url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have f0' : (fun z ↦ f (z + c) - f c) 0 = 0 := by simp only [zero_add, sub_self]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rcases not_local_inj_of_deriv_zero' fa' df' f0' with ⟨g, ga, e, h⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
clear fa df fa' df'
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine ⟨fun z ↦ g (z - c) + c, ?_, ?_, ?_⟩
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, fa]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c ⊢ AnalyticAt ℂ f (0 + c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c ⊢ AnalyticAt ℂ f (0 + c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine HasDerivAt.sub_const ?_ _
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 ⊢ HasDerivAt f' (0 * 1) 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 ⊢ HasDerivAt f' (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have e : (fun z ↦ f (z + c)) = f ∘ fun z ↦ z + c := rfl
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rw [e]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
apply HasDerivAt.comp
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0
case hh₂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, df]
case hh₂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
Please generate a tactic in lean4 to solve the state. STATE: case hh₂ S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt f 0 (0 + c) case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact HasDerivAt.add_const (hasDerivAt_id _) _
case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 e : (fun z => f (z + c)) = f ∘ fun z => z + c ⊢ HasDerivAt (fun z => z + c) 1 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [zero_add, sub_self]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 ⊢ (fun z => f (z + c) - f c) 0 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ fa : AnalyticAt ℂ f c df : HasDerivAt f 0 c f' : ℂ → ℂ := fun z => f (z + c) - f c fa' : AnalyticAt ℂ f' 0 df' : HasDerivAt f' 0 0 ⊢ (fun z => f (z + c) - f c) 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact AnalyticAt.add (AnalyticAt.comp (by simp only [sub_self, ga]) ((analyticAt_id _ _).sub analyticAt_const)) analyticAt_const
case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_self, ga]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ℂ g (c - c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ AnalyticAt ℂ g (c - c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_self, e, zero_add]
case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ (fun z => g (z - c) + c) c = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [eventually_nhdsWithin_iff] at h ⊢
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z ⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
have sc : Tendsto (fun z ↦ z - c) (𝓝 c) (𝓝 0) := by rw [← sub_self c]; exact continuousAt_id.sub continuousAt_const
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
refine (sc.eventually h).mp (eventually_of_forall ?_)
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [mem_compl_singleton_iff, sub_ne_zero]
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
intro z h zc
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) ⊢ ∀ (x : ℂ), (x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rcases h zc with ⟨gz, ff⟩
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
constructor
case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
contrapose gz
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ g (z - c) + c ≠ z case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [not_not] at gz ⊢
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : ¬g (z - c) + c ≠ z ⊢ ¬g (z - c) ≠ z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
nth_rw 2 [← gz]
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = z - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
ring
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c ff : f' (g (z - c)) = f' (z - c) gz : g (z - c) + c = z ⊢ g (z - c) = g (z - c) + c - c case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
simp only [sub_left_inj, sub_add_cancel, f'] at ff
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f (g (z - c) + c) = f z ⊢ f (g (z - c) + c) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f' (g (z - c)) = f' (z - c) ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact ff
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f (g (z - c) + c) = f z ⊢ f (g (z - c) + c) = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) z : ℂ h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c) zc : z ≠ c gz : g (z - c) ≠ z - c ff : f (g (z - c) + c) = f z ⊢ f (g (z - c) + c) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
rw [← sub_self c]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_deriv_zero
[140, 1]
[167, 65]
exact continuousAt_id.sub continuousAt_const
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c))
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : ℂ → ℂ c : ℂ f' : ℂ → ℂ := fun z => f (z + c) - f c f0' : (fun z => f (z + c) - f c) 0 = 0 g : ℂ → ℂ ga : AnalyticAt ℂ g 0 e : g 0 = 0 h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x ⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
generalize hg : (fun z ↦ extChartAt I (f c) (f ((extChartAt I c).symm z))) = g
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
have dg : mfderiv I I g (extChartAt I c c) = 0 := by have fd : MDifferentiableAt I I f ((extChartAt I c).symm (extChartAt I c c)) := by rw [PartialEquiv.left_inv]; exact fa.mdifferentiableAt; apply mem_extChartAt_source rw [← hg, ←Function.comp_def, mfderiv_comp _ (HolomorphicAt.extChartAt _).mdifferentiableAt _, ←Function.comp_def, mfderiv_comp _ fd (HolomorphicAt.extChartAt_symm _).mdifferentiableAt, PartialEquiv.left_inv, df, ContinuousLinearMap.zero_comp, ContinuousLinearMap.comp_zero] apply mem_extChartAt_source; apply mem_extChartAt_target; rw [PartialEquiv.left_inv] apply mem_extChartAt_source; apply mem_extChartAt_source exact MDifferentiableAt.comp _ fd (HolomorphicAt.extChartAt_symm (mem_extChartAt_target _ _)).mdifferentiableAt
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
simp only [holomorphicAt_iff, Function.comp, hg] at fa
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
have dg' := fa.2.differentiableAt.mdifferentiableAt.hasMFDerivAt
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c)) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [dg, hasMFDerivAt_iff_hasFDerivAt] at dg'
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c)) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c)) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
replace dg := dg'.hasDerivAt
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g dg : mfderiv I I g (↑(extChartAt I c) c) = 0 fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
clear dg'
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg' : HasFDerivAt g 0 (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rcases not_local_inj_of_deriv_zero fa.2 dg with ⟨h, ha, h0, e⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
refine ⟨fun z ↦ (extChartAt I c).symm (h (extChartAt I c z)), ?_, ?_, ?_⟩
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∀ᶠ (z : S) in 𝓝[≠] c, (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
have fd : MDifferentiableAt I I f ((extChartAt I c).symm (extChartAt I c c)) := by rw [PartialEquiv.left_inv]; exact fa.mdifferentiableAt; apply mem_extChartAt_source
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ mfderiv I I g (↑(extChartAt I c) c) = 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ mfderiv I I g (↑(extChartAt I c) c) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ mfderiv I I g (↑(extChartAt I c) c) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [← hg, ←Function.comp_def, mfderiv_comp _ (HolomorphicAt.extChartAt _).mdifferentiableAt _, ←Function.comp_def, mfderiv_comp _ fd (HolomorphicAt.extChartAt_symm _).mdifferentiableAt, PartialEquiv.left_inv, df, ContinuousLinearMap.zero_comp, ContinuousLinearMap.comp_zero]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ mfderiv I I g (↑(extChartAt I c) c) = 0
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ mfderiv I I g (↑(extChartAt I c) c) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_source
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_target
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [PartialEquiv.left_inv]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f c ∈ (extChartAt I (f c)).source case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_source
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f c ∈ (extChartAt I (f c)).source case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ f c ∈ (extChartAt I (f c)).source case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_source
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ c ∈ (extChartAt I c).source S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact MDifferentiableAt.comp _ fd (HolomorphicAt.extChartAt_symm (mem_extChartAt_target _ _)).mdifferentiableAt
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [PartialEquiv.left_inv]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ MDifferentiableAt I I f c case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact fa.mdifferentiableAt
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ MDifferentiableAt I I f c case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ MDifferentiableAt I I f c case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_source
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S fa : HolomorphicAt I I f c df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g ⊢ c ∈ (extChartAt I c).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply (HolomorphicAt.extChartAt_symm (mem_extChartAt_target I c)).comp_of_eq
case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
case intro.intro.intro.refine_1.gh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply (ha.holomorphicAt I I).comp_of_eq (HolomorphicAt.extChartAt (mem_extChartAt_source I c)) rfl
case intro.intro.intro.refine_1.gh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1.gh S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact h0
case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_1.e S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
simp only [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I c)]
case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [eventually_nhdsWithin_iff] at e ⊢
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∀ᶠ (z : S) in 𝓝[≠] c, (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z ⊢ ∀ᶠ (z : S) in 𝓝[≠] c, (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply ((continuousAt_extChartAt I c).eventually e).mp
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply ((isOpen_extChartAt_source I c).eventually_mem (mem_extChartAt_source I c)).mp
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (x : S) in 𝓝 c, (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
have m2 : ∀ᶠ z in 𝓝 c, f z ∈ (extChartAt I (f c)).source := fa.1.eventually_mem (extChartAt_source_mem_nhds I _)
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
refine m1.mp (m2.mp (m3.mp (eventually_of_forall ?_)))
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ᶠ (x : S) in 𝓝 c, x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
simp only [mem_compl_singleton_iff]
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ≠ c → ↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ∈ {c}ᶜ → (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧ f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
intro z m3 m2 m1 m0 even zc
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ≠ c → ↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source ⊢ ∀ (x : S), f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source → f x ∈ (extChartAt I (f c)).source → h (↑(extChartAt I c) x) ∈ (extChartAt I c).target → x ∈ (extChartAt I c).source → (↑(extChartAt I c) x ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) → x ≠ c → ↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rcases even ((PartialEquiv.injOn _).ne m0 (mem_extChartAt_source I c) zc) with ⟨hz, gh⟩
case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
constructor
case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
refine ContinuousAt.eventually_mem ?_ (extChartAt_target_mem_nhds' I ?_)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact ha.continuousAt.comp_of_eq (continuousAt_extChartAt I c) rfl
case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [h0]
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact mem_extChartAt_target I c
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x ⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
refine ContinuousAt.eventually_mem ?_ (extChartAt_source_mem_nhds' I ?_)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply fa.1.comp_of_eq
case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c
case refine_1.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply (continuousAt_extChartAt_symm I _).comp_of_eq
case refine_1.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
case refine_1.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply ha.continuousAt.comp_of_eq
case refine_1.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
case refine_1.hf.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact continuousAt_extChartAt I _
case refine_1.hf.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf.hf.hf S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rfl
case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact h0
case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hf.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I _)]
case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I _)]
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f c ∈ (extChartAt I (f c)).source
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
apply mem_extChartAt_source
case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f c ∈ (extChartAt I (f c)).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source ⊢ f c ∈ (extChartAt I (f c)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
nth_rw 2 [← PartialEquiv.left_inv _ m0]
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [(PartialEquiv.injOn _).ne_iff]
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z)
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact hz
case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [PartialEquiv.symm_source]
case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact m1
case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left.hx S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [PartialEquiv.symm_source]
case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact PartialEquiv.map_source _ m0
case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.left.hy S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
simp only [← hg] at gh
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z))) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [PartialEquiv.left_inv _ m0] at gh
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z))) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z))) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
rw [(PartialEquiv.injOn _).eq_iff m3 m2] at gh
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z) ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
not_local_inj_of_mfderiv_zero
[172, 1]
[225, 63]
exact gh
case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.refine_3.intro.right S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T c : S df : mfderiv I I f c = 0 g : ℂ → ℂ hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c) dg : HasDerivAt g (0 1) (↑(extChartAt I c) c) h : ℂ → ℂ ha : AnalyticAt ℂ h (↑(extChartAt I c) c) h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source z : S m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source m2 : f z ∈ (extChartAt I (f c)).source m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target m0 : z ∈ (extChartAt I c).source even : ↑(extChartAt I c) z ≠ ↑(extChartAt I c) c → h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z) zc : z ≠ c hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z ⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
contrapose inj
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S inj : InjOn f s so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c ⊢ mfderiv I I f c ≠ 0
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : ¬mfderiv I I f c ≠ 0 ⊢ ¬InjOn f s
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S inj : InjOn f s so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c ⊢ mfderiv I I f c ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
simp only [not_not, InjOn, not_forall] at inj ⊢
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : ¬mfderiv I I f c ≠ 0 ⊢ ¬InjOn f s
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : ¬mfderiv I I f c ≠ 0 ⊢ ¬InjOn f s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
rcases not_local_inj_of_mfderiv_zero fa inj with ⟨g, ga, gc, fg⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
have gm : ∀ᶠ z in 𝓝 c, g z ∈ s := ga.continuousAt.eventually_mem (so.mem_nhds (by simp only [gc, m]))
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
replace fg := fg.and (((so.eventually_mem m).and gm).filter_mono nhdsWithin_le_nhds)
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
rcases @Filter.Eventually.exists _ _ _ (AnalyticManifold.punctured_nhds_neBot I c) fg with ⟨z, ⟨gz, fg⟩, zs, gs⟩
case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s z : S gz : g z ≠ z fg : f (g z) = f z zs : z ∈ s gs : g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
use g z, gs, z, zs, fg, gz
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s z : S gz : g z ≠ z fg : f (g z) = f z zs : z ∈ s gs : g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s z : S gz : g z ≠ z fg : f (g z) = f z zs : z ∈ s gs : g z ∈ s ⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multiple.lean
Set.InjOn.mfderiv_ne_zero
[228, 1]
[237, 29]
simp only [gc, m]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z ⊢ g c ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : ChartedSpace ℂ S inst✝³ : AnalyticManifold I S T : Type inst✝² : TopologicalSpace T inst✝¹ : ChartedSpace ℂ T inst✝ : AnalyticManifold I T f : S → T s : Set S so : IsOpen s c : S m : c ∈ s fa : HolomorphicAt I I f c inj : mfderiv I I f c = 0 g : S → S ga : HolomorphicAt I I g c gc : g c = c fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z ⊢ g c ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [push, pop]
N : Finset ℕ ⊢ push (pop N) = insert 0 N
N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ ⊢ push (pop N) = insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
apply Finset.ext
N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N
case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp
case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N
case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro n
case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N
case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N TACTIC: