url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
analyticAt_log
[65, 1]
[69, 35]
filter_upwards [Complex.isOpen_slitPlane.eventually_mem m]
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m : c ∈ Complex.slitPlane ⊢ ∀ᶠ (z : ℂ) in 𝓝 c, DifferentiableAt ℂ log z
case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m : c ∈ Complex.slitPlane ⊢ ∀ a ∈ Complex.slitPlane, DifferentiableAt ℂ log a
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m : c ∈ Complex.slitPlane ⊢ ∀ᶠ (z : ℂ) in 𝓝 c, DifferentiableAt ℂ log z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
analyticAt_log
[65, 1]
[69, 35]
intro z m
case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m : c ∈ Complex.slitPlane ⊢ ∀ a ∈ Complex.slitPlane, DifferentiableAt ℂ log a
case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m✝ : c ∈ Complex.slitPlane z : ℂ m : z ∈ Complex.slitPlane ⊢ DifferentiableAt ℂ log z
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m : c ∈ Complex.slitPlane ⊢ ∀ a ∈ Complex.slitPlane, DifferentiableAt ℂ log a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
analyticAt_log
[65, 1]
[69, 35]
exact differentiableAt_id.clog m
case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m✝ : c ∈ Complex.slitPlane z : ℂ m : z ∈ Complex.slitPlane ⊢ DifferentiableAt ℂ log z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F c : ℂ m✝ : c ∈ Complex.slitPlane z : ℂ m : z ∈ Complex.slitPlane ⊢ DifferentiableAt ℂ log z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
have fc : f c ≠ 0 := Complex.slitPlane_ne_zero m
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
have e : (fun z ↦ f z ^ g z) =ᶠ[𝓝 c] fun z ↦ Complex.exp (Complex.log (f z) * g z) := by refine (fa.continuousAt.eventually_ne fc).mp (Filter.eventually_of_forall ?_) intro z fz; simp only [fz, Complex.cpow_def, if_false]
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
rw [analyticAt_congr e]
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => ((f z).log * g z).exp) c
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => f z ^ g z) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
exact AnalyticAt.exp.comp ((fa.log m).mul ga)
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => ((f z).log * g z).exp) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 e : (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp ⊢ AnalyticAt ℂ (fun z => ((f z).log * g z).exp) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
refine (fa.continuousAt.eventually_ne fc).mp (Filter.eventually_of_forall ?_)
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ ∀ (x : E), f x ≠ 0 → (fun z => f z ^ g z) x = (fun z => ((f z).log * g z).exp) x
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ (𝓝 c).EventuallyEq (fun z => f z ^ g z) fun z => ((f z).log * g z).exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
intro z fz
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ ∀ (x : E), f x ≠ 0 → (fun z => f z ^ g z) x = (fun z => ((f z).log * g z).exp) x
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 z : E fz : f z ≠ 0 ⊢ (fun z => f z ^ g z) z = (fun z => ((f z).log * g z).exp) z
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 ⊢ ∀ (x : E), f x ≠ 0 → (fun z => f z ^ g z) x = (fun z => ((f z).log * g z).exp) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Analytic/HolomorphicUpstream.lean
AnalyticAt.cpow
[82, 1]
[89, 48]
simp only [fz, Complex.cpow_def, if_false]
E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 z : E fz : f z ≠ 0 ⊢ (fun z => f z ^ g z) z = (fun z => ((f z).log * g z).exp) z
no goals
Please generate a tactic in lean4 to solve the state. STATE: E : Type inst✝⁵ : NormedAddCommGroup E inst✝⁴ : NormedSpace ℂ E inst✝³ : CompleteSpace E F : Type inst✝² : NormedAddCommGroup F inst✝¹ : NormedSpace ℂ F inst✝ : CompleteSpace F f g : E → ℂ c : E fa : AnalyticAt ℂ f c ga : AnalyticAt ℂ g c m : f c ∈ Complex.slitPlane fc : f c ≠ 0 z : E fz : f z ≠ 0 ⊢ (fun z => f z ^ g z) z = (fun z => ((f z).log * g z).exp) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousMultilinearMap.toFun_eq_coe
[30, 1]
[33, 41]
rw [MultilinearMap.toFun_eq_coe]
n : ℕ 𝕜 : Type inst✝⁸ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝⁷ : Semiring R✝ R A B : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B f : ContinuousMultilinearMap R (fun x => A) B ⊢ f.toFun = ⇑f
n : ℕ 𝕜 : Type inst✝⁸ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝⁷ : Semiring R✝ R A B : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B f : ContinuousMultilinearMap R (fun x => A) B ⊢ ⇑f.toMultilinearMap = ⇑f
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁸ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝⁷ : Semiring R✝ R A B : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B f : ContinuousMultilinearMap R (fun x => A) B ⊢ f.toFun = ⇑f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
ContinuousMultilinearMap.toFun_eq_coe
[30, 1]
[33, 41]
simp
n : ℕ 𝕜 : Type inst✝⁸ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝⁷ : Semiring R✝ R A B : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B f : ContinuousMultilinearMap R (fun x => A) B ⊢ ⇑f.toMultilinearMap = ⇑f
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁸ : NontriviallyNormedField 𝕜 R✝ A✝ B✝ E : Type inst✝⁷ : Semiring R✝ R A B : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B f : ContinuousMultilinearMap R (fun x => A) B ⊢ ⇑f.toMultilinearMap = ⇑f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_apply
[47, 1]
[50, 34]
simp only [fstCmmap, ContinuousMultilinearMap.ofSubsingleton_apply_apply, ContinuousLinearMap.coe_fst']
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B a : A b : B ⊢ ((fstCmmap R A B) fun x => (a, b)) = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B a : A b : B ⊢ ((fstCmmap R A B) fun x => (a, b)) = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_apply
[52, 1]
[55, 34]
simp only [sndCmmap, ContinuousMultilinearMap.ofSubsingleton_apply_apply, ContinuousLinearMap.coe_snd']
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B a : A b : B ⊢ ((sndCmmap R A B) fun x => (a, b)) = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : AddCommMonoid A inst✝⁴ : Module R A inst✝³ : TopologicalSpace A inst✝² : AddCommMonoid B inst✝¹ : Module R B inst✝ : TopologicalSpace B a : A b : B ⊢ ((sndCmmap R A B) fun x => (a, b)) = b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
apply le_antisymm
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fstCmmap 𝕜 A B‖ = 1
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fstCmmap 𝕜 A B‖ ≤ 1 case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fstCmmap 𝕜 A B‖ = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
refine (fstCmmap 𝕜 A B).op_norm_le_bound (M := 1) (by norm_num) ?_
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fstCmmap 𝕜 A B‖ ≤ 1
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(fstCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fstCmmap 𝕜 A B‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
intro z
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(fstCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(fstCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
simp only [Finset.univ_unique, Fin.default_eq_zero, Finset.prod_singleton, one_mul]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
have e : z = (fun _ ↦ ((z 0).1, (z 0).2)) := by apply funext; intro i; rw [Fin.eq_zero i]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
rw [e]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) z‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
rw [fstCmmap_apply]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(fstCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
simp
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
exact norm_fst_le (z 0)
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖z 0‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).1‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
norm_num
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
apply funext
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ z = fun x => ((z 0).1, (z 0).2)
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ z = fun x => ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
intro i
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2)
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2)
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
rw [Fin.eq_zero i]
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
have lo := (fstCmmap 𝕜 A B).unit_le_op_norm (fun _ ↦ (1, 1)) ?_
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(fstCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
rw [fstCmmap_apply, norm_one] at lo
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(fstCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(fstCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
assumption
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖fstCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖fstCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
rw [pi_norm_le_iff_of_nonneg]
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
intro i
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
simp only [Prod.norm_def, norm_one, max_eq_right]
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
repeat norm_num
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
fstCmmap_norm
[57, 1]
[68, 20]
norm_num
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
apply le_antisymm
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖sndCmmap 𝕜 A B‖ = 1
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖sndCmmap 𝕜 A B‖ ≤ 1 case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖sndCmmap 𝕜 A B‖ = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
apply (sndCmmap 𝕜 A B).op_norm_le_bound (M := 1) (by norm_num)
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖sndCmmap 𝕜 A B‖ ≤ 1
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(sndCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖sndCmmap 𝕜 A B‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
intro z
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(sndCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (m : Fin 1 → A × B), ‖(sndCmmap 𝕜 A B) m‖ ≤ 1 * Finset.univ.prod fun i => ‖m i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
simp only [Finset.univ_unique, Fin.default_eq_zero, Finset.prod_singleton, one_mul]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ 1 * Finset.univ.prod fun i => ‖z i‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
have e : z = (fun _ ↦ ((z 0).1, (z 0).2)) := by apply funext; intro i; rw [Fin.eq_zero i]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
rw [e]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) z‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
rw [sndCmmap_apply]
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(sndCmmap 𝕜 A B) fun x => ((z 0).1, (z 0).2)‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
simp
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖z 0‖
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖(fun x => ((z 0).1, (z 0).2)) 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
exact norm_snd_le (z 0)
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖z 0‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B e : z = fun x => ((z 0).1, (z 0).2) ⊢ ‖(z 0).2‖ ≤ ‖z 0‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
norm_num
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
apply funext
n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ z = fun x => ((z 0).1, (z 0).2)
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ z = fun x => ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
intro i
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2)
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2)
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B ⊢ ∀ (x : Fin 1), z x = ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
rw [Fin.eq_zero i]
case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B z : Fin 1 → A × B i : Fin 1 ⊢ z i = ((z 0).1, (z 0).2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
have lo := (sndCmmap 𝕜 A B).unit_le_op_norm (fun _ ↦ (1, 1)) ?_
case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(sndCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
rw [sndCmmap_apply, norm_one] at lo
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(sndCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : ‖(sndCmmap 𝕜 A B) fun x => (1, 1)‖ ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
assumption
case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_2 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B lo : 1 ≤ ‖sndCmmap 𝕜 A B‖ ⊢ 1 ≤ ‖sndCmmap 𝕜 A B‖ case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
rw [pi_norm_le_iff_of_nonneg]
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ‖fun x => (1, 1)‖ ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
intro i
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ ∀ (i : Fin 1), ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
simp only [Prod.norm_def, norm_one, max_eq_right]
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ ‖(1, 1)‖ ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
repeat norm_num
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B i : Fin 1 ⊢ max 1 1 ≤ 1 case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
sndCmmap_norm
[70, 1]
[81, 20]
norm_num
case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.refine_1 n : ℕ 𝕜 : Type inst✝⁷ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁶ : Semiring R inst✝⁵ : NormedRing A inst✝⁴ : NormedAlgebra 𝕜 A inst✝³ : NormOneClass A inst✝² : NormedRing B inst✝¹ : NormedAlgebra 𝕜 B inst✝ : NormOneClass B ⊢ 0 ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
apply funext
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A ⊢ Function.update (fun x => z 0) 0 x = fun x_1 => x
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A ⊢ ∀ (x_1 : Fin 1), Function.update (fun x => z 0) 0 x x_1 = x
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A ⊢ Function.update (fun x => z 0) 0 x = fun x_1 => x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
intro i
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A ⊢ ∀ (x_1 : Fin 1), Function.update (fun x => z 0) 0 x x_1 = x
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 ⊢ Function.update (fun x => z 0) 0 x i = x
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A ⊢ ∀ (x_1 : Fin 1), Function.update (fun x => z 0) 0 x x_1 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
have i0 : i = 0 := by simp only [eq_iff_true_of_subsingleton]
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 ⊢ Function.update (fun x => z 0) 0 x i = x
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x i = x
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 ⊢ Function.update (fun x => z 0) 0 x i = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
rw [i0]
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x i = x
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x 0 = x
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x i = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
simp only [Function.update_same]
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x 0 = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 i0 : i = 0 ⊢ Function.update (fun x => z 0) 0 x 0 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_0
[84, 1]
[88, 44]
simp only [eq_iff_true_of_subsingleton]
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 ⊢ i = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R z : Fin (n + 1) → A x : A i : Fin 1 ⊢ i = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
rw [Function.update_apply]
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ Function.update f 0 x i.succ = f i.succ
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ (if i.succ = 0 then x else f i.succ) = f i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ Function.update f 0 x i.succ = f i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
simp only [ite_eq_right_iff]
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ (if i.succ = 0 then x else f i.succ) = f i.succ
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ i.succ = 0 → x = f i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ (if i.succ = 0 then x else f i.succ) = f i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
have i0 := Fin.succ_ne_zero i
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ i.succ = 0 → x = f i.succ
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 ⊢ i.succ = 0 → x = f i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n ⊢ i.succ = 0 → x = f i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
intro h
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 ⊢ i.succ = 0 → x = f i.succ
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ x = f i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 ⊢ i.succ = 0 → x = f i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
exfalso
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ x = f i.succ
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ x = f i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_0_succ
[90, 1]
[94, 31]
exact i0 h
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin n i0 : i.succ ≠ 0 h : i.succ = 0 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_0
[96, 1]
[97, 97]
rw [Function.update_noteq i0.symm]
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ Function.update f i x 0 = f 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ Function.update f i x 0 = f 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
apply funext
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ (fun j => Function.update f i x j.succ) = Function.update (fun j => f j.succ) (i.pred i0) x
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ ∀ (x_1 : Fin n), Function.update f i x x_1.succ = Function.update (fun j => f j.succ) (i.pred i0) x x_1
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ (fun j => Function.update f i x j.succ) = Function.update (fun j => f j.succ) (i.pred i0) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
intro k
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ ∀ (x_1 : Fin n), Function.update f i x x_1.succ = Function.update (fun j => f j.succ) (i.pred i0) x x_1
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 ⊢ ∀ (x_1 : Fin n), Function.update f i x x_1.succ = Function.update (fun j => f j.succ) (i.pred i0) x x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
by_cases ki : k.succ = i
case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
Please generate a tactic in lean4 to solve the state. STATE: case h n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
have ki' : k = i.pred i0 := by simp_rw [← ki, Fin.pred_succ]
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
rw [ki, ki']
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x i = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
rw [Function.update_same]
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x i = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0)
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ x = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ Function.update f i x i = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
rw [Function.update_same]
case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ x = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ki' : k = i.pred i0 ⊢ x = Function.update (fun j => f j.succ) (i.pred i0) x (i.pred i0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
simp_rw [← ki, Fin.pred_succ]
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ⊢ k = i.pred i0
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : k.succ = i ⊢ k = i.pred i0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
rw [Function.update_noteq ki]
case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ f k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
Please generate a tactic in lean4 to solve the state. STATE: case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ Function.update f i x k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
rw [Function.update_noteq _]
case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ f k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ k ≠ i.pred i0
Please generate a tactic in lean4 to solve the state. STATE: case neg n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ f k.succ = Function.update (fun j => f j.succ) (i.pred i0) x k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
by_contra h
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ k ≠ i.pred i0
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i h : k = i.pred i0 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i ⊢ k ≠ i.pred i0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
update_nz_succ
[99, 1]
[110, 58]
simp only [h, Fin.succ_pred, not_true_eq_false] at ki
n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i h : k = i.pred i0 ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝¹ : NontriviallyNormedField 𝕜 R A B E : Type inst✝ : Semiring R d : DecidableEq (Fin (n + 1)) f : Fin (n + 1) → A x : A i : Fin (n + 1) i0 : i ≠ 0 k : Fin n ki : ¬k.succ = i h : k = i.pred i0 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
intro d z i u v
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (d : DecidableEq (Fin (n + 1))) (z : Fin (n + 1) → A) (i : Fin (n + 1)) (u v : A), smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (d : DecidableEq (Fin (n + 1))) (z : Fin (n + 1) → A) (i : Fin (n + 1)) (u v : A), smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
by_cases i0 : i = 0
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v) case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : ¬i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
rw [i0]
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
have uv := x.map_add (fun _ ↦ z 0) 0 u v
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : x (Function.update (fun x => z 0) 0 (u + v)) = x (Function.update (fun x => z 0) 0 u) + x (Function.update (fun x => z 0) 0 v) ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
simp only [update_0_0 z _] at uv
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : x (Function.update (fun x => z 0) 0 (u + v)) = x (Function.update (fun x => z 0) 0 u) + x (Function.update (fun x => z 0) 0 v) ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : (x fun x => u + v) = (x fun x => u) + x fun x => v ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : x (Function.update (fun x => z 0) 0 (u + v)) = x (Function.update (fun x => z 0) 0 u) + x (Function.update (fun x => z 0) 0 v) ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
simp only [Function.update_same, MultilinearMap.toFun_eq_coe, ContinuousMultilinearMap.coe_coe, ne_eq, uv, add_smul, smulCmmapFn, update_0_succ]
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : (x fun x => u + v) = (x fun x => u) + x fun x => v ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : i = 0 uv : (x fun x => u + v) = (x fun x => u) + x fun x => v ⊢ smulCmmapFn x xs (Function.update z 0 (u + v)) = smulCmmapFn x xs (Function.update z 0 u) + smulCmmapFn x xs (Function.update z 0 v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_add
[119, 1]
[135, 19]
simp only [smul_add, ne_eq, update_nz_0 d z i0, MultilinearMap.toFun_eq_coe, ContinuousMultilinearMap.coe_coe, update_nz_succ d z _ i0, MultilinearMap.map_add, smul_add, smulCmmapFn]
case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : ¬i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) u v : A i0 : ¬i = 0 ⊢ smulCmmapFn x xs (Function.update z i (u + v)) = smulCmmapFn x xs (Function.update z i u) + smulCmmapFn x xs (Function.update z i v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
intro d z i s u
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (d : DecidableEq (Fin (n + 1))) (z : Fin (n + 1) → A) (i : Fin (n + 1)) (s : 𝕜) (u : A), smulCmmapFn x xs (Function.update z i (s • u)) = s • smulCmmapFn x xs (Function.update z i u)
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ smulCmmapFn x xs (Function.update z i (s • u)) = s • smulCmmapFn x xs (Function.update z i u)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ ∀ (d : DecidableEq (Fin (n + 1))) (z : Fin (n + 1) → A) (i : Fin (n + 1)) (s : 𝕜) (u : A), smulCmmapFn x xs (Function.update z i (s • u)) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
rw [smulCmmapFn]
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ smulCmmapFn x xs (Function.update z i (s • u)) = s • smulCmmapFn x xs (Function.update z i u)
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ smulCmmapFn x xs (Function.update z i (s • u)) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
by_cases i0 : i = 0
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u) case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
rw [i0]
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
have su := x.map_smul (fun _ ↦ z 0) 0 s u
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : x (Function.update (fun x => z 0) 0 (s • u)) = s • x (Function.update (fun x => z 0) 0 u) ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
rw [update_0_0 z _, update_0_0 z _] at su
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : x (Function.update (fun x => z 0) 0 (s • u)) = s • x (Function.update (fun x => z 0) 0 u) ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : (x fun x => s • u) = s • x fun x => u ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : x (Function.update (fun x => z 0) 0 (s • u)) = s • x (Function.update (fun x => z 0) 0 u) ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
simp only [Function.update_same, MultilinearMap.toFun_eq_coe, ContinuousMultilinearMap.coe_coe, su, smul_eq_mul, ne_eq, update_0_succ d z _ _, smulCmmapFn, ←smul_assoc]
case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : (x fun x => s • u) = s • x fun x => u ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : i = 0 su : (x fun x => s • u) = s • x fun x => u ⊢ ((x.toFun fun x => Function.update z 0 (s • u) 0) • xs.toFun fun i => Function.update z 0 (s • u) i.succ) = s • smulCmmapFn x xs (Function.update z 0 u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
have su := xs.map_smul (fun j ↦ z j.succ) (i.pred i0) s u
case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 su : xs (Function.update (fun j => z j.succ) (i.pred i0) (s • u)) = s • xs (Function.update (fun j => z j.succ) (i.pred i0) u) ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
Please generate a tactic in lean4 to solve the state. STATE: case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_smul
[138, 1]
[154, 83]
simp only [ne_eq, MultilinearMap.toFun_eq_coe, ContinuousMultilinearMap.coe_coe, update_nz_0 d z i0, update_nz_succ d z _ i0, su, smul_comm _ s, smulCmmapFn]
case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 su : xs (Function.update (fun j => z j.succ) (i.pred i0) (s • u)) = s • xs (Function.update (fun j => z j.succ) (i.pred i0) u) ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B d : DecidableEq (Fin (n + 1)) z : Fin (n + 1) → A i : Fin (n + 1) s : 𝕜 u : A i0 : ¬i = 0 su : xs (Function.update (fun j => z j.succ) (i.pred i0) (s • u)) = s • xs (Function.update (fun j => z j.succ) (i.pred i0) u) ⊢ ((x.toFun fun x => Function.update z i (s • u) 0) • xs.toFun fun i_1 => Function.update z i (s • u) i_1.succ) = s • smulCmmapFn x xs (Function.update z i u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_cont
[157, 1]
[160, 43]
apply Continuous.smul
n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous (smulCmmapFn x xs)
case hf n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x_1 => x.toFun fun x => x_1 0 case hg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x => xs.toFun fun i => x i.succ
Please generate a tactic in lean4 to solve the state. STATE: n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous (smulCmmapFn x xs) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_cont
[157, 1]
[160, 43]
repeat continuity
case hf n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x_1 => x.toFun fun x => x_1 0 case hg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x => xs.toFun fun i => x i.succ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x_1 => x.toFun fun x => x_1 0 case hg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x => xs.toFun fun i => x i.succ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Multilinear.lean
smul_cmmap_cont
[157, 1]
[160, 43]
continuity
case hg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x => xs.toFun fun i => x i.succ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hg n : ℕ 𝕜 : Type inst✝⁶ : NontriviallyNormedField 𝕜 R A B E : Type inst✝⁵ : Semiring R inst✝⁴ : AddCommMonoid A inst✝³ : Module 𝕜 A inst✝² : TopologicalSpace A inst✝¹ : NormedAddCommGroup B inst✝ : NormedSpace 𝕜 B x : ContinuousMultilinearMap 𝕜 (fun x => A) 𝕜 xs : ContinuousMultilinearMap 𝕜 (fun x => A) B ⊢ Continuous fun x => xs.toFun fun i => x i.succ TACTIC: