url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
---|---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact nhdsWithin_le_nhds n | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : t ∈ 𝓝 x
⊢ t ∈ 𝓝[s] x | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
x : X
m : x ∈ s
h : x ∈ t
n : t ∈ 𝓝 x
⊢ t ∈ 𝓝[s] x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← closure_eq_iff_isClosed] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ IsClosed u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ IsClosed u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | refine subset_antisymm ?_ subset_closure | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u = u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← hu] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure u ⊆ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | intro ⟨x, m⟩ h | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact cl ⟨m, h⟩ | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
x : X
m : x ∈ s
h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t
⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [univ_disjoint, preimage_eq_empty_iff, Subtype.range_coe, ← hu] at h | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint univ u
⊢ s ⊆ interior t | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint univ u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exfalso | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact ne.not_disjoint h.symm | case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inl
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Disjoint t s
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | rw [← Subtype.coe_preimage_self, ← hu, preimage_subset_preimage_iff] at h | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : univ ⊆ u
⊢ s ⊆ interior t | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : univ ⊆ u
⊢ s ⊆ interior t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | exact _root_.trans (subset_inter (subset_refl _) h) op | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : s ⊆ t
⊢ s ⊆ interior t
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPreconnected.relative_clopen | [170, 1] | [191, 47] | simp only [Subtype.range_coe, subset_refl] | case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case inr
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
s t : Set X
sp : IsPreconnected s
ne : (s ∩ t).Nonempty
op : s ∩ t ⊆ interior t
cl : s ∩ closure t ⊆ t
u : Set ↑s
hu : (fun x => ↑x) ⁻¹' t = u
uo : IsOpen u
uc : IsClosed u
p : IsPreconnected univ
h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t
⊢ s ⊆ range Subtype.val
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | have uc : IsPathConnected (univ : Set s) := by
convert sc.preimage_coe (subset_refl _); apply Set.ext; intro x
simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem] | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | have e : f '' s = s.restrict f '' univ := by
apply Set.ext; intro y; constructor
intro ⟨x, m, e⟩; use⟨x, m⟩, mem_univ _, e
intro ⟨⟨x, m⟩, _, e⟩; use x, m, e | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | rw [e] | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (f '' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | exact uc.image (continuousOn_iff_continuous_restrict.mp fc) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
e : f '' s = s.restrict f '' univ
⊢ IsPathConnected (s.restrict f '' univ)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | convert sc.preimage_coe (subset_refl _) | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected univ | case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ IsPathConnected univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | apply Set.ext | case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ univ = Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro x | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem] | case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_3.h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
x : ↑s
⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | apply Set.ext | X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ f '' s = s.restrict f '' univ | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ f '' s = s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro y | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | constructor | case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro ⟨x, m, e⟩ | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ f '' s → y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | use⟨x, m⟩, mem_univ _, e | case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mp
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
e : f x = y
⊢ y ∈ s.restrict f '' univ
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | intro ⟨⟨x, m⟩, _, e⟩ | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.image_of_continuousOn | [195, 1] | [205, 70] | use x, m, e | case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.mpr
X✝ : Type
inst✝⁶ : TopologicalSpace X✝
I : Type
inst✝⁵ : TopologicalSpace I
inst✝⁴ : ConditionallyCompleteLinearOrder I
inst✝³ : DenselyOrdered I
inst✝² : OrderTopology I
X Y : Type
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
s : Set X
sc : IsPathConnected s
f : X → Y
fc : ContinuousOn f s
uc : IsPathConnected univ
y : Y
x : X
m : x ∈ s
left✝ : ⟨x, m⟩ ∈ univ
e : s.restrict f ⟨x, m⟩ = y
⊢ y ∈ f '' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | rw [← abs_of_nonneg r0, ← image_circleMap_Ioc z r] | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (sphere z r) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (sphere z r)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | refine IsPathConnected.image ?_ (continuous_circleMap _ _) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π)) | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | isPathConnected_sphere | [208, 1] | [211, 82] | exact (convex_Ioc 0 (2 * π)).isPathConnected (nonempty_Ioc.mpr Real.two_pi_pos) | X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π)) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X : Type
inst✝⁴ : TopologicalSpace X
I : Type
inst✝³ : TopologicalSpace I
inst✝² : ConditionallyCompleteLinearOrder I
inst✝¹ : DenselyOrdered I
inst✝ : OrderTopology I
z : ℂ
r : ℝ
r0 : 0 ≤ r
⊢ IsPathConnected (Ioc 0 (2 * π))
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have pc' := pc | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
⊢ IsPathConnected (f ⁻¹' s) | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rcases pc' with ⟨b, fb, j⟩ | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s) | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
pc' : IsPathConnected (f ⁻¹' frontier s)
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use b | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s) | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ IsPathConnected (f ⁻¹' s)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [mem_preimage, mem_singleton_iff] at fb j ⊢ | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : b ∈ f ⁻¹' frontier s
j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have bs : f b ∈ s := sc.frontier_subset fb | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use bs | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro x fx | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have p := PathConnectedSpace.somePath x b | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | generalize hu : Icc (0 : ℝ) 1 ∩ ⋂ (a) (_ : f (p.extend a) ∉ s), Iic a = u | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have bdd : BddAbove u := by rw [← hu, bddAbove_def]; use 1; intro t ⟨m, _⟩; exact m.2 | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have un : u.Nonempty := by
rw [← hu]; use 0, left_mem_Icc.mpr zero_le_one; simp only [mem_iInter₂, mem_Iic]; intro a m
contrapose m; simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have uc : IsClosed u := by
rw [← hu]; apply isClosed_Icc.inter; apply isClosed_iInter; intro a; apply isClosed_iInter
intro _; exact isClosed_Iic | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | generalize ht : sSup u = t | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have tu : t ∈ u := by rw [← uc.closure_eq, ← ht]; exact csSup_mem_closure un bdd | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have m : t ∈ Icc (0 : ℝ) 1 := by rw [← hu] at tu; exact tu.1 | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have lo : ∀ a, a ≤ t → f (p.extend a) ∈ s := by
intro a h; contrapose h; simp only [not_le]
replace h : ∀ᶠ b in 𝓝 a, f (p.extend b) ∉ s :=
(fc.comp p.continuous_extend).continuousAt.eventually_mem (sc.isOpen_compl.mem_nhds h)
simp only [← hu, mem_inter_iff, mem_iInter₂, mem_Iic] at tu ⊢
rcases ((frequently_lt_nhds a).and_eventually h).exists with ⟨c, ca, cs⟩
exact lt_of_le_of_lt (tu.2 c cs) ca | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ JoinedIn (f ⁻¹' s) b x | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | by_cases t1 : t = 1 | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
⊢ JoinedIn (f ⁻¹' s) b x | case pos
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ JoinedIn (f ⁻¹' s) b x
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : ¬t = 1
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | replace t1 : t < 1 := Ne.lt_of_le t1 m.2 | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : ¬t = 1
⊢ JoinedIn (f ⁻¹' s) b x | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ JoinedIn (f ⁻¹' s) b x | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : ¬t = 1
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | refine ((pc.joinedIn _ ft b fb).mono (preimage_mono sc.frontier_subset)).symm.trans
(JoinedIn.symm ?_) | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
⊢ JoinedIn (f ⁻¹' s) b x | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | generalize hq : (fun a : unitInterval ↦ p.extend (min a t)) = q | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have qc : Continuous q := by
rw [← hq]; exact p.continuous_extend.comp (continuous_subtype_val.min continuous_const) | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | refine ⟨⟨⟨q,qc⟩,?_,?_⟩,?_⟩ | case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) | case neg.refine_1
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ { toFun := q, continuous_toFun := qc }.toFun 0 = x
case neg.refine_2
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ { toFun := q, continuous_toFun := qc }.toFun 1 = p ⟨t, m⟩
case neg.refine_3
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ ∀ (t_1 : ↑unitInterval),
{ toFun := q, continuous_toFun := qc, source' := ?neg.refine_1✝, target' := ?neg.refine_2✝ } t_1 ∈ f ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case neg
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
ft : f (p ⟨t, m⟩) ∈ frontier s
q : ↑unitInterval → X
hq : (fun a => p.extend (min (↑a) t)) = q
qc : Continuous q
⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← hu, bddAbove_def] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ BddAbove u | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1 | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ BddAbove u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use 1 | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1 | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro t ⟨m, _⟩ | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1 | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
t : ℝ
m : t ∈ Icc 0 1
right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | exact m.2 | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
t : ℝ
m : t ∈ Icc 0 1
right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ≤ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
t : ℝ
m : t ∈ Icc 0 1
right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ≤ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← hu] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ u.Nonempty | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ u.Nonempty
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use 0, left_mem_Icc.mpr zero_le_one | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [mem_iInter₂, mem_Iic] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro a m | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : f (p.extend a) ∉ s
⊢ 0 ≤ a | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | contrapose m | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : f (p.extend a) ∉ s
⊢ 0 ≤ a | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : ¬0 ≤ a
⊢ ¬f (p.extend a) ∉ s | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : f (p.extend a) ∉ s
⊢ 0 ≤ a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : ¬0 ≤ a
⊢ ¬f (p.extend a) ∉ s | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
a : ℝ
m : ¬0 ≤ a
⊢ ¬f (p.extend a) ∉ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← hu] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed u | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | apply isClosed_Icc.inter | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | apply isClosed_iInter | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i) | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro a | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i) | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | apply isClosed_iInter | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a) | case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ f (p.extend a) ∉ s → IsClosed (Iic a) | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro _ | case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ f (p.extend a) ∉ s → IsClosed (Iic a) | case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
i✝ : f (p.extend a) ∉ s
⊢ IsClosed (Iic a) | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
⊢ f (p.extend a) ∉ s → IsClosed (Iic a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | exact isClosed_Iic | case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
i✝ : f (p.extend a) ∉ s
⊢ IsClosed (Iic a) | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
a : ℝ
i✝ : f (p.extend a) ∉ s
⊢ IsClosed (Iic a)
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← uc.closure_eq, ← ht] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ t ∈ u | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ sSup u ∈ closure u | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ t ∈ u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | exact csSup_mem_closure un bdd | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ sSup u ∈ closure u | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
⊢ sSup u ∈ closure u
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← hu] at tu | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ t ∈ Icc 0 1 | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ∈ Icc 0 1 | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
⊢ t ∈ Icc 0 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | exact tu.1 | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ∈ Icc 0 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
⊢ t ∈ Icc 0 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro a h | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ ∀ a ≤ t, f (p.extend a) ∈ s | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : a ≤ t
⊢ f (p.extend a) ∈ s | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
⊢ ∀ a ≤ t, f (p.extend a) ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | contrapose h | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : a ≤ t
⊢ f (p.extend a) ∈ s | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ ¬a ≤ t | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : a ≤ t
⊢ f (p.extend a) ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [not_le] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ ¬a ≤ t | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ t < a | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ ¬a ≤ t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | replace h : ∀ᶠ b in 𝓝 a, f (p.extend b) ∉ s :=
(fc.comp p.continuous_extend).continuousAt.eventually_mem (sc.isOpen_compl.mem_nhds h) | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ t < a | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
⊢ t < a | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : f (p.extend a) ∉ s
⊢ t < a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [← hu, mem_inter_iff, mem_iInter₂, mem_Iic] at tu ⊢ | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
⊢ t < a | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
⊢ t < a | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
⊢ t < a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rcases ((frequently_lt_nhds a).and_eventually h).exists with ⟨c, ca, cs⟩ | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
⊢ t < a | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
c : ℝ
ca : c < a
cs : f (p.extend c) ∉ s
⊢ t < a | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
⊢ t < a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | exact lt_of_le_of_lt (tu.2 c cs) ca | case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
c : ℝ
ca : c < a
cs : f (p.extend c) ∉ s
⊢ t < a | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
m : t ∈ Icc 0 1
a : ℝ
h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s
tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i
c : ℝ
ca : c < a
cs : f (p.extend c) ∉ s
⊢ t < a
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | use p.symm | case pos
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ JoinedIn (f ⁻¹' s) b x | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case pos
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ JoinedIn (f ⁻¹' s) b x
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | intro a | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ p.symm a ∈ f ⁻¹' s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [p.symm_apply, Function.comp, mem_preimage] | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ p.symm a ∈ f ⁻¹' s | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p (unitInterval.symm a)) ∈ s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ p.symm a ∈ f ⁻¹' s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [← Path.extend_extends'] | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p (unitInterval.symm a)) ∈ s | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p (unitInterval.symm a)) ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | apply lo | case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s | case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ t | Please generate a tactic in lean4 to solve the state.
STATE:
case h
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [t1] | case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ t | case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ 1 | Please generate a tactic in lean4 to solve the state.
STATE:
case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | unit_interval | case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ 1 | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.a
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t = 1
a : ↑unitInterval
⊢ ↑(unitInterval.symm a) ≤ 1
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [frontier, mem_diff, sc.closure_eq] | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ frontier s | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ frontier s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | constructor | X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s | case left
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | convert lo t (le_refl _) | case left
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s | case h.e'_4.h.e'_1
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ p ⟨t, m⟩ = p.extend t | Please generate a tactic in lean4 to solve the state.
STATE:
case left
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∈ s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [ge_iff_le, zero_le_one, not_true, gt_iff_lt, mem_Icc, Path.extend_extends _ m] | case h.e'_4.h.e'_1
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ p ⟨t, m⟩ = p.extend t | no goals | Please generate a tactic in lean4 to solve the state.
STATE:
case h.e'_4.h.e'_1
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ p ⟨t, m⟩ = p.extend t
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have e : p ⟨t, m⟩ = p.extend t := by
simp only [Path.extend, IccExtend_apply, min_eq_right m.2, max_eq_right m.1] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∉ interior s | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p ⟨t, m⟩) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p ⟨t, m⟩) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [e] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p ⟨t, m⟩) ∉ interior s | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p.extend t) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p ⟨t, m⟩) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | clear e | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p.extend t) ∉ interior s | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend t) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
e : p ⟨t, m⟩ = p.extend t
⊢ f (p.extend t) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | simp only [← @mem_preimage _ _ (f.comp p.extend), ← ht] | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend t) ∉ interior s | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend (sSup u)) ∉ interior s | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend t) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | by_contra h | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend (sSup u)) ∉ interior s | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend (sSup u)) ∈ interior s
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
⊢ f (p.extend (sSup u)) ∉ interior s
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rw [ht] at h | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend (sSup u)) ∈ interior s
⊢ False | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend (sSup u)) ∈ interior s
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | have o : IsOpen (f ∘ p.extend ⁻¹' interior s) :=
isOpen_interior.preimage (fc.comp p.continuous_extend) | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
⊢ False | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
o : IsOpen (f ∘ p.extend ⁻¹' interior s)
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
⊢ False
TACTIC:
|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/Misc/Connected.lean | IsPathConnected.of_frontier | [218, 1] | [281, 34] | rcases (nhds_basis_Ioo t).mem_iff.mp (o.mem_nhds h) with ⟨⟨x, y⟩, ⟨xt, ty⟩, h⟩ | case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
o : IsOpen (f ∘ p.extend ⁻¹' interior s)
⊢ False | case right.intro.mk.intro.intro
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x✝ : X
fx : f x✝ ∈ s
p : Path x✝ b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h✝ : f (p.extend t) ∈ interior s
o : IsOpen (f ∘ p.extend ⁻¹' interior s)
x y : ℝ
h : Ioo (x, y).1 (x, y).2 ⊆ f ∘ p.extend ⁻¹' interior s
xt : (x, y).1 < t
ty : t < (x, y).2
⊢ False | Please generate a tactic in lean4 to solve the state.
STATE:
case right
X✝ : Type
inst✝⁷ : TopologicalSpace X✝
I : Type
inst✝⁶ : TopologicalSpace I
inst✝⁵ : ConditionallyCompleteLinearOrder I
inst✝⁴ : DenselyOrdered I
inst✝³ : OrderTopology I
X Y : Type
inst✝² : TopologicalSpace X
inst✝¹ : TopologicalSpace Y
inst✝ : PathConnectedSpace X
f : X → Y
s : Set Y
pc : IsPathConnected (f ⁻¹' frontier s)
fc : Continuous f
sc : IsClosed s
b : X
fb : f b ∈ frontier s
j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y
bs : f b ∈ s
x : X
fx : f x ∈ s
p : Path x b
u : Set ℝ
hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u
bdd : BddAbove u
un : u.Nonempty
uc : IsClosed u
t : ℝ
ht : sSup u = t
tu : t ∈ u
m : t ∈ Icc 0 1
lo : ∀ a ≤ t, f (p.extend a) ∈ s
t1 : t < 1
h : f (p.extend t) ∈ interior s
o : IsOpen (f ∘ p.extend ⁻¹' interior s)
⊢ False
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.