url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
norm_num
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ (4 - 1).log / log 4 = log 3 / log 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ (4 - 1).log / log 4 = log 3 / log 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
positivity
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 0 ≤ log 3
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 0 ≤ log 3 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
positivity
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 0 < log 4
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 0 < log 4 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
norm_num
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 1.098 / 1.387 ≥ 0.791
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ⊢ 1.098 / 1.387 ≥ 0.791 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
positivity
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ⊢ 0 ≤ (x - 1).log / x.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ⊢ 0 ≤ (x - 1).log / x.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ 0 < x - 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ 0 < x - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ x - 1 ≤ x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ x - 1 ≤ x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
positivity
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ 0 ≤ x.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ⊢ 0 ≤ x.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
nlinarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 1 < (x - 1) * x
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 1 < (x - 1) * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
rw [mul_comm, Real.log_mul (by positivity) (by linarith)]
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ ((x - 1) * x).log.log = (x.log + (x - 1).log).log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ ((x - 1) * x).log.log = (x.log + (x - 1).log).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
positivity
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x - 1 ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x - 1 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
rw [log_add _ _ (by linarith) (by linarith)]
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ (x.log + (x - 1).log).log = x.log.log + (1 + (x - 1).log / x.log).log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ (x.log + (x - 1).log).log = x.log.log + (1 + (x - 1).log / x.log).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 0 < x.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 0 < x.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
linarith
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 0 < x.log + (x - 1).log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ 0 < x.log + (x - 1).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
bound [le_log_one_add ll0 ll1]
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + (1 + (x - 1).log / x.log).log ≥ x.log.log + log 2 * ((x - 1).log / x.log)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + (1 + (x - 1).log / x.log).log ≥ x.log.log + log 2 * ((x - 1).log / x.log) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
bound [lt_log_2]
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + log 2 * ((x - 1).log / x.log) ≥ x.log.log + 0.693 * 0.791
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + log 2 * ((x - 1).log / x.log) ≥ x.log.log + 0.693 * 0.791 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
log_log_iter
[66, 1]
[100, 40]
bound
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + 0.693 * 0.791 ≥ x.log.log + 0.548
no goals
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) w x : ℝ z4 : 4 ≤ x x0 : 0 < x x1 : 1 < x zw : (x - 1) * x ≤ w lx1 : 1 < (x - 1).log lx : 1 < x.log ll : 0.791 ≤ (x - 1).log / x.log ll0 : 0 ≤ (x - 1).log / x.log ll1 : (x - 1).log / x.log ≤ 1 ⊢ x.log.log + 0.693 * 0.791 ≥ x.log.log + 0.548 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have d0 : 0 < d := d_pos d
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ Postcritical ⋯ c ↑z
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d ⊢ Postcritical ⋯ c ↑z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ Postcritical ⋯ c ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have lcz : log (log (abs c)) ≤ log (log (abs z)) := log_log_mono (by linarith) cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d ⊢ Postcritical ⋯ c ↑z
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ Postcritical ⋯ c ↑z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d ⊢ Postcritical ⋯ c ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
simp only [Postcritical, multibrot_p]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ Postcritical ⋯ c ↑z
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ ⋯.potential c ↑z < ⋯.potential c 0
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ Postcritical ⋯ c ↑z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
set s := superF d
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ ⋯.potential c ↑z < ⋯.potential c 0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c ↑z < s.potential c 0
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log ⊢ ⋯.potential c ↑z < ⋯.potential c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
rw [← Real.pow_rpow_inv_natCast s.potential_nonneg d0.ne', ← Real.pow_rpow_inv_natCast (s.potential_nonneg : 0 ≤ s.potential c 0) d0.ne']
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c ↑z < s.potential c 0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ (s.potential c ↑z ^ d) ^ (↑d)⁻¹ < (s.potential c 0 ^ d) ^ (↑d)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c ↑z < s.potential c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
simp only [← s.potential_eqn]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ (s.potential c ↑z ^ d) ^ (↑d)⁻¹ < (s.potential c 0 ^ d) ^ (↑d)⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) ^ (↑d)⁻¹ < s.potential c (f d c 0) ^ (↑d)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ (s.potential c ↑z ^ d) ^ (↑d)⁻¹ < (s.potential c 0 ^ d) ^ (↑d)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
refine Real.rpow_lt_rpow s.potential_nonneg ?_ (by bound)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) ^ (↑d)⁻¹ < s.potential c (f d c 0) ^ (↑d)⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) ^ (↑d)⁻¹ < s.potential c (f d c 0) ^ (↑d)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
generalize hw : f' d c z = w
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have e : f d c z = w := by rw [f, lift_coe', hw]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
simp only [f_0, e]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c (f d c ↑z) < s.potential c (f d c 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
clear e
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w e : f d c ↑z = ↑w ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have zw : abs z ≤ abs w := by rw [←hw]; exact le_self_iter d (by linarith) cz 1
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have cw : abs c ≤ abs w := le_trans cz zw
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have pc1 : s.potential c c < 1 := potential_lt_one_of_two_lt (by linarith) (le_refl _)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have pw1 : s.potential c w < 1 := potential_lt_one_of_two_lt (by linarith) (by linarith)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ s.potential c ↑w < s.potential c ↑c
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
rw [←log_neg_log_strict_anti potential_pos potential_pos pw1 pc1]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ s.potential c ↑w < s.potential c ↑c
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < (-(⋯.potential c ↑w).log).log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ s.potential c ↑w < s.potential c ↑c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
refine lt_of_lt_of_le ?_ (le_sub_iff_add_le.mp (abs_le.mp (log_neg_log_potential_approx d (by linarith) cw)).1)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < (-(⋯.potential c ↑w).log).log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < (-(⋯.potential c ↑w).log).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
refine lt_of_le_of_lt (sub_le_iff_le_add.mp (abs_le.mp (log_neg_log_potential_approx d (by linarith) (le_refl _))).2) ?_
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (-(⋯.potential c ↑c).log).log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have lzw : log (log (abs z)) + 0.548 ≤ log (log (abs w)) := by rw [←hw]; exact log_log_iter (by linarith) cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have ie : ∀ z : ℂ, 4 ≤ abs z → abs c ≤ abs z → iter_error d c z ≤ 0.15 := by intro z z4 cz refine le_trans (iter_error_le_of_z4 d z4 cz) ?_ calc 0.8095 / (abs z * log (abs z)) _ ≤ 0.8095 / (4 * log 4) := by bound _ ≤ 0.8095 / (4 * 1.386) := by bound [lt_log_4] _ ≤ 0.15 := by norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have iec := ie c c4 (le_refl _)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
have iew := ie w (by linarith) cw
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
refine lt_of_lt_of_le (lt_of_le_of_lt (add_le_add iec lcz) ?_) (add_le_add (neg_le_neg iew) lzw)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 0.15 + (Complex.abs z).log.log < -0.15 + ((Complex.abs z).log.log + 0.548)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ iter_error d c c + (Complex.abs c).log.log < -iter_error d c w + (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
ring_nf
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 0.15 + (Complex.abs z).log.log < -0.15 + ((Complex.abs z).log.log + 0.548)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 + (Complex.abs z).log.log < 199 / 500 + (Complex.abs z).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 0.15 + (Complex.abs z).log.log < -0.15 + ((Complex.abs z).log.log + 0.548) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
simp only [add_lt_add_iff_right]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 + (Complex.abs z).log.log < 199 / 500 + (Complex.abs z).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 < 199 / 500
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 + (Complex.abs z).log.log < 199 / 500 + (Complex.abs z).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 < 199 / 500
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 iew : iter_error d c w ≤ 0.15 ⊢ 3 / 20 < 199 / 500 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d ⊢ 1 < Complex.abs c
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d ⊢ 1 < Complex.abs c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
bound
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ 0 < (↑d)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d ⊢ 0 < (↑d)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
rw [f, lift_coe', hw]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ f d c ↑z = ↑w
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ f d c ↑z = ↑w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
rw [←hw]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ Complex.abs z ≤ Complex.abs w
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ Complex.abs z ≤ Complex.abs (f' d c z)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ Complex.abs z ≤ Complex.abs w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
exact le_self_iter d (by linarith) cz 1
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ Complex.abs z ≤ Complex.abs (f' d c z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ Complex.abs z ≤ Complex.abs (f' d c z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ 3 ≤ Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w ⊢ 3 ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w ⊢ 2 < Complex.abs c
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w ⊢ 2 < Complex.abs c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ 2 < Complex.abs w
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ 2 < Complex.abs w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ Complex.abs c ≤ Complex.abs w
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 ⊢ Complex.abs c ≤ Complex.abs w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 3 ≤ Complex.abs w
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 3 ≤ Complex.abs w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 3 ≤ Complex.abs c
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 3 ≤ Complex.abs c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
rw [←hw]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (Complex.abs z).log.log + 0.548 ≤ (Complex.abs (f' d c z)).log.log
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
exact log_log_iter (by linarith) cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (Complex.abs z).log.log + 0.548 ≤ (Complex.abs (f' d c z)).log.log
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ (Complex.abs z).log.log + 0.548 ≤ (Complex.abs (f' d c z)).log.log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 4 ≤ Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 ⊢ 4 ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
intro z z4 cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ⊢ ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ iter_error d c z ≤ 0.15
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ⊢ ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
refine le_trans (iter_error_le_of_z4 d z4 cz) ?_
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ iter_error d c z ≤ 0.15
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (Complex.abs z * (Complex.abs z).log) ≤ 0.15
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ iter_error d c z ≤ 0.15 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
calc 0.8095 / (abs z * log (abs z)) _ ≤ 0.8095 / (4 * log 4) := by bound _ ≤ 0.8095 / (4 * 1.386) := by bound [lt_log_4] _ ≤ 0.15 := by norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (Complex.abs z * (Complex.abs z).log) ≤ 0.15
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (Complex.abs z * (Complex.abs z).log) ≤ 0.15 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
bound
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (Complex.abs z * (Complex.abs z).log) ≤ 0.8095 / (4 * log 4)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (Complex.abs z * (Complex.abs z).log) ≤ 0.8095 / (4 * log 4) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
bound [lt_log_4]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (4 * log 4) ≤ 0.8095 / (4 * 1.386)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (4 * log 4) ≤ 0.8095 / (4 * 1.386) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (4 * 1.386) ≤ 0.15
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c4 : 4 ≤ Complex.abs c cz✝ : Complex.abs c ≤ Complex.abs z✝ d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z✝).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z✝ = w zw : Complex.abs z✝ ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z✝).log.log + 0.548 ≤ (Complex.abs w).log.log z : ℂ z4 : 4 ≤ Complex.abs z cz : Complex.abs c ≤ Complex.abs z ⊢ 0.8095 / (4 * 1.386) ≤ 0.15 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Postcritical.lean
postcritical_large
[103, 1]
[142, 54]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 ⊢ 4 ≤ Complex.abs w
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c4 : 4 ≤ Complex.abs c cz : Complex.abs c ≤ Complex.abs z d0 : 0 < d lcz : (Complex.abs c).log.log ≤ (Complex.abs z).log.log s : Super (f d) d ∞ := superF d w : ℂ hw : f' d c z = w zw : Complex.abs z ≤ Complex.abs w cw : Complex.abs c ≤ Complex.abs w pc1 : s.potential c ↑c < 1 pw1 : s.potential c ↑w < 1 lzw : (Complex.abs z).log.log + 0.548 ≤ (Complex.abs w).log.log ie : ∀ (z : ℂ), 4 ≤ Complex.abs z → Complex.abs c ≤ Complex.abs z → iter_error d c z ≤ 0.15 iec : iter_error d c c ≤ 0.15 ⊢ 4 ≤ Complex.abs w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
have m : ∀ᶠ y : ℂ × ℂ in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near := by refine ContinuousAt.eventually_mem ?_ (s.isOpen_near.mem_nhds mem) exact continuousAt_fst.prod (s.continuousAt_iter continuousAt_fst holo.continuousAt)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply holo.eventually.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), Eqn s n r y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply loc.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply m.mp
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
apply eventually_of_forall
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (c, x), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
intro _ m l h
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near ⊢ ∀ (x : ℂ × ℂ), (x.1, (f x.1)^[n] (r x.1 x.2)) ∈ s.near → s.bottcherNear x.1 ((f x.1)^[n] (r x.1 x.2)) = x.2 ^ d ^ n → HolomorphicAt (I.prod I) I (uncurry r) x → Eqn s n r x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
exact ⟨h, m, l⟩
case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n m✝ : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near x✝ : ℂ × ℂ m : (x✝.1, (f x✝.1)^[n] (r x✝.1 x✝.2)) ∈ s.near l : s.bottcherNear x✝.1 ((f x✝.1)^[n] (r x✝.1 x✝.2)) = x✝.2 ^ d ^ n h : HolomorphicAt (I.prod I) I (uncurry r) x✝ ⊢ Eqn s n r x✝ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
refine ContinuousAt.eventually_mem ?_ (s.isOpen_near.mem_nhds mem)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), (y.1, (f y.1)^[n] (r y.1 y.2)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
eqn_near
[71, 1]
[79, 61]
exact continuousAt_fst.prod (s.continuousAt_iter continuousAt_fst holo.continuousAt)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ p : ℝ s✝ : Super f d a r✝ : ℂ → ℂ → S s : Super f d a n : ℕ r : ℂ → ℂ → S c x : ℂ holo : HolomorphicAt (I.prod I) I (uncurry r) (c, x) mem : (c, (f c)^[n] (r c x)) ∈ s.near loc : ∀ᶠ (y : ℂ × ℂ) in 𝓝 (c, x), s.bottcherNear y.1 ((f y.1)^[n] (r y.1 y.2)) = y.2 ^ d ^ n ⊢ ContinuousAt (fun y => (y.1, (f y.1)^[n] (r y.1 y.2))) (c, x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
have s := loc.self_of_nhds
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) ⊢ Eqn s n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) ⊢ Eqn s n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [uncurry] at s
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : uncurry r0 x = uncurry r1 x ⊢ Eqn s✝ n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
exact { holo := e.holo.congr loc near := by simp only [← s, e.near] eqn := by simp only [← s, e.eqn] }
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ Eqn s✝ n r1 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [← s, e.near]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ (x.1, (f x.1)^[n] (r1 x.1 x.2)) ∈ s✝.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ (x.1, (f x.1)^[n] (r1 x.1 x.2)) ∈ s✝.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.congr
[82, 1]
[88, 41]
simp only [← s, e.eqn]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ s✝.bottcherNear x.1 ((f x.1)^[n] (r1 x.1 x.2)) = x.2 ^ d ^ n
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s✝ : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ r0 r1 : ℂ → ℂ → S e : Eqn s✝ n r0 x loc : (𝓝 x).EventuallyEq (uncurry r0) (uncurry r1) s : r0 x.1 x.2 = r1 x.1 x.2 ⊢ s✝.bottcherNear x.1 ((f x.1)^[n] (r1 x.1 x.2)) = x.2 ^ d ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
refine Nat.le_induction e.eqn ?_ m nm
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ s.bottcherNear x.1 ((f x.1)^[m] (r x.1 x.2)) = x.2 ^ d ^ m
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ s.bottcherNear x.1 ((f x.1)^[m] (r x.1 x.2)) = x.2 ^ d ^ m TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
intro k nk h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m ⊢ ∀ (n_1 : ℕ), n ≤ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1] (r x.1 x.2)) = x.2 ^ d ^ n_1 → s.bottcherNear x.1 ((f x.1)^[n_1 + 1] (r x.1 x.2)) = x.2 ^ d ^ (n_1 + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
Eqn.mono
[91, 1]
[97, 80]
simp only [h, Function.iterate_succ_apply', s.bottcherNear_eqn (s.iter_stays_near' e.near nk), pow_succ, pow_mul]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S x : ℂ × ℂ e : Eqn s n r x m : ℕ nm : n ≤ m k : ℕ nk : n ≤ k h : s.bottcherNear x.1 ((f x.1)^[k] (r x.1 x.2)) = x.2 ^ d ^ k ⊢ s.bottcherNear x.1 ((f x.1)^[k + 1] (r x.1 x.2)) = x.2 ^ d ^ (k + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
mem_domain_self
[112, 1]
[115, 37]
simp only [mem_prod_eq, mem_singleton_iff, eq_self_iff_true, mem_closedBall, Complex.dist_eq, sub_zero, true_and_iff, le_refl]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ ⊢ (c, x) ∈ {c} ×ˢ closedBall 0 (Complex.abs x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ p : ℝ s : Super f d a r : ℂ → ℂ → S c x : ℂ ⊢ (c, x) ∈ {c} ×ˢ closedBall 0 (Complex.abs x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
set u := Complex.abs '' (closedBall 0 (p + 1) \ t)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
by_cases ne : u = ∅
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
replace ne := nonempty_iff_ne_empty.mpr ne
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : ¬u = ∅ ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have uc : IsClosed u := (((isCompact_closedBall _ _).diff ot).image Complex.continuous_abs).isClosed
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have up : ∀ x : ℝ, x ∈ u → p < x := by intro x m; rcases m with ⟨z, ⟨_, mt⟩, e⟩; rw [← e]; contrapose mt simp only [not_not, not_lt] at mt ⊢ apply sub; simp only [mem_closedBall, Complex.dist_eq, sub_zero, mt]
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have ub : BddBelow u := ⟨p, fun _ m ↦ (up _ m).le⟩
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have iu : sInf u ∈ u := IsClosed.csInf_mem uc ne ub
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases exists_between (up _ iu) with ⟨q, pq, qi⟩
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
use min q (p + 1), lt_min pq (by linarith)
case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t
Please generate a tactic in lean4 to solve the state. STATE: case neg.intro.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ ∃ q, p < q ∧ closedBall 0 q ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
intro z m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u ⊢ closedBall 0 (min q (p + 1)) ⊆ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, le_min_iff] at m
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : z ∈ closedBall 0 (min q (p + 1)) ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
rcases m with ⟨zq, zp⟩
case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ m : Complex.abs z ≤ q ∧ Complex.abs z ≤ p + 1 ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
have zi := lt_of_le_of_lt zq qi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
contrapose zi
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : Complex.abs z < sInf u ⊢ z ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [not_lt]
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ ¬Complex.abs z < sInf u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
refine csInf_le ub (mem_image_of_mem _ ?_)
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ sInf u ≤ Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Grow.lean
domain_open'
[128, 1]
[147, 78]
simp only [mem_diff, mem_closedBall, Complex.dist_eq, sub_zero]
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t
case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ Complex.abs z ≤ p + 1 ∧ z ∉ t
Please generate a tactic in lean4 to solve the state. STATE: case right.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z✝ : S d n : ℕ p✝ : ℝ s : Super f d a r : ℂ → ℂ → S p : ℝ t : Set ℂ sub : closedBall 0 p ⊆ t ot : IsOpen t u : Set ℝ := ⇑Complex.abs '' (closedBall 0 (p + 1) \ t) ne : u.Nonempty uc : IsClosed u up : ∀ x ∈ u, p < x ub : BddBelow u iu : sInf u ∈ u q : ℝ pq : p < q qi : q < sInf u z : ℂ zq : Complex.abs z ≤ q zp : Complex.abs z ≤ p + 1 zi : ¬z ∈ t ⊢ z ∈ closedBall 0 (p + 1) \ t TACTIC: