url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact nhdsWithin_le_nhds n
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← closure_eq_iff_isClosed]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ IsClosed u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ IsClosed u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
refine subset_antisymm ?_ subset_closure
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u = u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← hu]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure u ⊆ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ closure ((fun x => ↑x) ⁻¹' t) ⊆ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
intro ⟨x, m⟩ h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ Subtype.val ⁻¹' closure t ⊆ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact cl ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u x : X m : x ∈ s h : ⟨x, m⟩ ∈ Subtype.val ⁻¹' closure t ⊢ ⟨x, m⟩ ∈ (fun x => ↑x) ⁻¹' t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [univ_disjoint, preimage_eq_empty_iff, Subtype.range_coe, ← hu] at h
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exfalso
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact ne.not_disjoint h.symm
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint t s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← Subtype.coe_preimage_self, ← hu, preimage_subset_preimage_iff] at h
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
exact _root_.trans (subset_inter (subset_refl _) h) op
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : s ⊆ t ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [Subtype.range_coe, subset_refl]
case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val
no goals
Please generate a tactic in lean4 to solve the state. STATE: case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Subtype.val ⁻¹' s ⊆ (fun x => ↑x) ⁻¹' t ⊢ s ⊆ range Subtype.val TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
have uc : IsPathConnected (univ : Set s) := by convert sc.preimage_coe (subset_refl _); apply Set.ext; intro x simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem]
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
have e : f '' s = s.restrict f '' univ := by apply Set.ext; intro y; constructor intro ⟨x, m, e⟩; use⟨x, m⟩, mem_univ _, e intro ⟨⟨x, m⟩, _, e⟩; use x, m, e
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
rw [e]
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (f '' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
exact uc.image (continuousOn_iff_continuous_restrict.mp fc)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ e : f '' s = s.restrict f '' univ ⊢ IsPathConnected (s.restrict f '' univ) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
convert sc.preimage_coe (subset_refl _)
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected univ
case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ IsPathConnected univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
apply Set.ext
case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3 X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ univ = Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro x
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s ⊢ ∀ (x : ↑s), x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
simp only [mem_univ, true_iff_iff, mem_preimage, Subtype.mem]
case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_3.h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s x : ↑s ⊢ x ∈ univ ↔ x ∈ Subtype.val ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
apply Set.ext
X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ f '' s = s.restrict f '' univ
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ f '' s = s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro y
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ ⊢ ∀ (x : Y), x ∈ f '' s ↔ x ∈ s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
constructor
case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s ↔ y ∈ s.restrict f '' univ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro ⟨x, m, e⟩
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ f '' s → y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
use⟨x, m⟩, mem_univ _, e
case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mp X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s e : f x = y ⊢ y ∈ s.restrict f '' univ case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
intro ⟨⟨x, m⟩, _, e⟩
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y ⊢ y ∈ s.restrict f '' univ → y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.image_of_continuousOn
[195, 1]
[205, 70]
use x, m, e
case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr X✝ : Type inst✝⁶ : TopologicalSpace X✝ I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I X Y : Type inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y s : Set X sc : IsPathConnected s f : X → Y fc : ContinuousOn f s uc : IsPathConnected univ y : Y x : X m : x ∈ s left✝ : ⟨x, m⟩ ∈ univ e : s.restrict f ⟨x, m⟩ = y ⊢ y ∈ f '' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
rw [← abs_of_nonneg r0, ← image_circleMap_Ioc z r]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (sphere z r)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (sphere z r) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
refine IsPathConnected.image ?_ (continuous_circleMap _ _)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π))
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π))
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (circleMap z r '' Ioc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
isPathConnected_sphere
[208, 1]
[211, 82]
exact (convex_Ioc 0 (2 * π)).isPathConnected (nonempty_Ioc.mpr Real.two_pi_pos)
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π))
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I z : ℂ r : ℝ r0 : 0 ≤ r ⊢ IsPathConnected (Ioc 0 (2 * π)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have pc' := pc
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s ⊢ IsPathConnected (f ⁻¹' s)
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases pc' with ⟨b, fb, j⟩
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s)
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s pc' : IsPathConnected (f ⁻¹' frontier s) ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use b
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s)
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ IsPathConnected (f ⁻¹' s) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [mem_preimage, mem_singleton_iff] at fb j ⊢
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : b ∈ f ⁻¹' frontier s j : ∀ {y : X}, y ∈ f ⁻¹' frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ b ∈ f ⁻¹' s ∧ ∀ {y : X}, y ∈ f ⁻¹' s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have bs : f b ∈ s := sc.frontier_subset fb
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use bs
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ f b ∈ s ∧ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro x fx
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s ⊢ ∀ {y : X}, f y ∈ s → JoinedIn (f ⁻¹' s) b y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have p := PathConnectedSpace.somePath x b
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
generalize hu : Icc (0 : ℝ) 1 ∩ ⋂ (a) (_ : f (p.extend a) ∉ s), Iic a = u
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have bdd : BddAbove u := by rw [← hu, bddAbove_def]; use 1; intro t ⟨m, _⟩; exact m.2
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have un : u.Nonempty := by rw [← hu]; use 0, left_mem_Icc.mpr zero_le_one; simp only [mem_iInter₂, mem_Iic]; intro a m contrapose m; simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have uc : IsClosed u := by rw [← hu]; apply isClosed_Icc.inter; apply isClosed_iInter; intro a; apply isClosed_iInter intro _; exact isClosed_Iic
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
generalize ht : sSup u = t
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have tu : t ∈ u := by rw [← uc.closure_eq, ← ht]; exact csSup_mem_closure un bdd
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have m : t ∈ Icc (0 : ℝ) 1 := by rw [← hu] at tu; exact tu.1
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have lo : ∀ a, a ≤ t → f (p.extend a) ∈ s := by intro a h; contrapose h; simp only [not_le] replace h : ∀ᶠ b in 𝓝 a, f (p.extend b) ∉ s := (fc.comp p.continuous_extend).continuousAt.eventually_mem (sc.isOpen_compl.mem_nhds h) simp only [← hu, mem_inter_iff, mem_iInter₂, mem_Iic] at tu ⊢ rcases ((frequently_lt_nhds a).and_eventually h).exists with ⟨c, ca, cs⟩ exact lt_of_le_of_lt (tu.2 c cs) ca
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ JoinedIn (f ⁻¹' s) b x
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
by_cases t1 : t = 1
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s ⊢ JoinedIn (f ⁻¹' s) b x
case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ JoinedIn (f ⁻¹' s) b x case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : ¬t = 1 ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
replace t1 : t < 1 := Ne.lt_of_le t1 m.2
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : ¬t = 1 ⊢ JoinedIn (f ⁻¹' s) b x
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ JoinedIn (f ⁻¹' s) b x
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : ¬t = 1 ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
refine ((pc.joinedIn _ ft b fb).mono (preimage_mono sc.frontier_subset)).symm.trans (JoinedIn.symm ?_)
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s ⊢ JoinedIn (f ⁻¹' s) b x
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
generalize hq : (fun a : unitInterval ↦ p.extend (min a t)) = q
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have qc : Continuous q := by rw [← hq]; exact p.continuous_extend.comp (continuous_subtype_val.min continuous_const)
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
refine ⟨⟨⟨q,qc⟩,?_,?_⟩,?_⟩
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩)
case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 0 = x case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 1 = p ⟨t, m⟩ case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ ∀ (t_1 : ↑unitInterval), { toFun := q, continuous_toFun := qc, source' := ?neg.refine_1✝, target' := ?neg.refine_2✝ } t_1 ∈ f ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ JoinedIn (f ⁻¹' s) x (p ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hu, bddAbove_def]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ BddAbove u
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ BddAbove u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use 1
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∃ x_1, ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ x_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro t ⟨m, _⟩
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u t : ℝ m : t ∈ Icc 0 1 right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u ⊢ ∀ y ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a, y ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact m.2
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u t : ℝ m : t ∈ Icc 0 1 right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u t : ℝ m : t ∈ Icc 0 1 right✝ : t ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hu]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ u.Nonempty
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ u.Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use 0, left_mem_Icc.mpr zero_le_one
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a).Nonempty TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [mem_iInter₂, mem_Iic]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ 0 ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro a m
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : f (p.extend a) ∉ s ⊢ 0 ≤ a
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → 0 ≤ i TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
contrapose m
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : f (p.extend a) ∉ s ⊢ 0 ≤ a
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : ¬0 ≤ a ⊢ ¬f (p.extend a) ∉ s
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : f (p.extend a) ∉ s ⊢ 0 ≤ a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [not_not, p.extend_of_le_zero (not_le.mp m).le, fx]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : ¬0 ≤ a ⊢ ¬f (p.extend a) ∉ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u a : ℝ m : ¬0 ≤ a ⊢ ¬f (p.extend a) ∉ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hu]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed u
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
apply isClosed_Icc.inter
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
apply isClosed_iInter
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a)
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ IsClosed (⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro a
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i)
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a)
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty ⊢ ∀ (i : ℝ), IsClosed (⋂ (_ : f (p.extend i) ∉ s), Iic i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
apply isClosed_iInter
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a)
case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ f (p.extend a) ∉ s → IsClosed (Iic a)
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ IsClosed (⋂ (_ : f (p.extend a) ∉ s), Iic a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro _
case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ f (p.extend a) ∉ s → IsClosed (Iic a)
case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ i✝ : f (p.extend a) ∉ s ⊢ IsClosed (Iic a)
Please generate a tactic in lean4 to solve the state. STATE: case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ ⊢ f (p.extend a) ∉ s → IsClosed (Iic a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact isClosed_Iic
case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ i✝ : f (p.extend a) ∉ s ⊢ IsClosed (Iic a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty a : ℝ i✝ : f (p.extend a) ∉ s ⊢ IsClosed (Iic a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← uc.closure_eq, ← ht]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ t ∈ u
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ sSup u ∈ closure u
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ t ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact csSup_mem_closure un bdd
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ sSup u ∈ closure u
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t ⊢ sSup u ∈ closure u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hu] at tu
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ t ∈ Icc 0 1
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ∈ Icc 0 1
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u ⊢ t ∈ Icc 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact tu.1
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ∈ Icc 0 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a ⊢ t ∈ Icc 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro a h
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ ∀ a ≤ t, f (p.extend a) ∈ s
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : a ≤ t ⊢ f (p.extend a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 ⊢ ∀ a ≤ t, f (p.extend a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
contrapose h
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : a ≤ t ⊢ f (p.extend a) ∈ s
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ ¬a ≤ t
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : a ≤ t ⊢ f (p.extend a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [not_le]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ ¬a ≤ t
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ t < a
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ ¬a ≤ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
replace h : ∀ᶠ b in 𝓝 a, f (p.extend b) ∉ s := (fc.comp p.continuous_extend).continuousAt.eventually_mem (sc.isOpen_compl.mem_nhds h)
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ t < a
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s ⊢ t < a
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : f (p.extend a) ∉ s ⊢ t < a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [← hu, mem_inter_iff, mem_iInter₂, mem_Iic] at tu ⊢
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s ⊢ t < a
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i ⊢ t < a
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s ⊢ t < a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases ((frequently_lt_nhds a).and_eventually h).exists with ⟨c, ca, cs⟩
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i ⊢ t < a
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i c : ℝ ca : c < a cs : f (p.extend c) ∉ s ⊢ t < a
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i ⊢ t < a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact lt_of_le_of_lt (tu.2 c cs) ca
case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i c : ℝ ca : c < a cs : f (p.extend c) ∉ s ⊢ t < a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t m : t ∈ Icc 0 1 a : ℝ h : ∀ᶠ (b_1 : ℝ) in 𝓝 a, f (p.extend b_1) ∉ s tu : t ∈ Icc 0 1 ∧ ∀ (i : ℝ), f (p.extend i) ∉ s → t ≤ i c : ℝ ca : c < a cs : f (p.extend c) ∉ s ⊢ t < a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
use p.symm
case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ JoinedIn (f ⁻¹' s) b x
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ JoinedIn (f ⁻¹' s) b x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro a
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ p.symm a ∈ f ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 ⊢ ∀ (t : ↑unitInterval), p.symm t ∈ f ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [p.symm_apply, Function.comp, mem_preimage]
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ p.symm a ∈ f ⁻¹' s
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p (unitInterval.symm a)) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ p.symm a ∈ f ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← Path.extend_extends']
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p (unitInterval.symm a)) ∈ s
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p (unitInterval.symm a)) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
apply lo
case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s
case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ t
Please generate a tactic in lean4 to solve the state. STATE: case h X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ f (p.extend ↑(unitInterval.symm a)) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [t1]
case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ t
case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
unit_interval
case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.a X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t = 1 a : ↑unitInterval ⊢ ↑(unitInterval.symm a) ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [frontier, mem_diff, sc.closure_eq]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ frontier s
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ frontier s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
constructor
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s
case left X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s ∧ f (p ⟨t, m⟩) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
convert lo t (le_refl _)
case left X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s
case h.e'_4.h.e'_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ p ⟨t, m⟩ = p.extend t
Please generate a tactic in lean4 to solve the state. STATE: case left X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [ge_iff_le, zero_le_one, not_true, gt_iff_lt, mem_Icc, Path.extend_extends _ m]
case h.e'_4.h.e'_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ p ⟨t, m⟩ = p.extend t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_4.h.e'_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ p ⟨t, m⟩ = p.extend t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have e : p ⟨t, m⟩ = p.extend t := by simp only [Path.extend, IccExtend_apply, min_eq_right m.2, max_eq_right m.1]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∉ interior s
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p ⟨t, m⟩) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p ⟨t, m⟩) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [e]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p ⟨t, m⟩) ∉ interior s
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p.extend t) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p ⟨t, m⟩) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
clear e
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p.extend t) ∉ interior s
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend t) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 e : p ⟨t, m⟩ = p.extend t ⊢ f (p.extend t) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [← @mem_preimage _ _ (f.comp p.extend), ← ht]
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend t) ∉ interior s
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend (sSup u)) ∉ interior s
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend t) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
by_contra h
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend (sSup u)) ∉ interior s
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend (sSup u)) ∈ interior s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ f (p.extend (sSup u)) ∉ interior s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [ht] at h
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend (sSup u)) ∈ interior s ⊢ False
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend (sSup u)) ∈ interior s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
have o : IsOpen (f ∘ p.extend ⁻¹' interior s) := isOpen_interior.preimage (fc.comp p.continuous_extend)
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s ⊢ False
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases (nhds_basis_Ioo t).mem_iff.mp (o.mem_nhds h) with ⟨⟨x, y⟩, ⟨xt, ty⟩, h⟩
case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) ⊢ False
case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ h : Ioo (x, y).1 (x, y).2 ⊆ f ∘ p.extend ⁻¹' interior s xt : (x, y).1 < t ty : t < (x, y).2 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) ⊢ False TACTIC: