataset introduced in Mathew et al. (2021) consisting of 50,000 questions defined on 12,000+ document images. |
|
|
|
Please visit the challenge page (https://rrc.cvc.uab.es/?ch=17) and paper (https://arxiv.org/abs/2007.00398) for further information. |
|
|
|
### Usage |
|
|
|
This dataset can be used with current releases of Hugging Face `datasets` library. |
|
Here is an example using a custom collator to bundle batches in a trainable way on the `train` split |
|
|
|
```python |
|
|
|
from datasets import load_dataset |
|
|
|
docvqa_dataset = load_dataset("pixparse/docvqa-single-page-questions", split="train" |
|
) |
|
next(iter(dataset["train"])).keys() |
|
>>> dict_keys(['image', 'question_id', 'question', 'answers', 'data_split', 'ocr_results', 'other_metadata']) |
|
``` |
|
`image` will be a byte string containing the image contents. `answers` is a list of possible answers, aligned with the expected inputs to the [ANLS metric](https://arxiv.org/abs/1905.13648). |
|
|
|
Calling |
|
|
|
```python |
|
from PIL import Image |
|
from io import BytesIO |
|
image = Image.open(BytesIO(docvqa_dataset["train"][0]["image"]['bytes'])) |
|
``` |
|
will yield the image |
|
|
|
<center> |
|
<img src="https://huggingface.co/datasets/pixparse/docvqa-single-page-questions/resolve/main/doc_images_docvqa/docvqa_example.png" alt="An example of document available in docVQA" width="600" height="300"> |
|
<p><em>A document overlapping with tobacco on which questions are asked such as 'When is the contract effective date?' with the answer ['7 - 1 - 99']</em></p> |
|
</center> |
|
|
|
The loader can then be iterated on normally and yields questions. Many questions rely on the same image, so there is some amount of data duplication. |
|
|
|
For this sample 0, the question has just one possible answer, but in general `answers` is a list of strings. |
|
|
|
```python |
|
# int identifier of the question |
|
|
|
print(dataset["train"][0]['question_id']) |
|
>>> 9951 |
|
|
|
# actual question |
|
|
|
print(dataset["train"][0]['question']) |
|
>>>'When is the contract effective date?' |
|
|
|
# one-element list of accepted/ground truth answers for this question |
|
|
|
print(dataset["train"][0]['answers']) |
|
>>> ['7 - 1 - 99'] |
|
``` |
|
|
|
`ocr_results` contains OCR information about all files, which can be used for models that don't leverage only the image input. |
|
|
|
|
|
### Data Splits |
|
|
|
|
|
#### Train |
|
* 10194 images, 39463 questions and answers. |
|
|
|
### Validation |
|
|
|
* 1286 images, 5349 questions and answers. |
|
|
|
### Test |
|
|
|
* 1,287 images, 5,188 questions. |
|
|
|
## Additional Information |
|
|
|
### Dataset Curators |
|
|
|
For original authors of the dataset, see citation below. |
|
|
|
Hugging Face points of contact for this instance: Pablo Montalvo, Ross Wightman |
|
|
|
### Licensing Information |
|
|
|
MIT |
|
|
|
### Citation Information |
|
|
|
```bibtex |
|
@InProceedings{docvqa_wacv, |
|
author = {Mathew, Minesh and Karatzas, Dimosthenis and Jawahar, C.V.}, |
|
title = {DocVQA: A Dataset for VQA on Document Images}, |
|
booktitle = {WACV}, |
|
year = {2021}, |
|
pages = {2200-2209} |
|
} |
|
``` |