url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [e]
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact IsPreconnected.directed_iInter d p c
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Ioc_eq_empty ab, nhdsWithin_empty, MapClusterPt, Filter.map_bot, ClusterPt.bot, setOf_false, isPreconnected_empty]
case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro a b ab
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ Monotone s
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ Monotone s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
refine closure_mono (monotone_image ?_)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact Ioc_subset_Ioc (le_refl _) (Subtype.coe_le_coe.mpr ab)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro ⟨t, m⟩
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
refine (isPreconnected_Ioc.image _ (rc.mono ?_)).closure
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc] at m
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Subtype.coe_mk, Ioc_subset_Ioc_iff m.1, m.2, le_refl, true_and_iff]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro t
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact isClosed_closure.isCompact
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply Set.ext
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro x
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm _ (Set X), ← hs]
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply forall_congr'
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro u
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [@forall_comm _ (u ∈ 𝓝 x)]
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply forall_congr'
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2)
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro _
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2)
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_inter_iff, Filter.frequently_iff, nhdsWithin_Ioc_eq_nhdsWithin_Ioi ab]
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
constructor
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2 case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro h ⟨t, m⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have tm : Ioc a t ∈ 𝓝[Ioi a] a := by apply Ioc_mem_nhdsWithin_Ioi simp only [mem_Ioc] at m; simp only [mem_Ico]; use le_refl _, m.1
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases h tm with ⟨v, vm, vu⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact ⟨r v, vu, mem_image_of_mem _ vm⟩
case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply Ioc_mem_nhdsWithin_Ioi
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ Ioc a t ∈ 𝓝[>] a
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ Ioc a t ∈ 𝓝[>] a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc] at m
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ico]
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use le_refl _, m.1
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro h v vm
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases mem_nhdsWithin_Ioi_iff_exists_Ioc_subset.mp vm with ⟨w, wa, wv⟩
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioi] at wa
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have m : min w b ∈ Ioc a b := by simp only [mem_Ioc]; use lt_min wa ab, min_le_right _ _
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases h ⟨_, m⟩ with ⟨x, xu, rx⟩
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Subtype.coe_mk, mem_image, mem_Ioc, le_min_iff] at rx
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases rx with ⟨c, ⟨ac, cw, _⟩, cx⟩
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use c, wv (mem_Ioc.mpr ⟨ac, cw⟩)
case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u
case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rwa [cx]
case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ min w b ∈ Ioc a b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ min w b ∈ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use lt_min wa ab, min_le_right _ _
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
generalize hu : (fun x : s ↦ (x : X)) ⁻¹' t = u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have uo : IsOpen u := by rw [← subset_interior_iff_isOpen]; intro ⟨x, m⟩ h simp only [mem_preimage, Subtype.coe_mk, ← hu] at h have n := op ⟨m, h⟩ simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk, ← hu] at n ⊢ exact nhdsWithin_le_nhds n
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have uc : IsClosed u := by rw [← closure_eq_iff_isClosed]; refine subset_antisymm ?_ subset_closure rw [← hu] refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_ intro ⟨x, m⟩ h; exact cl ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have p : IsPreconnected (univ : Set s) := (Subtype.preconnectedSpace sp).isPreconnected_univ
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
cases' disjoint_or_subset_of_isClopen p ⟨uc, uo⟩ with h h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← subset_interior_iff_isOpen]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ IsOpen u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ IsOpen u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
intro ⟨x, m⟩ h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [mem_preimage, Subtype.coe_mk, ← hu] at h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have n := op ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk, ← hu] at n ⊢
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact nhdsWithin_le_nhds n
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← closure_eq_iff_isClosed]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ IsClosed u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ IsClosed u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
refine subset_antisymm ?_ subset_closure
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← hu]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
intro ⟨x, m⟩ h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact cl ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [univ_disjoint, preimage_eq_empty_iff, Subtype.range_coe, ← hu] at h
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exfalso
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact ne.not_disjoint h.symm
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← Subtype.coe_preimage_self, ← hu, preimage_subset_preimage_iff] at h
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact _root_.trans (subset_inter (subset_refl _) h) op
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [Subtype.range_coe, subset_refl]
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
have uc : IsPathConnected (univ : Set s) := by convert sc.preimage_coe (subset_refl _); apply Set.ext; intro x simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem]
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
have e : f '' s = s.restrict f '' univ := by apply Set.ext; intro y; constructor intro ⟨x, m, e⟩; use⟨x, m⟩, mem_univ _, e intro ⟨⟨x, m⟩, _, e⟩; use x, m, e
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
rw [e]
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
exact uc.image (continuousOn_iff_continuous_restrict.mp fc)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
convert sc.preimage_coe (subset_refl _)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected univ
case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
apply Set.ext
case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro x
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem]
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
apply Set.ext
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ f '' s = s.restrict f '' univ
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ f '' s = s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro y
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
constructor
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro ⟨x, m, e⟩
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
use⟨x, m⟩, mem_univ _, e
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro ⟨⟨x, m⟩, _, e⟩
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
use x, m, e
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
rw [← abs_of_nonneg r0, ← image_circleMap_Ioc z r]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (sphere z r)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (sphere z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
refine IsPathConnected.image ?_ (continuous_circleMap _ _)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
exact (convex_Ioc 0 (2 * π)).isPathConnected (nonempty_Ioc.mpr Real.two_pi_pos)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π))
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have pc' := pc
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s ⊢ IsPathConnected (f ⁻¹' s)
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases pc' with ⟨b, fb, j⟩
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s)
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use b
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s)
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [mem_preimage, mem_singleton_iff] at fb j ⊢
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have bs : f b ∈ s := sc.frontier_subset fb
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use bs
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro x fx
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have p := PathConnectedSpace.somePath x b
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
generalize hu : Icc (0 : ℝ) 1 ∩ ⋂ (a) (_ : f (p.extend a) ∉ s), Iic a = u
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have bdd : BddAbove u := by rw [← hu, bddAbove_def]; use 1; intro t ⟨m, _⟩; exact m.2
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have un : u.Nonempty := by rw [← hu]; use 0, left_mem_Icc.mpr zero_le_one; simp only [mem_iInter₂, mem_Iic]; intro a m contrapose m; simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have uc : IsClosed u := by rw [← hu]; apply isClosed_Icc.inter; apply isClosed_iInter; intro a; apply isClosed_iInter intro _; exact isClosed_Iic
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
generalize ht : sSup u = t
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have tu : t ∈ u := by rw [← uc.closure_eq, ← ht]; exact csSup_mem_closure un bdd
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have m : t ∈ Icc (0 : ℝ) 1 := by rw [← hu] at tu; exact tu.1
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC: