url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
apply inter_subset_left
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
rw [isPreconnected_iff_subset_of_fully_disjoint_closed sc]
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ IsPreconnected s ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ IsPreconnected s ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
constructor
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro h u v uo vo suv uv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have suc : IsClosed (s ∩ u) := isClosed_closed_inter sc vo uv suv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have svc : IsClosed (s ∩ v) := isClosed_closed_inter sc uo uv.symm ((union_comm u v).subst suv)
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have h0 : s ⊆ s ∩ u ∪ s ∩ v := by simp only [←inter_union_distrib_left]; exact subset_inter (subset_refl _) suv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have h1 : Disjoint (s ∩ u) (s ∩ v) := Disjoint.inter_left' _ (Disjoint.inter_right' _ uv)
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' h (s ∩ u) (s ∩ v) suc svc h0 h1 with su sv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
simp only [←inter_union_distrib_left]
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ u ∪ s ∩ v
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ u ∪ s ∩ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact subset_inter (subset_refl _) suv
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
left
case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v
case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact (subset_inter_iff.mp su).2
case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
right
case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact (subset_inter_iff.mp sv).2
case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro h u v uc vc suv uv
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
rcases NormalSpace.normal u v uc vc uv with ⟨u', v', uo, vo, uu, vv, uv'⟩
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' h u' v' uo vo (_root_.trans suv (union_subset_union uu vv)) uv' with h h
case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
left
case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro x m
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' (mem_union _ _ _).mp (suv m) with mu mv
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact mu
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exfalso
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact disjoint_left.mp uv' (h m) (vv mv)
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
right
case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro x m
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' (mem_union _ _ _).mp (suv m) with mu mv
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exfalso
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact disjoint_right.mp uv' (h m) (uu mu)
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact mv
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
contrapose p
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s p : ∀ (a : I), IsPreconnected (s a) c : ∀ (a : I), IsCompact (s a) ⊢ IsPreconnected (⋂ a, s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s p : ∀ (a : I), IsPreconnected (s a) c : ∀ (a : I), IsCompact (s a) ⊢ IsPreconnected (⋂ a, s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
have ci : IsClosed (⋂ a, s a) := isClosed_iInter fun i ↦ (c i).isClosed
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [isPreconnected_iff_subset_of_fully_disjoint_open ci, not_forall] at p
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [isPreconnected_iff_subset_of_fully_disjoint_open (c _).isClosed, not_forall]
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases p with ⟨u, v, uo, vo, suv, uv, no⟩
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
have e : ∃ a, s a ⊆ u ∪ v := by by_contra h; simp only [not_exists, Set.not_subset] at h suffices n : (⋂ a, s a \ (u ∪ v)).Nonempty by rcases n with ⟨x, n⟩; simp only [mem_iInter, mem_diff, forall_and, forall_const] at n rw [← mem_iInter] at n; simp only [suv n.1, not_true, imp_false] at n; exact n.2 apply IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed intro a b; rcases d a b with ⟨c, ac, bc⟩ use c, diff_subset_diff_left ac, diff_subset_diff_left bc intro a; rcases h a with ⟨x, xa, xuv⟩; exact ⟨x, mem_diff_of_mem xa xuv⟩ intro a; exact (c a).diff (uo.union vo) intro a; exact ((c a).diff (uo.union vo)).isClosed
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases e with ⟨a, auv⟩
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
use a, u, v, uo, vo, auv, uv
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
contrapose no
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [not_not] at no ⊢
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
cases' no with su sv
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
left
case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact _root_.trans (iInter_subset _ _) su
case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
right
case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact _root_.trans (iInter_subset _ _) sv
case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
by_contra h
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ a, s a ⊆ u ∪ v
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ a, s a ⊆ u ∪ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [not_exists, Set.not_subset] at h
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
suffices n : (⋂ a, s a \ (u ∪ v)).Nonempty by rcases n with ⟨x, n⟩; simp only [mem_iInter, mem_diff, forall_and, forall_const] at n rw [← mem_iInter] at n; simp only [suv n.1, not_true, imp_false] at n; exact n.2
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
apply IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a b
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases d a b with ⟨c, ac, bc⟩
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
use c, diff_subset_diff_left ac, diff_subset_diff_left bc
case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases h a with ⟨x, xa, xuv⟩
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact ⟨x, mem_diff_of_mem xa xuv⟩
case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact (c a).diff (uo.union vo)
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact ((c a).diff (uo.union vo)).isClosed
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases n with ⟨x, n⟩
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v n : (⋂ a, s a \ (u ∪ v)).Nonempty ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v n : (⋂ a, s a \ (u ∪ v)).Nonempty ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [mem_iInter, mem_diff, forall_and, forall_const] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rw [← mem_iInter] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [suv n.1, not_true, imp_false] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact n.2
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
generalize hs : (fun a ↦ closure (r '' Ici a)) = s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have m : Antitone s := by intro a b ab; rw [← hs]; exact closure_mono (monotone_image (Ici_subset_Ici.mpr ab))
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have d : Directed Superset s := by intro a b; exact ⟨a ⊔ b, m le_sup_left, m le_sup_right⟩
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have p : ∀ a, IsPreconnected (s a) := by intro a; rw [← hs]; exact ((p _).image _ rc.continuousOn).closure
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have c : ∀ a, IsCompact (s a) := by intro a; rw [← hs]; exact isClosed_closure.isCompact
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have e : {x | MapClusterPt x atTop r} = ⋂ a, s a := by ext x simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm P, ← hs] apply forall_congr'; intro t simp only [@forall_comm P, mem_inter_iff, mem_image, mem_Ici, @and_comm (_ ∈ t), exists_exists_and_eq_and, Filter.frequently_atTop, exists_prop]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [e]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact IsPreconnected.directed_iInter d p c
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a b ab
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ Antitone s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ Antitone s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact closure_mono (monotone_image (Ici_subset_Ici.mpr ab))
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a b
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ Directed Superset s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ Directed Superset s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact ⟨a ⊔ b, m le_sup_left, m le_sup_right⟩
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ ∀ (a : P), IsPreconnected (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ ∀ (a : P), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact ((p _).image _ rc.continuousOn).closure
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ ∀ (a : P), IsCompact (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ ∀ (a : P), IsCompact (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact isClosed_closure.isCompact
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
ext x
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ {x | MapClusterPt x atTop r} = ⋂ a, s a
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ {x | MapClusterPt x atTop r} = ⋂ a, s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm P, ← hs]
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
apply forall_congr'
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro t
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
simp only [@forall_comm P, mem_inter_iff, mem_image, mem_Ici, @and_comm (_ ∈ t), exists_exists_and_eq_and, Filter.frequently_atTop, exists_prop]
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
set r' : Pᵒᵈ → X := r
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atBot r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atBot r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
have rc' : Continuous r' := rc
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
have p' : ∀ a : Pᵒᵈ, IsPreconnected (Ici a) := fun a ↦ p a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
exact IsPreconnected.limits_atTop p' rc'
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
by_cases ab : ¬a < b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [not_not] at ab
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
generalize hs : (fun t : Ioc a b ↦ closure (r '' Ioc a t)) = s
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have n : Nonempty (Ioc a b) := ⟨b, right_mem_Ioc.mpr ab⟩
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have m : Monotone s := by intro a b ab; rw [← hs]; refine closure_mono (monotone_image ?_) exact Ioc_subset_Ioc (le_refl _) (Subtype.coe_le_coe.mpr ab)
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have d : Directed Superset s := fun a b ↦ ⟨min a b, m (min_le_left _ _), m (min_le_right _ _)⟩
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have p : ∀ t, IsPreconnected (s t) := by intro ⟨t, m⟩; rw [← hs]; refine (isPreconnected_Ioc.image _ (rc.mono ?_)).closure simp only [mem_Ioc] at m simp only [Subtype.coe_mk, Ioc_subset_Ioc_iff m.1, m.2, le_refl, true_and_iff]
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have c : ∀ t, IsCompact (s t) := by intro t; rw [← hs]; exact isClosed_closure.isCompact
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC: