url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact ⟨x, mem_diff_of_mem xa xuv⟩
case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htn.intro.intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I x : X xa : x ∈ s a xuv : x ∉ u ∪ v ⊢ (s a \ (u ∪ v)).Nonempty case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsCompact (s i \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact (c a).diff (uo.union vo)
case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htc X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsCompact (s a \ (u ∪ v)) case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
intro a
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v))
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v))
Please generate a tactic in lean4 to solve the state. STATE: case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v ⊢ ∀ (i : I), IsClosed (s i \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact ((c a).diff (uo.union vo)).isClosed
case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case htcl X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v a : I ⊢ IsClosed (s a \ (u ∪ v)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rcases n with ⟨x, n⟩
X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v n : (⋂ a, s a \ (u ∪ v)).Nonempty ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v n : (⋂ a, s a \ (u ∪ v)).Nonempty ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [mem_iInter, mem_diff, forall_and, forall_const] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ a, s a \ (u ∪ v) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
rw [← mem_iInter] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : (∀ (x_1 : I), x ∈ s x_1) ∧ x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
simp only [suv n.1, not_true, imp_false] at n
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ x ∉ u ∪ v ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.directed_iInter
[67, 1]
[91, 51]
exact n.2
case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro X : Type inst✝⁶ : TopologicalSpace X I✝ : Type inst✝⁵ : TopologicalSpace I✝ inst✝⁴ : ConditionallyCompleteLinearOrder I✝ inst✝³ : DenselyOrdered I✝ inst✝² : OrderTopology I✝ I : Type s : I → Set X inst✝¹ : Nonempty I inst✝ : T4Space X d : Directed Superset s c : ∀ (a : I), IsCompact (s a) ci : IsClosed (⋂ a, s a) u v : Set X uo : IsOpen u vo : IsOpen v suv : ⋂ a, s a ⊆ u ∪ v uv : Disjoint u v no : ¬(⋂ a, s a ⊆ u ∨ ⋂ a, s a ⊆ v) h : ∀ (x : I), ∃ a ∈ s x, a ∉ u ∪ v x : X n : x ∈ ⋂ i, s i ∧ False ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
generalize hs : (fun a ↦ closure (r '' Ici a)) = s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have m : Antitone s := by intro a b ab; rw [← hs]; exact closure_mono (monotone_image (Ici_subset_Ici.mpr ab))
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have d : Directed Superset s := by intro a b; exact ⟨a ⊔ b, m le_sup_left, m le_sup_right⟩
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have p : ∀ a, IsPreconnected (s a) := by intro a; rw [← hs]; exact ((p _).image _ rc.continuousOn).closure
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have c : ∀ a, IsCompact (s a) := by intro a; rw [← hs]; exact isClosed_closure.isCompact
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
have e : {x | MapClusterPt x atTop r} = ⋂ a, s a := by ext x simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm P, ← hs] apply forall_congr'; intro t simp only [@forall_comm P, mem_inter_iff, mem_image, mem_Ici, @and_comm (_ ∈ t), exists_exists_and_eq_and, Filter.frequently_atTop, exists_prop]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [e]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected {x | MapClusterPt x atTop r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact IsPreconnected.directed_iInter d p c
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) e : {x | MapClusterPt x atTop r} = ⋂ a, s a ⊢ IsPreconnected (⋂ a, s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a b ab
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ Antitone s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s ⊢ Antitone s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ s b ≤ s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact closure_mono (monotone_image (Ici_subset_Ici.mpr ab))
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s a b : P ab : a ≤ b ⊢ (fun a => closure (r '' Ici a)) b ≤ (fun a => closure (r '' Ici a)) a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a b
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ Directed Superset s
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s ⊢ Directed Superset s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact ⟨a ⊔ b, m le_sup_left, m le_sup_right⟩
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s a b : P ⊢ ∃ z, s a ⊇ s z ∧ s b ⊇ s z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ ∀ (a : P), IsPreconnected (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s ⊢ ∀ (a : P), IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact ((p _).image _ rc.continuousOn).closure
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s a : P ⊢ IsPreconnected ((fun a => closure (r '' Ici a)) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ ∀ (a : P), IsCompact (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) ⊢ ∀ (a : P), IsCompact (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
rw [← hs]
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a)
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact (s a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
exact isClosed_closure.isCompact
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) a : P ⊢ IsCompact ((fun a => closure (r '' Ici a)) a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
ext x
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ {x | MapClusterPt x atTop r} = ⋂ a, s a
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) ⊢ {x | MapClusterPt x atTop r} = ⋂ a, s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm P, ← hs]
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ x ∈ {x | MapClusterPt x atTop r} ↔ x ∈ ⋂ a, s a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
apply forall_congr'
case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : P) in atTop, r a ∈ s) ↔ ∀ b ∈ 𝓝 x, ∀ (a : P), ∃ x, x ∈ b ∩ r '' Ici a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
intro t
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X ⊢ ∀ (a : Set X), (a ∈ 𝓝 x → ∃ᶠ (a_2 : P) in atTop, r a_2 ∈ a) ↔ a ∈ 𝓝 x → ∀ (a_1 : P), ∃ x, x ∈ a ∩ r '' Ici a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atTop
[95, 1]
[114, 53]
simp only [@forall_comm P, mem_inter_iff, mem_image, mem_Ici, @and_comm (_ ∈ t), exists_exists_and_eq_and, Filter.frequently_atTop, exists_prop]
case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeSup P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p✝ : ∀ (a : P), IsPreconnected (Ici a) r : P → X rc : Continuous r s : P → Set X hs : (fun a => closure (r '' Ici a)) = s m : Antitone s d : Directed Superset s p : ∀ (a : P), IsPreconnected (s a) c : ∀ (a : P), IsCompact (s a) x : X t : Set X ⊢ (t ∈ 𝓝 x → ∃ᶠ (a : P) in atTop, r a ∈ t) ↔ t ∈ 𝓝 x → ∀ (a : P), ∃ x, x ∈ t ∩ r '' Ici a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
set r' : Pᵒᵈ → X := r
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atBot r}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X rc : Continuous r ⊢ IsPreconnected {x | MapClusterPt x atBot r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
have rc' : Continuous r' := rc
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
have p' : ∀ a : Pᵒᵈ, IsPreconnected (Ici a) := fun a ↦ p a
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_atBot
[118, 1]
[124, 43]
exact IsPreconnected.limits_atTop p' rc'
X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'}
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁹ : TopologicalSpace X I : Type inst✝⁸ : TopologicalSpace I inst✝⁷ : ConditionallyCompleteLinearOrder I inst✝⁶ : DenselyOrdered I inst✝⁵ : OrderTopology I inst✝⁴ : CompactSpace X inst✝³ : T4Space X P : Type inst✝² : SemilatticeInf P inst✝¹ : TopologicalSpace P inst✝ : Nonempty P p : ∀ (a : P), IsPreconnected (Iic a) r : P → X r' : Pᵒᵈ → X := r rc : Continuous r' rc' : Continuous r' p' : ∀ (a : Pᵒᵈ), IsPreconnected (Ici a) ⊢ IsPreconnected {x | MapClusterPt x atBot r'} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
by_cases ab : ¬a < b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [not_not] at ab
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
generalize hs : (fun t : Ioc a b ↦ closure (r '' Ioc a t)) = s
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have n : Nonempty (Ioc a b) := ⟨b, right_mem_Ioc.mpr ab⟩
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have m : Monotone s := by intro a b ab; rw [← hs]; refine closure_mono (monotone_image ?_) exact Ioc_subset_Ioc (le_refl _) (Subtype.coe_le_coe.mpr ab)
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have d : Directed Superset s := fun a b ↦ ⟨min a b, m (min_le_left _ _), m (min_le_right _ _)⟩
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have p : ∀ t, IsPreconnected (s t) := by intro ⟨t, m⟩; rw [← hs]; refine (isPreconnected_Ioc.image _ (rc.mono ?_)).closure simp only [mem_Ioc] at m simp only [Subtype.coe_mk, Ioc_subset_Ioc_iff m.1, m.2, le_refl, true_and_iff]
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have c : ∀ t, IsCompact (s t) := by intro t; rw [← hs]; exact isClosed_closure.isCompact
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [e]
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t)
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact IsPreconnected.directed_iInter d p c
case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) e : {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t ⊢ IsPreconnected (⋂ t, s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Ioc_eq_empty ab, nhdsWithin_empty, MapClusterPt, Filter.map_bot, ClusterPt.bot, setOf_false, isPreconnected_empty]
case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : ¬a < b ⊢ IsPreconnected {x | MapClusterPt x (𝓝[Ioc a b] a) r} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro a b ab
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ Monotone s
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) ⊢ Monotone s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ s a ≤ s b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
refine closure_mono (monotone_image ?_)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ (fun t => closure (r '' Ioc a✝ ↑t)) a ≤ (fun t => closure (r '' Ioc a✝ ↑t)) b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact Ioc_subset_Ioc (le_refl _) (Subtype.coe_le_coe.mpr ab)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a✝ b✝ : ℝ rc : ContinuousOn r (Ioc a✝ b✝) ab✝ : a✝ < b✝ s : ↑(Ioc a✝ b✝) → Set X hs : (fun t => closure (r '' Ioc a✝ ↑t)) = s n : Nonempty ↑(Ioc a✝ b✝) a b : ↑(Ioc a✝ b✝) ab : a ≤ b ⊢ Ioc a✝ ↑a ≤ Ioc a✝ ↑b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro ⟨t, m⟩
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s ⊢ ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected (s ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
refine (isPreconnected_Ioc.image _ (rc.mono ?_)).closure
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ IsPreconnected ((fun t => closure (r '' Ioc a ↑t)) ⟨t, m⟩) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc] at m
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s t : ℝ m : t ∈ Ioc a b ⊢ Ioc a ↑⟨t, m⟩ ⊆ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Subtype.coe_mk, Ioc_subset_Ioc_iff m.1, m.2, le_refl, true_and_iff]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝¹ : Monotone s d : Directed Superset s t : ℝ m✝ : t ∈ Ioc a b m : a < t ∧ t ≤ b ⊢ Ioc a ↑⟨t, m✝⟩ ⊆ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro t
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) ⊢ ∀ (t : ↑(Ioc a b)), IsCompact (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rw [← hs]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t)
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact (s t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact isClosed_closure.isCompact
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) t : ↑(Ioc a b) ⊢ IsCompact ((fun t => closure (r '' Ioc a ↑t)) t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply Set.ext
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ {x | MapClusterPt x (𝓝[Ioc a b] a) r} = ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro x
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) ⊢ ∀ (x : X), x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_setOf, mem_iInter, mapClusterPt_iff, mem_closure_iff_nhds, Set.Nonempty, @forall_comm _ (Set X), ← hs]
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ x ∈ {x | MapClusterPt x (𝓝[Ioc a b] a) r} ↔ x ∈ ⋂ t, s t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply forall_congr'
case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ (∀ s ∈ 𝓝 x, ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ s) ↔ ∀ (b_1 : Set X) (a_1 : ↑(Ioc a b)), b_1 ∈ 𝓝 x → ∃ x, x ∈ b_1 ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro u
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X ⊢ ∀ (a_1 : Set X), (a_1 ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ a_1) ↔ ∀ (a_2 : ↑(Ioc a b)), a_1 ∈ 𝓝 x → ∃ x, x ∈ a_1 ∩ r '' Ioc a ↑a_2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [@forall_comm _ (u ∈ 𝓝 x)]
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), u ∈ 𝓝 x → ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply forall_congr'
case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2)
Please generate a tactic in lean4 to solve the state. STATE: case h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ (u ∈ 𝓝 x → ∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ u ∈ 𝓝 x → ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro _
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2)
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X ⊢ u ∈ 𝓝 x → ((∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_2 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_inter_iff, Filter.frequently_iff, nhdsWithin_Ioc_eq_nhdsWithin_Ioi ab]
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∃ᶠ (a : ℝ) in 𝓝[Ioc a b] a, r a ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x, x ∈ u ∩ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
constructor
case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2 case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) ↔ ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro h ⟨t, m⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u) → ∀ (a_2 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have tm : Ioc a t ∈ 𝓝[Ioi a] a := by apply Ioc_mem_nhdsWithin_Ioi simp only [mem_Ioc] at m; simp only [mem_Ico]; use le_refl _, m.1
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases h tm with ⟨v, vm, vu⟩
case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
exact ⟨r v, vu, mem_image_of_mem _ vm⟩
case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mp.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b tm : Ioc a t ∈ 𝓝[>] a v : ℝ vm : v ∈ Ioc a t vu : r v ∈ u ⊢ ∃ x ∈ u, x ∈ r '' Ioc a ↑⟨t, m⟩ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
apply Ioc_mem_nhdsWithin_Ioi
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ Ioc a t ∈ 𝓝[>] a
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ Ioc a t ∈ 𝓝[>] a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc] at m
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : t ∈ Ioc a b ⊢ a ∈ Ico a t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ico]
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ∈ Ico a t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use le_refl _, m.1
case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case H X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u t : ℝ m : a < t ∧ t ≤ b ⊢ a ≤ a ∧ a < t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
intro h v vm
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x ⊢ (∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1) → ∀ {U : Set ℝ}, U ∈ 𝓝[>] a → ∃ x ∈ U, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases mem_nhdsWithin_Ioi_iff_exists_Ioc_subset.mp vm with ⟨w, wa, wv⟩
case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioi] at wa
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wa : w ∈ Ioi a wv : Ioc a w ⊆ v ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
have m : min w b ∈ Ioc a b := by simp only [mem_Ioc]; use lt_min wa ab, min_le_right _ _
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases h ⟨_, m⟩ with ⟨x, xu, rx⟩
case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [Subtype.coe_mk, mem_image, mem_Ioc, le_min_iff] at rx
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : x ∈ r '' Ioc a ↑⟨min w b, m⟩ ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rcases rx with ⟨c, ⟨ac, cw, _⟩, cx⟩
case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u
case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u rx : ∃ x_1, (a < x_1 ∧ x_1 ≤ w ∧ x_1 ≤ b) ∧ r x_1 = x ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use c, wv (mem_Ioc.mpr ⟨ac, cw⟩)
case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u
case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u
Please generate a tactic in lean4 to solve the state. STATE: case h.h.h.mpr.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ ∃ x ∈ v, r x ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
rwa [cx]
case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m✝ : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c✝ : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x✝ : X u : Set X a✝ : u ∈ 𝓝 x✝ h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w m : min w b ∈ Ioc a b x : X xu : x ∈ u c : ℝ cx : r c = x ac : a < c cw : c ≤ w right✝ : c ≤ b ⊢ r c ∈ u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
simp only [mem_Ioc]
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ min w b ∈ Ioc a b
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ min w b ∈ Ioc a b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.limits_Ioc
[129, 1]
[167, 53]
use lt_min wa ab, min_le_right _ _
X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁶ : TopologicalSpace X I : Type inst✝⁵ : TopologicalSpace I inst✝⁴ : ConditionallyCompleteLinearOrder I inst✝³ : DenselyOrdered I inst✝² : OrderTopology I inst✝¹ : CompactSpace X inst✝ : T4Space X r : ℝ → X a b : ℝ rc : ContinuousOn r (Ioc a b) ab : a < b s : ↑(Ioc a b) → Set X hs : (fun t => closure (r '' Ioc a ↑t)) = s n : Nonempty ↑(Ioc a b) m : Monotone s d : Directed Superset s p : ∀ (t : ↑(Ioc a b)), IsPreconnected (s t) c : ∀ (t : ↑(Ioc a b)), IsCompact (s t) x : X u : Set X a✝ : u ∈ 𝓝 x h : ∀ (a_1 : ↑(Ioc a b)), ∃ x ∈ u, x ∈ r '' Ioc a ↑a_1 v : Set ℝ vm : v ∈ 𝓝[>] a w : ℝ wv : Ioc a w ⊆ v wa : a < w ⊢ a < min w b ∧ min w b ≤ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
generalize hu : (fun x : s ↦ (x : X)) ⁻¹' t = u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have uo : IsOpen u := by rw [← subset_interior_iff_isOpen]; intro ⟨x, m⟩ h simp only [mem_preimage, Subtype.coe_mk, ← hu] at h have n := op ⟨m, h⟩ simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk, ← hu] at n ⊢ exact nhdsWithin_le_nhds n
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have uc : IsClosed u := by rw [← closure_eq_iff_isClosed]; refine subset_antisymm ?_ subset_closure rw [← hu] refine _root_.trans (continuous_subtype_val.closure_preimage_subset _) ?_ intro ⟨x, m⟩ h; exact cl ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have p : IsPreconnected (univ : Set s) := (Subtype.preconnectedSpace sp).isPreconnected_univ
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
cases' disjoint_or_subset_of_isClopen p ⟨uc, uo⟩ with h h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t
case inl X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : Disjoint univ u ⊢ s ⊆ interior t case inr X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ h : univ ⊆ u ⊢ s ⊆ interior t
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u uo : IsOpen u uc : IsClosed u p : IsPreconnected univ ⊢ s ⊆ interior t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
rw [← subset_interior_iff_isOpen]
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ IsOpen u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ IsOpen u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
intro ⟨x, m⟩ h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u ⊢ u ⊆ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [mem_preimage, Subtype.coe_mk, ← hu] at h
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : ⟨x, m⟩ ∈ u ⊢ ⟨x, m⟩ ∈ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
have n := op ⟨m, h⟩
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t ⊢ ⟨x, m⟩ ∈ interior u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Connected.lean
IsPreconnected.relative_clopen
[170, 1]
[191, 47]
simp only [mem_interior_iff_mem_nhds, preimage_coe_mem_nhds_subtype, Subtype.coe_mk, ← hu] at n ⊢
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u
X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : t ∈ 𝓝 x ⊢ t ∈ 𝓝[s] x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝⁴ : TopologicalSpace X I : Type inst✝³ : TopologicalSpace I inst✝² : ConditionallyCompleteLinearOrder I inst✝¹ : DenselyOrdered I inst✝ : OrderTopology I s t : Set X sp : IsPreconnected s ne : (s ∩ t).Nonempty op : s ∩ t ⊆ interior t cl : s ∩ closure t ⊆ t u : Set ↑s hu : (fun x => ↑x) ⁻¹' t = u x : X m : x ∈ s h : x ∈ t n : x ∈ interior t ⊢ ⟨x, m⟩ ∈ interior u TACTIC: