url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_mfderiv_inf_ne_zero
[184, 1]
[195, 40]
use 1
c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ∃ x, ¬(ContinuousLinearMap.smulRight 1 1) x = 0 x
case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬(ContinuousLinearMap.smulRight 1 1) 1 = 0 1
Please generate a tactic in lean4 to solve the state. STATE: c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ∃ x, ¬(ContinuousLinearMap.smulRight 1 1) x = 0 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_mfderiv_inf_ne_zero
[184, 1]
[195, 40]
simp only [ContinuousLinearMap.smulRight_apply, ContinuousLinearMap.one_apply, Algebra.id.smul_eq_mul, mul_one, ContinuousLinearMap.zero_apply]
case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬(ContinuousLinearMap.smulRight 1 1) 1 = 0 1
case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬1 = 0 1
Please generate a tactic in lean4 to solve the state. STATE: case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬(ContinuousLinearMap.smulRight 1 1) 1 = 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_mfderiv_inf_ne_zero
[184, 1]
[195, 40]
convert one_ne_zero
case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬1 = 0 1
case h.convert_4 c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ NeZero 1
Please generate a tactic in lean4 to solve the state. STATE: case h c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ ¬1 = 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_mfderiv_inf_ne_zero
[184, 1]
[195, 40]
exact NeZero.one
case h.convert_4 c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ NeZero 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.convert_4 c : ℂ d : ℕ inst✝ : Fact (2 ≤ d) ⊢ NeZero 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
tangentSpace_norm_eq_complex_norm
[52, 1]
[53, 29]
rw [← Complex.norm_eq_abs]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S x : TangentSpace I z ⊢ ‖x‖ = Complex.abs x
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S x : TangentSpace I z ⊢ ‖x‖ = Complex.abs x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
constructor
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 ↔ f = 0 ∨ u = 0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → f = 0 ∨ u = 0 case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f = 0 ∨ u = 0 → f u = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 ↔ f = 0 ∨ u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
rw [or_iff_not_imp_right]
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → f = 0 ∨ u = 0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → ¬u = 0 → f = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → f = 0 ∨ u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
intro f0 u0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → ¬u = 0 → f = 0
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ f = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u = 0 → ¬u = 0 → f = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
apply ContinuousLinearMap.ext
case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ f = 0
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ ∀ (x : TangentSpace I z), f x = 0 x
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ f = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
intro v
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ ∀ (x : TangentSpace I z), f x = 0 x
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 v : TangentSpace I z ⊢ f v = 0 v
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 ⊢ ∀ (x : TangentSpace I z), f x = 0 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
simp only [TangentSpace] at f u v u0
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 v : TangentSpace I z ⊢ f v = 0 v
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ ⊢ f v = 0 v
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z f0 : f u = 0 u0 : ¬u = 0 v : TangentSpace I z ⊢ f v = 0 v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
have e : v = (v * u⁻¹) • u := by simp only [smul_eq_mul, mul_assoc, inv_mul_cancel u0, mul_one]
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ ⊢ f v = 0 v
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f v = 0 v
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ ⊢ f v = 0 v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
rw [ContinuousLinearMap.zero_apply, e]
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f v = 0 v
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f ((v * u⁻¹) • u) = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f v = 0 v TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
refine Eq.trans (f.map_smul _ _) ?_
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f ((v * u⁻¹) • u) = 0
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ (v * u⁻¹) • f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f ((v * u⁻¹) • u) = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
rw [smul_eq_zero]
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ (v * u⁻¹) • f u = 0
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ v * u⁻¹ = 0 ∨ f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ (v * u⁻¹) • f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
right
case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ v * u⁻¹ = 0 ∨ f u = 0
case mp.h.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mp.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ v * u⁻¹ = 0 ∨ f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
exact f0
case mp.h.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f u = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.h.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ e : v = (v * u⁻¹) • u ⊢ f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
simp only [smul_eq_mul, mul_assoc, inv_mul_cancel u0, mul_one]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ ⊢ v = (v * u⁻¹) • u
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : ℂ →L[ℂ] ℂ u : ℂ f0 : f u = 0 u0 : ¬u = 0 v : ℂ ⊢ v = (v * u⁻¹) • u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
intro h
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f = 0 ∨ u = 0 → f u = 0
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ∨ u = 0 ⊢ f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f = 0 ∨ u = 0 → f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
cases' h with h h
case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ∨ u = 0 ⊢ f u = 0
case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ⊢ f u = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ∨ u = 0 ⊢ f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
simp only [h, ContinuousLinearMap.zero_apply]
case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ⊢ f u = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0
case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : f = 0 ⊢ f u = 0 case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff
[100, 1]
[112, 48]
simp only [h, ContinuousLinearMap.map_zero]
case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z h : u = 0 ⊢ f u = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_eq_zero_iff'
[115, 1]
[117, 51]
simp only [mderiv_eq_zero_iff, u0, or_false_iff]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z u0 : u ≠ 0 ⊢ f u = 0 ↔ f = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z u0 : u ≠ 0 ⊢ f u = 0 ↔ f = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_ne_zero_iff
[120, 1]
[122, 63]
simp only [← not_or]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u ≠ 0 ↔ f ≠ 0 ∧ u ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u ≠ 0 ↔ ¬(f = 0 ∨ u = 0)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u ≠ 0 ↔ f ≠ 0 ∧ u ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_ne_zero_iff
[120, 1]
[122, 63]
exact Iff.not (mderiv_eq_zero_iff _ _)
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u ≠ 0 ↔ ¬(f = 0 ∨ u = 0)
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z ⊢ f u ≠ 0 ↔ ¬(f = 0 ∨ u = 0) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_ne_zero_iff'
[125, 1]
[127, 73]
simp only [ne_eq, mderiv_ne_zero_iff, u0, not_false_eq_true, and_true]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z u0 : u ≠ 0 ⊢ f u ≠ 0 ↔ f ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w u : TangentSpace I z u0 : u ≠ 0 ⊢ f u ≠ 0 ↔ f ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
rcases exists_ne (0 : TangentSpace I x) with ⟨t, t0⟩
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y ⊢ f.comp g = 0 ↔ f = 0 ∨ g = 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 ↔ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y ⊢ f.comp g = 0 ↔ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
constructor
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 ↔ f = 0 ∨ g = 0
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 → f = 0 ∨ g = 0 case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f = 0 ∨ g = 0 → f.comp g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 ↔ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
intro h
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 → f = 0 ∨ g = 0
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f.comp g = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f.comp g = 0 → f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
simp only [← mderiv_eq_zero_iff' t0, ContinuousLinearMap.comp_apply] at h
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f.comp g = 0 ⊢ f = 0 ∨ g = 0
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f.comp g = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
by_cases g0 : g t = 0
case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 ⊢ f = 0 ∨ g = 0
case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ f = 0 ∨ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
right
case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ f = 0 ∨ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ f = 0 ∨ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
rw [mderiv_eq_zero_iff' t0] at g0
case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g t = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
exact g0
case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : g = 0 ⊢ g = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
left
case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0
case neg.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 ∨ g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
rwa [← mderiv_eq_zero_iff' g0]
case neg.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f (g t) = 0 g0 : ¬g t = 0 ⊢ f = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
intro h
case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f = 0 ∨ g = 0 → f.comp g = 0
case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ∨ g = 0 ⊢ f.comp g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 ⊢ f = 0 ∨ g = 0 → f.comp g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
cases' h with h h
case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ∨ g = 0 ⊢ f.comp g = 0
case intro.mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ⊢ f.comp g = 0 case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ∨ g = 0 ⊢ f.comp g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
simp only [h, g.zero_comp]
case intro.mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ⊢ f.comp g = 0 case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0
case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro.mpr.inl S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : f = 0 ⊢ f.comp g = 0 case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_eq_zero_iff
[130, 1]
[139, 87]
simp only [h, f.comp_zero]
case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.mpr.inr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y t : TangentSpace I x t0 : t ≠ 0 h : g = 0 ⊢ f.comp g = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero
[142, 1]
[144, 91]
intro f0 g0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y ⊢ f ≠ 0 → g ≠ 0 → f.comp g ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y f0 : f ≠ 0 g0 : g ≠ 0 ⊢ f.comp g ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y ⊢ f ≠ 0 → g ≠ 0 → f.comp g ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero
[142, 1]
[144, 91]
simp only [Ne, mderiv_comp_eq_zero_iff, f0, g0, or_self_iff, not_false_iff]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y f0 : f ≠ 0 g0 : g ≠ 0 ⊢ f.comp g ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U x : S y : T z : U f : TangentSpace I y →L[ℂ] TangentSpace I z g : TangentSpace I x →L[ℂ] TangentSpace I y f0 : f ≠ 0 g0 : g ≠ 0 ⊢ f.comp g ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
has_mfderiv_at_of_mderiv_ne_zero
[147, 1]
[150, 83]
contrapose d0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T x : S d0 : mfderiv I I f x ≠ 0 ⊢ MDifferentiableAt I I f x
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T x : S d0 : ¬MDifferentiableAt I I f x ⊢ ¬mfderiv I I f x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T x : S d0 : mfderiv I I f x ≠ 0 ⊢ MDifferentiableAt I I f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
has_mfderiv_at_of_mderiv_ne_zero
[147, 1]
[150, 83]
simp only [mfderiv, d0, if_false, Ne, eq_self_iff_true, not_true, not_false_iff]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T x : S d0 : ¬MDifferentiableAt I I f x ⊢ ¬mfderiv I I f x ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → T x : S d0 : ¬MDifferentiableAt I I f x ⊢ ¬mfderiv I I f x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero'
[153, 1]
[158, 38]
intro df dg
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S ⊢ mfderiv I I f (g x) ≠ 0 → mfderiv I I g x ≠ 0 → mfderiv I I (fun x => f (g x)) x ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S ⊢ mfderiv I I f (g x) ≠ 0 → mfderiv I I g x ≠ 0 → mfderiv I I (fun x => f (g x)) x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero'
[153, 1]
[158, 38]
have e : (fun x ↦ f (g x)) = f ∘ g := rfl
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero'
[153, 1]
[158, 38]
rw [e, mfderiv_comp x (has_mfderiv_at_of_mderiv_ne_zero df) (has_mfderiv_at_of_mderiv_ne_zero dg)]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ (mfderiv I I f (g x)).comp (mfderiv I I g x) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ mfderiv I I (fun x => f (g x)) x ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderiv_comp_ne_zero'
[153, 1]
[158, 38]
exact mderiv_comp_ne_zero _ _ df dg
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ (mfderiv I I f (g x)).comp (mfderiv I I g x) ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : T → U g : S → T x : S df : mfderiv I I f (g x) ≠ 0 dg : mfderiv I I g x ≠ 0 e : (fun x => f (g x)) = f ∘ g ⊢ (mfderiv I I f (g x)).comp (mfderiv I I g x) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderivEquiv_eq
[194, 1]
[195, 78]
apply ContinuousLinearMap.ext
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 ⊢ ↑(mderivEquiv f f0) = f
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 ⊢ ∀ (x : TangentSpace I z), ↑(mderivEquiv f f0) x = f x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 ⊢ ↑(mderivEquiv f f0) = f TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderivEquiv_eq
[194, 1]
[195, 78]
intro x
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 ⊢ ∀ (x : TangentSpace I z), ↑(mderivEquiv f f0) x = f x
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 x : TangentSpace I z ⊢ ↑(mderivEquiv f f0) x = f x
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 ⊢ ∀ (x : TangentSpace I z), ↑(mderivEquiv f f0) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mderivEquiv_eq
[194, 1]
[195, 78]
rfl
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 x : TangentSpace I z ⊢ ↑(mderivEquiv f f0) x = f x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : T f : TangentSpace I z →L[ℂ] TangentSpace I w f0 : f ≠ 0 x : TangentSpace I z ⊢ ↑(mderivEquiv f f0) x = f x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
rcases exists_ne (0 : TangentSpace I z) with ⟨t, t0⟩
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (↑(extChartAt I z)) w ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z)) w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source ⊢ mfderiv I I (↑(extChartAt I z)) w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
rw [← mderiv_ne_zero_iff' t0]
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z)) w ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z)) w) t ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z)) w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
contrapose t0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z)) w) t ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : ¬(mfderiv I I (↑(extChartAt I z)) w) t ≠ 0 ⊢ ¬t ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z)) w) t ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
simp only [not_not] at t0 ⊢
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : ¬(mfderiv I I (↑(extChartAt I z)) w) t ≠ 0 ⊢ ¬t ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : ¬(mfderiv I I (↑(extChartAt I z)) w) t ≠ 0 ⊢ ¬t ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_left_inverse m) t
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 ⊢ t = 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)).comp (mfderiv I I (↑(extChartAt I z)) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.map_zero] at h
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)).comp (mfderiv I I (↑(extChartAt I z)) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)).comp (mfderiv I I (↑(extChartAt I z)) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
rw [←h.trans (ContinuousLinearMap.id_apply _), ContinuousLinearMap.apply_eq_zero_of_eq_zero]
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z)) w) t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_mderiv_ne_zero'
[198, 1]
[205, 11]
exact t0
case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z)) w) t = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z w : S m : w ∈ (extChartAt I z).source t : TangentSpace I z t0 : (mfderiv I I (↑(extChartAt I z)) w) t = 0 h : (mfderiv I I (↑(extChartAt I z).symm) (↑(extChartAt I z) w)) ((mfderiv I I (↑(extChartAt I z)) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z)) w) t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
rcases exists_ne (0 : TangentSpace I (extChartAt I z z)) with ⟨t, t0⟩
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target ⊢ mfderiv I I (↑(extChartAt I z).symm) w ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z).symm) w ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target ⊢ mfderiv I I (↑(extChartAt I z).symm) w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
rw [← mderiv_ne_zero_iff' t0]
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z).symm) w ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ mfderiv I I (↑(extChartAt I z).symm) w ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
contrapose t0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : ¬(mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0 ⊢ ¬t ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : t ≠ 0 ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
simp only [not_not] at t0 ⊢
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : ¬(mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0 ⊢ ¬t ≠ 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : ¬(mfderiv I I (↑(extChartAt I z).symm) w) t ≠ 0 ⊢ ¬t ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
have h := ContinuousLinearMap.ext_iff.mp (extChartAt_mderiv_right_inverse m) t
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 ⊢ t = 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)).comp (mfderiv I I (↑(extChartAt I z).symm) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
simp only [ContinuousLinearMap.comp_apply, ContinuousLinearMap.map_zero] at h
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)).comp (mfderiv I I (↑(extChartAt I z).symm) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : ((mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)).comp (mfderiv I I (↑(extChartAt I z).symm) w)) t = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
rw [←h.trans (ContinuousLinearMap.id_apply _), ContinuousLinearMap.apply_eq_zero_of_eq_zero]
case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0
case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t = 0
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
extChartAt_symm_mderiv_ne_zero'
[208, 1]
[215, 11]
exact t0
case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S w : ℂ m : w ∈ (extChartAt I z).target t : TangentSpace I (↑(extChartAt I z) z) t0 : (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 h : (mfderiv I I (↑(extChartAt I z)) (↑(extChartAt I z).symm w)) ((mfderiv I I (↑(extChartAt I z).symm) w) t) = (ContinuousLinearMap.id ℂ (TangentSpace I w)) t ⊢ (mfderiv I I (↑(extChartAt I z).symm) w) t = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
have d : MDifferentiableAt I I (fun z ↦ z) z := mdifferentiableAt_id I
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S ⊢ mfderiv I I (fun z => z) z ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ mfderiv I I (fun z => z) z ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S ⊢ mfderiv I I (fun z => z) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
simp only [mfderiv, d, if_true, writtenInExtChartAt, Function.comp, ModelWithCorners.Boundaryless.range_eq_univ, fderivWithin_univ]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ mfderiv I I (fun z => z) z ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ mfderiv I I (fun z => z) z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
have e : (fun w ↦ extChartAt I z ((extChartAt I z).symm w)) =ᶠ[𝓝 (extChartAt I z z)] id := by apply ((isOpen_extChartAt_target I z).eventually_mem (mem_extChartAt_target I z)).mp refine eventually_of_forall fun w m ↦ ?_ simp only [id, PartialEquiv.right_inv _ m]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
simp only [e.fderiv_eq, fderiv_id, Ne, ContinuousLinearMap.ext_iff, not_forall, ContinuousLinearMap.zero_apply, ContinuousLinearMap.id_apply]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ ∃ x, ¬x = 0 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ fderiv ℂ (fun x => ↑(extChartAt I z) (↑(extChartAt I z).symm x)) (↑(extChartAt I z) z) ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
use 1, one_ne_zero
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ ∃ x, ¬x = 0 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z e : (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id ⊢ ∃ x, ¬x = 0 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
apply ((isOpen_extChartAt_target I z).eventually_mem (mem_extChartAt_target I z)).mp
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I z) z), x ∈ (extChartAt I z).target → (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) x = id x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ (𝓝 (↑(extChartAt I z) z)).EventuallyEq (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) id TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
refine eventually_of_forall fun w m ↦ ?_
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I z) z), x ∈ (extChartAt I z).target → (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) x = id x
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z w : ℂ m : w ∈ (extChartAt I z).target ⊢ (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) w = id w
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z ⊢ ∀ᶠ (x : ℂ) in 𝓝 (↑(extChartAt I z) z), x ∈ (extChartAt I z).target → (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) x = id x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
id_mderiv_ne_zero
[227, 1]
[237, 21]
simp only [id, PartialEquiv.right_inv _ m]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z w : ℂ m : w ∈ (extChartAt I z).target ⊢ (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) w = id w
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U z : S d : MDifferentiableAt I I (fun z => z) z w : ℂ m : w ∈ (extChartAt I z).target ⊢ (fun w => ↑(extChartAt I z) (↑(extChartAt I z).symm w)) w = id w TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
by_cases d : DifferentiableAt ℂ f z
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0 case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
constructor
case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 → deriv f z = 0 case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ deriv f z = 0 → mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have h := d.mdifferentiableAt.hasMFDerivAt
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 → deriv f z = 0
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) ⊢ mfderiv I I f z = 0 → deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 → deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
intro e
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) ⊢ mfderiv I I f z = 0 → deriv f z = 0
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) e : mfderiv I I f z = 0 ⊢ deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) ⊢ mfderiv I I f z = 0 → deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
rw [e] at h
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) e : mfderiv I I f z = 0 ⊢ deriv f z = 0
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 ⊢ deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z (mfderiv I I f z) e : mfderiv I I f z = 0 ⊢ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have p := h.hasFDerivAt.hasDerivAt
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 ⊢ deriv f z = 0
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 p : HasDerivAt f (0 1) z ⊢ deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 ⊢ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
exact p.deriv
case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 p : HasDerivAt f (0 1) z ⊢ deriv f z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.mp S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasMFDerivAt I I f z 0 e : mfderiv I I f z = 0 p : HasDerivAt f (0 1) z ⊢ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have h := d.hasDerivAt
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ deriv f z = 0 → mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z ⊢ deriv f z = 0 → mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z ⊢ deriv f z = 0 → mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
intro e
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z ⊢ deriv f z = 0 → mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z e : deriv f z = 0 ⊢ mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z ⊢ deriv f z = 0 → mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
rw [e] at h
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z e : deriv f z = 0 ⊢ mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f (deriv f z) z e : deriv f z = 0 ⊢ mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have s0 : (1 : ℂ →L[ℂ] ℂ).smulRight (0 : ℂ) = 0 := by apply ContinuousLinearMap.ext simp only [ContinuousLinearMap.smulRight_apply, Algebra.id.smul_eq_mul, MulZeroClass.mul_zero, ContinuousLinearMap.zero_apply, forall_const]
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 ⊢ mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have p := h.hasFDerivAt.hasMFDerivAt
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 ⊢ mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z (ContinuousLinearMap.smulRight 1 0) ⊢ mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 ⊢ mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
rw [s0] at p
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z (ContinuousLinearMap.smulRight 1 0) ⊢ mfderiv I I f z = 0
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z 0 ⊢ mfderiv I I f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z (ContinuousLinearMap.smulRight 1 0) ⊢ mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
exact p.mfderiv
case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z 0 ⊢ mfderiv I I f z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.mpr S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 s0 : ContinuousLinearMap.smulRight 1 0 = 0 p : HasMFDerivAt I I f z 0 ⊢ mfderiv I I f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
apply ContinuousLinearMap.ext
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ ContinuousLinearMap.smulRight 1 0 = 0
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ ∀ (x : ℂ), (ContinuousLinearMap.smulRight 1 0) x = 0 x
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ ContinuousLinearMap.smulRight 1 0 = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
simp only [ContinuousLinearMap.smulRight_apply, Algebra.id.smul_eq_mul, MulZeroClass.mul_zero, ContinuousLinearMap.zero_apply, forall_const]
case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ ∀ (x : ℂ), (ContinuousLinearMap.smulRight 1 0) x = 0 x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : DifferentiableAt ℂ f z h : HasDerivAt f 0 z e : deriv f z = 0 ⊢ ∀ (x : ℂ), (ContinuousLinearMap.smulRight 1 0) x = 0 x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
have d' : ¬MDifferentiableAt I I f z := by contrapose d; simp only [not_not] at d ⊢; exact d.differentiableAt
case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z d' : ¬MDifferentiableAt I I f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
simp only [deriv_zero_of_not_differentiableAt d, mfderiv_zero_of_not_mdifferentiableAt d', eq_self_iff_true]
case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z d' : ¬MDifferentiableAt I I f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z d' : ¬MDifferentiableAt I I f z ⊢ mfderiv I I f z = 0 ↔ deriv f z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
contrapose d
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z ⊢ ¬MDifferentiableAt I I f z
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬¬MDifferentiableAt I I f z ⊢ ¬¬DifferentiableAt ℂ f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬DifferentiableAt ℂ f z ⊢ ¬MDifferentiableAt I I f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
simp only [not_not] at d ⊢
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬¬MDifferentiableAt I I f z ⊢ ¬¬DifferentiableAt ℂ f z
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : MDifferentiableAt I I f z ⊢ DifferentiableAt ℂ f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : ¬¬MDifferentiableAt I I f z ⊢ ¬¬DifferentiableAt ℂ f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_eq_zero_iff_deriv_eq_zero
[240, 1]
[256, 24]
exact d.differentiableAt
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : MDifferentiableAt I I f z ⊢ DifferentiableAt ℂ f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ d : MDifferentiableAt I I f z ⊢ DifferentiableAt ℂ f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
mfderiv_ne_zero_iff_deriv_ne_zero
[259, 1]
[260, 98]
rw [not_iff_not, mfderiv_eq_zero_iff_deriv_eq_zero]
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ ⊢ mfderiv I I f z ≠ 0 ↔ deriv f z ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : ℂ → ℂ z : ℂ ⊢ mfderiv I I f z ≠ 0 ↔ deriv f z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
induction' n with n h
S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S n : ℕ z : S fa : Holomorphic I I f c : Critical f^[n] z ⊢ Precritical f z
case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : Critical f^[0] z ⊢ Precritical f z case succ S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f n : ℕ h : Critical f^[n] z → Precritical f z c : Critical f^[n + 1] z ⊢ Precritical f z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S n : ℕ z : S fa : Holomorphic I I f c : Critical f^[n] z ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
rw [Function.iterate_zero, Critical, mfderiv_id, ← ContinuousLinearMap.opNorm_zero_iff, ContinuousLinearMap.norm_id] at c
case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : Critical f^[0] z ⊢ Precritical f z
case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : 1 = 0 ⊢ Precritical f z
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : Critical f^[0] z ⊢ Precritical f z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OneDimension.lean
critical_iter
[271, 1]
[280, 43]
norm_num at c
case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : 1 = 0 ⊢ Precritical f z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁵ : TopologicalSpace S cs : ChartedSpace ℂ S inst✝⁴ : AnalyticManifold I S T : Type inst✝³ : TopologicalSpace T ct : ChartedSpace ℂ T inst✝² : AnalyticManifold I T U : Type inst✝¹ : TopologicalSpace U cu : ChartedSpace ℂ U inst✝ : AnalyticManifold I U f : S → S z : S fa : Holomorphic I I f c : 1 = 0 ⊢ Precritical f z TACTIC: