url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rw [e] | case neg
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} | case neg
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
⊢ IsPreconnected (⋂ t, s t) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | exact IsPreconnected.directed_iInter d p c | case neg
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
⊢ IsPreconnected (⋂ t, s t) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
⊢ IsPreconnected (⋂ t, s t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [Ioc_eq_empty ab, nhdsWithin_empty, MapClusterPt, Filter.map_bot, ClusterPt.bot,
setOf_false, isPreconnected_empty] | case pos
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : ¬a < b
⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : ¬a < b
⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro a b ab | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
⊢ Monotone s | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ s a ≤ s b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
⊢ Monotone s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rw [← hs] | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ s a ≤ s b | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ s a ≤ s b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | refine closure_mono (monotone_image ?_) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | exact Ioc_subset_Ioc (le_refl _) (Subtype.coe_le_coe.mpr ab) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a✝ b✝ : ℝ
rc : ContinuousOn r (Ioc a✝ b✝)
ab✝ : a✝ < b✝
s : ↑(Ioc a✝ b✝) → Set X
hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s
n : Nonempty ↑(Ioc a✝ b✝)
a b : ↑(Ioc a✝ b✝)
ab : a ≤ b
⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro ⟨t, m⟩ | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected (s ⟨t, m⟩) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rw [← hs] | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected (s ⟨t, m⟩) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected (s ⟨t, m⟩)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | refine (isPreconnected_Ioc.image _ (rc.mono ?_)).closure | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_Ioc] at m | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝¹ : Monotone s
d : Directed Superset s
t : ℝ
m✝ : t ∈ Ioc a b
m : a < t ∧ t ≤ b
⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
t : ℝ
m : t ∈ Ioc a b
⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [Subtype.coe_mk, Ioc_subset_Ioc_iff m.1, m.2, le_refl, true_and_iff] | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝¹ : Monotone s
d : Directed Superset s
t : ℝ
m✝ : t ∈ Ioc a b
m : a < t ∧ t ≤ b
⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝¹ : Monotone s
d : Directed Superset s
t : ℝ
m✝ : t ∈ Ioc a b
m : a < t ∧ t ≤ b
⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro t | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact (s t) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rw [← hs] | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact (s t) | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact (s t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | exact isClosed_closure.isCompact | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
t : ↑(Ioc a b)
⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | apply Set.ext | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro x | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty,
@forall_comm _ (Set X), ← hs] | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔
∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | apply forall_congr' | case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔
∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1 | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ ∀ (a_1 : Set X),
(a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔
∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2 | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔
∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro u | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ ∀ (a_1 : Set X),
(a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔
∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2 | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
⊢ ∀ (a_1 : Set X),
(a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔
∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [@forall_comm _ (u ∈ 𝓝 x)] | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | apply forall_congr' | case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro _ | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2) | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_inter_iff, Filter.frequently_iff, nhdsWithin_Ioc_eq_nhdsWithin_Ioi ab] | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | constructor | case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2
case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro h ⟨t, m⟩ | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2 | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | have tm : Ioc a t ∈ 𝓝[Ioi a] a := by
apply Ioc_mem_nhdsWithin_Ioi
simp only [mem_Ioc] at m; simp only [mem_Ico]; use le_refl _, m.1 | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rcases h tm with ⟨v, vm, vu⟩ | case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | case h.h.h.mp.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
v : ℝ
vm : v ∈ Ioc a t
vu : r v ∈ u
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mp
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | exact ⟨r v, vu, mem_image_of_mem _ vm⟩ | case h.h.h.mp.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
v : ℝ
vm : v ∈ Ioc a t
vu : r v ∈ u
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mp.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
tm : Ioc a t ∈ 𝓝[>] a
v : ℝ
vm : v ∈ Ioc a t
vu : r v ∈ u
⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | apply Ioc_mem_nhdsWithin_Ioi | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ Ioc a t ∈ 𝓝[>] a | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ a ∈ Ico a t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ Ioc a t ∈ 𝓝[>] a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_Ioc] at m | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ a ∈ Ico a t | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ∈ Ico a t | Please generate a tactic in lean4 to solve the state.
STATE:
case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : t ∈ Ioc a b
⊢ a ∈ Ico a t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_Ico] | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ∈ Ico a t | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ≤ a ∧ a < t | Please generate a tactic in lean4 to solve the state.
STATE:
case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ∈ Ico a t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | use le_refl _, m.1 | case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ≤ a ∧ a < t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case H
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
t : ℝ
m : a < t ∧ t ≤ b
⊢ a ≤ a ∧ a < t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | intro h v vm | case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u | case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rcases mem_nhdsWithin_Ioi_iff_exists_Ioc_subset.mp vm with ⟨w, wa, wv⟩ | case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wa : w ∈ Ioi a
wv : Ioc a w ⊆ v
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_Ioi] at wa | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wa : w ∈ Ioi a
wv : Ioc a w ⊆ v
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wa : w ∈ Ioi a
wv : Ioc a w ⊆ v
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | have m : min w b ∈ Ioc a b := by simp only [mem_Ioc]; use lt_min wa ab, min_le_right _ _ | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rcases h ⟨_, m⟩ with ⟨x, xu, rx⟩ | case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [Subtype.coe_mk, mem_image, mem_Ioc, le_min_iff] at rx | case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rcases rx with ⟨c, ⟨ac, cw, _⟩, cx⟩ | case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x
⊢ ∃ x ∈ v, r x ∈ u | case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ ∃ x ∈ v, r x ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | use c, wv (mem_Ioc.mpr ⟨ac, cw⟩) | case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ ∃ x ∈ v, r x ∈ u | case right
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ r c ∈ u | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ ∃ x ∈ v, r x ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | rwa [cx] | case right
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ r c ∈ u | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m✝ : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x✝ : X
u : Set X
a✝ : u ∈ 𝓝 x✝
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
m : min w b ∈ Ioc a b
x : X
xu : x ∈ u
c : ℝ
cx : r c = x
ac : a < c
cw : c ≤ w
right✝ : c ≤ b
⊢ r c ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | simp only [mem_Ioc] | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ min w b ∈ Ioc a b | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ a < min w b ∧ min w b ≤ b | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ min w b ∈ Ioc a b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.limits_Ioc | [129, 1] | [167, 53] | use lt_min wa ab, min_le_right _ _ | X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ a < min w b ∧ min w b ≤ b | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁶ : TopologicalSpace X
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
inst✝¹ : CompactSpace X
inst✝ : T4Space X
r : ℝ → X
a b : ℝ
rc : ContinuousOn r (Ioc a b)
ab : a < b
s : ↑(Ioc a b) → Set X
hs : (fun t => closure (r '' Ioc a ↑t)) = s
n : Nonempty ↑(Ioc a b)
m : Monotone s
d : Directed Superset s
p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
c : ∀ (t : ↑(Ioc a b)), IsCompact (s t)
x : X
u : Set X
a✝ : u ∈ 𝓝 x
h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
v : Set ℝ
vm : v ∈ 𝓝[>] a
w : ℝ
wv : Ioc a w ⊆ v
wa : a < w
⊢ a < min w b ∧ min w b ≤ b
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | generalize hu : (fun x : s ↦ (x : X)) ⁻¹' t = u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
⊢ s ⊆ interior t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | have uo : IsOpen u := by
rw [← subset_interior_iff_isOpen]; intro ⟨x, m⟩ h
simp only [mem_preimage, Subtype.coe_mk, ← hu] at h
have n := op ⟨m, h⟩
simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk,
← hu] at n ⊢
exact nhdsWithin_le_nhds n | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ s ⊆ interior t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | have uc : IsClosed u := by
rw [← closure_eq_iff_isClosed]; refine subset_antisymm ?_ subset_closure
rw [← hu]
refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_
intro ⟨x, m⟩ h; exact cl ⟨m, h⟩ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ s ⊆ interior t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | have p : IsPreconnected (univ : Set s) := (Subtype.preconnectedSpace sp).isPreconnected_univ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
⊢ s ⊆ interior t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | cases' disjoint_or_subset_of_isClopen p ⟨uc, uo⟩ with h h | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
⊢ s ⊆ interior t | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint univ u
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : univ ⊆ u
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← subset_interior_iff_isOpen] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ IsOpen u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ u ⊆ interior u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ IsOpen u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | intro ⟨x, m⟩ h | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ u ⊆ interior u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ u
⊢ ⟨x, m⟩ ∈ interior u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
⊢ u ⊆ interior u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [mem_preimage, Subtype.coe_mk, ← hu] at h | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ u
⊢ ⟨x, m⟩ ∈ interior u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
⊢ ⟨x, m⟩ ∈ interior u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ u
⊢ ⟨x, m⟩ ∈ interior u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | have n := op ⟨m, h⟩ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
⊢ ⟨x, m⟩ ∈ interior u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : x ∈ interior t
⊢ ⟨x, m⟩ ∈ interior u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
⊢ ⟨x, m⟩ ∈ interior u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk,
← hu] at n ⊢ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : x ∈ interior t
⊢ ⟨x, m⟩ ∈ interior u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : t ∈ 𝓝 x
⊢ t ∈ 𝓝[s] x | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : x ∈ interior t
⊢ ⟨x, m⟩ ∈ interior u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact nhdsWithin_le_nhds n | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : t ∈ 𝓝 x
⊢ t ∈ 𝓝[s] x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : t ∈ 𝓝 x
⊢ t ∈ 𝓝[s] x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← closure_eq_iff_isClosed] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ IsClosed u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ IsClosed u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | refine subset_antisymm ?_ subset_closure | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← hu] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | intro ⟨x, m⟩ h | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact cl ⟨m, h⟩ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [univ_disjoint, preimage_eq_empty_iff, Subtype.range_coe, ← hu] at h | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint univ u
⊢ s ⊆ interior t | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint univ u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exfalso | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact ne.not_disjoint h.symm | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← Subtype.coe_preimage_self, ← hu, preimage_subset_preimage_iff] at h | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : univ ⊆ u
⊢ s ⊆ interior t | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : univ ⊆ u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact _root_.trans (subset_inter (subset_refl _) h) op | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [Subtype.range_coe, subset_refl] | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | have uc : IsPathConnected (univ : Set s) := by
convert sc.preimage_coe (subset_refl _); apply Set.ext; intro x
simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem] | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | have e : f '' s = s.restrict f '' univ := by
apply Set.ext; intro y; constructor
intro ⟨x, m, e⟩; use⟨x, m⟩, mem_univ _, e
intro ⟨⟨x, m⟩, _, e⟩; use x, m, e | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | rw [e] | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | exact uc.image (continuousOn_iff_continuous_restrict.mp fc) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | convert sc.preimage_coe (subset_refl _) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected univ | case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | apply Set.ext | case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro x | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem] | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | apply Set.ext | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ f '' s = s.restrict f '' univ | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ f '' s = s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro y | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | constructor | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro ⟨x, m, e⟩ | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | use⟨x, m⟩, mem_univ _, e | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro ⟨⟨x, m⟩, _, e⟩ | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | use x, m, e | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | rw [← abs_of_nonneg r0, ← image_circleMap_Ioc z r] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (sphere z r) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (sphere z r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | refine IsPathConnected.image ?_ (continuous_circleMap _ _) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π)) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | exact (convex_Ioc 0 (2 * π)).isPathConnected (nonempty_Ioc.mpr Real.two_pi_pos) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have pc' := pc | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
⊢ IsPathConnected (f ⁻¹' s) | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rcases pc' with ⟨b, fb, j⟩ | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s) | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use b | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s) | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [mem_preimage, mem_singleton_iff] at fb j ⊢ | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have bs : f b ∈ s := sc.frontier_subset fb | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use bs | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro x fx | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have p := PathConnectedSpace.somePath x b | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | generalize hu : Icc (0 : ℝ) 1 ∩ ⋂ (a) (_ : f (p.extend a) ∉ s), Iic a = u | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have bdd : BddAbove u := by rw [← hu, bddAbove_def]; use 1; intro t ⟨m, _⟩; exact m.2 | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have un : u.Nonempty := by
rw [← hu]; use 0, left_mem_Icc.mpr zero_le_one; simp only [mem_iInter₂, mem_Iic]; intro a m
contrapose m; simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have uc : IsClosed u := by
rw [← hu]; apply isClosed_Icc.inter; apply isClosed_iInter; intro a; apply isClosed_iInter
intro _; exact isClosed_Iic | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | generalize ht : sSup u = t | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have tu : t ∈ u := by rw [← uc.closure_eq, ← ht]; exact csSup_mem_closure un bdd | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have m : t ∈ Icc (0 : ℝ) 1 := by rw [← hu] at tu; exact tu.1 | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.