url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [subset_def, mem_Ioo, and_imp, mem_preimage, Function.comp] at xt ty h
case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ h : Ioo (x, y).1 (x, y).2 ⊆ f ∘ p.extend ⁻¹' interior s xt : (x, y).1 < t ty : t < (x, y).2 ⊢ False
case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ h : Ioo (x, y).1 (x, y).2 ⊆ f ∘ p.extend ⁻¹' interior s xt : (x, y).1 < t ty : t < (x, y).2 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases exists_between (lt_min ty t1) with ⟨z, tz, zy1⟩
case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s ⊢ False
case right.intro.mk.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rcases lt_min_iff.mp zy1 with ⟨zy, z1⟩
case right.intro.mk.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 ⊢ False
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
suffices h : z ∈ u by linarith [le_csSup bdd h]
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ False
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hu]
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ u
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
refine ⟨⟨_root_.trans m.1 tz.le, z1.le⟩, ?_⟩
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [mem_iInter₂, mem_Iic]
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → z ≤ i
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ z ∈ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro w ws
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → z ≤ i
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : f (p.extend w) ∉ s ⊢ z ≤ w
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 ⊢ ∀ (i : ℝ), f (p.extend i) ∉ s → z ≤ i TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
contrapose ws
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : f (p.extend w) ∉ s ⊢ z ≤ w
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : ¬z ≤ w ⊢ ¬f (p.extend w) ∉ s
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : f (p.extend w) ∉ s ⊢ z ≤ w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [not_not, not_le] at ws ⊢
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : ¬z ≤ w ⊢ ¬f (p.extend w) ∉ s
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z ⊢ f (p.extend w) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : ¬z ≤ w ⊢ ¬f (p.extend w) ∉ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
by_cases xw : x < w
case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z ⊢ f (p.extend w) ∈ s
case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : x < w ⊢ f (p.extend w) ∈ s case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case right.intro.mk.intro.intro.intro.intro.intro X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z ⊢ f (p.extend w) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
refine interior_subset (h _ xw (_root_.trans ws zy))
case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : x < w ⊢ f (p.extend w) ∈ s case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case pos X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : x < w ⊢ f (p.extend w) ∈ s case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [not_lt] at xw
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : w ≤ x ⊢ f (p.extend w) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : ¬x < w ⊢ f (p.extend w) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact lo _ (_root_.trans xw xt.le)
case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : w ≤ x ⊢ f (p.extend w) ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 w : ℝ ws : w < z xw : w ≤ x ⊢ f (p.extend w) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [Path.extend, IccExtend_apply, min_eq_right m.2, max_eq_right m.1]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ p ⟨t, m⟩ = p.extend t
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ⊢ p ⟨t, m⟩ = p.extend t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
linarith [le_csSup bdd h]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝¹ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h✝ : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 h : z ∈ u ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x✝ : X fx : f x✝ ∈ s p : Path x✝ b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 h✝¹ : f (p.extend t) ∈ interior s o : IsOpen (f ∘ p.extend ⁻¹' interior s) x y : ℝ xt : x < t ty : t < y h✝ : ∀ (x_1 : ℝ), x < x_1 → x_1 < y → f (p.extend x_1) ∈ interior s z : ℝ tz : t < z zy1 : z < min y 1 zy : z < y z1 : z < 1 h : z ∈ u ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
rw [← hq]
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ Continuous q
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ Continuous fun a => p.extend (min (↑a) t)
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ Continuous q TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact p.continuous_extend.comp (continuous_subtype_val.min continuous_const)
X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ Continuous fun a => p.extend (min (↑a) t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q ⊢ Continuous fun a => p.extend (min (↑a) t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [← hq]
case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 0 = x
case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑0) t) = x
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 0 = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [Icc.coe_zero, min_eq_left m.1, p.extend_zero]
case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑0) t) = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_1 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑0) t) = x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [← hq]
case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 1 = p ⟨t, m⟩
case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑1) t) = p ⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ { toFun := q, continuous_toFun := qc }.toFun 1 = p ⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [Icc.coe_one, min_eq_right m.2, Path.extend, IccExtend_apply, max_eq_right m.1]
case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑1) t) = p ⟨t, m⟩
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_2 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ p.extend (min (↑1) t) = p ⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
intro ⟨a, n⟩
case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ ∀ (t_1 : ↑unitInterval), { toFun := q, continuous_toFun := qc, source' := ⋯, target' := ⋯ } t_1 ∈ f ⁻¹' s
case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ { toFun := q, continuous_toFun := qc, source' := ⋯, target' := ⋯ } ⟨a, n⟩ ∈ f ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q ⊢ ∀ (t_1 : ↑unitInterval), { toFun := q, continuous_toFun := qc, source' := ⋯, target' := ⋯ } t_1 ∈ f ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
simp only [mem_preimage, Path.coe_mk_mk, ← hq, Subtype.coe_mk]
case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ { toFun := q, continuous_toFun := qc, source' := ⋯, target' := ⋯ } ⟨a, n⟩ ∈ f ⁻¹' s
case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ f (p.extend (min a t)) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ { toFun := q, continuous_toFun := qc, source' := ⋯, target' := ⋯ } ⟨a, n⟩ ∈ f ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPathConnected.of_frontier
[218, 1]
[281, 34]
exact lo _ (min_le_right _ _)
case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ f (p.extend (min a t)) ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.refine_3 X✝ : Type inst✝⁷ : TopologicalSpace X✝ I : Type inst✝⁶ : TopologicalSpace I inst✝⁵ : ConditionallyCompleteLinearOrder I inst✝⁴ : DenselyOrdered I inst✝³ : OrderTopology I X Y : Type inst✝² : TopologicalSpace X inst✝¹ : TopologicalSpace Y inst✝ : PathConnectedSpace X f : X → Y s : Set Y pc : IsPathConnected (f ⁻¹' frontier s) fc : Continuous f sc : IsClosed s b : X fb : f b ∈ frontier s j : ∀ {y : X}, f y ∈ frontier s → JoinedIn (f ⁻¹' frontier s) b y bs : f b ∈ s x : X fx : f x ∈ s p : Path x b u : Set ℝ hu : Icc 0 1 ∩ ⋂ a, ⋂ (_ : f (p.extend a) ∉ s), Iic a = u bdd : BddAbove u un : u.Nonempty uc : IsClosed u t : ℝ ht : sSup u = t tu : t ∈ u m : t ∈ Icc 0 1 lo : ∀ a ≤ t, f (p.extend a) ∈ s t1 : t < 1 ft : f (p ⟨t, m⟩) ∈ frontier s q : ↑unitInterval → X hq : (fun a => p.extend (min (↑a) t)) = q qc : Continuous q a : ℝ n : a ∈ unitInterval ⊢ f (p.extend (min a t)) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
have m : ∀ᶠ y : ℂ × ℂ in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near := by refine ContinuousAt.eventually_mem ?_ (s.isOpen_near.mem_nhds mem) exact continuousAt_fst.prod (s.continuousAt_iter continuousAt_fst holo.continuousAt)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply holo.eventually.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply loc.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply m.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply eventually_of_forall
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
intro _ m l h
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
exact ⟨h, m, l⟩
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
refine ContinuousAt.eventually_mem ?_ (s.isOpen_near.mem_nhds mem)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
exact continuousAt_fst.prod (s.continuousAt_iter continuousAt_fst holo.continuousAt)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
have s := loc.self_of_nhds
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) ⊢ Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) ⊢ Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [uncurry] at s
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
exact { holo := e.holo.congr loc near := by simp only [← s, e.near] eqn := by simp only [← s, e.eqn] }
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [← s, e.near]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ (x.1, (f x.1)^[n] (r1 x.1 x.2)) ∈ s✝.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ (x.1, (f x.1)^[n] (r1 x.1 x.2)) ∈ s✝.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [← s, e.eqn]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ s✝.bottcherNear x.1 ((f x.1)^[n] (r1 x.1 x.2)) = x.2 ^ d ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ s✝.bottcherNear x.1 ((f x.1)^[n] (r1 x.1 x.2)) = x.2 ^ d ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
refine Nat.le_induction e.eqn ?_ m nm
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ s.bottcherNear x.1 ((f x.1)^[m] (r x.1 x.2)) = x.2 ^ d ^ m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ s.bottcherNear x.1 ((f x.1)^[m] (r x.1 x.2)) = x.2 ^ d ^ m TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
intro k nk h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
simp only [h, Function.iterate_succ_apply', s.bottcherNear_eqn (s.iter_stays_near' e.near nk), pow_succ, pow_mul]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
mem_domain_self
[112, 1]
[115, 37]
simp only [mem_prod_eq, mem_singleton_iff, eq_self_iff_true, mem_closedBall, Complex.dist_eq, sub_zero, true_and_iff, le_refl]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ ⊢ (c, x) ∈ {c} ×ˢ closedBall 0 (Complex.abs x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ ⊢ (c, x) ∈ {c} ×ˢ closedBall 0 (Complex.abs x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
set u := Complex.abs '' (closedBall 0 (p + 1) \ t)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
by_cases ne : u = ∅
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
replace ne := nonempty_iff_ne_empty.mpr ne
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have uc : IsClosed u := (((isCompact_closedBall _ _).diff ot).image Complex.continuous_abs).isClosed
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have up : ∀ x : ℝ, x ∈ u → p < x := by intro x m; rcases m with ⟨z, ⟨_, mt⟩, e⟩; rw [← e]; contrapose mt simp only [not_not, not_lt] at mt ⊢ apply sub; simp only [mem_closedBall, Complex.dist_eq, sub_zero, mt]
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have ub : BddBelow u := ⟨p, fun _ m ↦ (up _ m).le⟩
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have iu : sInf u ∈ u := IsClosed.csInf_mem uc ne ub
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases exists_between (up _ iu) with ⟨q, pq, qi⟩
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
use min q (p + 1), lt_min pq (by linarith)
case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
intro z m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, le_min_iff] at m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases m with ⟨zq, zp⟩
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have zi := lt_of_le_of_lt zq qi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
contrapose zi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [not_lt]
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
refine csInf_le ub (mem_image_of_mem _ ?_)
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_diff, mem_closedBall, Complex.dist_eq, sub_zero]
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
use zp, zi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
refine ⟨p + 1, by bound, ?_⟩
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rw [image_eq_empty, diff_eq_empty] at ne
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
exact ne
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ p < p + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ p < p + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
intro x m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∀ x ∈ u, p < x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∀ x ∈ u, p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases m with ⟨z, ⟨_, mt⟩, e⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rw [← e]
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
contrapose mt
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [not_not, not_lt] at mt ⊢
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
apply sub
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t
case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, mt]
case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
linarith
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ p < p + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ p < p + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
have sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} := by intro z m; simp only [mem_setOf]; apply sub; exact ⟨mem_singleton _, m⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
rcases domain_open' sub (o.snd_preimage c) with ⟨q, pq, sub⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
use q, pq
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
intro ⟨e, z⟩ ⟨ec, m⟩
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [mem_singleton_iff] at ec
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
replace m := sub m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [← ec, mem_setOf] at m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
exact m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
intro z m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t}
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [mem_setOf]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t}
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
apply sub
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
exact ⟨mem_singleton _, m⟩
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
have e := e.self_of_nhdsSet (mem_domain c g.nonneg)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [uncurry] at e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
rw [← e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact g.zero
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine g.start.mp ((e.filter_mono (nhds_le_nhdsSet (mem_domain c g.nonneg))).mp ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine eventually_of_forall fun x e s ↦ ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [uncurry] at e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
rw [← e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact s
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
have eqn := g.eqn
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [Filter.EventuallyEq, eventually_nhdsSet_iff_forall] at eqn e ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
intro x m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine (eqn x m).mp ((e x m).eventually_nhds.mp (eventually_of_forall fun y e eqn ↦ ?_))
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact eqn.congr e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.potential
[176, 1]
[178, 75]
simp only [s.potential_eq e.near, Super.potential', e.eqn, Complex.abs.map_pow, ← Nat.cast_pow, Real.pow_rpow_inv_natCast (Complex.abs.nonneg _) (pow_ne_zero _ s.d0)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x ⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x ⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2 TACTIC: