url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
apply (fc.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x)
Please generate a tactic in lean4 to solve the state. STATE: case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
apply (gc.eventually_mem (extChartAt_source_mem_nhds I (g z))).mp
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x)
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x)
Please generate a tactic in lean4 to solve the state. STATE: case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
refine eventually_nhds_iff.mpr ⟨(_root_.extChartAt I z).source, fun x m gm fm ↦ ?_, isOpen_extChartAt_source _ _, mem_extChartAt_source I z⟩
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x)
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
rw [← fg] at gm
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
simp only [← fg, PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ fm, PartialEquiv.left_inv _ gm]
case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.inl.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S m : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source ⊒ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) = ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) ↔ f x = g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
right
case neg.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z fa : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) gc : ContinuousAt g z ga : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ (βˆ€αΆ  (w : S) in 𝓝 z, f w = g w) ∨ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z fa : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) gc : ContinuousAt g z ga : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z fa : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) gc : ContinuousAt g z ga : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ (βˆ€αΆ  (w : S) in 𝓝 z, f w = g w) ∨ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
clear fa ga
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z fa : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) gc : ContinuousAt g z ga : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z fa : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) gc : ContinuousAt g z ga : AnalyticAt β„‚ (fun x => ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x))) (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z) fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
simp only [eventually_nhdsWithin_iff, Set.mem_compl_singleton_iff] at e ⊒
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : β„‚) in 𝓝 (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z), x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (z_1 : β„‚) in 𝓝[β‰ ] ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm z_1)) ⊒ βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  g w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
replace e := (continuousAt_extChartAt I z).eventually e
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : β„‚) in 𝓝 (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z), x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : β„‚) in 𝓝 (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z), x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm x)) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
apply (fc.eventually_mem ((extChartAt_source_mem_nhds I (f z)))).mp
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
apply (gc.eventually_mem ((extChartAt_source_mem_nhds I (g z)))).mp
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
refine e.mp (eventually_of_forall ?_)
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
clear e
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z e : βˆ€αΆ  (x : S) in 𝓝 z, ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
intro x h xm gm fm xz
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z ⊒ βˆ€ (x : S), (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x)))) β†’ x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source β†’ g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source β†’ f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x β‰  z β†’ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
rw [← fg] at gm
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (g z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
simp only [← fg, PartialEquiv.left_inv _ xm] at h
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (g z)) (g (↑(_root_.extChartAt π“˜(β„‚, β„‚) z).symm (↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x))) xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z ⊒ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
specialize h ((PartialEquiv.injOn _).ne xm (mem_extChartAt_source _ _) xz)
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) x β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) z) z β†’ ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicAt.eventually_eq_or_eventually_ne
[188, 1]
[220, 48]
rwa [← (PartialEquiv.injOn _).ne_iff fm gm]
case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.inr.h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f g : S β†’ T z : S fc : ContinuousAt f z gc : ContinuousAt g z fg : f z = g z x : S xm : x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) z).source gm : g x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source fm : f x ∈ (_root_.extChartAt π“˜(β„‚, β„‚) (f z)).source xz : x β‰  z h : ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (f x) β‰  ↑(_root_.extChartAt π“˜(β„‚, β„‚) (f z)) (g x) ⊒ f x β‰  g x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
generalize ht : {z | z ∈ s ∧ βˆ€αΆ  w in 𝓝 z, f w = a} = t
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€ w ∈ s, f w = a
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ w ∈ s, f w = a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
suffices st : s βŠ† t by rw [← ht] at st; exact fun z m ↦ (st m).2.self_of_nhds
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ w ∈ s, f w = a
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ s βŠ† t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
refine p.subset_of_closure_inter_subset ?_ ?_ ?_
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ s βŠ† t
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ IsOpen t case refine_2 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ (s ∩ t).Nonempty case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ closure t ∩ s βŠ† t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ s βŠ† t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
rw [← ht] at st
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t st : s βŠ† t ⊒ βˆ€ w ∈ s, f w = a
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t st : s βŠ† {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ βˆ€ w ∈ s, f w = a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t st : s βŠ† t ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
exact fun z m ↦ (st m).2.self_of_nhds
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t st : s βŠ† {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ βˆ€ w ∈ s, f w = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t st : s βŠ† {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
rw [isOpen_iff_eventually]
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ IsOpen t
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ x ∈ t, βˆ€αΆ  (y : S) in 𝓝 x, y ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ IsOpen t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
intro z m
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ x ∈ t, βˆ€αΆ  (y : S) in 𝓝 x, y ∈ t
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ t ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ βˆ€ x ∈ t, βˆ€αΆ  (y : S) in 𝓝 x, y ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [Set.mem_setOf_eq, ← ht] at m ⊒
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ t ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ t
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 y, f w = a
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ t ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
exact ((o.eventually_mem m.1).and m.2.eventually_nhds).mp (eventually_of_forall fun y h ↦ h)
case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 y, f w = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€αΆ  (y : S) in 𝓝 z, y ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 y, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
use z
case refine_2 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ (s ∩ t).Nonempty
case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∩ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ (s ∩ t).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [Set.mem_inter_iff, ← ht]
case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∩ t
case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∧ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a}
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∩ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
exact ⟨zs, zs, c⟩
case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∧ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ z ∈ s ∧ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
intro z m
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ closure t ∩ s βŠ† t
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ closure t ∩ s ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t ⊒ closure t ∩ s βŠ† t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [Set.mem_inter_iff, mem_closure_iff_frequently] at m
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ closure t ∩ s ⊒ z ∈ t
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : z ∈ closure t ∩ s ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
have aa : HolomorphicAt I I (fun _ ↦ a) z := holomorphicAt_const
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s ⊒ z ∈ t
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
cases' (fa _ m.2).eventually_eq_or_eventually_ne aa with h h
case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z ⊒ z ∈ t
case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ t case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  a ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3 X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
rw [← ht]
case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ t
case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a}
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
use m.2, h
case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ z ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [eventually_nhdsWithin_iff, Set.mem_compl_singleton_iff] at h
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  a ⊒ z ∈ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  a ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
have m' := m.1
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a ⊒ z ∈ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t ⊒ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
contrapose m'
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t ⊒ z ∈ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ Β¬βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t ⊒ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [Filter.not_frequently]
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ Β¬βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ Β¬βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
refine h.mp (eventually_of_forall ?_)
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x βˆ‰ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€ (x : S), (x β‰  z β†’ f x β‰  a) β†’ x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
intro x i
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€ (x : S), (x β‰  z β†’ f x β‰  a) β†’ x βˆ‰ t
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a ⊒ x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t ⊒ βˆ€ (x : S), (x β‰  z β†’ f x β‰  a) β†’ x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
by_cases xz : x = z
case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a ⊒ x βˆ‰ t
case pos X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : x = z ⊒ x βˆ‰ t case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case refine_3.inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a ⊒ x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
rwa [xz]
case pos X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : x = z ⊒ x βˆ‰ t case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : x = z ⊒ x βˆ‰ t case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
specialize i xz
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : f x β‰  a ⊒ x βˆ‰ t
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S i : x β‰  z β†’ f x β‰  a xz : Β¬x = z ⊒ x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
contrapose i
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : f x β‰  a ⊒ x βˆ‰ t
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : Β¬x βˆ‰ t ⊒ Β¬f x β‰  a
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : f x β‰  a ⊒ x βˆ‰ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
simp only [not_not, ← ht] at i ⊒
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : Β¬x βˆ‰ t ⊒ Β¬f x β‰  a
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : x ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ f x = a
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : Β¬x βˆ‰ t ⊒ Β¬f x β‰  a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const
[223, 1]
[242, 63]
exact i.2.self_of_nhds
case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : x ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ f x = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z✝ : S a : T zs : z✝ ∈ s o : IsOpen s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z✝, f w = a t : Set S ht : {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} = t z : S m : (βˆƒαΆ  (x : S) in 𝓝 z, x ∈ t) ∧ z ∈ s aa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => a) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  a m' : Β¬z ∈ t x : S xz : Β¬x = z i : x ∈ {z | z ∈ s ∧ βˆ€αΆ  (w : S) in 𝓝 z, f w = a} ⊒ f x = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const'
[246, 1]
[251, 99]
rcases local_preconnected_nhdsSet p (isOpen_holomorphicAt.mem_nhdsSet.mpr fa) with ⟨u, uo, su, ua, uc⟩
X : Type inst✝⁸ : TopologicalSpace X S : Type inst✝⁷ : TopologicalSpace S inst✝⁢ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁡ : TopologicalSpace T inst✝⁴ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝³ : TopologicalSpace U inst✝² : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝¹ : LocallyConnectedSpace S inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€ w ∈ s, f w = a
case intro.intro.intro.intro X : Type inst✝⁸ : TopologicalSpace X S : Type inst✝⁷ : TopologicalSpace S inst✝⁢ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁡ : TopologicalSpace T inst✝⁴ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝³ : TopologicalSpace U inst✝² : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝¹ : LocallyConnectedSpace S inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a u : Set S uo : IsOpen u su : s βŠ† u ua : u βŠ† {x | HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x} uc : IsPreconnected u ⊒ βˆ€ w ∈ s, f w = a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁸ : TopologicalSpace X S : Type inst✝⁷ : TopologicalSpace S inst✝⁢ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁡ : TopologicalSpace T inst✝⁴ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝³ : TopologicalSpace U inst✝² : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝¹ : LocallyConnectedSpace S inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
HolomorphicOn.const_of_locally_const'
[246, 1]
[251, 99]
exact fun w ws ↦ HolomorphicOn.const_of_locally_const (fun _ m ↦ ua m) (su zs) uo uc c w (su ws)
case intro.intro.intro.intro X : Type inst✝⁸ : TopologicalSpace X S : Type inst✝⁷ : TopologicalSpace S inst✝⁢ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁡ : TopologicalSpace T inst✝⁴ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝³ : TopologicalSpace U inst✝² : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝¹ : LocallyConnectedSpace S inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a u : Set S uo : IsOpen u su : s βŠ† u ua : u βŠ† {x | HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x} uc : IsPreconnected u ⊒ βˆ€ w ∈ s, f w = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type inst✝⁸ : TopologicalSpace X S : Type inst✝⁷ : TopologicalSpace S inst✝⁢ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁡ : TopologicalSpace T inst✝⁴ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝³ : TopologicalSpace U inst✝² : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝¹ : LocallyConnectedSpace S inst✝ : T2Space T f : S β†’ T s : Set S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s z : S a : T zs : z ∈ s p : IsPreconnected s c : βˆ€αΆ  (w : S) in 𝓝 z, f w = a u : Set S uo : IsOpen u su : s βŠ† u ua : u βŠ† {x | HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x} uc : IsPreconnected u ⊒ βˆ€ w ∈ s, f w = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
have ca : _root_.HolomorphicAt I I (fun _ ↦ f z) z := holomorphicAt_const
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
cases' n.holomorphicAt.eventually_eq_or_eventually_ne ca with h h
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
have b := h.and_frequently n.nonconst
case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z b : βˆƒαΆ  (x : S) in 𝓝 z, f x = f z ∧ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
simp only [and_not_self_iff, Filter.frequently_false] at b
case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z b : βˆƒαΆ  (x : S) in 𝓝 z, f x = f z ∧ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝 z, f w = f z b : βˆƒαΆ  (x : S) in 𝓝 z, f x = f z ∧ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
simp only [eventually_nhdsWithin_iff, mem_compl_singleton_iff] at h
case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (w : S) in 𝓝[β‰ ] z, f w β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually_ne
[259, 1]
[265, 83]
convert h
case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ca : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) (fun x => f z) z h : βˆ€αΆ  (x : S) in 𝓝 z, x β‰  z β†’ f x β‰  f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, w β‰  z β†’ f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
intro w ws
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s n : NontrivialHolomorphicAt f z ⊒ NontrivialHolomorphicOn f s
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s n : NontrivialHolomorphicAt f z w : S ws : w ∈ s ⊒ NontrivialHolomorphicAt f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s n : NontrivialHolomorphicAt f z ⊒ NontrivialHolomorphicOn f s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
replace n := n.nonconst
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s n : NontrivialHolomorphicAt f z w : S ws : w ∈ s ⊒ NontrivialHolomorphicAt f w
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ NontrivialHolomorphicAt f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s n : NontrivialHolomorphicAt f z w : S ws : w ∈ s ⊒ NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
refine ⟨fa _ ws, ?_⟩
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ NontrivialHolomorphicAt f w
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
contrapose n
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : Β¬βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
simp only [Filter.not_frequently, not_not] at n ⊒
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : Β¬βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : Β¬βˆƒαΆ  (w_1 : S) in 𝓝 w, f w_1 β‰  f w ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
generalize ha : f w = a
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w a : T ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
rw [ha] at n
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w a : T ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s n : βˆ€αΆ  (x : S) in 𝓝 w, f x = f w a : T ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
rw [eventually_nhds_iff]
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆƒ t, (βˆ€ x ∈ t, f x = f z) ∧ IsOpen t ∧ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
refine ⟨s, ?_, o, zs⟩
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆƒ t, (βˆ€ x ∈ t, f x = f z) ∧ IsOpen t ∧ z ∈ t
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€ x ∈ s, f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆƒ t, (βˆ€ x ∈ t, f x = f z) ∧ IsOpen t ∧ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
have c := fa.const_of_locally_const ws o p n
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€ x ∈ s, f x = f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a ⊒ βˆ€ x ∈ s, f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a ⊒ βˆ€ x ∈ s, f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
intro x m
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a ⊒ βˆ€ x ∈ s, f x = f z
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a x : S m : x ∈ s ⊒ f x = f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a ⊒ βˆ€ x ∈ s, f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.on_preconnected
[272, 1]
[280, 32]
rw [c _ m, c _ zs]
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a x : S m : x ∈ s ⊒ f x = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T s : Set S z : S fa : HolomorphicOn π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f s zs : z ∈ s o : IsOpen s p : IsPreconnected s w : S ws : w ∈ s a : T n : βˆ€αΆ  (x : S) in 𝓝 w, f x = a ha : f w = a c : βˆ€ w ∈ s, f w = a x : S m : x ∈ s ⊒ f x = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
have lc : LocallyConnectedSpace S := ChartedSpace.locallyConnectedSpace β„‚ _
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
rcases eventually_nhds_iff.mp n.holomorphicAt.eventually with ⟨s, fa, os, zs⟩
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
case intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
rcases locallyConnectedSpace_iff_open_connected_subsets.mp lc z s (os.mem_nhds zs) with ⟨t, ts, ot, zt, ct⟩
case intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
rw [eventually_nhds_iff]
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆƒ t, (βˆ€ x ∈ t, NontrivialHolomorphicAt f x) ∧ IsOpen t ∧ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€αΆ  (w : S) in 𝓝 z, NontrivialHolomorphicAt f w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
refine ⟨t, ?_, ot, zt⟩
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆƒ t, (βˆ€ x ∈ t, NontrivialHolomorphicAt f x) ∧ IsOpen t ∧ z ∈ t
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€ x ∈ t, NontrivialHolomorphicAt f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆƒ t, (βˆ€ x ∈ t, NontrivialHolomorphicAt f x) ∧ IsOpen t ∧ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.eventually
[283, 1]
[290, 77]
exact n.on_preconnected (HolomorphicOn.mono fa ts) zt ot ct.isPreconnected
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€ x ∈ t, NontrivialHolomorphicAt f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s✝ : Set β„‚ inst✝ : T2Space T f : S β†’ T z : S n : NontrivialHolomorphicAt f z lc : LocallyConnectedSpace S s : Set S fa : βˆ€ x ∈ s, HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f x os : IsOpen s zs : z ∈ s t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ct : IsConnected t ⊒ βˆ€ x ∈ t, NontrivialHolomorphicAt f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
refine ⟨fa, ?_⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 ⊒ NontrivialHolomorphicAt f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 ⊒ NontrivialHolomorphicAt f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
contrapose d
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ Β¬mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
simp only [Filter.not_frequently, not_not] at d ⊒
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ Β¬mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ Β¬mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
generalize ha : f z = a
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z a : T ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
rw [ha] at d
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z a : T ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z d : βˆ€αΆ  (x : S) in 𝓝 z, f x = f z a : T ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
apply HasMFDerivAt.mfderiv
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ HasMFDerivAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z 0
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ mfderiv π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_of_mfderiv_ne_zero
[293, 1]
[297, 61]
exact (hasMFDerivAt_const I I a _).congr_of_eventuallyEq d
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ HasMFDerivAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z a : T d : βˆ€αΆ  (x : S) in 𝓝 z, f x = a ha : f z = a ⊒ HasMFDerivAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f z 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.comp
[300, 1]
[305, 8]
use fn.holomorphicAt.comp gn.holomorphicAt
X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z ⊒ NontrivialHolomorphicAt (fun z => f (g z)) z
case nonconst X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z ⊒ NontrivialHolomorphicAt (fun z => f (g z)) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.comp
[300, 1]
[305, 8]
convert gn.nonconst.and_eventually (gn.holomorphicAt.continuousAt.eventually fn.eventually_ne)
case nonconst X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
case h.e'_2.h.a X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z x✝ : S ⊒ f (g x✝) β‰  f (g z) ↔ g x✝ β‰  g z ∧ (g x✝ β‰  g z β†’ f (g x✝) β‰  f (g z))
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z ⊒ βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.comp
[300, 1]
[305, 8]
tauto
case h.e'_2.h.a X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z x✝ : S ⊒ f (g x✝) β‰  f (g z) ↔ g x✝ β‰  g z ∧ (g x✝ β‰  g z β†’ f (g x✝) β‰  f (g z))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.a X : Type inst✝⁷ : TopologicalSpace X S : Type inst✝⁢ : TopologicalSpace S inst✝⁡ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝⁴ : TopologicalSpace T inst✝³ : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝² : TopologicalSpace U inst✝¹ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ inst✝ : T2Space U f : T β†’ U g : S β†’ T z : S fn : NontrivialHolomorphicAt f (g z) gn : NontrivialHolomorphicAt g z x✝ : S ⊒ f (g x✝) β‰  f (g z) ↔ g x✝ β‰  g z ∧ (g x✝ β‰  g z β†’ f (g x✝) β‰  f (g z)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
replace h := h.nonconst
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S h : NontrivialHolomorphicAt (fun z => f (g z)) z fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z ⊒ NontrivialHolomorphicAt f (g z) ∧ NontrivialHolomorphicAt g z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ NontrivialHolomorphicAt f (g z) ∧ NontrivialHolomorphicAt g z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S h : NontrivialHolomorphicAt (fun z => f (g z)) z fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z ⊒ NontrivialHolomorphicAt f (g z) ∧ NontrivialHolomorphicAt g z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
refine ⟨⟨fa, ?_⟩, ⟨ga, ?_⟩⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ NontrivialHolomorphicAt f (g z) ∧ NontrivialHolomorphicAt g z
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z) case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ NontrivialHolomorphicAt f (g z) ∧ NontrivialHolomorphicAt g z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
contrapose h
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z)
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z) ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
simp only [Filter.not_frequently, not_not] at h ⊒
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z) ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : T) in 𝓝 (g z), f x = f (g z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : T) in 𝓝 (g z), f w β‰  f (g z) ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
exact (ga.continuousAt.eventually h).mp (eventually_of_forall fun _ h ↦ h)
case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : T) in 𝓝 (g z), f x = f (g z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : T) in 𝓝 (g z), f x = f (g z) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
contrapose h
case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z
case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) ⊒ βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
simp only [Filter.not_frequently, not_not] at h ⊒
case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z)
case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : S) in 𝓝 z, g x = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : Β¬βˆƒαΆ  (w : S) in 𝓝 z, g w β‰  g z ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f (g w) β‰  f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
exact h.mp (eventually_of_forall fun x h ↦ by rw [h])
case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : S) in 𝓝 z, g x = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h : βˆ€αΆ  (x : S) in 𝓝 z, g x = g z ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f (g x) = f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
NontrivialHolomorphicAt.anti
[308, 1]
[316, 58]
rw [h]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h✝ : βˆ€αΆ  (x : S) in 𝓝 z, g x = g z x : S h : g x = g z ⊒ f (g x) = f (g z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f✝ : β„‚ β†’ β„‚ s : Set β„‚ f : T β†’ U g : S β†’ T z : S fa : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) f (g z) ga : HolomorphicAt π“˜(β„‚, β„‚) π“˜(β„‚, β„‚) g z h✝ : βˆ€αΆ  (x : S) in 𝓝 z, g x = g z x : S h : g x = g z ⊒ f (g x) = f (g z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
use holomorphicAt_id
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ NontrivialHolomorphicAt (fun w => w) z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆƒαΆ  (w : S) in 𝓝 z, w β‰  z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ NontrivialHolomorphicAt (fun w => w) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
rw [Filter.frequently_iff]
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆƒαΆ  (w : S) in 𝓝 z, w β‰  z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆ€ {U : Set S}, U ∈ 𝓝 z β†’ βˆƒ x ∈ U, x β‰  z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆƒαΆ  (w : S) in 𝓝 z, w β‰  z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
intro s sz
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆ€ {U : Set S}, U ∈ 𝓝 z β†’ βˆƒ x ∈ U, x β‰  z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z ⊒ βˆƒ x ∈ s, x β‰  z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s : Set β„‚ z : S ⊒ βˆ€ {U : Set S}, U ∈ 𝓝 z β†’ βˆƒ x ∈ U, x β‰  z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
rcases mem_nhds_iff.mp sz with ⟨t, ts, ot, zt⟩
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z ⊒ βˆƒ x ∈ s, x β‰  z
case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ⊒ βˆƒ x ∈ s, x β‰  z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z ⊒ βˆƒ x ∈ s, x β‰  z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
generalize hu : (extChartAt I z).target ∩ (extChartAt I z).symm ⁻¹' t = u
case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ⊒ βˆƒ x ∈ s, x β‰  z
case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t u : Set β„‚ hu : (extChartAt π“˜(β„‚, β„‚) z).target ∩ ↑(extChartAt π“˜(β„‚, β„‚) z).symm ⁻¹' t = u ⊒ βˆƒ x ∈ s, x β‰  z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t ⊒ βˆƒ x ∈ s, x β‰  z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/Nontrivial.lean
nontrivialHolomorphicAt_id
[320, 1]
[342, 64]
have uo : IsOpen u := by rw [← hu] exact (continuousOn_extChartAt_symm I z).isOpen_inter_preimage (isOpen_extChartAt_target _ _) ot
case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t u : Set β„‚ hu : (extChartAt π“˜(β„‚, β„‚) z).target ∩ ↑(extChartAt π“˜(β„‚, β„‚) z).symm ⁻¹' t = u ⊒ βˆƒ x ∈ s, x β‰  z
case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t u : Set β„‚ hu : (extChartAt π“˜(β„‚, β„‚) z).target ∩ ↑(extChartAt π“˜(β„‚, β„‚) z).symm ⁻¹' t = u uo : IsOpen u ⊒ βˆƒ x ∈ s, x β‰  z
Please generate a tactic in lean4 to solve the state. STATE: case nonconst.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ s✝ : Set β„‚ z : S s : Set S sz : s ∈ 𝓝 z t : Set S ts : t βŠ† s ot : IsOpen t zt : z ∈ t u : Set β„‚ hu : (extChartAt π“˜(β„‚, β„‚) z).target ∩ ↑(extChartAt π“˜(β„‚, β„‚) z).symm ⁻¹' t = u ⊒ βˆƒ x ∈ s, x β‰  z TACTIC: