url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors'
[162, 1]
[183, 14]
rw [Nat.cast_sub (by omega), Nat.cast_mul, four, mul_zero, sub_zero, ke]
case neg f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ke : o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4 ⊢ (f (o + n / 2 + (k - n / 2 * 4) / 4))[↑(k - n / 2 * 4)] = (f (o + k / 4))[↑k]
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ke : o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4 ⊢ (f (o + n / 2 + (k - n / 2 * 4) / 4))[↑(k - n / 2 * 4)] = (f (o + k / 4))[↑k] TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors'
[162, 1]
[183, 14]
omega
f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors'
[162, 1]
[183, 14]
omega
f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ke : o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4 ⊢ n / 2 * 4 ≤ k
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ke : o + n / 2 + (k - n / 2 * 4) / 4 = o + k / 4 ⊢ n / 2 * 4 ≤ k TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors'
[162, 1]
[183, 14]
omega
case neg.a f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ n - n / 2 < n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.a f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ n - n / 2 < n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors'
[162, 1]
[183, 14]
omega
case neg.lt f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ k - n / 2 * 4 < (n - n / 2) * 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.lt f : ℕ → Color UInt8 chunk : ℕ four : ↑4 = 0 n : ℕ i : ∀ m < n, ∀ (o k : ℕ), k < m * 4 → (parallel_colors' f m o chunk).get! k = (f (o + k / 4))[↑k] o k : ℕ lt : k < n * 4 h : 1 < n ∧ chunk < n c : ¬k < n / 2 * 4 ⊢ k - n / 2 * 4 < (n - n / 2) * 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.size_parallel_colors
[185, 1]
[188, 53]
simp only [parallel_colors, size_parallel_colors']
f : ℕ → Color UInt8 n chunk : ℕ ⊢ (parallel_colors f n chunk).size = n * 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → Color UInt8 n chunk : ℕ ⊢ (parallel_colors f n chunk).size = n * 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get!_parallel_colors
[190, 1]
[193, 80]
simp only [parallel_colors, zero_add, get!_parallel_colors' f n 0 chunk k lt]
f : ℕ → Color UInt8 n chunk k : ℕ lt : k < n * 4 ⊢ (parallel_colors f n chunk).get! k = (f (k / 4))[↑k]
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → Color UInt8 n chunk k : ℕ lt : k < n * 4 ⊢ (parallel_colors f n chunk).get! k = (f (k / 4))[↑k] TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.width_ofFn
[204, 1]
[205, 49]
rw [ofFn]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ ⊢ (ofFn w h chunk f).width = w
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ ⊢ (ofFn w h chunk f).width = w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.height_ofFn
[206, 1]
[207, 50]
rw [ofFn]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ ⊢ (ofFn w h chunk f).height = h
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ ⊢ (ofFn w h chunk f).height = h TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
rw [get]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ (ofFn w h chunk f).get x y = f ↑x ↑y
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ (let b := base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y; let_fun lt := ⋯; { r := (ofFn w h chunk f).data[b], g := (ofFn w h chunk f).data[b + 1], b := (ofFn w h chunk f).data[b + 2], a := (ofFn w h chunk f).data[b + 3] }) = f ↑x ↑y
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ (ofFn w h chunk f).get x y = f ↑x ↑y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
simp only [ByteArray.getElemNat_eq_get!]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ (let b := base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y; let_fun lt := ⋯; { r := (ofFn w h chunk f).data[b], g := (ofFn w h chunk f).data[b + 1], b := (ofFn w h chunk f).data[b + 2], a := (ofFn w h chunk f).data[b + 3] }) = f ↑x ↑y
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ (let b := base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y; let_fun lt := ⋯; { r := (ofFn w h chunk f).data[b], g := (ofFn w h chunk f).data[b + 1], b := (ofFn w h chunk f).data[b + 2], a := (ofFn w h chunk f).data[b + 3] }) = f ↑x ↑y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have xw := x.prop
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have yh := y.prop
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width yh : ↑y < (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
simp only [width_ofFn, height_ofFn, Color.ext_iff] at xw yh ⊢
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width yh : ↑y < (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < (ofFn w h chunk f).width yh : ↑y < (ofFn w h chunk f).height ⊢ { r := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y), g := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 1), b := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 2), a := (ofFn w h chunk f).data.get! (base (ofFn w h chunk f).width (ofFn w h chunk f).height ↑x ↑y + 3) } = f ↑x ↑y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have w0 : 0 < w := by omega
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have yh' : y ≤ h - 1 := by omega
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have m0 : ∀ x : Fin 4, (x * 4 : Fin 4) = 0 := by intro x have e : (4 : Fin 4) = 0 := rfl simp only [e, mul_zero]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have f0 : 0 < 4 := by norm_num
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
refine ⟨?_, ?_, ?_, ?_⟩
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
case refine_1 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r case refine_2 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g case refine_3 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y) = (f ↑x ↑y).r ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 1) = (f ↑x ↑y).g ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 2) = (f ↑x ↑y).b ∧ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
omega
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h ⊢ 0 < w
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h ⊢ 0 < w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
omega
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w ⊢ ↑y ≤ h - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w ⊢ ↑y ≤ h - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
intro x
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 ⊢ ∀ (x : Fin 4), x * 4 = 0
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 ⊢ x * 4 = 0
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 ⊢ ∀ (x : Fin 4), x * 4 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have e : (4 : Fin 4) = 0 := rfl
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 ⊢ x * 4 = 0
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 e : 4 = 0 ⊢ x * 4 = 0
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 ⊢ x * 4 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
simp only [e, mul_zero]
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 e : 4 = 0 ⊢ x * 4 = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x✝ : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x✝ < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 x : Fin 4 e : 4 = 0 ⊢ x * 4 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
norm_num
f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 ⊢ 0 < 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 ⊢ 0 < 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
nth_rw 1 [ofFn]
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ { data := parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk, width := w, height := h, size_eq := ⋯ }.data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (ofFn w h chunk f).data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
simp only
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ { data := parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk, width := w, height := h, size_eq := ⋯ }.data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk).get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ { data := parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk, width := w, height := h, size_eq := ⋯ }.data.get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
rw [get!_parallel_colors]
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk).get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (f ((base w h ↑x ↑y + 3) / 4 % w) (h - 1 - (base w h ↑x ↑y + 3) / 4 / w))[↑(base w h ↑x ↑y + 3)] = (f ↑x ↑y).a case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (parallel_colors (fun i => f (i % w) (h - 1 - i / w)) (h * w) chunk).get! (base w h ↑x ↑y + 3) = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
simp [base, add_comm _ (x : ℕ), Nat.add_mul_div_right _ _ w0, Nat.div_eq_of_lt xw, Nat.sub_sub_self yh', Nat.mod_eq_of_lt xw, m0, add_comm (_ * 4), Nat.add_mul_div_right _ _ f0]
case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (f ((base w h ↑x ↑y + 3) / 4 % w) (h - 1 - (base w h ↑x ↑y + 3) / 4 / w))[↑(base w h ↑x ↑y + 3)] = (f ↑x ↑y).a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_4 f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ (f ((base w h ↑x ↑y + 3) / 4 % w) (h - 1 - (base w h ↑x ↑y + 3) / 4 / w))[↑(base w h ↑x ↑y + 3)] = (f ↑x ↑y).a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
have le := base_le xw yh
case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4
case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 le : base w h ↑x ↑y + 4 ≤ h * w * 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4
Please generate a tactic in lean4 to solve the state. STATE: case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Image.lean
Image.get_ofFn
[209, 1]
[233, 14]
omega
case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 le : base w h ↑x ↑y + 4 ≤ h * w * 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_4.lt f : ℕ → ℕ → Color UInt8 w h chunk : ℕ x : Fin (ofFn w h chunk f).width y : Fin (ofFn w h chunk f).height xw : ↑x < w yh : ↑y < h w0 : 0 < w yh' : ↑y ≤ h - 1 m0 : ∀ (x : Fin 4), x * 4 = 0 f0 : 0 < 4 le : base w h ↑x ↑y + 4 ≤ h * w * 4 ⊢ base w h ↑x ↑y + 3 < h * w * 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
rw [← vo.isClosed_compl.closure_eq]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ vᶜ
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
apply closure_mono
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ closure (s ∩ u) ⊆ closure vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
closure_inter_subset_compl
[25, 1]
[28, 82]
exact _root_.trans (inter_subset_right _ _) (Disjoint.subset_compl_left d.symm)
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X vo : IsOpen v d : Disjoint u v ⊢ s ∩ u ⊆ vᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rw [←closure_subset_iff_isClosed, ←diff_eq_empty]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ IsClosed (s ∩ u)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ IsClosed (s ∩ u) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
by_contra h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v ⊢ closure (s ∩ u) \ (s ∩ u) = ∅ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
simp only [← ne_eq, ← nonempty_iff_ne_empty] at h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : ¬closure (s ∩ u) \ (s ∩ u) = ∅ ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rcases h with ⟨x, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v h : (closure (s ∩ u) \ (s ∩ u)).Nonempty ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
simp only [mem_diff, mem_inter_iff, not_and] at h
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) \ (s ∩ u) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have sus : closure (s ∩ u) ⊆ s := by nth_rw 2 [← sc.closure_eq]; apply closure_mono; apply inter_subset_left
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have xs := sus h.1
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
have m := not_or.mpr ⟨h.2 xs, not_mem_of_mem_compl (closure_inter_subset_compl vo d h.1)⟩
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
rw [← mem_union _ _ _] at m
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : ¬(x ∈ u ∨ x ∈ v) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
exact not_mem_subset suv m xs
case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) sus : closure (s ∩ u) ⊆ s xs : x ∈ s m : x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
nth_rw 2 [← sc.closure_eq]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ s
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
apply closure_mono
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ closure (s ∩ u) ⊆ closure s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isClosed_closed_inter
[30, 1]
[40, 61]
apply inter_subset_left
case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s u v : Set X sc : IsClosed s vo : IsOpen v d : Disjoint u v suv : s ⊆ u ∪ v x : X h : x ∈ closure (s ∩ u) ∧ (x ∈ s → x ∉ u) ⊢ s ∩ u ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
rw [isPreconnected_iff_subset_of_fully_disjoint_closed sc]
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ IsPreconnected s ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ IsPreconnected s ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
constructor
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) ↔ ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro h u v uo vo suv uv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have suc : IsClosed (s ∩ u) := isClosed_closed_inter sc vo uv suv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have svc : IsClosed (s ∩ v) := isClosed_closed_inter sc uo uv.symm ((union_comm u v).subst suv)
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have h0 : s ⊆ s ∩ u ∪ s ∩ v := by simp only [←inter_union_distrib_left]; exact subset_inter (subset_refl _) suv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
have h1 : Disjoint (s ∩ u) (s ∩ v) := Disjoint.inter_left' _ (Disjoint.inter_right' _ uv)
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' h (s ∩ u) (s ∩ v) suc svc h0 h1 with su sv
case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v
case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
simp only [←inter_union_distrib_left]
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ u ∪ s ∩ v
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ u ∪ s ∩ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact subset_inter (subset_refl _) suv
X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) ⊢ s ⊆ s ∩ (u ∪ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
left
case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v
case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact (subset_inter_iff.mp su).2
case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) su : s ⊆ s ∩ u ⊢ s ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
right
case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v
case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact (subset_inter_iff.mp sv).2
case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uo : IsOpen u vo : IsOpen v suv : s ⊆ u ∪ v uv : Disjoint u v suc : IsClosed (s ∩ u) svc : IsClosed (s ∩ v) h0 : s ⊆ s ∩ u ∪ s ∩ v h1 : Disjoint (s ∩ u) (s ∩ v) sv : s ⊆ s ∩ v ⊢ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro h u v uc vc suv uv
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s ⊢ (∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v) → ∀ (u v : Set X), IsClosed u → IsClosed v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
rcases NormalSpace.normal u v uc vc uv with ⟨u', v', uo, vo, uu, vv, uv'⟩
case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' h u' v' uo vo (_root_.trans suv (union_subset_union uu vv)) uv' with h h
case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
left
case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro x m
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' ⊢ s ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' (mem_union _ _ _).mp (suv m) with mu mv
case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact mu
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ u case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exfalso
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact disjoint_left.mp uv' (h m) (vv mv)
case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inl.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ u' x : X m : x ∈ s mv : x ∈ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
right
case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ u ∨ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
intro x m
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' ⊢ s ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
cases' (mem_union _ _ _).mp (suv m) with mu mv
case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exfalso
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ x ∈ v case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact disjoint_right.mp uv' (h m) (uu mu)
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inl X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mu : x ∈ u ⊢ False case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPreconnected_iff_subset_of_fully_disjoint_open
[45, 1]
[64, 67]
exact mv
case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro.intro.intro.intro.intro.intro.inr.h.inr X : Type inst✝⁵ : TopologicalSpace X I : Type inst✝⁴ : TopologicalSpace I inst✝³ : ConditionallyCompleteLinearOrder I inst✝² : DenselyOrdered I inst✝¹ : OrderTopology I inst✝ : NormalSpace X s : Set X sc : IsClosed s h✝ : ∀ (u v : Set X), IsOpen u → IsOpen v → s ⊆ u ∪ v → Disjoint u v → s ⊆ u ∨ s ⊆ v u v : Set X uc : IsClosed u vc : IsClosed v suv : s ⊆ u ∪ v uv : Disjoint u v u' v' : Set X uo : IsOpen u' vo : IsOpen v' uu : u ⊆ u' vv : v ⊆ v' uv' : Disjoint u' v' h : s ⊆ v' x : X m : x ∈ s mv : x ∈ v ⊢ x ∈ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
contrapose p
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s p : ∀ (a : I), IsPreconnected (s a) c : ∀ (a : I), IsCompact (s a) ⊢ IsPreconnected (⋂ a, s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s p : ∀ (a : I), IsPreconnected (s a) c : ∀ (a : I), IsCompact (s a) ⊢ IsPreconnected (⋂ a, s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
have ci : IsClosed (⋂ a, s a) := isClosed_iInter fun i ↦ (c i).isClosed
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [isPreconnected_iff_subset_of_fully_disjoint_open ci, not_forall] at p
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) p : ¬IsPreconnected (⋂ a, s a) ci : IsClosed (⋂ a, s a) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [isPreconnected_iff_subset_of_fully_disjoint_open (c _).isClosed, not_forall]
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a)
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ¬∀ (a : I), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases p with ⟨u, v, uo, vo, suv, uv, no⟩
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) p : ∃ x x_1, ∃ (_ : IsOpen x) (_ : IsOpen x_1) (_ : ⋂ a, s a ⊆ x ∪ x_1) (_ : Disjoint x x_1), ¬(⋂ a, s a ⊆ x ∨ ⋂ a, s a ⊆ x_1) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
have e : ∃ a, s a ⊆ u ∪ v := by by_contra h; simp only [not_exists, Set.not_subset] at h suffices n : (⋂ a, s a \ (u ∪ v)).Nonempty by rcases n with ⟨x, n⟩; simp only [mem_iInter, mem_diff, forall_and, forall_const] at n rw [← mem_iInter] at n; simp only [suv n.1, not_true, imp_false] at n; exact n.2 apply IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed intro a b; rcases d a b with ⟨c, ac, bc⟩ use c, diff_subset_diff_left ac, diff_subset_diff_left bc intro a; rcases h a with ⟨x, xa, xuv⟩; exact ⟨x, mem_diff_of_mem xa xuv⟩ intro a; exact (c a).diff (uo.union vo) intro a; exact ((c a).diff (uo.union vo)).isClosed
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases e with ⟨a, auv⟩
case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) e : ∃ a, s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
use a, u, v, uo, vo, auv, uv
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ∃ x x_1 x_2, ∃ (_ : IsOpen x_1) (_ : IsOpen x_2) (_ : s x ⊆ x_1 ∪ x_2) (_ : Disjoint x_1 x_2), ¬(s x ⊆ x_1 ∨ s x ⊆ x_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
contrapose no
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) a : I auv : s a ⊆ u ∪ v ⊢ ¬(s a ⊆ u ∨ s a ⊆ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [not_not] at no ⊢
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v)
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : ¬¬(s a ⊆ u ∨ s a ⊆ v) ⊢ ¬¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
cases' no with su sv
case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v no : s a ⊆ u ∨ s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
left
case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact _root_.trans (iInter_subset _ _) su
case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inl.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v su : s a ⊆ u ⊢ ⋂ a, s a ⊆ u case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
right
case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v
case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v
Please generate a tactic in lean4 to solve the state. STATE: case h.inr X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact _root_.trans (iInter_subset _ _) sv
case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.inr.h X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v a : I auv : s a ⊆ u ∪ v sv : s a ⊆ v ⊢ ⋂ a, s a ⊆ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
by_contra h
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ a, s a ⊆ u ∪ v
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) ⊢ ∃ a, s a ⊆ u ∪ v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [not_exists, Set.not_subset] at h
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ¬∃ a, s a ⊆ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
suffices n : (⋂ a, s a \ (u ∪ v)).Nonempty by rcases n with ⟨x, n⟩; simp only [mem_iInter, mem_diff, forall_and, forall_const] at n rw [← mem_iInter] at n; simp only [suv n.1, not_true, imp_false] at n; exact n.2
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
apply IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ (⋂ a, s a \ (u ∪ v)).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a b
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ Directed (fun x x_1 => x ⊇ x_1) fun i => s i \ (u ∪ v) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases d a b with ⟨c, ac, bc⟩
case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b : I ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
use c, diff_subset_diff_left ac, diff_subset_diff_left bc
case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htd.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c✝ : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a b c : I ac : s a ⊇ s c bc : s b ⊇ s c ⊢ ∃ z, (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) a) ((fun i => s i \ (u ∪ v)) z) ∧ (fun x x_1 => x ⊇ x_1) ((fun i => s i \ (u ∪ v)) b) ((fun i => s i \ (u ∪ v)) z) case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), (s i \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases h a with ⟨x, xa, xuv⟩
case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC: