url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_apply
[173, 1]
[177, 73]
rw [smulCmmap, ←ContinuousMultilinearMap.toFun_eq_coe]
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ (smulCmmap 𝕜 A B x xs) z = (x fun x => z 0) • xs fun i => z i.succ
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ { toFun := smulCmmapFn x xs, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }.toFun z = (x fun x => z 0) • xs fun i => z i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ (smulCmmap 𝕜 A B x xs) z = (x fun x => z 0) • xs fun i => z i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_apply
[173, 1]
[177, 73]
simp only
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ { toFun := smulCmmapFn x xs, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }.toFun z = (x fun x => z 0) • xs fun i => z i.succ
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ smulCmmapFn x xs z = (x fun x => z 0) • xs fun i => z i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ { toFun := smulCmmapFn x xs, map_add' := ⋯, map_smul' := ⋯, cont := ⋯ }.toFun z = (x fun x => z 0) • xs fun i => z i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_apply
[173, 1]
[177, 73]
rfl
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ smulCmmapFn x xs z = (x fun x => z 0) • xs fun i => z i.succ
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ smulCmmapFn x xs z = (x fun x => z 0) • xs fun i => z i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
apply ContinuousMultilinearMap.opNorm_le_bound
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ‖smulCmmap 𝕜 A B x xs‖ ≤ ‖x‖ * ‖xs‖
case hMp n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ 0 ≤ ‖x‖ * ‖xs‖ case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ‖smulCmmap 𝕜 A B x xs‖ ≤ ‖x‖ * ‖xs‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
bound
case hMp n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ 0 ≤ ‖x‖ * ‖xs‖ case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖
Please generate a tactic in lean4 to solve the state. STATE: case hMp n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ 0 ≤ ‖x‖ * ‖xs‖ case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
intro z
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(smulCmmap 𝕜 A B x xs) z‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (m : Fin (n + 1) → A), ‖(smulCmmap 𝕜 A B x xs) m‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖m i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
rw [smulCmmap_apply]
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(smulCmmap 𝕜 A B x xs) z‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(smulCmmap 𝕜 A B x xs) z‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
have xb := ContinuousMultilinearMap.le_opNorm x fun _ : Fin 1 ↦ z 0
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
have xsb := ContinuousMultilinearMap.le_opNorm xs fun i : Fin n ↦ z i.succ
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
simp only [Finset.univ_unique, Fin.default_eq_zero, Finset.prod_const, Finset.card_singleton, pow_one] at xb xsb
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xb : ‖x fun x => z 0‖ ≤ ‖x‖ * Finset.univ.prod fun i => ‖z 0‖ xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
have e0 := Fin.prod_cons ‖z 0‖ fun i : Fin n ↦ ‖z i.succ‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
have e1 : ‖z 0‖ = (fun i : Fin (n + 1) ↦ ‖z i‖) 0 := rfl
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
have e2 : (fun i : Fin n ↦ ‖z i.succ‖) = Fin.tail fun i : Fin (n + 1) ↦ ‖z i‖ := rfl
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
nth_rw 1 [e1] at e0
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ‖z 0‖ (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
nth_rw 1 [e2] at e0
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (Fin.tail fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (fun i => ‖z i.succ‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
rw [Fin.cons_self_tail (fun i ↦ ‖z i‖)] at e0
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (Fin.tail fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => Fin.cons ((fun i => ‖z i‖) 0) (Fin.tail fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
calc ‖(x fun _ : Fin 1 ↦ z 0) • xs fun i : Fin n ↦ z i.succ‖ _ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i : Fin n ↦ ‖z i.succ‖) := by rw [norm_smul]; bound _ = ‖x‖ * ‖xs‖ * (‖z 0‖ * Finset.univ.prod fun i : Fin n ↦ ‖z i.succ‖) := by ring _ = ‖x‖ * ‖xs‖ * Finset.univ.prod fun i : Fin (n + 1) ↦ ‖z i‖ := by rw [←e0]
case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hM n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
rw [norm_smul]
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖)
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x fun x => z 0‖ * ‖xs fun i => z i.succ‖ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖(x fun x => z 0) • xs fun i => z i.succ‖ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
bound
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x fun x => z 0‖ * ‖xs fun i => z i.succ‖ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖)
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x fun x => z 0‖ * ‖xs fun i => z i.succ‖ ≤ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
ring
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖) = ‖x‖ * ‖xs‖ * (‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖)
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x‖ * ‖z 0‖ * (‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖) = ‖x‖ * ‖xs‖ * (‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smulCmmap_norm
[179, 1]
[198, 81]
rw [←e0]
n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x‖ * ‖xs‖ * (‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖) = ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup A inst✝² : NormedSpace 𝕜 A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B z : Fin (n + 1) → A xsb : ‖xs fun i => z i.succ‖ ≤ ‖xs‖ * Finset.univ.prod fun i => ‖z i.succ‖ xb : ‖x fun x => z 0‖ ≤ ‖x‖ * ‖z 0‖ e0 : (Finset.univ.prod fun i => (fun i => ‖z i‖) i) = ‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖ e1 : ‖z 0‖ = (fun i => ‖z i‖) 0 e2 : (fun i => ‖z i.succ‖) = Fin.tail fun i => ‖z i‖ ⊢ ‖x‖ * ‖xs‖ * (‖z 0‖ * Finset.univ.prod fun i => ‖z i.succ‖) = ‖x‖ * ‖xs‖ * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
induction' n with n h
n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E n k : ℕ a b : 𝕜 x : E ⊢ ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x
case zero n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E ⊢ ((termCmmap 𝕜 0 k x) fun x => (a, b)) = a ^ min k 0 • b ^ (0 - k) • x case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((termCmmap 𝕜 (n + 1) k x) fun x => (a, b)) = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E n k : ℕ a b : 𝕜 x : E ⊢ ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
simp only [termCmmap, ContinuousMultilinearMap.constOfIsEmpty_apply, min_zero, pow_zero, zero_tsub, one_smul, Nat.zero_eq]
case zero n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E ⊢ ((termCmmap 𝕜 0 k x) fun x => (a, b)) = a ^ min k 0 • b ^ (0 - k) • x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero n : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E ⊢ ((termCmmap 𝕜 0 k x) fun x => (a, b)) = a ^ min k 0 • b ^ (0 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [termCmmap, smulCmmap_apply, h]
case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((termCmmap 𝕜 (n + 1) k x) fun x => (a, b)) = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((termCmmap 𝕜 (n + 1) k x) fun x => (a, b)) = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
by_cases nk : n < k
case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
simp [nk]
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((fstCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [fstCmmap_apply]
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((fstCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ ((fstCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
have nsk : n.succ ≤ k := Nat.succ_le_iff.mpr nk
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [min_eq_right nk.le, min_eq_right nsk, Nat.sub_eq_zero_of_le nk.le, Nat.sub_eq_zero_of_le nsk]
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ n • b ^ 0 • x = a ^ n.succ • b ^ 0 • x
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
simp only [pow_zero, one_smul, ← smul_assoc, smul_eq_mul, Nat.succ_eq_add_one, pow_succ']
case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ n • b ^ 0 • x = a ^ n.succ • b ^ 0 • x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : n < k nsk : n.succ ≤ k ⊢ a • a ^ n • b ^ 0 • x = a ^ n.succ • b ^ 0 • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
simp [nk]
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
simp at nk
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : ¬n < k ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [sndCmmap_apply]
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ ((sndCmmap 𝕜 𝕜 𝕜) fun x => (a, b)) • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
have nsk : k ≤ n.succ := Nat.le_succ_of_le nk
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [min_eq_left nk, min_eq_left nsk]
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ k • b ^ (n - k) • x = a ^ k • b ^ (n + 1 - k) • x
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ min k n • b ^ (n - k) • x = a ^ min k (n + 1) • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_apply
[208, 1]
[226, 94]
rw [smul_comm b _, ← smul_assoc b _ _, smul_eq_mul, ← pow_succ', ← Nat.sub_add_comm nk]
case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ k • b ^ (n - k) • x = a ^ k • b ^ (n + 1 - k) • x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜 : Type inst✝⁵ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁴ : Semiring R inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace 𝕜 E inst✝¹ : SMulCommClass 𝕜 𝕜 E inst✝ : IsScalarTower 𝕜 𝕜 E k : ℕ a b : 𝕜 x : E n : ℕ h : ((termCmmap 𝕜 n k x) fun x => (a, b)) = a ^ min k n • b ^ (n - k) • x nk : k ≤ n nsk : k ≤ n.succ ⊢ b • a ^ k • b ^ (n - k) • x = a ^ k • b ^ (n + 1 - k) • x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
induction' n with n nh
n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n k : ℕ x : E ⊢ ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖
case zero n : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E ⊢ ‖termCmmap 𝕜 0 k x‖ ≤ ‖x‖ case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖termCmmap 𝕜 (n + 1) k x‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E n k : ℕ x : E ⊢ ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp only [termCmmap, le_refl, ContinuousMultilinearMap.norm_constOfIsEmpty]
case zero n : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E ⊢ ‖termCmmap 𝕜 0 k x‖ ≤ ‖x‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero n : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E ⊢ ‖termCmmap 𝕜 0 k x‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
rw [termCmmap]
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖termCmmap 𝕜 (n + 1) k x‖ ≤ ‖x‖
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖(fun k x => smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)) k x‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖termCmmap 𝕜 (n + 1) k x‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp only
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖(fun k x => smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)) k x‖ ≤ ‖x‖
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖(fun k x => smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)) k x‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
generalize ht : termCmmap 𝕜 n k x = t
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)‖ ≤ ‖x‖
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) (termCmmap 𝕜 n k x)‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
rw [ht] at nh
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ nh : ‖termCmmap 𝕜 n k x‖ ≤ ‖x‖ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
have tn := smulCmmap_norm (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
by_cases nk : n < k
case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : ¬n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case succ n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp [nk] at tn ⊢
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖fstCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
rw [fstCmmap_norm] at tn
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖fstCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖fstCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp at tn
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
exact _root_.trans tn nh
case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (fstCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp [nk] at tn ⊢
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : ¬n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ nk : ¬n < k ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (if n < k then fstCmmap 𝕜 𝕜 𝕜 else sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
rw [sndCmmap_norm] at tn
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖sndCmmap 𝕜 𝕜 𝕜‖ * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
simp at tn
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ 1 * ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
termCmmap_norm
[228, 1]
[237, 88]
exact _root_.trans tn nh
case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg n✝ : ℕ 𝕜✝ : Type inst✝⁴ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝³ : Semiring R 𝕜 : Type inst✝² : NontriviallyNormedField 𝕜 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace 𝕜 E k : ℕ x : E n : ℕ t : ContinuousMultilinearMap 𝕜 (fun x => 𝕜 × 𝕜) E nh : ‖t‖ ≤ ‖x‖ ht : termCmmap 𝕜 n k x = t nk : ¬n < k tn : ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖t‖ ⊢ ‖smulCmmap 𝕜 (𝕜 × 𝕜) E (sndCmmap 𝕜 𝕜 𝕜) t‖ ≤ ‖x‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.apply_eq_zero_of_eq_zero
[258, 1]
[262, 39]
rw [h, ContinuousLinearMap.map_zero]
n : ℕ 𝕜✝ : Type inst✝⁷ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝⁶ : Semiring R 𝕜 X Y : Type inst✝⁵ : NormedField 𝕜 inst✝⁴ : TopologicalSpace X inst✝³ : NormedAddCommGroup X inst✝² : Module 𝕜 X inst✝¹ : NormedAddCommGroup Y inst✝ : Module 𝕜 Y f : X →L[𝕜] Y x : X h : x = 0 ⊢ f x = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜✝ : Type inst✝⁷ : NontriviallyNormedField 𝕜✝ R A B E : Type inst✝⁶ : Semiring R 𝕜 X Y : Type inst✝⁵ : NormedField 𝕜 inst✝⁴ : TopologicalSpace X inst✝³ : NormedAddCommGroup X inst✝² : Module 𝕜 X inst✝¹ : NormedAddCommGroup Y inst✝ : Module 𝕜 Y f : X →L[𝕜] Y x : X h : x = 0 ⊢ f x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.smulRight_ne_zero
[264, 1]
[273, 8]
rcases ContinuousLinearMap.exists_ne_zero c0 with ⟨x,cx⟩
n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 ⊢ c.smulRight f ≠ 0
case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ c.smulRight f ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 ⊢ c.smulRight f ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.smulRight_ne_zero
[264, 1]
[273, 8]
simp only [Ne, ContinuousLinearMap.ext_iff, not_forall, ContinuousLinearMap.zero_apply, ContinuousLinearMap.smulRight_apply, smul_eq_zero, not_or]
case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ c.smulRight f ≠ 0
case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ ∃ x, ¬c x = 0 ∧ ¬f = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ c.smulRight f ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.smulRight_ne_zero
[264, 1]
[273, 8]
use x
case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ ∃ x, ¬c x = 0 ∧ ¬f = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro n : ℕ 𝕜 : Type inst✝¹¹ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝¹⁰ : Semiring R✝ R A B : Type inst✝⁹ : Ring R inst✝⁸ : TopologicalSpace A inst✝⁷ : AddCommMonoid A inst✝⁶ : TopologicalSpace R inst✝⁵ : Module R A inst✝⁴ : TopologicalSpace B inst✝³ : AddCommMonoid B inst✝² : Module R B inst✝¹ : ContinuousSMul R B inst✝ : NoZeroSMulDivisors R B c : A →L[R] R f : B c0 : c ≠ 0 f0 : f ≠ 0 x : A cx : c x ≠ 0 ⊢ ∃ x, ¬c x = 0 ∧ ¬f = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.one_ne_zero
[275, 1]
[280, 18]
simp only [Ne, ContinuousLinearMap.ext_iff, not_forall, ContinuousLinearMap.zero_apply, ContinuousLinearMap.one_apply]
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R✝ A✝ B E : Type inst✝⁵ : Semiring R✝ R A : Type inst✝⁴ : Ring R inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid A inst✝¹ : Module R A inst✝ : Nontrivial A ⊢ 1 ≠ 0
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R✝ A✝ B E : Type inst✝⁵ : Semiring R✝ R A : Type inst✝⁴ : Ring R inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid A inst✝¹ : Module R A inst✝ : Nontrivial A ⊢ ∃ x, ¬x = 0
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R✝ A✝ B E : Type inst✝⁵ : Semiring R✝ R A : Type inst✝⁴ : Ring R inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid A inst✝¹ : Module R A inst✝ : Nontrivial A ⊢ 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousLinearMap.one_ne_zero
[275, 1]
[280, 18]
apply exists_ne
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R✝ A✝ B E : Type inst✝⁵ : Semiring R✝ R A : Type inst✝⁴ : Ring R inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid A inst✝¹ : Module R A inst✝ : Nontrivial A ⊢ ∃ x, ¬x = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R✝ A✝ B E : Type inst✝⁵ : Semiring R✝ R A : Type inst✝⁴ : Ring R inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid A inst✝¹ : Module R A inst✝ : Nontrivial A ⊢ ∃ x, ¬x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
set n : ℕ+ := ⟨d, lt_of_lt_of_le (by norm_num) d2⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
have two : Nontrivial (rootsOfUnity n ℂ) := by rw [← Fintype.one_lt_card_iff_nontrivial, Complex.card_rootsOfUnity] simp only [PNat.mk_coe, n]; exact lt_of_lt_of_le (by norm_num) d2
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ two : Nontrivial ↥(rootsOfUnity n ℂ) ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
rcases two with ⟨⟨a, am⟩, ⟨b, bm⟩, ab⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ two : Nontrivial ↥(rootsOfUnity n ℂ) ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a : ℂˣ am : a ∈ rootsOfUnity n ℂ b : ℂˣ bm : b ∈ rootsOfUnity n ℂ ab : ⟨a, am⟩ ≠ ⟨b, bm⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ two : Nontrivial ↥(rootsOfUnity n ℂ) ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [Ne, Subtype.mk_eq_mk, mem_rootsOfUnity, PNat.mk_coe] at am bm ab
case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a : ℂˣ am : a ∈ rootsOfUnity n ℂ b : ℂˣ bm : b ∈ rootsOfUnity n ℂ ab : ⟨a, am⟩ ≠ ⟨b, bm⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a : ℂˣ am : a ∈ rootsOfUnity n ℂ b : ℂˣ bm : b ∈ rootsOfUnity n ℂ ab : ⟨a, am⟩ ≠ ⟨b, bm⟩ ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
by_cases a1 : a = 1
case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
case pos S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 case neg S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case mk.intro.mk.intro.mk S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
norm_num
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d ⊢ 0 < 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d ⊢ 0 < 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
rw [← Fintype.one_lt_card_iff_nontrivial, Complex.card_rootsOfUnity]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ Nontrivial ↥(rootsOfUnity n ℂ)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < ↑n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ Nontrivial ↥(rootsOfUnity n ℂ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [PNat.mk_coe, n]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < ↑n
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < d
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < ↑n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
exact lt_of_lt_of_le (by norm_num) d2
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < d
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
norm_num
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ ⊢ 1 < 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
use b
case pos S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
rw [a1] at ab
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
constructor
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1
case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1 case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1 ∧ ↑b ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [ne_eq, Units.val_eq_one, Ne.symm ab, not_false_eq_true]
case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [PNat.mk_coe, n] at bm
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ d = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
rw [← Units.val_pow_eq_pow_val, bm, Units.val_one]
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ d = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ d = 1 ab : ¬1 = b a1 : a = 1 ⊢ ↑b ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
use a
case neg S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1 ∧ ↑a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ∃ a, a ≠ 1 ∧ a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
constructor
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1 ∧ ↑a ^ d = 1
case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1 case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1 ∧ ↑a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [ne_eq, Units.val_eq_one, a1, not_false_eq_true]
case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
simp only [PNat.mk_coe, n] at am
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ d = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1
Please generate a tactic in lean4 to solve the state. STATE: case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ ↑n = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
exist_root_of_unity
[36, 1]
[49, 91]
rw [← Units.val_pow_eq_pow_val, am, Units.val_one]
case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ d = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T d : ℕ d2 : 2 ≤ d n : ℕ+ := ⟨d, ⋯⟩ a b : ℂˣ am : a ^ d = 1 bm : b ^ ↑n = 1 ab : ¬a = b a1 : ¬a = 1 ⊢ ↑a ^ d = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rcases s.superNear with ⟨t, s⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s : SuperAt f d ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s : SuperAt f d ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have ba : AnalyticAt ℂ (bottcherNear f d) 0 := bottcherNear_analytic_z s _ s.t0
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 := by rw [mfderiv_eq_fderiv, ← deriv_fderiv, (bottcherNear_monic s).deriv] exact ContinuousLinearMap.smulRight_ne_zero ContinuousLinearMap.one_ne_zero (by norm_num)
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rcases complex_inverse_fun' (ba.holomorphicAt I I) nc with ⟨i, ia, ib, bi⟩
case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i (bottcherNear f d 0) ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 (bottcherNear f d 0), bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [bottcherNear_zero] at bi ia
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i (bottcherNear f d 0) ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 (bottcherNear f d 0), bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i (bottcherNear f d 0) ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 (bottcherNear f d 0), bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have i0 : i 0 = 0 := by nth_rw 1 [← bottcherNear_zero]; rw [ib.self_of_nhds]
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have inj : ∀ᶠ p : ℂ × ℂ in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 := by refine ia.local_inj ?_ have d0 : mfderiv I I (fun z : ℂ ↦ z) 0 ≠ 0 := id_mderiv_ne_zero rw [(Filter.EventuallyEq.symm ib).mfderiv_eq] at d0 rw [←Function.comp_def, mfderiv_comp 0 _ ba.differentiableAt.mdifferentiableAt] at d0 simp only [Ne, mderiv_comp_eq_zero_iff, nc, or_false_iff] at d0 rw [bottcherNear_zero] at d0; exact d0 rw [bottcherNear_zero]; exact ia.mdifferentiableAt
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rcases exist_root_of_unity s.d2 with ⟨a, a1, ad⟩
case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine ⟨fun z ↦ i (a * bottcherNear f d z), ?_, ?_, ?_⟩
case intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ AnalyticAt ℂ (fun z => i (a * bottcherNear f d z)) 0 case intro.intro.intro.intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ (fun z => i (a * bottcherNear f d z)) 0 = 0 case intro.intro.intro.intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, (fun z => i (a * bottcherNear f d z)) z ≠ z ∧ f ((fun z => i (a * bottcherNear f d z)) z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ℂ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ ∃ g, AnalyticAt ℂ g 0 ∧ g 0 = 0 ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [mfderiv_eq_fderiv, ← deriv_fderiv, (bottcherNear_monic s).deriv]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ mfderiv I I (bottcherNear f d) 0 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ mfderiv I I (bottcherNear f d) 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
exact ContinuousLinearMap.smulRight_ne_zero ContinuousLinearMap.one_ne_zero (by norm_num)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ ContinuousLinearMap.smulRight 1 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
norm_num
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ 1 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 ⊢ 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
nth_rw 1 [← bottcherNear_zero]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ i 0 = 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ i (bottcherNear ?m.13266 ?m.13267 0) = 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℂ → ℂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℕ
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ i 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [ib.self_of_nhds]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ i (bottcherNear ?m.13266 ?m.13267 0) = 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℂ → ℂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℕ
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ i (bottcherNear ?m.13266 ?m.13267 0) = 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℂ → ℂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x ⊢ ℕ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine ia.local_inj ?_
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ ∀ᶠ (p : ℂ × ℂ) in 𝓝 (0, 0), i p.1 = i p.2 → p.1 = p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have d0 : mfderiv I I (fun z : ℂ ↦ z) 0 ≠ 0 := id_mderiv_ne_zero
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun z => z) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [(Filter.EventuallyEq.symm ib).mfderiv_eq] at d0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun z => z) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun x => i (bottcherNear f d x)) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun z => z) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [←Function.comp_def, mfderiv_comp 0 _ ba.differentiableAt.mdifferentiableAt] at d0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun x => i (bottcherNear f d x)) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : (mfderiv I I i (bottcherNear f d 0)).comp (mfderiv I I (bottcherNear f d) 0) ≠ 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (fun x => i (bottcherNear f d x)) 0 ≠ 0 ⊢ mfderiv I I i 0 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [Ne, mderiv_comp_eq_zero_iff, nc, or_false_iff] at d0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : (mfderiv I I i (bottcherNear f d 0)).comp (mfderiv I I (bottcherNear f d) 0) ≠ 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i (bottcherNear f d 0) = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : (mfderiv I I i (bottcherNear f d 0)).comp (mfderiv I I (bottcherNear f d) 0) ≠ 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [bottcherNear_zero] at d0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i (bottcherNear f d 0) = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i (bottcherNear f d 0) = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
exact d0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : ¬mfderiv I I i 0 = 0 ⊢ mfderiv I I i 0 ≠ 0 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ d : ℕ s✝ : SuperAt f d t : Set ℂ s : SuperNear f d t ba : AnalyticAt ℂ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ℂ → ℂ ia : HolomorphicAt I I i 0 ib : ∀ᶠ (x : ℂ) in 𝓝 0, i (bottcherNear f d x) = x bi : ∀ᶠ (x : ℂ) in 𝓝 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0) TACTIC: