url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [bottcherNear_zero]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0)
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i (bottcherNear f d 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
exact ia.mdifferentiableAt
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 d0 : mfderiv I I (i ∘ fun x => bottcherNear f d x) 0 ≠ 0 ⊢ MDifferentiableAt I I i 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
apply HolomorphicAt.analyticAt I I
case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ AnalyticAt ā„‚ (fun z => i (a * bottcherNear f d z)) 0
case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ HolomorphicAt I I (fun z => i (a * bottcherNear f d z)) 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ AnalyticAt ā„‚ (fun z => i (a * bottcherNear f d z)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine ia.comp_of_eq (holomorphicAt_const.mul (ba.holomorphicAt I I)) ?_
case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ HolomorphicAt I I (fun z => i (a * bottcherNear f d z)) 0
case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ a * bottcherNear f d 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ HolomorphicAt I I (fun z => i (a * bottcherNear f d z)) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [bottcherNear_zero, s.f0, MulZeroClass.mul_zero]
case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ a * bottcherNear f d 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ a * bottcherNear f d 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0]
case intro.intro.intro.intro.intro.intro.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ (fun z => i (a * bottcherNear f d z)) 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ (fun z => i (a * bottcherNear f d z)) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [eventually_nhdsWithin_iff, mem_compl_singleton_iff]
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, (fun z => i (a * bottcherNear f d z)) z ≠ z ∧ f ((fun z => i (a * bottcherNear f d z)) z) = f z
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, (fun z => i (a * bottcherNear f d z)) z ≠ z ∧ f ((fun z => i (a * bottcherNear f d z)) z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have t0 : ContinuousAt (fun z ↦ a * bottcherNear f d z) 0 := continuousAt_const.mul ba.continuousAt
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have t1 : ContinuousAt (fun z ↦ f (i (a * bottcherNear f d z))) 0 := by refine s.fa0.continuousAt.comp_of_eq (ia.continuousAt.comp_of_eq t0 ?_) ?_ repeat' simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0]
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have t2 : ContinuousAt f 0 := s.fa0.continuousAt
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have m0 : āˆ€į¶  z in š“ 0, i (a * bottcherNear f d z) ∈ t := by refine (ia.continuousAt.comp_of_eq t0 ?_).eventually_mem (s.o.mem_nhds ?_) repeat' simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0, s.t0, Function.comp]
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have m1 : āˆ€į¶  z in š“ 0, z ∈ t := s.o.eventually_mem s.t0
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [ContinuousAt, bottcherNear_zero, MulZeroClass.mul_zero, i0, s.f0] at t0 t1 t2
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have tp := t0.prod_mk ba.continuousAt
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ 0 Ć—Ė¢ š“ (bottcherNear f d 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [← nhds_prod_eq, ContinuousAt, bottcherNear_zero] at tp
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ 0 Ć—Ė¢ š“ (bottcherNear f d 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ 0 Ć—Ė¢ š“ (bottcherNear f d 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
apply (tp.eventually inj).mp
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine ib.mp (bi.mp ((t1.eventually ib).mp ((t0.eventually bi).mp ((t2.eventually ib).mp (m0.mp (m1.mp ?_))))))
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ t → i (a * bottcherNear f d x) ∈ t → i (bottcherNear f d (f x)) = f x → bottcherNear f d (i (a * bottcherNear f d x)) = a * bottcherNear f d x → i (bottcherNear f d (f (i (a * bottcherNear f d x)))) = f (i (a * bottcherNear f d x)) → bottcherNear f d (i x) = x → i (bottcherNear f d x) = x → (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine eventually_of_forall fun z m1 m0 t2 t0 t1 _ ib tp z0 ↦ ⟨?_, ?_⟩
case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ t → i (a * bottcherNear f d x) ∈ t → i (bottcherNear f d (f x)) = f x → bottcherNear f d (i (a * bottcherNear f d x)) = a * bottcherNear f d x → i (bottcherNear f d (f (i (a * bottcherNear f d x)))) = f (i (a * bottcherNear f d x)) → bottcherNear f d (i x) = x → i (bottcherNear f d x) = x → (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ i (a * bottcherNear f d z) ≠ z case intro.intro.intro.intro.intro.intro.refine_3.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ f (i (a * bottcherNear f d z)) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0 : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1 : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0 : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1 : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2 : Tendsto f (š“ 0) (š“ 0) tp : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ t → i (a * bottcherNear f d x) ∈ t → i (bottcherNear f d (f x)) = f x → bottcherNear f d (i (a * bottcherNear f d x)) = a * bottcherNear f d x → i (bottcherNear f d (f (i (a * bottcherNear f d x)))) = f (i (a * bottcherNear f d x)) → bottcherNear f d (i x) = x → i (bottcherNear f d x) = x → (i (a * bottcherNear f d x, bottcherNear f d x).1 = i (a * bottcherNear f d x, bottcherNear f d x).2 → (a * bottcherNear f d x, bottcherNear f d x).1 = (a * bottcherNear f d x, bottcherNear f d x).2) → x ≠ 0 → i (a * bottcherNear f d x) ≠ x ∧ f (i (a * bottcherNear f d x)) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine s.fa0.continuousAt.comp_of_eq (ia.continuousAt.comp_of_eq t0 ?_) ?_
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0
case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ i (a * bottcherNear f d 0) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
repeat' simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0]
case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ i (a * bottcherNear f d 0) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ i (a * bottcherNear f d 0) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0]
case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ i (a * bottcherNear f d 0) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 ⊢ i (a * bottcherNear f d 0) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
refine (ia.continuousAt.comp_of_eq t0 ?_).eventually_mem (s.o.mem_nhds ?_)
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t
case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ (i ∘ fun z => a * bottcherNear f d z) 0 ∈ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
repeat' simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0, s.t0, Function.comp]
case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ (i ∘ fun z => a * bottcherNear f d z) 0 ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ a * bottcherNear f d 0 = 0 case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ (i ∘ fun z => a * bottcherNear f d z) 0 ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [bottcherNear_zero, MulZeroClass.mul_zero, i0, s.t0, Function.comp]
case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ (i ∘ fun z => a * bottcherNear f d z) 0 ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ib : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 t0 : ContinuousAt (fun z => a * bottcherNear f d z) 0 t1 : ContinuousAt (fun z => f (i (a * bottcherNear f d z))) 0 t2 : ContinuousAt f 0 ⊢ (i ∘ fun z => a * bottcherNear f d z) 0 ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
contrapose tp
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ i (a * bottcherNear f d z) ≠ z
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : ¬i (a * bottcherNear f d z) ≠ z ⊢ ¬(i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ i (a * bottcherNear f d z) ≠ z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [ne_eq, Decidable.not_not, Classical.not_imp] at tp ⊢
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : ¬i (a * bottcherNear f d z) ≠ z ⊢ ¬(i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2)
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = i (bottcherNear f d z) ∧ ¬a * bottcherNear f d z = bottcherNear f d z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : ¬i (a * bottcherNear f d z) ≠ z ⊢ ¬(i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [ib]
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = i (bottcherNear f d z) ∧ ¬a * bottcherNear f d z = bottcherNear f d z
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = z ∧ ¬a * bottcherNear f d z = bottcherNear f d z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = i (bottcherNear f d z) ∧ ¬a * bottcherNear f d z = bottcherNear f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
use tp
case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = z ∧ ¬a * bottcherNear f d z = bottcherNear f d z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ ¬a * bottcherNear f d z = bottcherNear f d z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ i (a * bottcherNear f d z) = z ∧ ¬a * bottcherNear f d z = bottcherNear f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
contrapose a1
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ ¬a * bottcherNear f d z = bottcherNear f d z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : ¬¬a * bottcherNear f d z = bottcherNear f d z ⊢ ¬a ≠ 1
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z ⊢ ¬a * bottcherNear f d z = bottcherNear f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
simp only [not_not] at a1 ⊢
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : ¬¬a * bottcherNear f d z = bottcherNear f d z ⊢ ¬a ≠ 1
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z ⊢ a = 1
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : ¬¬a * bottcherNear f d z = bottcherNear f d z ⊢ ¬a ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
have b0 := bottcherNear_ne_zero s m1 z0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z ⊢ a = 1
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a = 1
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z ⊢ a = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
calc a _ = a * bottcherNear f d z / bottcherNear f d z := by field_simp [b0] _ = bottcherNear f d z / bottcherNear f d z := by rw [a1] _ = 1 := div_self b0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
field_simp [b0]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a = a * bottcherNear f d z / bottcherNear f d z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a = a * bottcherNear f d z / bottcherNear f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [a1]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a * bottcherNear f d z / bottcherNear f d z = bottcherNear f d z / bottcherNear f d z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z z0 : z ≠ 0 tp : i (a * bottcherNear f d z) = z a1 : a * bottcherNear f d z = bottcherNear f d z b0 : bottcherNear f d z ≠ 0 ⊢ a * bottcherNear f d z / bottcherNear f d z = bottcherNear f d z / bottcherNear f d z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
SuperAt.not_local_inj
[54, 1]
[104, 94]
rw [← t1, bottcherNear_eqn s m0, t0, mul_pow, ad, one_mul, ← bottcherNear_eqn s m1, t2]
case intro.intro.intro.intro.intro.intro.refine_3.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ f (i (a * bottcherNear f d z)) = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.refine_3.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ d : ā„• sāœ : SuperAt f d t : Set ā„‚ s : SuperNear f d t ba : AnalyticAt ā„‚ (bottcherNear f d) 0 nc : mfderiv I I (bottcherNear f d) 0 ≠ 0 i : ā„‚ → ā„‚ ia : HolomorphicAt I I i 0 ibāœ : āˆ€į¶  (x : ā„‚) in š“ 0, i (bottcherNear f d x) = x bi : āˆ€į¶  (x : ā„‚) in š“ 0, bottcherNear f d (i x) = x i0 : i 0 = 0 inj : āˆ€į¶  (p : ā„‚ Ɨ ā„‚) in š“ (0, 0), i p.1 = i p.2 → p.1 = p.2 a : ā„‚ a1 : a ≠ 1 ad : a ^ d = 1 m0āœ : āˆ€į¶  (z : ā„‚) in š“ 0, i (a * bottcherNear f d z) ∈ t m1āœ : āˆ€į¶  (z : ā„‚) in š“ 0, z ∈ t t0āœ : Tendsto (fun z => a * bottcherNear f d z) (š“ 0) (š“ 0) t1āœ : Tendsto (fun z => f (i (a * bottcherNear f d z))) (š“ 0) (š“ 0) t2āœ : Tendsto f (š“ 0) (š“ 0) tpāœ : Tendsto (fun x => (a * bottcherNear f d x, bottcherNear f d x)) (š“ 0) (š“ (0, 0)) z : ā„‚ m1 : z ∈ t m0 : i (a * bottcherNear f d z) ∈ t t2 : i (bottcherNear f d (f z)) = f z t0 : bottcherNear f d (i (a * bottcherNear f d z)) = a * bottcherNear f d z t1 : i (bottcherNear f d (f (i (a * bottcherNear f d z)))) = f (i (a * bottcherNear f d z)) xāœ : bottcherNear f d (i z) = z ib : i (bottcherNear f d z) = z tp : i (a * bottcherNear f d z, bottcherNear f d z).1 = i (a * bottcherNear f d z, bottcherNear f d z).2 → (a * bottcherNear f d z, bottcherNear f d z).1 = (a * bottcherNear f d z, bottcherNear f d z).2 z0 : z ≠ 0 ⊢ f (i (a * bottcherNear f d z)) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
by_cases o0 : orderAt f 0 = 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have o1 : orderAt f 0 ≠ 1 := by have d := df.deriv; contrapose d; simp only [not_not] at d exact deriv_ne_zero_of_orderAt_eq_one d
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have d2 : 2 ≤ orderAt f 0 := by rw [Nat.two_le_iff]; use o0, o1
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
clear o1 df f0
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
set a := leadingCoeff f 0
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have a0 : a ≠ 0 := leadingCoeff_ne_zero fa o0
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
set g := fun z ↦ a⁻¹ • f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have s : SuperAt g (orderAt f 0) := { d2 fa0 := analyticAt_const.mul fa fd := by rw [orderAt_const_smul (inv_ne_zero a0)] fc := by rw [leadingCoeff_const_smul]; simp only [smul_eq_mul, inv_mul_cancel a0] }
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rcases s.not_local_inj with ⟨h, ha, h0, e⟩
case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case neg.intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
use h, ha, h0
case neg.intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ f (h z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
refine e.mp (eventually_of_forall ?_)
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ f (h z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€ (x : ā„‚), h x ≠ x ∧ g (h x) = g x → h x ≠ x ∧ f (h x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ f (h z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
intro z ⟨h0, hz⟩
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€ (x : ā„‚), h x ≠ x ∧ g (h x) = g x → h x ≠ x ∧ f (h x) = f x
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ h z ≠ z ∧ f (h z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0 : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z ⊢ āˆ€ (x : ā„‚), h x ≠ x ∧ g (h x) = g x → h x ≠ x ∧ f (h x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
use h0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ h z ≠ z ∧ f (h z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ f (h z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ h z ≠ z ∧ f (h z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
exact (IsUnit.smul_left_cancel (Ne.isUnit (inv_ne_zero a0))).mp hz
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ f (h z) = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z s : SuperAt g (orderAt f 0) h : ā„‚ → ā„‚ ha : AnalyticAt ā„‚ h 0 h0āœ : h 0 = 0 e : āˆ€į¶  (z : ā„‚) in š“[≠] 0, h z ≠ z ∧ g (h z) = g z z : ā„‚ h0 : h z ≠ z hz : g (h z) = g z ⊢ f (h z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
simp only [orderAt_eq_zero_iff fa, f0, Ne, eq_self_iff_true, not_true, or_false_iff] at o0
case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : orderAt f 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
use fun z ↦ -z, (analyticAt_id _ _).neg, neg_zero
case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, -z ≠ z ∧ f (-z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ ∃ g, AnalyticAt ā„‚ g 0 ∧ g 0 = 0 ∧ āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [eventually_nhdsWithin_iff]
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, -z ≠ z ∧ f (-z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] 0, -z ≠ z ∧ f (-z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have e0 : āˆ€į¶  z in š“ 0, f (-z) = 0 := by nth_rw 1 [← neg_zero] at o0; exact continuousAt_neg.eventually o0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
refine o0.mp (e0.mp (eventually_of_forall fun z f0' f0 z0 ↦ ?_))
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ∈ {0}ᶜ ⊢ -z ≠ z ∧ f (-z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 ⊢ āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → -x ≠ x ∧ f (-x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
simp only [mem_compl_singleton_iff] at z0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ∈ {0}ᶜ ⊢ -z ≠ z ∧ f (-z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ∈ {0}ᶜ ⊢ -z ≠ z ∧ f (-z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [Pi.zero_apply] at f0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [f0, f0', eq_self_iff_true, and_true_iff, Ne, neg_eq_self_iff]
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ ¬z = 0
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ -z ≠ z ∧ f (-z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
exact z0
case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ ¬z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0āœ : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 e0 : āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 z : ā„‚ f0' : f (-z) = 0 f0 : f z = 0 z0 : z ≠ 0 ⊢ ¬z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
nth_rw 1 [← neg_zero] at o0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ (-0)).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ 0).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
exact continuousAt_neg.eventually o0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ (-0)).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : (š“ (-0)).EventuallyEq f 0 ⊢ āˆ€į¶  (z : ā„‚) in š“ 0, f (-z) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
have d := df.deriv
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 ⊢ orderAt f 0 ≠ 1
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : deriv f 0 = 0 ⊢ orderAt f 0 ≠ 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 ⊢ orderAt f 0 ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
contrapose d
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : deriv f 0 = 0 ⊢ orderAt f 0 ≠ 1
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : ¬orderAt f 0 ≠ 1 ⊢ ¬deriv f 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : deriv f 0 = 0 ⊢ orderAt f 0 ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
simp only [not_not] at d
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : ¬orderAt f 0 ≠ 1 ⊢ ¬deriv f 0 = 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : orderAt f 0 = 1 ⊢ ¬deriv f 0 = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : ¬orderAt f 0 ≠ 1 ⊢ ¬deriv f 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
exact deriv_ne_zero_of_orderAt_eq_one d
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : orderAt f 0 = 1 ⊢ ¬deriv f 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 d : orderAt f 0 = 1 ⊢ ¬deriv f 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [Nat.two_le_iff]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ 2 ≤ orderAt f 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ orderAt f 0 ≠ 0 ∧ orderAt f 0 ≠ 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ 2 ≤ orderAt f 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
use o0, o1
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ orderAt f 0 ≠ 0 ∧ orderAt f 0 ≠ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 df : HasDerivAt f 0 0 f0 : f 0 = 0 o0 : ¬orderAt f 0 = 0 o1 : orderAt f 0 ≠ 1 ⊢ orderAt f 0 ≠ 0 ∧ orderAt f 0 ≠ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [orderAt_const_smul (inv_ne_zero a0)]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ orderAt g 0 = orderAt f 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ orderAt g 0 = orderAt f 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
rw [leadingCoeff_const_smul]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ leadingCoeff g 0 = 1
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ a⁻¹ • leadingCoeff (fun z => f z) 0 = 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ leadingCoeff g 0 = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero'
[108, 1]
[135, 69]
simp only [smul_eq_mul, inv_mul_cancel a0]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ a⁻¹ • leadingCoeff (fun z => f z) 0 = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ fa : AnalyticAt ā„‚ f 0 o0 : ¬orderAt f 0 = 0 d2 : 2 ≤ orderAt f 0 a : ā„‚ := leadingCoeff f 0 a0 : a ≠ 0 g : ā„‚ → ā„‚ := fun z => a⁻¹ • f z ⊢ a⁻¹ • leadingCoeff (fun z => f z) 0 = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
set f' := fun z ↦ f (z + c) - f c
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have fa' : AnalyticAt ā„‚ f' 0 := AnalyticAt.sub (AnalyticAt.comp (by simp only [zero_add, fa]) ((analyticAt_id _ _).add analyticAt_const)) analyticAt_const
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have df' : HasDerivAt f' (0 * 1) 0 := by refine HasDerivAt.sub_const ?_ _ have e : (fun z ↦ f (z + c)) = f ∘ fun z ↦ z + c := rfl rw [e]; apply HasDerivAt.comp; simp only [zero_add, df] exact HasDerivAt.add_const (hasDerivAt_id _) _
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' (0 * 1) 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [MulZeroClass.zero_mul] at df'
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' (0 * 1) 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' (0 * 1) 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have f0' : (fun z ↦ f (z + c) - f c) 0 = 0 := by simp only [zero_add, sub_self]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rcases not_local_inj_of_deriv_zero' fa' df' f0' with ⟨g, ga, e, h⟩
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
clear fa df fa' df'
case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine ⟨fun z ↦ g (z - c) + c, ?_, ?_, ?_⟩
case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ā„‚ (fun z => g (z - c) + c) c case intro.intro.intro.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ā„‚ g c ∧ g c = c ∧ āˆ€į¶  (z : ā„‚) in š“[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, fa]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c ⊢ AnalyticAt ā„‚ f (0 + c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c ⊢ AnalyticAt ā„‚ f (0 + c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine HasDerivAt.sub_const ?_ _
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ HasDerivAt f' (0 * 1) 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ HasDerivAt f' (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have e : (fun z ↦ f (z + c)) = f ∘ fun z ↦ z + c := rfl
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rw [e]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
apply HasDerivAt.comp
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0
case hhā‚‚ S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, df]
case hhā‚‚ S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
Please generate a tactic in lean4 to solve the state. STATE: case hhā‚‚ S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact HasDerivAt.add_const (hasDerivAt_id _) _
case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hh S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, sub_self]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 ⊢ (fun z => f (z + c) - f c) 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ fa : AnalyticAt ā„‚ f c df : HasDerivAt f 0 c f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c fa' : AnalyticAt ā„‚ f' 0 df' : HasDerivAt f' 0 0 ⊢ (fun z => f (z + c) - f c) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact AnalyticAt.add (AnalyticAt.comp (by simp only [sub_self, ga]) ((analyticAt_id _ _).sub analyticAt_const)) analyticAt_const
case intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ā„‚ (fun z => g (z - c) + c) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ā„‚ (fun z => g (z - c) + c) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_self, ga]
S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ā„‚ g (c - c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ā„‚ g (c - c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_self, e, zero_add]
case intro.intro.intro.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_2 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [eventually_nhdsWithin_iff] at h ⊢
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (z : ā„‚) in š“[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ āˆ€į¶  (z : ā„‚) in š“[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have sc : Tendsto (fun z ↦ z - c) (š“ c) (š“ 0) := by rw [← sub_self c]; exact continuousAt_id.sub continuousAt_const
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine (sc.eventually h).mp (eventually_of_forall ?_)
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€į¶  (x : ā„‚) in š“ c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [mem_compl_singleton_iff, sub_ne_zero]
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
intro z h zc
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 h : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) ⊢ āˆ€ (x : ā„‚), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rcases h zc with ⟨gz, ff⟩
case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
constructor
case intro.intro.intro.refine_3.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
contrapose gz
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [not_not] at gz ⊢
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
nth_rw 2 [← gz]
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
ring
case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_left_inj, sub_add_cancel, f'] at ff
case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f (g (z - c) + c) = f z ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type instāœāµ : TopologicalSpace S instāœā“ : ChartedSpace ā„‚ S instāœĀ³ : AnalyticManifold I S T : Type instāœĀ² : TopologicalSpace T instāœĀ¹ : ChartedSpace ā„‚ T instāœ : AnalyticManifold I T f : ā„‚ → ā„‚ c : ā„‚ f' : ā„‚ → ā„‚ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ā„‚ → ā„‚ ga : AnalyticAt ā„‚ g 0 e : g 0 = 0 hāœ : āˆ€į¶  (x : ā„‚) in š“ 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (š“ c) (š“ 0) z : ā„‚ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC: