url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
exact _root_.trans (exp_small (by linarith)) (by linarith)
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ Complex.abs ((s.sum g).exp - 1) ≀ 4 * c
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ Complex.abs ((s.sum g).exp - 1) ≀ 4 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
intro n m
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log ⊒ βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log ⊒ βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
refine _root_.trans ?_ le
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ s.sum fun n => Complex.abs (f n - 1)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
exact Finset.single_le_sum (f := fun n ↦ abs (f n - 1)) (fun _ _ ↦ Complex.abs.nonneg _) m
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ s.sum fun n => Complex.abs (f n - 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s ⊒ Complex.abs (f n - 1) ≀ s.sum fun n => Complex.abs (f n - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
intro n m
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c ⊒ βˆ€ n ∈ s, f n β‰  0
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c n : β„• m : n ∈ s ⊒ f n β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c ⊒ βˆ€ n ∈ s, f n β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
specialize b n m
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c n : β„• m : n ∈ s ⊒ f n β‰  0
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Complex.abs (f n - 1) ≀ c ⊒ f n β‰  0
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c n : β„• m : n ∈ s ⊒ f n β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
contrapose b
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Complex.abs (f n - 1) ≀ c ⊒ f n β‰  0
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Β¬f n β‰  0 ⊒ Β¬Complex.abs (f n - 1) ≀ c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Complex.abs (f n - 1) ≀ c ⊒ f n β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
simp only [not_not] at b
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Β¬f n β‰  0 ⊒ Β¬Complex.abs (f n - 1) ≀ c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ Β¬Complex.abs (f n - 1) ≀ c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : Β¬f n β‰  0 ⊒ Β¬Complex.abs (f n - 1) ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
simp only [b, not_le]
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ Β¬Complex.abs (f n - 1) ≀ c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < Complex.abs (0 - 1)
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ Β¬Complex.abs (f n - 1) ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
norm_num
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < Complex.abs (0 - 1)
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < 1
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < Complex.abs (0 - 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
linarith
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log n : β„• m : n ∈ s b : f n = 0 ⊒ c < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
refine _root_.trans (Complex.abs.sum_le _ _) ?_
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ Complex.abs (s.sum g) ≀ 2 * c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => Complex.abs (f i).log) ≀ 2 * c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ Complex.abs (s.sum g) ≀ 2 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
refine _root_.trans (Finset.sum_le_sum (fun n m ↦ log_small (_root_.trans (b n m) c1))) ?_
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => Complex.abs (f i).log) ≀ 2 * c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => 2 * Complex.abs (f i - 1)) ≀ 2 * c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => Complex.abs (f i).log) ≀ 2 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
rw [← Finset.mul_sum]
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => 2 * Complex.abs (f i - 1)) ≀ 2 * c
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (2 * s.sum fun i => Complex.abs (f i - 1)) ≀ 2 * c
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (s.sum fun i => 2 * Complex.abs (f i - 1)) ≀ 2 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
bound
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (2 * s.sum fun i => Complex.abs (f i - 1)) ≀ 2 * c
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 ⊒ (2 * s.sum fun i => Complex.abs (f i - 1)) ≀ 2 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
rw [Complex.exp_sum]
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ s.prod f = (s.sum g).exp
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ s.prod f = s.prod fun x => (f x).log.exp
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ s.prod f = (s.sum g).exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
apply Finset.prod_congr rfl
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ s.prod f = s.prod fun x => (f x).log.exp
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ βˆ€ x ∈ s, f x = (f x).log.exp
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ s.prod f = s.prod fun x => (f x).log.exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
intro n m
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ βˆ€ x ∈ s, f x = (f x).log.exp
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c n : β„• m : n ∈ s ⊒ f n = (f n).log.exp
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c ⊒ βˆ€ x ∈ s, f x = (f x).log.exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
rw [Complex.exp_log (f0 n m)]
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c n : β„• m : n ∈ s ⊒ f n = (f n).log.exp
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c n : β„• m : n ∈ s ⊒ f n = (f n).log.exp TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
linarith
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ Complex.abs (s.sum g) ≀ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ Complex.abs (s.sum g) ≀ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Bounds.lean
dist_prod_one_le_abs_sum
[410, 1]
[426, 69]
linarith
f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ 2 * Complex.abs (s.sum g) ≀ 4 * c
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : β„• β†’ β„‚ s : Finset β„• c : ℝ le : (s.sum fun n => Complex.abs (f n - 1)) ≀ c c1 : c ≀ 1 / 2 g : β„• β†’ β„‚ := fun n => (f n).log b : βˆ€ n ∈ s, Complex.abs (f n - 1) ≀ c f0 : βˆ€ n ∈ s, f n β‰  0 sg : Complex.abs (s.sum g) ≀ 2 * c e : s.prod f = (s.sum g).exp ⊒ 2 * Complex.abs (s.sum g) ≀ 4 * c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
apply ConvexOn.sup
⊒ ConvexOn ℝ univ fun p => max p.1 p.2
case hf ⊒ ConvexOn ℝ univ fun p => p.1 case hg ⊒ ConvexOn ℝ univ fun p => p.2
Please generate a tactic in lean4 to solve the state. STATE: ⊒ ConvexOn ℝ univ fun p => max p.1 p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
use convex_univ
case hf ⊒ ConvexOn ℝ univ fun p => p.1
case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).1 ≀ a β€’ x.1 + b β€’ y.1
Please generate a tactic in lean4 to solve the state. STATE: case hf ⊒ ConvexOn ℝ univ fun p => p.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
intros
case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).1 ≀ a β€’ x.1 + b β€’ y.1
case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).1 ≀ a✝³ β€’ x✝.1 + b✝ β€’ y✝.1
Please generate a tactic in lean4 to solve the state. STATE: case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).1 ≀ a β€’ x.1 + b β€’ y.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
simp
case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).1 ≀ a✝³ β€’ x✝.1 + b✝ β€’ y✝.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).1 ≀ a✝³ β€’ x✝.1 + b✝ β€’ y✝.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
use convex_univ
case hg ⊒ ConvexOn ℝ univ fun p => p.2
case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).2 ≀ a β€’ x.2 + b β€’ y.2
Please generate a tactic in lean4 to solve the state. STATE: case hg ⊒ ConvexOn ℝ univ fun p => p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
intros
case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).2 ≀ a β€’ x.2 + b β€’ y.2
case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).2 ≀ a✝³ β€’ x✝.2 + b✝ β€’ y✝.2
Please generate a tactic in lean4 to solve the state. STATE: case right ⊒ βˆ€ ⦃x : ℝ Γ— ℝ⦄, x ∈ univ β†’ βˆ€ ⦃y : ℝ Γ— ℝ⦄, y ∈ univ β†’ βˆ€ ⦃a b : ℝ⦄, 0 ≀ a β†’ 0 ≀ b β†’ a + b = 1 β†’ (a β€’ x + b β€’ y).2 ≀ a β€’ x.2 + b β€’ y.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
convexOn_max
[20, 1]
[22, 34]
simp
case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).2 ≀ a✝³ β€’ x✝.2 + b✝ β€’ y✝.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right x✝ : ℝ Γ— ℝ a✝⁡ : x✝ ∈ univ y✝ : ℝ Γ— ℝ a✝⁴ : y✝ ∈ univ a✝³ b✝ : ℝ a✝² : 0 ≀ a✝³ a✝¹ : 0 ≀ b✝ a✝ : a✝³ + b✝ = 1 ⊒ (a✝³ β€’ x✝ + b✝ β€’ y✝).2 ≀ a✝³ β€’ x✝.2 + b✝ β€’ y✝.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
ContinuousOn.partialSups
[25, 1]
[28, 76]
induction' n with n h
A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s
case zero A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) 0) s case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s
Please generate a tactic in lean4 to solve the state. STATE: A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
ContinuousOn.partialSups
[25, 1]
[28, 76]
simp [fc 0]
case zero A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) 0) s case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s
case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s
Please generate a tactic in lean4 to solve the state. STATE: case zero A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) 0) s case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
ContinuousOn.partialSups
[25, 1]
[28, 76]
simp
case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s
case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n βŠ” f (n + 1) x) s
Please generate a tactic in lean4 to solve the state. STATE: case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) (n + 1)) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Max.lean
ContinuousOn.partialSups
[25, 1]
[28, 76]
exact ContinuousOn.max h (fc _)
case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n βŠ” f (n + 1) x) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ A : Type inst✝ : TopologicalSpace A f : β„• β†’ A β†’ ℝ s : Set A fc : βˆ€ (n : β„•), ContinuousOn (f n) s n : β„• h : ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n) s ⊒ ContinuousOn (fun x => (_root_.partialSups fun k => f k x) n βŠ” f (n + 1) x) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_mono
[21, 1]
[23, 73]
positivity
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 1 < x xy : x ≀ y ⊒ 0 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 1 < x xy : x ≀ y ⊒ 0 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
have lx := neg_pos.mpr (Real.log_neg x0 x1)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 ⊒ (-y.log).log < (-x.log).log ↔ x < y
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
have ly := neg_pos.mpr (Real.log_neg y0 y1)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_neg_log_strict_anti
[25, 1]
[30, 76]
rw [Real.log_lt_log_iff ly lx, neg_lt_neg_iff, Real.log_lt_log_iff x0 y0]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x y : ℝ x0 : 0 < x y0 : 0 < y x1 : x < 1 y1 : y < 1 lx : 0 < -x.log ly : 0 < -y.log ⊒ (-y.log).log < (-x.log).log ↔ x < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
rw [Real.le_log_iff_exp_le (by linarith)]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ log 2 * x ≀ (1 + x).log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ log 2 * x ≀ (1 + x).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
have x0' : 0 ≀ 1 - x := by linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
have h := convexOn_exp.2 (mem_univ 0) (mem_univ (log 2)) x0' x0 (by abel)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
simp only [smul_eq_mul, mul_zero, zero_add, Real.exp_zero, mul_one, Real.exp_log zero_lt_two] at h
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 - x + x * 2 ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : ((1 - x) β€’ 0 + x β€’ log 2).exp ≀ (1 - x) β€’ exp 0 + x β€’ (log 2).exp ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
ring_nf at h
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 - x + x * 2 ⊒ (log 2 * x).exp ≀ 1 + x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 + x ⊒ (log 2 * x).exp ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 - x + x * 2 ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
rwa [mul_comm]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 + x ⊒ (log 2 * x).exp ≀ 1 + x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x h : (x * log 2).exp ≀ 1 + x ⊒ (log 2 * x).exp ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ 0 < 1 + x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ 0 < 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ 0 ≀ 1 - x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 ⊒ 0 ≀ 1 - x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
le_log_one_add
[32, 1]
[39, 17]
abel
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ 1 - x + x = 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x0 : 0 ≀ x x1 : x ≀ 1 x0' : 0 ≀ 1 - x ⊒ 1 - x + x = 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
have hd : βˆ€ x, 2 ≀ x β†’ HasDerivAt (fun x ↦ log (x-1) / log x) ((1 / (x-1) * log x - log (x-1) * x⁻¹) / (log x)^2) x := by intro x x2 have l0 : 0 < log x := Real.log_pos (by linarith) refine HasDerivAt.div ?_ (Real.hasDerivAt_log (by positivity)) l0.ne' exact HasDerivAt.log ((hasDerivAt_id _).sub_const _) (by linarith)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2)
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
have d : DifferentiableOn ℝ (fun x ↦ log (x-1) / log x) (Ici 2) := fun x m ↦ (hd x m).differentiableAt.differentiableWithinAt
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2)
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2)
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
apply monotoneOn_of_deriv_nonneg (convex_Ici _)
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2)
case hf c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ ContinuousOn (fun x => (x - 1).log / x.log) (Ici 2) case hf' c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (interior (Ici 2)) case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ βˆ€ x ∈ interior (Ici 2), 0 ≀ deriv (fun x => (x - 1).log / x.log) x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ MonotoneOn (fun x => (x - 1).log / x.log) (Ici 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
intro x x2
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) ⊒ βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) ⊒ βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
have l0 : 0 < log x := Real.log_pos (by linarith)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
refine HasDerivAt.div ?_ (Real.hasDerivAt_log (by positivity)) l0.ne'
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log) (1 / (x - 1)) x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact HasDerivAt.log ((hasDerivAt_id _).sub_const _) (by linarith)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log) (1 / (x - 1)) x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ HasDerivAt (fun x => (x - 1).log) (1 / (x - 1)) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x ⊒ 1 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x ⊒ 1 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
positivity
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ x β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ x β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ x - 1 β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) x : ℝ x2 : 2 ≀ x l0 : 0 < x.log ⊒ x - 1 β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact d.continuousOn
case hf c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ ContinuousOn (fun x => (x - 1).log / x.log) (Ici 2)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ ContinuousOn (fun x => (x - 1).log / x.log) (Ici 2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact d.mono interior_subset
case hf' c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (interior (Ici 2))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf' c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (interior (Ici 2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
intro x m
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ βˆ€ x ∈ interior (Ici 2), 0 ≀ deriv (fun x => (x - 1).log / x.log) x
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : x ∈ interior (Ici 2) ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) ⊒ βˆ€ x ∈ interior (Ici 2), 0 ≀ deriv (fun x => (x - 1).log / x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
simp only [nonempty_Iio, interior_Ici', mem_Ioi] at m
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : x ∈ interior (Ici 2) ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : x ∈ interior (Ici 2) ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
have l0 : 0 < log x := Real.log_pos (by linarith)
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
simp only [(hd x m.le).deriv, one_div]
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ ((x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹) / x.log ^ 2
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ deriv (fun x => (x - 1).log / x.log) x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
refine div_nonneg ?_ (by positivity)
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ ((x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹) / x.log ^ 2
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ ((x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹) / x.log ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
simp only [sub_nonneg, mul_comm]
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ * (x - 1).log ≀ (x - 1)⁻¹ * x.log
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹ * x.log - (x - 1).log * x⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
apply mul_le_mul
case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ * (x - 1).log ≀ (x - 1)⁻¹ * x.log
case hf'_nonneg.h₁ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ ≀ (x - 1)⁻¹ case hf'_nonneg.hβ‚‚ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ (x - 1).log ≀ x.log case hf'_nonneg.c0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1).log case hf'_nonneg.b0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ * (x - 1).log ≀ (x - 1)⁻¹ * x.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x ⊒ 1 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x ⊒ 1 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
positivity
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ x.log ^ 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ x.log ^ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact inv_le_inv_of_le (by linarith) (by linarith)
case hf'_nonneg.h₁ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ ≀ (x - 1)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg.h₁ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x⁻¹ ≀ (x - 1)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 < x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 < x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x - 1 ≀ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ x - 1 ≀ x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact Real.log_le_log (by linarith) (by linarith)
case hf'_nonneg.hβ‚‚ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ (x - 1).log ≀ x.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg.hβ‚‚ c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ (x - 1).log ≀ x.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact Real.log_nonneg (by linarith)
case hf'_nonneg.c0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1).log
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg.c0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 1 ≀ x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 1 ≀ x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
exact inv_nonneg.mpr (by linarith)
case hf'_nonneg.b0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hf'_nonneg.b0 c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ (x - 1)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_ratio_mono
[41, 1]
[64, 41]
linarith
c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d✝ : β„• inst✝ : Fact (2 ≀ d✝) hd : βˆ€ (x : ℝ), 2 ≀ x β†’ HasDerivAt (fun x => (x - 1).log / x.log) ((1 / (x - 1) * x.log - (x - 1).log * x⁻¹) / x.log ^ 2) x d : DifferentiableOn ℝ (fun x => (x - 1).log / x.log) (Ici 2) x : ℝ m : 2 < x l0 : 0 < x.log ⊒ 0 ≀ x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
generalize abs (f' d c z) = w at zw
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z zw : (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ Complex.abs (f' d c z) ⊒ (Complex.abs z).log.log + 0.548 ≀ (Complex.abs (f' d c z)).log.log
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z w : ℝ zw : (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ w ⊒ (Complex.abs z).log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z zw : (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ Complex.abs (f' d c z) ⊒ (Complex.abs z).log.log + 0.548 ≀ (Complex.abs (f' d c z)).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
generalize abs z = x at zw cz z4
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z w : ℝ zw : (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ w ⊒ (Complex.abs z).log.log + 0.548 ≀ w.log.log
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ w x : ℝ zw : (x - 1) ^ 1 * x ≀ w cz : Complex.abs c ≀ x z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z w : ℝ zw : (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ w ⊒ (Complex.abs z).log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
clear z c cz
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ w x : ℝ zw : (x - 1) ^ 1 * x ≀ w cz : Complex.abs c ≀ x z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ w x : ℝ zw : (x - 1) ^ 1 * x ≀ w cz : Complex.abs c ≀ x z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have x0 : 0 < x := by linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have x1 : 1 < x := by linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
simp only [pow_one] at zw
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have lx1 : 1 < log (x-1) := lt_trans (by norm_num) (lt_of_lt_of_le lt_log_3 (Real.log_le_log (by norm_num) (by linarith)))
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have lx : 1 < log x := lt_trans lx1 (Real.log_lt_log (by linarith) (by linarith))
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have ll0 : 0 ≀ log (x-1) / log x := by positivity
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
have ll1 : log (x-1) / log x ≀ 1 := div_le_one_of_le (Real.log_le_log (by linarith) (by linarith)) (by positivity)
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ⊒ x.log.log + 0.548 ≀ w.log.log
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≀ 1 ⊒ x.log.log + 0.548 ≀ w.log.log
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
calc log (log w) _ β‰₯ log (log ((x-1)*x)) := log_log_mono (by nlinarith) zw _ = log (log x + log (x-1)) := by rw [mul_comm, Real.log_mul (by positivity) (by linarith)] _ = log (log x) + log (1 + log (x-1) / log x) := by rw [log_add _ _ (by linarith) (by linarith)] _ β‰₯ log (log x) + log 2 * (log (x-1) / log x) := by bound [le_log_one_add ll0 ll1] _ β‰₯ log (log x) + 0.693 * 0.791 := by bound [lt_log_2] _ β‰₯ log (log x) + 0.548 := by bound
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≀ 1 ⊒ x.log.log + 0.548 ≀ w.log.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≀ (x - 1).log / x.log ll0 : 0 ≀ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≀ 1 ⊒ x.log.log + 0.548 ≀ w.log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
refine iter_large (d := d) (n := 1) ?_ ?_ ?_ cz
c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ Complex.abs (f' d c z)
case refine_1 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ 2 ≀ Complex.abs z case refine_2 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ Complex.abs z ≀ Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ (Complex.abs z - 1) ^ 1 * Complex.abs z ≀ Complex.abs (f' d c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
case refine_1 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ 2 ≀ Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ 2 ≀ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
exact le_refl _
case refine_2 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ Complex.abs z ≀ Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 c✝ : β„‚ d : β„• inst✝ : Fact (2 ≀ d) c z : β„‚ z4 : 4 ≀ Complex.abs z cz : Complex.abs c ≀ Complex.abs z ⊒ Complex.abs z ≀ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x ⊒ 0 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x ⊒ 0 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x ⊒ 1 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ zw : (x - 1) ^ 1 * x ≀ w z4 : 4 ≀ x x0 : 0 < x ⊒ 1 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
norm_num
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 1 < 1.098
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 1 < 1.098 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
norm_num
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 0 < 3
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 0 < 3 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 3 ≀ x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w ⊒ 3 ≀ x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ 0 < x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ 0 < x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ x - 1 < x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log ⊒ x - 1 < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
apply log_ratio_mono ?_ ?_ z4
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ (x - 1).log / x.log β‰₯ (4 - 1).log / log 4
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 4 ∈ Ici 2 c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ x ∈ Ici 2
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ (x - 1).log / x.log β‰₯ (4 - 1).log / log 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
simp only [mem_Ici]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 4 ∈ Ici 2
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ 4
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 4 ∈ Ici 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
norm_num
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
simp only [mem_Ici]
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ x ∈ Ici 2
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ x
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ x ∈ Ici 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : β„‚ d : β„• inst✝ : Fact (2 ≀ d) w x : ℝ z4 : 4 ≀ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≀ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊒ 2 ≀ x TACTIC: