url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | have f0' : (fun z ↦ f (z + c) - f c) 0 = 0 := by simp only [zero_add, sub_self] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | rcases not_local_inj_of_deriv_zero' fa' df' f0' with ⟨g, ga, e, h⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | clear fa df fa' df' | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | refine ⟨fun z ↦ g (z - c) + c, ?_, ?_, ?_⟩ | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c
case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ (fun z => g (z - c) + c) c = c
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∃ g, AnalyticAt ℂ g c ∧ g c = c ∧ ∀ᶠ (z : ℂ) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [zero_add, fa] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
⊢ AnalyticAt ℂ f (0 + c) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
⊢ AnalyticAt ℂ f (0 + c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | refine HasDerivAt.sub_const ?_ _ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
⊢ HasDerivAt f' (0 * 1) 0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
⊢ HasDerivAt f' (0 * 1) 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | have e : (fun z ↦ f (z + c)) = f ∘ fun z ↦ z + c := rfl | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | rw [e] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => f (z + c)) (0 * 1) 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | apply HasDerivAt.comp | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0 | case hh₂
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt f 0 (0 + c)
case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (f ∘ fun z => z + c) (0 * 1) 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [zero_add, df] | case hh₂
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt f 0 (0 + c)
case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0 | case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0 | Please generate a tactic in lean4 to solve the state.
STATE:
case hh₂
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt f 0 (0 + c)
case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | exact HasDerivAt.add_const (hasDerivAt_id _) _ | case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case hh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
e : (fun z => f (z + c)) = f ∘ fun z => z + c
⊢ HasDerivAt (fun z => z + c) 1 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [zero_add, sub_self] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
⊢ (fun z => f (z + c) - f c) 0 = 0 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
fa : AnalyticAt ℂ f c
df : HasDerivAt f 0 c
f' : ℂ → ℂ := fun z => f (z + c) - f c
fa' : AnalyticAt ℂ f' 0
df' : HasDerivAt f' 0 0
⊢ (fun z => f (z + c) - f c) 0 = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | exact AnalyticAt.add (AnalyticAt.comp (by simp only [sub_self, ga])
((analyticAt_id _ _).sub analyticAt_const)) analyticAt_const | case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ AnalyticAt ℂ (fun z => g (z - c) + c) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [sub_self, ga] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ AnalyticAt ℂ g (c - c) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ AnalyticAt ℂ g (c - c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [sub_self, e, zero_add] | case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ (fun z => g (z - c) + c) c = c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ (fun z => g (z - c) + c) c = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [eventually_nhdsWithin_iff] at h ⊢ | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (z : ℂ) in 𝓝[≠] 0, g z ≠ z ∧ f' (g z) = f' z
⊢ ∀ᶠ (z : ℂ) in 𝓝[≠] c, (fun z => g (z - c) + c) z ≠ z ∧ f ((fun z => g (z - c) + c) z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | have sc : Tendsto (fun z ↦ z - c) (𝓝 c) (𝓝 0) := by
rw [← sub_self c]; exact continuousAt_id.sub continuousAt_const | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | refine (sc.eventually h).mp (eventually_of_forall ?_) | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) →
x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ᶠ (x : ℂ) in 𝓝 c, x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [mem_compl_singleton_iff, sub_ne_zero] | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) →
x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x - c ∈ {0}ᶜ → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) →
x ∈ {c}ᶜ → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | intro z h zc | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
⊢ ∀ (x : ℂ),
(x ≠ c → g (x - c) ≠ x - c ∧ f' (g (x - c)) = f' (x - c)) → x ≠ c → g (x - c) + c ≠ x ∧ f (g (x - c) + c) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | rcases h zc with ⟨gz, ff⟩ | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | constructor | case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z ∧ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | contrapose gz | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : ¬g (z - c) + c ≠ z
⊢ ¬g (z - c) ≠ z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ g (z - c) + c ≠ z
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [not_not] at gz ⊢ | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : ¬g (z - c) + c ≠ z
⊢ ¬g (z - c) ≠ z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : ¬g (z - c) + c ≠ z
⊢ ¬g (z - c) ≠ z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | nth_rw 2 [← gz] | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = g (z - c) + c - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = z - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | ring | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = g (z - c) + c - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
ff : f' (g (z - c)) = f' (z - c)
gz : g (z - c) + c = z
⊢ g (z - c) = g (z - c) + c - c
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | simp only [sub_left_inj, sub_add_cancel, f'] at ff | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f (g (z - c) + c) = f z
⊢ f (g (z - c) + c) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f' (g (z - c)) = f' (z - c)
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | exact ff | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f (g (z - c) + c) = f z
⊢ f (g (z - c) + c) = f z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h✝ : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
sc : Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
z : ℂ
h : z ≠ c → g (z - c) ≠ z - c ∧ f' (g (z - c)) = f' (z - c)
zc : z ≠ c
gz : g (z - c) ≠ z - c
ff : f (g (z - c) + c) = f z
⊢ f (g (z - c) + c) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | rw [← sub_self c] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 0) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c)) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 0)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_deriv_zero | [140, 1] | [167, 65] | exact continuousAt_id.sub continuousAt_const | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : ℂ → ℂ
c : ℂ
f' : ℂ → ℂ := fun z => f (z + c) - f c
f0' : (fun z => f (z + c) - f c) 0 = 0
g : ℂ → ℂ
ga : AnalyticAt ℂ g 0
e : g 0 = 0
h : ∀ᶠ (x : ℂ) in 𝓝 0, x ∈ {0}ᶜ → g x ≠ x ∧ f' (g x) = f' x
⊢ Tendsto (fun z => z - c) (𝓝 c) (𝓝 (c - c))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | generalize hg : (fun z ↦ extChartAt I (f c) (f ((extChartAt I c).symm z))) = g | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | have dg : mfderiv I I g (extChartAt I c c) = 0 := by
have fd : MDifferentiableAt I I f ((extChartAt I c).symm (extChartAt I c c)) := by
rw [PartialEquiv.left_inv]; exact fa.mdifferentiableAt; apply mem_extChartAt_source
rw [← hg, ←Function.comp_def, mfderiv_comp _ (HolomorphicAt.extChartAt _).mdifferentiableAt _,
←Function.comp_def, mfderiv_comp _ fd (HolomorphicAt.extChartAt_symm _).mdifferentiableAt,
PartialEquiv.left_inv, df, ContinuousLinearMap.zero_comp, ContinuousLinearMap.comp_zero]
apply mem_extChartAt_source; apply mem_extChartAt_target; rw [PartialEquiv.left_inv]
apply mem_extChartAt_source; apply mem_extChartAt_source
exact MDifferentiableAt.comp _ fd
(HolomorphicAt.extChartAt_symm (mem_extChartAt_target _ _)).mdifferentiableAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | simp only [holomorphicAt_iff, Function.comp, hg] at fa | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | have dg' := fa.2.differentiableAt.mdifferentiableAt.hasMFDerivAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c))
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [dg, hasMFDerivAt_iff_hasFDerivAt] at dg' | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c))
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasMFDerivAt I I g (↑(extChartAt I c) c) (mfderiv I I g (↑(extChartAt I c) c))
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | replace dg := dg'.hasDerivAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
dg : mfderiv I I g (↑(extChartAt I c) c) = 0
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | clear dg' | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg' : HasFDerivAt g 0 (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rcases not_local_inj_of_deriv_zero fa.2 dg with ⟨h, ha, h0, e⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | refine ⟨fun z ↦ (extChartAt I c).symm (h (extChartAt I c z)), ?_, ?_, ?_⟩ | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z | case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∀ᶠ (z : S) in 𝓝[≠] c,
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∃ g, HolomorphicAt I I g c ∧ g c = c ∧ ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | have fd : MDifferentiableAt I I f ((extChartAt I c).symm (extChartAt I c c)) := by
rw [PartialEquiv.left_inv]; exact fa.mdifferentiableAt; apply mem_extChartAt_source | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ mfderiv I I g (↑(extChartAt I c) c) = 0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ mfderiv I I g (↑(extChartAt I c) c) = 0 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ mfderiv I I g (↑(extChartAt I c) c) = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [← hg, ←Function.comp_def, mfderiv_comp _ (HolomorphicAt.extChartAt _).mdifferentiableAt _,
←Function.comp_def, mfderiv_comp _ fd (HolomorphicAt.extChartAt_symm _).mdifferentiableAt,
PartialEquiv.left_inv, df, ContinuousLinearMap.zero_comp, ContinuousLinearMap.comp_zero] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ mfderiv I I g (↑(extChartAt I c) c) = 0 | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ mfderiv I I g (↑(extChartAt I c) c) = 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_source | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_target | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [PartialEquiv.left_inv] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f c ∈ (extChartAt I (f c)).source
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) ∈ (extChartAt I (f c)).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_source | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f c ∈ (extChartAt I (f c)).source
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ f c ∈ (extChartAt I (f c)).source
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_source | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ c ∈ (extChartAt I c).source
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact MDifferentiableAt.comp _ fd
(HolomorphicAt.extChartAt_symm (mem_extChartAt_target _ _)).mdifferentiableAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fd : MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
⊢ MDifferentiableAt I I (fun z => f (↑(extChartAt I c).symm z)) (↑(extChartAt I c) c)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [PartialEquiv.left_inv] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c)) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ MDifferentiableAt I I f c
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ MDifferentiableAt I I f (↑(extChartAt I c).symm (↑(extChartAt I c) c))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact fa.mdifferentiableAt | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ MDifferentiableAt I I f c
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ MDifferentiableAt I I f c
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_source | case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
fa : HolomorphicAt I I f c
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
⊢ c ∈ (extChartAt I c).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply (HolomorphicAt.extChartAt_symm (mem_extChartAt_target I c)).comp_of_eq | case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c | case intro.intro.intro.refine_1.gh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c
case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply (ha.holomorphicAt I I).comp_of_eq
(HolomorphicAt.extChartAt (mem_extChartAt_source I c)) rfl | case intro.intro.intro.refine_1.gh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c
case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c | case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_1.gh
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ HolomorphicAt I I (fun x => h (↑(extChartAt I c) x)) c
case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact h0 | case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_1.e
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | simp only [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I c)] | case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [eventually_nhdsWithin_iff] at e ⊢ | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∀ᶠ (z : S) in 𝓝[≠] c,
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (z : ℂ) in 𝓝[≠] ↑(extChartAt I c) c, h z ≠ z ∧ g (h z) = g z
⊢ ∀ᶠ (z : S) in 𝓝[≠] c,
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z ≠ z ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) z) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply ((continuousAt_extChartAt I c).eventually e).mp | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply ((isOpen_extChartAt_source I c).eventually_mem (mem_extChartAt_source I c)).mp | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (x : S) in 𝓝 c,
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | have m2 : ∀ᶠ z in 𝓝 c, f z ∈ (extChartAt I (f c)).source :=
fa.1.eventually_mem (extChartAt_source_mem_nhds I _) | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | refine m1.mp (m2.mp (m3.mp (eventually_of_forall ?_))) | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ᶠ (x : S) in 𝓝 c,
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | simp only [mem_compl_singleton_iff] | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ≠ c →
↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ∈ {↑(extChartAt I c) c}ᶜ →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ∈ {c}ᶜ →
(fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x ≠ x ∧
f ((fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) x) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | intro z m3 m2 m1 m0 even zc | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ≠ c →
↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3 : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
⊢ ∀ (x : S),
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) ∈ (extChartAt I (f c)).source →
f x ∈ (extChartAt I (f c)).source →
h (↑(extChartAt I c) x) ∈ (extChartAt I c).target →
x ∈ (extChartAt I c).source →
(↑(extChartAt I c) x ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) x) ≠ ↑(extChartAt I c) x ∧ g (h (↑(extChartAt I c) x)) = g (↑(extChartAt I c) x)) →
x ≠ c →
↑(extChartAt I c).symm (h (↑(extChartAt I c) x)) ≠ x ∧
f (↑(extChartAt I c).symm (h (↑(extChartAt I c) x))) = f x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rcases even ((PartialEquiv.injOn _).ne m0 (mem_extChartAt_source I c) zc) with ⟨hz, gh⟩ | case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | constructor | case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z ∧ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | refine ContinuousAt.eventually_mem ?_ (extChartAt_target_mem_nhds' I ?_) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact ha.continuousAt.comp_of_eq (continuousAt_extChartAt I c) rfl | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [h0] | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ h (↑(extChartAt I c) c) ∈ (extChartAt I c).target
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact mem_extChartAt_target I c | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
⊢ ↑(extChartAt I c) c ∈ (extChartAt I c).target
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | refine ContinuousAt.eventually_mem ?_ (extChartAt_source_mem_nhds' I ?_) | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply fa.1.comp_of_eq | case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c | case refine_1.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply (continuousAt_extChartAt_symm I _).comp_of_eq | case refine_1.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | case refine_1.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply ha.continuousAt.comp_of_eq | case refine_1.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | case refine_1.hf.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c
case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => h (↑(extChartAt I c) z)) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact continuousAt_extChartAt I _ | case refine_1.hf.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c
case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hf.hf.hf
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ContinuousAt (fun z => ↑(extChartAt I c) z) c
case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rfl | case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hf.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c) c = ↑(extChartAt I c) c
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact h0 | case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hf.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I _)] | case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_1.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) c)) = c
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [h0, PartialEquiv.left_inv _ (mem_extChartAt_source I _)] | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f c ∈ (extChartAt I (f c)).source | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) c))) ∈ (extChartAt I (f c)).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | apply mem_extChartAt_source | case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f c ∈ (extChartAt I (f c)).source | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case refine_2
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1 : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2 : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
⊢ f c ∈ (extChartAt I (f c)).source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | nth_rw 2 [← PartialEquiv.left_inv _ m0] | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z) | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [(PartialEquiv.injOn _).ne_iff] | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z) | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c).symm (h (↑(extChartAt I c) z)) ≠ ↑(extChartAt I c).symm (↑(extChartAt I c) z)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact hz | case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [PartialEquiv.symm_source] | case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).symm.source
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact m1 | case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left.hx
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [PartialEquiv.symm_source] | case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source | case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).symm.source
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact PartialEquiv.map_source _ m0 | case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.left.hy
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ ↑(extChartAt I c) z ∈ (extChartAt I c).target
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | simp only [← hg] at gh | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh :
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) =
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z)))
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [PartialEquiv.left_inv _ m0] at gh | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh :
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) =
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z)))
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh :
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) =
↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (↑(extChartAt I c) z)))
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | rw [(PartialEquiv.injOn _).eq_iff m3 m2] at gh | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z)))) = ↑(extChartAt I (f c)) (f z)
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | not_local_inj_of_mfderiv_zero | [172, 1] | [225, 63] | exact gh | case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.refine_3.intro.right
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
c : S
df : mfderiv I I f c = 0
g : ℂ → ℂ
hg : (fun z => ↑(extChartAt I (f c)) (f (↑(extChartAt I c).symm z))) = g
fa : ContinuousAt f c ∧ AnalyticAt ℂ g (↑(extChartAt I c) c)
dg : HasDerivAt g (0 1) (↑(extChartAt I c) c)
h : ℂ → ℂ
ha : AnalyticAt ℂ h (↑(extChartAt I c) c)
h0 : h (↑(extChartAt I c) c) = ↑(extChartAt I c) c
e : ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I c) c), x ∈ {↑(extChartAt I c) c}ᶜ → h x ≠ x ∧ g (h x) = g x
m1✝ : ∀ᶠ (z : S) in 𝓝 c, h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m2✝ : ∀ᶠ (z : S) in 𝓝 c, f z ∈ (extChartAt I (f c)).source
m3✝ : ∀ᶠ (z : S) in 𝓝 c, f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
z : S
m3 : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) ∈ (extChartAt I (f c)).source
m2 : f z ∈ (extChartAt I (f c)).source
m1 : h (↑(extChartAt I c) z) ∈ (extChartAt I c).target
m0 : z ∈ (extChartAt I c).source
even :
↑(extChartAt I c) z ≠ ↑(extChartAt I c) c →
h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z ∧ g (h (↑(extChartAt I c) z)) = g (↑(extChartAt I c) z)
zc : z ≠ c
hz : h (↑(extChartAt I c) z) ≠ ↑(extChartAt I c) z
gh : f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
⊢ f (↑(extChartAt I c).symm (h (↑(extChartAt I c) z))) = f z
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | contrapose inj | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
inj : InjOn f s
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
⊢ mfderiv I I f c ≠ 0 | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : ¬mfderiv I I f c ≠ 0
⊢ ¬InjOn f s | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
inj : InjOn f s
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
⊢ mfderiv I I f c ≠ 0
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | simp only [not_not, InjOn, not_forall] at inj ⊢ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : ¬mfderiv I I f c ≠ 0
⊢ ¬InjOn f s | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : ¬mfderiv I I f c ≠ 0
⊢ ¬InjOn f s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | rcases not_local_inj_of_mfderiv_zero fa inj with ⟨g, ga, gc, fg⟩ | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | have gm : ∀ᶠ z in 𝓝 c, g z ∈ s :=
ga.continuousAt.eventually_mem (so.mem_nhds (by simp only [gc, m])) | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | replace fg := fg.and (((so.eventually_mem m).and gm).filter_mono nhdsWithin_le_nhds) | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | rcases @Filter.Eventually.exists _ _ _ (AnalyticManifold.punctured_nhds_neBot I c) fg
with ⟨z, ⟨gz, fg⟩, zs, gs⟩ | case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
z : S
gz : g z ≠ z
fg : f (g z) = f z
zs : z ∈ s
gs : g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | use g z, gs, z, zs, fg, gz | case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
z : S
gz : g z ≠ z
fg : f (g z) = f z
zs : z ∈ s
gs : g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro.intro.intro.intro.intro.intro
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
gm : ∀ᶠ (z : S) in 𝓝 c, g z ∈ s
fg✝ : ∀ᶠ (x : S) in 𝓝[≠] c, (g x ≠ x ∧ f (g x) = f x) ∧ x ∈ s ∧ g x ∈ s
z : S
gz : g z ≠ z
fg : f (g z) = f z
zs : z ∈ s
gs : g z ∈ s
⊢ ∃ x, ∃ (_ : x ∈ s), ∃ x_1, ∃ (_ : x_1 ∈ s) (_ : f x = f x_1), ¬x = x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Dynamics/Multiple.lean | Set.InjOn.mfderiv_ne_zero | [228, 1] | [237, 29] | simp only [gc, m] | S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
⊢ g c ∈ s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
S : Type
inst✝⁵ : TopologicalSpace S
inst✝⁴ : ChartedSpace ℂ S
inst✝³ : AnalyticManifold I S
T : Type
inst✝² : TopologicalSpace T
inst✝¹ : ChartedSpace ℂ T
inst✝ : AnalyticManifold I T
f : S → T
s : Set S
so : IsOpen s
c : S
m : c ∈ s
fa : HolomorphicAt I I f c
inj : mfderiv I I f c = 0
g : S → S
ga : HolomorphicAt I I g c
gc : g c = c
fg : ∀ᶠ (z : S) in 𝓝[≠] c, g z ≠ z ∧ f (g z) = f z
⊢ g c ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Finset.lean | push_pop | [26, 1] | [35, 61] | rw [push, pop] | N : Finset ℕ
⊢ push (pop N) = insert 0 N | N : Finset ℕ
⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N | Please generate a tactic in lean4 to solve the state.
STATE:
N : Finset ℕ
⊢ push (pop N) = insert 0 N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Finset.lean | push_pop | [26, 1] | [35, 61] | apply Finset.ext | N : Finset ℕ
⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N | case a
N : Finset ℕ
⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N | Please generate a tactic in lean4 to solve the state.
STATE:
N : Finset ℕ
⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Finset.lean | push_pop | [26, 1] | [35, 61] | simp | case a
N : Finset ℕ
⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N | case a
N : Finset ℕ
⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N | Please generate a tactic in lean4 to solve the state.
STATE:
case a
N : Finset ℕ
⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Finset.lean | push_pop | [26, 1] | [35, 61] | intro n | case a
N : Finset ℕ
⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N | case a
N : Finset ℕ
n : ℕ
⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N | Please generate a tactic in lean4 to solve the state.
STATE:
case a
N : Finset ℕ
⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.