url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
by_cases n0 : n = 0
case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp_rw [or_iff_right n0]
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
constructor
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [n0]
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro h
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rcases h with ⟨x, ⟨x0, xN⟩, xn⟩
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [Nat.sub_add_cancel (Nat.one_le_iff_ne_zero.mpr x0)] at xn
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rwa [←xn]
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro h
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
exists n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
use ⟨n0,h⟩
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n
case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
exact Nat.sub_add_cancel (Nat.one_le_iff_ne_zero.mpr n0)
case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simp
A B : Finset ℕ ⊢ push A ≤ push B ↔ A ≤ B
A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ push A ≤ push B ↔ A ≤ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [push]
A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [push]
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
constructor
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B
case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro AB
case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B
case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [Finset.subset_iff] at AB ⊢
case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro x xA
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
have h : x + 1 ∈ insert 0 (Finset.image (fun n : ℕ ↦ n + 1) A) := by simpa
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
specialize AB h
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simp at AB
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
assumption
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simpa
A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A)
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro AB
case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
Please generate a tactic in lean4 to solve the state. STATE: case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
apply Finset.insert_subset_insert
case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B
Please generate a tactic in lean4 to solve the state. STATE: case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
apply Finset.image_mono
case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B
case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B
Please generate a tactic in lean4 to solve the state. STATE: case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
assumption
case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
rw [push]
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (push N).sum (cons a f)
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (push N).sum (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
simp
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f)
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
rfl
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
rw [push]
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (push N).prod (cons a f)
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f)
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (push N).prod (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
simp
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f)
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1)
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
rfl
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [Set.range]
⊢ Set.range push = {N | 0 ∈ N}
⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N}
Please generate a tactic in lean4 to solve the state. STATE: ⊢ Set.range push = {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
apply Set.ext
⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N}
case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N}
Please generate a tactic in lean4 to solve the state. STATE: ⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
simp
case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N}
case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x
Please generate a tactic in lean4 to solve the state. STATE: case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro N
case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x
case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
constructor
case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N
case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N
Please generate a tactic in lean4 to solve the state. STATE: case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro h
case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N
case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rcases h with ⟨M, H⟩
case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [push] at H
case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [← H]
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M)
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exact Finset.mem_insert_self 0 _
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro N0
case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exists pop N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [push_pop]
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exact Finset.insert_eq_of_mem N0
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
apply Filter.comap_embedding_atTop
⊢ Filter.comap push atTop = atTop
case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: ⊢ Filter.comap push atTop = atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
exact @push_le_push
case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
intro N
case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
exists pop N
case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b
case hu N : Finset ℕ ⊢ N ≤ push (pop N)
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
rw [push_pop]
case hu N : Finset ℕ ⊢ N ≤ push (pop N)
case hu N : Finset ℕ ⊢ N ≤ insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ N ≤ push (pop N) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
simp
case hu N : Finset ℕ ⊢ N ≤ insert 0 N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ N ≤ insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
nth_rw 1 [← push_comap_atTop]
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) atTop l ↔ Filter.Tendsto f atTop l
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) atTop l ↔ Filter.Tendsto f atTop l TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
apply Filter.tendsto_comap'_iff
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l
case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
rw [push_range]
case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
have h : {N : Finset ℕ | 0 ∈ N} = {N : Finset ℕ | {0} ≤ N} := by simp
case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
rw [h]
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
exact Filter.mem_atTop _
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
simp
A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} = {N | {0} ≤ N}
no goals
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} = {N | {0} ≤ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
induction' N using Finset.induction with n N Nn h
N : Finset ℕ f : ℕ → ℂ ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n)
case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n) case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n)
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ f : ℕ → ℂ ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
simp
case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
rw [Finset.sum_insert Nn]
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
rw [Finset.sum_insert Nn]
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
trans abs (f n) + abs (N.sum fun n ↦ f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
exact Complex.abs.add_le _ _
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
apply add_le_add_left
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
assumption
case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
rw [Finset.subset_iff]
A B : Finset ℕ ⊢ B ⊆ A ∪ B \ A
A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ B ⊆ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
intro x Bx
A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
rw [Finset.mem_union, Finset.mem_sdiff]
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
by_cases Ax : x ∈ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
left
case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A
Please generate a tactic in lean4 to solve the state. STATE: case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
exact Ax
case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
right
case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
exact ⟨Bx, Ax⟩
case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
mandelbrot_eq_multibrot
[27, 1]
[31, 6]
ext c
⊢ mandelbrot = multibrot 2
case h c : ℂ ⊢ c ∈ mandelbrot ↔ c ∈ multibrot 2
Please generate a tactic in lean4 to solve the state. STATE: ⊢ mandelbrot = multibrot 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
mandelbrot_eq_multibrot
[27, 1]
[31, 6]
simp only [mandelbrot, mem_setOf_eq, multibrot, f_f'_iter, tendsto_inf_iff_tendsto_atInf, tendsto_atInf_iff_norm_tendsto_atTop, Complex.norm_eq_abs]
case h c : ℂ ⊢ c ∈ mandelbrot ↔ c ∈ multibrot 2
case h c : ℂ ⊢ ¬Tendsto (fun n => Complex.abs ((fun z => z ^ 2 + c)^[n] c)) atTop atTop ↔ ¬Tendsto (fun x => Complex.abs ((f' 2 c)^[x] c)) atTop atTop
Please generate a tactic in lean4 to solve the state. STATE: case h c : ℂ ⊢ c ∈ mandelbrot ↔ c ∈ multibrot 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
mandelbrot_eq_multibrot
[27, 1]
[31, 6]
rfl
case h c : ℂ ⊢ ¬Tendsto (fun n => Complex.abs ((fun z => z ^ 2 + c)^[n] c)) atTop atTop ↔ ¬Tendsto (fun x => Complex.abs ((f' 2 c)^[x] c)) atTop atTop
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h c : ℂ ⊢ ¬Tendsto (fun n => Complex.abs ((fun z => z ^ 2 + c)^[n] c)) atTop atTop ↔ ¬Tendsto (fun x => Complex.abs ((f' 2 c)^[x] c)) atTop atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
isConnected_mandelbrot
[34, 1]
[35, 62]
rw [mandelbrot_eq_multibrot]
⊢ IsConnected mandelbrot
⊢ IsConnected (multibrot 2)
Please generate a tactic in lean4 to solve the state. STATE: ⊢ IsConnected mandelbrot TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
isConnected_mandelbrot
[34, 1]
[35, 62]
exact isConnected_multibrot 2
⊢ IsConnected (multibrot 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: ⊢ IsConnected (multibrot 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
isConnected_compl_mandelbrot
[38, 1]
[39, 68]
rw [mandelbrot_eq_multibrot]
⊢ IsConnected mandelbrotᶜ
⊢ IsConnected (multibrot 2)ᶜ
Please generate a tactic in lean4 to solve the state. STATE: ⊢ IsConnected mandelbrotᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Mandelbrot.lean
isConnected_compl_mandelbrot
[38, 1]
[39, 68]
exact isConnected_compl_multibrot 2
⊢ IsConnected (multibrot 2)ᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: ⊢ IsConnected (multibrot 2)ᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
rw [← vo.isClosed_compl.closure_eq]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ vᶜ
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
apply closure_mono
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
exact _root_.trans (inter_subset_right _ _) (Disjoint.subset_compl_left d.symm)
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rw [←closure_subset_iff_isClosed, ←diff_eq_empty]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ IsClosed (s ∩ u)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ IsClosed (s ∩ u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
by_contra h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
simp only [← ne_eq, ← nonempty_iff_ne_empty] at h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rcases h with ⟨x, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
simp only [mem_diff, mem_inter_iff, not_and] at h
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have sus : closure (s ∩ u) ⊆ s := by nth_rw 2 [← sc.closure_eq]; apply closure_mono; apply inter_subset_left
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have xs := sus h.1
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have m := not_or.mpr ⟨h.2 xs, not_mem_of_mem_compl (closure_inter_subset_compl vo d h.1)⟩
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rw [← mem_union _ _ _] at m
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
exact not_mem_subset suv m xs
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
nth_rw 2 [← sc.closure_eq]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ s
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
apply closure_mono
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s TACTIC: