url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
rw [Function.iterate_succ', Critical, mfderiv_comp z (fa _).mdifferentiableAt (fa.iter _ _).mdifferentiableAt, mderiv_comp_eq_zero_iff] at c
case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : Critical f^[n + 1] z ⊢ Precritical f z
case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ∨ mfderiv I I f^[n] z = 0 ⊢ Precritical f z
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : Critical f^[n + 1] z ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
cases' c with c c
case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ∨ mfderiv I I f^[n] z = 0 ⊢ Precritical f z
case succ.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ⊢ Precritical f z case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ∨ mfderiv I I f^[n] z = 0 ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
use n, c
case succ.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ⊢ Precritical f z case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z
case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z
Please generate a tactic in lean4 to solve the state. STATE: case succ.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f (f^[n] z) = 0 ⊢ Precritical f z case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
exact h c
case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : mfderiv I I f^[n] z = 0 ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
apply HolomorphicAt.analyticAt II I
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ AnalyticAt ℂ (uncurry (_root_.inChart f c z)) (c, ↑(_root_.extChartAt I z) z)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (uncurry (_root_.inChart f c z)) (c, ↑(_root_.extChartAt I z) z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ AnalyticAt ℂ (uncurry (_root_.inChart f c z)) (c, ↑(_root_.extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
apply (HolomorphicAt.extChartAt (mem_extChartAt_source I (f c z))).comp_of_eq
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (uncurry (_root_.inChart f c z)) (c, ↑(_root_.extChartAt I z) z)
case gh S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => f x.1 (↑(_root_.extChartAt I z).symm x.2)) (c, ↑(_root_.extChartAt I z) z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (uncurry (_root_.inChart f c z)) (c, ↑(_root_.extChartAt I z) z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
apply fa.comp₂_of_eq holomorphicAt_fst
case gh S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => f x.1 (↑(_root_.extChartAt I z).symm x.2)) (c, ↑(_root_.extChartAt I z) z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(_root_.extChartAt I z).symm x.2) (c, ↑(_root_.extChartAt I z) z) case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
Please generate a tactic in lean4 to solve the state. STATE: case gh S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => f x.1 (↑(_root_.extChartAt I z).symm x.2)) (c, ↑(_root_.extChartAt I z) z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
apply (HolomorphicAt.extChartAt_symm (mem_extChartAt_target I z)).comp_of_eq holomorphicAt_snd
case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(_root_.extChartAt I z).symm x.2) (c, ↑(_root_.extChartAt I z) z) case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ (c, ↑(_root_.extChartAt I z) z).2 = ↑(_root_.extChartAt I z) z case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
Please generate a tactic in lean4 to solve the state. STATE: case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ HolomorphicAt (I.prod I) I (fun x => ↑(_root_.extChartAt I z).symm x.2) (c, ↑(_root_.extChartAt I z) z) case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
repeat' simp only [PartialEquiv.left_inv _ (mem_extChartAt_source I z)]
case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ (c, ↑(_root_.extChartAt I z) z).2 = ↑(_root_.extChartAt I z) z case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case gh.ga S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ (c, ↑(_root_.extChartAt I z) z).2 = ↑(_root_.extChartAt I z) z case gh.e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ((c, ↑(_root_.extChartAt I z) z).1, ↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = (c, z) case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
HolomorphicAt.inChart
[295, 1]
[302, 74]
simp only [PartialEquiv.left_inv _ (mem_extChartAt_source I z)]
case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case e S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ f (c, ↑(_root_.extChartAt I z) z).1 (↑(_root_.extChartAt I z).symm (c, ↑(_root_.extChartAt I z) z).2) = f c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
apply (fa.continuousAt.eventually_mem ((isOpen_extChartAt_source I (f c z)).mem_nhds (mem_extChartAt_source I (f c z)))).mp
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
apply ((isOpen_extChartAt_source II (c, z)).eventually_mem (mem_extChartAt_source _ _)).mp
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
refine fa.eventually.mp (eventually_of_forall ?_)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ (x : ℂ × S), HolomorphicAt (I.prod I) I (uncurry f) x → x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ᶠ (x : ℂ × S) in 𝓝 (c, z), x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
intro ⟨e, w⟩ fa m fm
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ (x : ℂ × S), HolomorphicAt (I.prod I) I (uncurry f) x → x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) m : (e, w) ∈ (extChartAt (I.prod I) (c, z)).source fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) ⊢ ∀ (x : ℂ × S), HolomorphicAt (I.prod I) I (uncurry f) x → x ∈ (extChartAt (I.prod I) (c, z)).source → uncurry f x ∈ (extChartAt I (f c z)).source → (mfderiv I I (f x.1) x.2 = 0 ↔ deriv (inChart f c z x.1) (↑(extChartAt I z) x.2) = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [extChartAt_prod, PartialEquiv.prod_source, extChartAt_eq_refl, PartialEquiv.refl_source, mem_prod, mem_univ, true_and_iff] at m
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) m : (e, w) ∈ (extChartAt (I.prod I) (c, z)).source fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) m : (e, w) ∈ (extChartAt (I.prod I) (c, z)).source fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [uncurry] at fm
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : uncurry f (e, w) ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
have m' := PartialEquiv.map_source _ m
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [← mfderiv_eq_zero_iff_deriv_eq_zero]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f (e, w).1) (e, w).2 = 0 ↔ deriv (inChart f c z (e, w).1) (↑(extChartAt I z) (e, w).2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
have cd : HolomorphicAt I I (extChartAt I (f c z)) (f e w) := HolomorphicAt.extChartAt fm
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
have fd : HolomorphicAt I I (f e ∘ (extChartAt I z).symm) (extChartAt I z w) := by simp only [Function.comp] exact HolomorphicAt.comp_of_eq fa.along_snd (HolomorphicAt.extChartAt_symm m') (PartialEquiv.right_inv _ m)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
have ce : inChart f c z e = extChartAt I (f c z) ∘ f e ∘ (extChartAt I z).symm := rfl
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
rw [ce, mfderiv_comp_of_eq cd.mdifferentiableAt fd.mdifferentiableAt ?blah, mfderiv_comp_of_eq fa.along_snd.mdifferentiableAt (HolomorphicAt.extChartAt_symm m').mdifferentiableAt]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ (mfderiv I I (↑(extChartAt I (f c z))) ((f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w))).comp ((mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w))).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w))) = 0 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) w) = w case blah S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) = f e w
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (inChart f c z e) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [Function.comp]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I z).symm x)) (↑(extChartAt I z) w)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
exact HolomorphicAt.comp_of_eq fa.along_snd (HolomorphicAt.extChartAt_symm m') (PartialEquiv.right_inv _ m)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I z).symm x)) (↑(extChartAt I z) w)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) ⊢ HolomorphicAt I I (fun x => f e (↑(extChartAt I z).symm x)) (↑(extChartAt I z) w) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [mderiv_comp_eq_zero_iff, Function.comp]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ (mfderiv I I (↑(extChartAt I (f c z))) ((f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w))).comp ((mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w))).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w))) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e (↑(extChartAt I z).symm (↑(extChartAt I z) w))) = 0 ∨ mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w)) = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ (mfderiv I I (↑(extChartAt I (f c z))) ((f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w))).comp ((mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w))).comp (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w))) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
rw [(extChartAt I z).left_inv m]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e (↑(extChartAt I z).symm (↑(extChartAt I z) w))) = 0 ∨ mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w)) = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e w) = 0 ∨ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e (↑(extChartAt I z).symm (↑(extChartAt I z) w))) = 0 ∨ mfderiv I I (fun y => f e y) (↑(extChartAt I z).symm (↑(extChartAt I z) w)) = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [extChartAt_mderiv_ne_zero' fm, false_or]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e w) = 0 ∨ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (↑(extChartAt I (f c z))) (f e w) = 0 ∨ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
constructor
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 → mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 → mfderiv I I (f e) w = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 ↔ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
intro h
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 → mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (f e) w = 0 → mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
left
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
exact h
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (f e) w = 0 ⊢ mfderiv I I (fun y => f e y) w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
intro h
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 → mfderiv I I (f e) w = 0
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 → mfderiv I I (f e) w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
cases' h with h h
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ⊢ mfderiv I I (f e) w = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ∨ mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
exact h
case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ⊢ mfderiv I I (f e) w = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (fun y => f e y) w = 0 ⊢ mfderiv I I (f e) w = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simpa only using extChartAt_symm_mderiv_ne_zero' m' h
case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm h : mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w) = 0 ⊢ mfderiv I I (f e) w = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
exact PartialEquiv.left_inv _ m
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) w) = w
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ ↑(extChartAt I z).symm (↑(extChartAt I z) w) = w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
inChart_critical
[305, 1]
[334, 57]
simp only [Function.comp, PartialEquiv.left_inv _ m]
case blah S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) = f e w
no goals
Please generate a tactic in lean4 to solve the state. STATE: case blah S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa✝ : HolomorphicAt (I.prod I) I (uncurry f) (c, z) e : ℂ w : S fa : HolomorphicAt (I.prod I) I (uncurry f) (e, w) fm : f e w ∈ (extChartAt I (f c z)).source m : w ∈ (extChartAt I z).source m' : ↑(extChartAt I z) w ∈ (extChartAt I z).target cd : HolomorphicAt I I (↑(extChartAt I (f c z))) (f e w) fd : HolomorphicAt I I (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) ce : inChart f c z e = ↑(extChartAt I (f c z)) ∘ f e ∘ ↑(extChartAt I z).symm ⊢ (f e ∘ ↑(extChartAt I z).symm) (↑(extChartAt I z) w) = f e w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
set g := inChart f c z
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
have g0 := inChart_critical fa
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
refine g0.mp (g0n.mp (eventually_of_forall fun w g0 e ↦ ?_))
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ mfderiv I I (f w.1) w.2 ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
rw [Ne, e]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ mfderiv I I (f w.1) w.2 ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ ¬deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ mfderiv I I (f w.1) w.2 ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
exact g0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ ¬deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0✝ : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 g0n : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 w : ℂ × S g0 : deriv (g w.1) (↑(extChartAt I z) w.2) ≠ 0 e : mfderiv I I (f w.1) w.2 = 0 ↔ deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 ⊢ ¬deriv (inChart f c z w.1) (↑(extChartAt I z) w.2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
refine ContinuousAt.eventually_ne ?_ ?_
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z) case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), deriv (g p.1) (↑(extChartAt I z) p.2) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
have e : (fun p : ℂ × S ↦ deriv (g p.1) (extChartAt I z p.2)) = (fun p : ℂ × ℂ ↦ deriv (g p.1) p.2) ∘ fun p : ℂ × S ↦ (p.1, extChartAt I z p.2) := rfl
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z)
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
rw [e]
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z)
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt ((fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2)) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
exact fa.inChart.deriv2.continuousAt.comp_of_eq (continuousAt_fst.prod ((continuousAt_extChartAt I z).comp_of_eq continuousAt_snd rfl)) rfl
case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt ((fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2)) (c, z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 e : (fun p => deriv (g p.1) (↑(extChartAt I z) p.2)) = (fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2) ⊢ ContinuousAt ((fun p => deriv (g p.1) p.2) ∘ fun p => (p.1, ↑(extChartAt I z) p.2)) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
contrapose f0
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : ¬deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0 ⊢ ¬mfderiv I I (f c) z ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) f0 : mfderiv I I (f c) z ≠ 0 g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 ⊢ deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
simp only [not_not, Function.comp] at f0 ⊢
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : ¬deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0 ⊢ ¬mfderiv I I (f c) z ≠ 0
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ mfderiv I I (f c) z = 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : ¬deriv (g (c, z).1) (↑(extChartAt I z) (c, z).2) ≠ 0 ⊢ ¬mfderiv I I (f c) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
rw [g0.self_of_nhds]
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ mfderiv I I (f c) z = 0
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ deriv (inChart f c z (c, z).1) (↑(extChartAt I z) (c, z).2) = 0
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ mfderiv I I (f c) z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually'
[337, 1]
[352, 23]
exact f0
case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ deriv (inChart f c z (c, z).1) (↑(extChartAt I z) (c, z).2) = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T c : ℂ z : S fa : HolomorphicAt (I.prod I) I (uncurry f) (c, z) g : ℂ → ℂ → ℂ := inChart f c z g0 : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), mfderiv I I (f p.1) p.2 = 0 ↔ deriv (inChart f c z p.1) (↑(extChartAt I z) p.2) = 0 f0 : deriv (g c) (↑(extChartAt I z) z) = 0 ⊢ deriv (inChart f c z (c, z).1) (↑(extChartAt I z) (c, z).2) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
set c : ℂ := 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
set g : ℂ → S → T := fun _ z ↦ f z
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
have ga : HolomorphicAt II I (uncurry g) (c, z) := by have e : uncurry g = f ∘ fun p ↦ p.2 := rfl; rw [e] apply HolomorphicAt.comp_of_eq fa holomorphicAt_snd; simp only
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
have pc : Tendsto (fun z ↦ (c, z)) (𝓝 z) (𝓝 (c, z)) := continuousAt_const.prod continuousAt_id
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) pc : Tendsto (fun z => (c, z)) (𝓝 z) (𝓝 (c, z)) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
exact pc.eventually (mfderiv_ne_zero_eventually' ga f0)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) pc : Tendsto (fun z => (c, z)) (𝓝 z) (𝓝 (c, z)) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ga : HolomorphicAt (I.prod I) I (uncurry g) (c, z) pc : Tendsto (fun z => (c, z)) (𝓝 z) (𝓝 (c, z)) ⊢ ∀ᶠ (w : S) in 𝓝 z, mfderiv I I f w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
have e : uncurry g = f ∘ fun p ↦ p.2 := rfl
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ⊢ HolomorphicAt (I.prod I) I (uncurry g) (c, z)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (uncurry g) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z ⊢ HolomorphicAt (I.prod I) I (uncurry g) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
rw [e]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (uncurry g) (c, z)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (f ∘ fun p => p.2) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (uncurry g) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
apply HolomorphicAt.comp_of_eq fa holomorphicAt_snd
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (f ∘ fun p => p.2) (c, z)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ (c, z).2 = z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ HolomorphicAt (I.prod I) I (f ∘ fun p => p.2) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_eventually
[355, 1]
[363, 58]
simp only
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ (c, z).2 = z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T z : S fa : HolomorphicAt I I f z f0 : mfderiv I I f z ≠ 0 c : ℂ := 0 g : ℂ → S → T := fun x z => f z e : uncurry g = f ∘ fun p => p.2 ⊢ (c, z).2 = z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isOpen_noncritical
[366, 1]
[368, 89]
rw [isOpen_iff_eventually]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ IsOpen {p | ¬Critical (f p.1) p.2}
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ IsOpen {p | ¬Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isOpen_noncritical
[366, 1]
[368, 89]
intro ⟨c, z⟩ m
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2}
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : ℂ z : S m : (c, z) ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | ¬Critical (f p.1) p.2}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ ∀ x ∈ {p | ¬Critical (f p.1) p.2}, ∀ᶠ (y : ℂ × S) in 𝓝 x, y ∈ {p | ¬Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isOpen_noncritical
[366, 1]
[368, 89]
exact mfderiv_ne_zero_eventually' (fa _) m
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : ℂ z : S m : (c, z) ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | ¬Critical (f p.1) p.2}
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : ℂ z : S m : (c, z) ∈ {p | ¬Critical (f p.1) p.2} ⊢ ∀ᶠ (y : ℂ × S) in 𝓝 (c, z), y ∈ {p | ¬Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isClosed_critical
[371, 1]
[374, 49]
have c := (isOpen_noncritical fa).isClosed_compl
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ IsClosed {p | Critical (f p.1) p.2}
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {p | ¬Critical (f p.1) p.2}ᶜ ⊢ IsClosed {p | Critical (f p.1) p.2}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) ⊢ IsClosed {p | Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isClosed_critical
[371, 1]
[374, 49]
simp only [compl_setOf, not_not] at c
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {p | ¬Critical (f p.1) p.2}ᶜ ⊢ IsClosed {p | Critical (f p.1) p.2}
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {a | Critical (f a.1) a.2} ⊢ IsClosed {p | Critical (f p.1) p.2}
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {p | ¬Critical (f p.1) p.2}ᶜ ⊢ IsClosed {p | Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
isClosed_critical
[371, 1]
[374, 49]
exact c
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {a | Critical (f a.1) a.2} ⊢ IsClosed {p | Critical (f p.1) p.2}
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → S → T fa : Holomorphic (I.prod I) I (uncurry f) c : IsClosed {a | Critical (f a.1) a.2} ⊢ IsClosed {p | Critical (f p.1) p.2} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
rw [holomorphic_iff]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ Holomorphic (I.prod I) I f
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ Continuous f ∧ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ Holomorphic (I.prod I) I f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
use fc
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ Continuous f ∧ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x)
case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ Continuous f ∧ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
intro p
case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x)
case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ AnalyticAt ℂ (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p)
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y ⊢ ∀ (x : S × T), AnalyticAt ℂ (↑(extChartAt I (f x)) ∘ f ∘ ↑(extChartAt (I.prod I) x).symm) (↑(extChartAt (I.prod I) x) x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
apply osgood_at'
case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ AnalyticAt ℂ (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p)
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
Please generate a tactic in lean4 to solve the state. STATE: case right S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ AnalyticAt ℂ (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
have fm : ∀ᶠ q in 𝓝 (extChartAt II p p), f ((extChartAt II p).symm q) ∈ (extChartAt I (f p)).source := by refine (fc.continuousAt.comp (continuousAt_extChartAt_symm II p)).eventually_mem ((isOpen_extChartAt_source I (f p)).mem_nhds ?_) simp only [Function.comp, (extChartAt II p).left_inv (mem_extChartAt_source _ _)] apply mem_extChartAt_source
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
apply ((isOpen_extChartAt_target II p).eventually_mem (mem_extChartAt_target II p)).mp
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), x ∈ (extChartAt (I.prod I) p).target → ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
refine fm.mp (eventually_of_forall fun q fm m ↦ ⟨?_, ?_, ?_⟩)
case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), x ∈ (extChartAt (I.prod I) p).target → ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2
case right.h.refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) q case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1 case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source ⊢ ∀ᶠ (x : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), x ∈ (extChartAt (I.prod I) p).target → ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) x ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, x.2)) x.1 ∧ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (x.1, z)) x.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
refine (fc.continuousAt.comp (continuousAt_extChartAt_symm II p)).eventually_mem ((isOpen_extChartAt_source I (f p)).mem_nhds ?_)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ (f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p) ∈ (extChartAt I (f p)).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
simp only [Function.comp, (extChartAt II p).left_inv (mem_extChartAt_source _ _)]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ (f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p) ∈ (extChartAt I (f p)).source
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ f p ∈ (extChartAt I (f p)).source
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ (f ∘ ↑(extChartAt (I.prod I) p).symm) (↑(extChartAt (I.prod I) p) p) ∈ (extChartAt I (f p)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
apply mem_extChartAt_source
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ f p ∈ (extChartAt I (f p)).source
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T ⊢ f p ∈ (extChartAt I (f p)).source TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
exact (continuousAt_extChartAt' I fm).comp_of_eq (fc.continuousAt.comp (continuousAt_extChartAt_symm'' _ m)) rfl
case right.h.refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) q
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_1 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ ContinuousAt (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) q TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
apply HolomorphicAt.analyticAt I I
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
refine (HolomorphicAt.extChartAt fm).comp_of_eq ?_ rfl
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
rw [extChartAt_prod] at m
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
simp only [Function.comp, extChartAt_prod, PartialEquiv.prod_symm, PartialEquiv.prod_coe, PartialEquiv.prod_target, mem_prod_eq] at m ⊢
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm z, ↑(extChartAt I p.2).symm q.2)) q.1
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (z, q.2)) q.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
exact (f0 _ _).comp (HolomorphicAt.extChartAt_symm m.1)
case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm z, ↑(extChartAt I p.2).symm q.2)) q.1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_2 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm z, ↑(extChartAt I p.2).symm q.2)) q.1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
apply HolomorphicAt.analyticAt I I
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ AnalyticAt ℂ (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
refine (HolomorphicAt.extChartAt fm).comp_of_eq ?_ rfl
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (↑(extChartAt I (f p)) ∘ f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
rw [extChartAt_prod] at m
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ (extChartAt (I.prod I) p).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
simp only [Function.comp, extChartAt_prod, PartialEquiv.prod_symm, PartialEquiv.prod_coe, PartialEquiv.prod_target, mem_prod_eq] at m ⊢
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm q.1, ↑(extChartAt I p.2).symm z)) q.2
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q ∈ ((extChartAt I p.1).prod (extChartAt I p.2)).target ⊢ HolomorphicAt I I (fun z => (f ∘ ↑(extChartAt (I.prod I) p).symm) (q.1, z)) q.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
osgoodManifold
[379, 1]
[404, 60]
exact (f1 _ _).comp (HolomorphicAt.extChartAt_symm m.2)
case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm q.1, ↑(extChartAt I p.2).symm z)) q.2
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right.h.refine_3 S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S × T → U fc : Continuous f f0 : ∀ (x : S) (y : T), HolomorphicAt I I (fun x => f (x, y)) x f1 : ∀ (x : S) (y : T), HolomorphicAt I I (fun y => f (x, y)) y p : S × T fm✝ : ∀ᶠ (q : ℂ × ℂ) in 𝓝 (↑(extChartAt (I.prod I) p) p), f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source q : ℂ × ℂ fm : f (↑(extChartAt (I.prod I) p).symm q) ∈ (extChartAt I (f p)).source m : q.1 ∈ (extChartAt I p.1).target ∧ q.2 ∈ (extChartAt I p.2).target ⊢ HolomorphicAt I I (fun z => f (↑(extChartAt I p.1).symm q.1, ↑(extChartAt I p.2).symm z)) q.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
intro z zs
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g ⊢ ∀ c ∈ interior s, ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f c) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap c s t))
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g ⊢ ∀ c ∈ interior s, ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f c) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap c s t)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
rcases Metric.isOpen_iff.mp isOpen_interior z zs with ⟨r, rp, rh⟩
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
exists r, rp
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∃ r, 0 < r ∧ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
intro t tp tr
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s ⊢ ∀ (s : ℝ), 0 < s → s < r → g (f z) ≤ ⨍ (t : ℝ) in itau, g (f (circleMap z s t)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
have cs : closedBall z t ⊆ s := _root_.trans (Metric.closedBall_subset_ball tr) (_root_.trans rh interior_subset)
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
simp only [fh.mean z t tp cs]
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (f z) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
have n := NiceVolume.itau
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
apply ConvexOn.map_set_average_le gc c.continuousOn isClosed_univ n.ne_zero n.ne_top
case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1))
case intro.intro.hfs S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ ∀ᵐ (x : ℝ) ∂volume.restrict itau, f (circleMap z t x) ∈ univ case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ g (⨍ (t_1 : ℝ) in itau, f (circleMap z t t_1)) ≤ ⨍ (t_1 : ℝ) in itau, g (f (circleMap z t t_1)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
simp only [Set.mem_univ, Filter.eventually_true]
case intro.intro.hfs S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ ∀ᵐ (x : ℝ) ∂volume.restrict itau, f (circleMap z t x) ∈ univ case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.hfs S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ ∀ᵐ (x : ℝ) ∂volume.restrict itau, f (circleMap z t x) ∈ univ case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
exact (fh.cont.mono cs).integrableOn_sphere tp
case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.hfi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (fun x => f (circleMap z t x)) itau volume case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.convex
[88, 1]
[102, 77]
exact ((c.comp_continuousOn fh.cont).mono cs).integrableOn_sphere tp
case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.hgi S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → E s : Set ℂ g : E → ℝ fh : HarmonicOn f s c : Continuous g gc : ConvexOn ℝ univ g z : ℂ zs : z ∈ interior s r : ℝ rp : r > 0 rh : ball z r ⊆ interior s t : ℝ tp : 0 < t tr : t < r cs : closedBall z t ⊆ s n : NiceVolume itau ⊢ IntegrableOn (g ∘ fun x => f (circleMap z t x)) itau volume TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.subharmonicOn
[105, 1]
[108, 65]
have e : (fun z ↦ f z) = fun z ↦ (fun x ↦ x) (f z) := rfl
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s ⊢ SubharmonicOn (fun z => f z) s
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => f z) s
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s ⊢ SubharmonicOn (fun z => f z) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.subharmonicOn
[105, 1]
[108, 65]
rw [e]
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => f z) s
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => (fun x => x) (f z)) s
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => f z) s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Hartogs/Subharmonic.lean
HarmonicOn.subharmonicOn
[105, 1]
[108, 65]
exact h.convex continuous_id (convexOn_id convex_univ)
S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => (fun x => x) (f z)) s
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝¹⁵ : RCLike S inst✝¹⁴ : SMulCommClass ℝ S S T : Type inst✝¹³ : RCLike T inst✝¹² : SMulCommClass ℝ T T E : Type inst✝¹¹ : NormedAddCommGroup E inst✝¹⁰ : CompleteSpace E inst✝⁹ : NormedSpace ℝ E F : Type inst✝⁸ : NormedAddCommGroup F inst✝⁷ : CompleteSpace F inst✝⁶ : NormedSpace ℝ F H : Type inst✝⁵ : NormedAddCommGroup H inst✝⁴ : CompleteSpace H inst✝³ : NormedSpace ℂ H inst✝² : SecondCountableTopology E inst✝¹ : SecondCountableTopology F inst✝ : SecondCountableTopology H f : ℂ → ℝ s : Set ℂ h : HarmonicOn f s e : (fun z => f z) = fun z => (fun x => x) (f z) ⊢ SubharmonicOn (fun z => (fun x => x) (f z)) s TACTIC: