url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
use zp, zi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
refine ⟨p + 1, by bound, ?_⟩
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rw [image_eq_empty, diff_eq_empty] at ne
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ closedBall 0 (p + 1) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
exact ne
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : closedBall 0 (p + 1) ⊆ t ⊢ closedBall 0 (p + 1) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ p < p + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ p < p + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
intro x m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∀ x ∈ u, p < x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∀ x ∈ u, p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases m with ⟨z, ⟨_, mt⟩, e⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ m : x ∈ u ⊢ p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rw [← e]
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
contrapose mt
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : z ∉ t ⊢ p < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [not_not, not_lt] at mt ⊢
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : ¬p < Complex.abs z ⊢ ¬z ∉ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
apply sub
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t
case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, mt]
case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u x : ℝ z : ℂ e : Complex.abs z = x left✝ : z ∈ closedBall 0 (p + 1) mt : Complex.abs z ≤ p ⊢ z ∈ closedBall 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
linarith
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ p < p + 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ p < p + 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
have sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} := by intro z m; simp only [mem_setOf]; apply sub; exact ⟨mem_singleton _, m⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
rcases domain_open' sub (o.snd_preimage c) with ⟨q, pq, sub⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub : closedBall 0 p ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
use q, pq
case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ ∃ q, p < q ∧ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
intro ⟨e, z⟩ ⟨ec, m⟩
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} ⊢ {c} ×ˢ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [mem_singleton_iff] at ec
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : (e, z).1 ∈ {c} m : (e, z).2 ∈ closedBall 0 q ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
replace m := sub m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ m : (e, z).2 ∈ closedBall 0 q ec : e = c ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [← ec, mem_setOf] at m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z).2 ∈ {b | (c, b) ∈ t} ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
exact m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub✝¹ : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t sub✝ : closedBall 0 p ⊆ {b | (c, b) ∈ t} q : ℝ pq : p < q sub : closedBall 0 q ⊆ {b | (c, b) ∈ t} e z : ℂ ec : e = c m : (e, z) ∈ t ⊢ (e, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
intro z m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t}
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t ⊢ closedBall 0 p ⊆ {b | (c, b) ∈ t} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
simp only [mem_setOf]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t}
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ z ∈ {b | (c, b) ∈ t} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
apply sub
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open
[150, 1]
[156, 64]
exact ⟨mem_singleton _, m⟩
case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set (ℂ × ℂ) sub : {c} ×ˢ closedBall 0 p ⊆ t o : IsOpen t z : ℂ m : z ∈ closedBall 0 p ⊢ (c, z) ∈ {c} ×ˢ closedBall 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
have e := e.self_of_nhdsSet (mem_domain c g.nonneg)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [uncurry] at e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : uncurry r0 (c, 0) = uncurry r1 (c, 0) ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
rw [← e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r1 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact g.zero
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) e : r0 c 0 = r1 c 0 ⊢ r0 c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine g.start.mp ((e.filter_mono (nhds_le_nhdsSet (mem_domain c g.nonneg))).mp ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine eventually_of_forall fun x e s ↦ ?_
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), uncurry r0 x = uncurry r1 x → s.bottcherNear x.1 (r0 x.1 x.2) = x.2 → s.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [uncurry] at e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : uncurry r0 x = uncurry r1 x s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
rw [← e]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r1 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact s
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s✝ c p n r0 e✝ : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) x : ℂ × ℂ e : r0 x.1 x.2 = r1 x.1 x.2 s : s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 ⊢ s✝.bottcherNear x.1 (r0 x.1 x.2) = x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
have eqn := g.eqn
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
simp only [Filter.EventuallyEq, eventually_nhdsSet_iff_forall] at eqn e ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 e : (𝓝ˢ ({c} ×ˢ closedBall 0 p)).EventuallyEq (uncurry r0) (uncurry r1) eqn : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r0 x ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
intro x m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x ⊢ ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
refine (eqn x m).mp ((e x m).eventually_nhds.mp (eventually_of_forall fun y e eqn ↦ ?_))
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.congr
[159, 1]
[173, 26]
exact eqn.congr e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r r0 r1 : ℂ → ℂ → S g : Grow s c p n r0 eqn✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, Eqn s n r0 x e✝ : ∀ x ∈ {c} ×ˢ closedBall 0 p, ∀ᶠ (x : ℂ × ℂ) in 𝓝 x, uncurry r0 x = uncurry r1 x x : ℂ × ℂ m : x ∈ {c} ×ˢ closedBall 0 p y : ℂ × ℂ e : ∀ᶠ (x : ℂ × ℂ) in 𝓝 y, uncurry r0 x = uncurry r1 x eqn : Eqn s n r0 y ⊢ Eqn s n r1 y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.potential
[176, 1]
[178, 75]
simp only [s.potential_eq e.near, Super.potential', e.eqn, Complex.abs.map_pow, ← Nat.cast_pow, Real.pow_rpow_inv_natCast (Complex.abs.nonneg _) (pow_ne_zero _ s.d0)]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x ⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x ⊢ s.potential x.1 (r x.1 x.2) = Complex.abs x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
rcases x with ⟨c, x⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 x, Eqn s n r y x0 : x.2 ≠ 0 ⊢ mfderiv I I (s.bottcherNearIter n x.1) (r x.1 x.2) ≠ 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : (c, x).2 ≠ 0 ⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 x, Eqn s n r y x0 : x.2 ≠ 0 ⊢ mfderiv I I (s.bottcherNearIter n x.1) (r x.1 x.2) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
contrapose x0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : (c, x).2 ≠ 0 ⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0 ⊢ ¬(c, x).2 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : (c, x).2 ≠ 0 ⊢ mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
simp only [not_not] at x0 ⊢
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0 ⊢ ¬(c, x).2 ≠ 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : ¬mfderiv I I (s.bottcherNearIter n (c, x).1) (r (c, x).1 (c, x).2) ≠ 0 ⊢ ¬(c, x).2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
replace x0 : mfderiv I I (fun y ↦ s.bottcherNearIter n c (r c y)) x = 0 := by rw [←Function.comp_def, mfderiv_comp x (s.bottcherNearIter_holomorphic e.self_of_nhds.near).along_snd.mdifferentiableAt e.self_of_nhds.holo.along_snd.mdifferentiableAt, x0, ContinuousLinearMap.zero_comp]
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
have loc : (fun y ↦ s.bottcherNearIter n c (r c y)) =ᶠ[𝓝 x] fun y ↦ y ^ d ^ n := ((continuousAt_const.prod continuousAt_id).eventually e).mp (eventually_of_forall fun _ e ↦ e.eqn)
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
rw [mfderiv_eq_fderiv, loc.fderiv_eq] at x0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
have d := (differentiableAt_pow (𝕜 := ℂ) (x := x) (d ^ n)).hasFDerivAt.hasDerivAt.deriv
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d ^ n ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
apply_fun (fun x ↦ x 1) at x0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : fderiv ℂ (fun y => y ^ d✝ ^ n) x = 0 loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
rw [x0] at d
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = 0 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = (fderiv ℂ (fun x => x ^ d✝ ^ n) x) 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
replace d := Eq.trans d (ContinuousLinearMap.zero_apply _)
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = 0 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : deriv (fun x => x ^ d✝ ^ n) x = 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n d : deriv (fun x => x ^ d✝ ^ n) x = 0 1 x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
rw [deriv_pow, mul_eq_zero, Nat.cast_eq_zero, pow_eq_zero_iff', pow_eq_zero_iff'] at d
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : deriv (fun x => x ^ d✝ ^ n) x = 0 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : deriv (fun x => x ^ d✝ ^ n) x = 0 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
simp only [s.d0, false_and_iff, false_or_iff] at d
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : d✝ = 0 ∧ n ≠ 0 ∨ x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
exact d.1
case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mk S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d✝ n : ℕ p : ℝ s : Super f d✝ a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y loc : (𝓝 x).EventuallyEq (fun y => s.bottcherNearIter n c (r c y)) fun y => y ^ d✝ ^ n x0 : (fderiv ℂ (fun y => y ^ d✝ ^ n) x) 1 = 0 1 d : x = 0 ∧ d✝ ^ n - 1 ≠ 0 ⊢ x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_noncritical
[181, 1]
[198, 64]
rw [←Function.comp_def, mfderiv_comp x (s.bottcherNearIter_holomorphic e.self_of_nhds.near).along_snd.mdifferentiableAt e.self_of_nhds.holo.along_snd.mdifferentiableAt, x0, ContinuousLinearMap.zero_comp]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0 ⊢ mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ e : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y x0 : mfderiv I I (s.bottcherNearIter n c) (r c x) = 0 ⊢ mfderiv I I (fun y => s.bottcherNearIter n c (r c y)) x = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
by_contra p1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r ⊢ p < 1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : ¬p < 1 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r ⊢ p < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
simp only [not_lt] at p1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : ¬p < 1 ⊢ False
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : ¬p < 1 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
have e := (g.eqn.filter_mono (nhds_le_nhdsSet (x := (c, 1)) ?_)).self_of_nhds
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ False
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) ⊢ False case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
have lt := s.potential_lt_one ⟨_, e.near⟩
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) ⊢ False
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1 ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
rw [e.potential, Complex.abs.map_one, lt_self_iff_false] at lt
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1 ⊢ False
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : False ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : s.potential (c, 1).1 (r (c, 1).1 (c, 1).2) < 1 ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
exact lt
case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : False ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p e : Eqn s n r (c, 1) lt : False ⊢ False TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.p1
[201, 1]
[208, 93]
simp only [p1, singleton_prod, mem_image, mem_closedBall_zero_iff, Complex.norm_eq_abs, Prod.mk.inj_iff, eq_self_iff_true, true_and_iff, exists_eq_right, Complex.abs.map_one]
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r p1 : 1 ≤ p ⊢ (c, 1) ∈ {c} ×ˢ closedBall 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
have ba := s.bottcherNear_holomorphic _ (s.mem_near c)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
have nc := s.bottcherNear_mfderiv_ne_zero c
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rcases complex_inverse_fun ba nc with ⟨r, ra, rb, br⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rw [s.bottcherNear_a] at ra br
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, s.bottcherNear c a) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, s.bottcherNear c a), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
have rm : ∀ᶠ x : ℂ × ℂ in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near := by refine (continuousAt_fst.prod ra.continuousAt).eventually_mem (s.isOpen_near.mem_nhds ?_) have r0 := rb.self_of_nhds; simp only [s.bottcherNear_a] at r0 simp only [uncurry, r0]; exact s.mem_near c
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rcases eventually_nhds_iff.mp (ra.eventually.and (br.and rm)) with ⟨t, h, o, m⟩
case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rcases Metric.isOpen_iff.mp o _ m with ⟨p, pp, sub⟩
case intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
replace h := fun (x : ℂ × ℂ) m ↦ h x (sub m)
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) h : ∀ x ∈ t, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
have nb : ball (c, (0 : ℂ)) p ∈ 𝓝ˢ ({c} ×ˢ closedBall (0 : ℂ) (p / 2)) := by rw [isOpen_ball.mem_nhdsSet, ← ball_prod_same]; apply prod_mono rw [singleton_subset_iff]; exact mem_ball_self pp apply Metric.closedBall_subset_ball; exact half_lt_self pp
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
use p / 2, r, half_pos pp
case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ Grow s c (p / 2) 0 r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ ∃ p r, 0 < p ∧ Grow s c p 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
exact { nonneg := (half_pos pp).le zero := by convert rb.self_of_nhds; simp only [s.bottcherNear_a] start := Filter.eventually_iff_exists_mem.mpr ⟨_, ball_mem_nhds _ pp, fun _ m ↦ (h _ m).2.1⟩ eqn := Filter.eventually_iff_exists_mem.mpr ⟨_, nb, fun _ m ↦ { holo := (h _ m).1 near := (h _ m).2.2 eqn := by simp only [Function.iterate_zero_apply, pow_zero, pow_one, (h _ m).2.1] }⟩ }
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ Grow s c (p / 2) 0 r
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ Grow s c (p / 2) 0 r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
refine (continuousAt_fst.prod ra.continuousAt).eventually_mem (s.isOpen_near.mem_nhds ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
have r0 := rb.self_of_nhds
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
simp only [s.bottcherNear_a] at r0
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r (c, a).1 (s.bottcherNear (c, a).1 (c, a).2) = (c, a).2 ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
simp only [uncurry, r0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ (c, a) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ ((c, 0).1, uncurry r (c, 0)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
exact s.mem_near c
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ (c, a) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 r0 : r c 0 = a ⊢ (c, a) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rw [isOpen_ball.mem_nhdsSet, ← ball_prod_same]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2))
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
apply prod_mono
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p
case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ⊆ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ×ˢ closedBall 0 (p / 2) ⊆ ball c p ×ˢ ball 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
rw [singleton_subset_iff]
case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ⊆ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ c ∈ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
Please generate a tactic in lean4 to solve the state. STATE: case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ {c} ⊆ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
exact mem_ball_self pp
case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ c ∈ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
Please generate a tactic in lean4 to solve the state. STATE: case hs S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ c ∈ ball c p case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
apply Metric.closedBall_subset_ball
case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p
case ht.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ p / 2 < p
Please generate a tactic in lean4 to solve the state. STATE: case ht S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ closedBall 0 (p / 2) ⊆ ball 0 p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
exact half_lt_self pp
case ht.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ p / 2 < p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ht.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near ⊢ p / 2 < p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
convert rb.self_of_nhds
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ r c 0 = a
case h.e'_2.h.e'_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ 0 = s.bottcherNear (c, a).1 (c, a).2
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ r c 0 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
simp only [s.bottcherNear_a]
case h.e'_2.h.e'_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ 0 = s.bottcherNear (c, a).1 (c, a).2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) ⊢ 0 = s.bottcherNear (c, a).1 (c, a).2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Super.grow_start
[215, 1]
[241, 101]
simp only [Function.iterate_zero_apply, pow_zero, pow_one, (h _ m).2.1]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m✝ : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) x✝ : ℂ × ℂ m : x✝ ∈ ball (c, 0) p ⊢ s.bottcherNear x✝.1 ((f x✝.1)^[0] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p✝ : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a c : ℂ ba : HolomorphicAt (I.prod I) I (uncurry s.bottcherNear) (c, a) nc : mfderiv I I (s.bottcherNear c) a ≠ 0 r : ℂ → ℂ → S ra : HolomorphicAt (I.prod I) I (uncurry r) (c, 0) rb : ∀ᶠ (x : ℂ × S) in 𝓝 (c, a), r x.1 (s.bottcherNear x.1 x.2) = x.2 br : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 rm : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, 0), (x.1, r x.1 x.2) ∈ s.near t : Set (ℂ × ℂ) o : IsOpen t m✝ : (c, 0) ∈ t p : ℝ pp : p > 0 sub : ball (c, 0) p ⊆ t h : ∀ x ∈ ball (c, 0) p, HolomorphicAt (I.prod I) I (uncurry r) x ∧ s.bottcherNear x.1 (r x.1 x.2) = x.2 ∧ (x.1, r x.1 x.2) ∈ s.near nb : ball (c, 0) p ∈ 𝓝ˢ ({c} ×ˢ closedBall 0 (p / 2)) x✝ : ℂ × ℂ m : x✝ ∈ ball (c, 0) p ⊢ s.bottcherNear x✝.1 ((f x✝.1)^[0] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
have e := g.eqn
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
simp only [isCompact_singleton.nhdsSet_prod_eq (isCompact_closedBall _ _)] at e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ ({c} ×ˢ closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
rcases Filter.mem_prod_iff.mp e with ⟨a', an, b', bn, sub⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x} ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
simp only [subset_setOf] at sub
case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x} ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : a' ×ˢ b' ⊆ {x | (fun x => Eqn s n r x) x} ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
rcases eventually_nhds_iff.mp (nhdsSet_singleton.subst an) with ⟨a, aa, ao, am⟩
case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
rcases eventually_nhdsSet_iff_exists.mp bn with ⟨b, bo, bp, bb⟩
case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
rcases domain_open' bp bo with ⟨q, pq, qb⟩
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
use q, pq
case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∃ p', p < p' ∧ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' p' n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
apply m.mp
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, Grow s c' q n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
apply ((continuousAt_id.prod continuousAt_const).eventually g.start.eventually_nhds).mp
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (x, r x 0) ∈ s.near → Grow s x q n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
refine eventually_nhds_iff.mpr ⟨a, ?_, ao, am⟩
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ᶠ (x : ℂ) in 𝓝 c, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
intro c' am' start m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m✝ : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near c' : ℂ am' : c' ∈ a start : ∀ᶠ (x : ℂ × ℂ) in 𝓝 (id c', 0), s.bottcherNear x.1 (r x.1 x.2) = x.2 m : (c', r c' 0) ∈ s.near ⊢ Grow s c' q n r
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b m : ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near ⊢ ∀ x ∈ a, (∀ᶠ (x : ℂ × ℂ) in 𝓝 (id x, 0), s.bottcherNear x.1 (r x.1 x.2) = x.2) → (x, r x 0) ∈ s.near → Grow s x q n r TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
refine (continuousAt_id.prod ?_).eventually_mem (s.isOpen_near.mem_nhds ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ContinuousAt (fun c' => r c' 0) c case refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ (id c, r c 0) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ∀ᶠ (c' : ℂ) in 𝓝 c, (c', r c' 0) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Grow.open
[244, 1]
[268, 61]
exact (g.eqn.filter_mono (nhds_le_nhdsSet (mem_domain c g.nonneg))).self_of_nhds.holo.along_fst.continuousAt
case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ContinuousAt (fun c' => r c' 0) c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ p : ℝ s : Super f d a✝ r : ℂ → ℂ → S g : Grow s c p n r e : ∀ᶠ (x : ℂ × ℂ) in 𝓝ˢ {c} ×ˢ 𝓝ˢ (closedBall 0 p), Eqn s n r x a' : Set ℂ an : a' ∈ 𝓝ˢ {c} b' : Set ℂ bn : b' ∈ 𝓝ˢ (closedBall 0 p) sub : ∀ x ∈ a' ×ˢ b', Eqn s n r x a : Set ℂ aa : ∀ x ∈ a, a' x ao : IsOpen a am : c ∈ a b : Set ℂ bo : IsOpen b bp : closedBall 0 p ⊆ b bb : ∀ x ∈ b, b' x q : ℝ pq : p < q qb : closedBall 0 q ⊆ b ⊢ ContinuousAt (fun c' => r c' 0) c TACTIC: