url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
simp
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f)
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1)
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
rfl
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = cons a f 0 * N.prod fun x => cons a f (x + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [Set.range]
⊢ Set.range push = {N | 0 ∈ N}
⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N}
Please generate a tactic in lean4 to solve the state. STATE: ⊢ Set.range push = {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
apply Set.ext
⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N}
case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N}
Please generate a tactic in lean4 to solve the state. STATE: ⊢ {x | ∃ y, push y = x} = {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
simp
case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N}
case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x
Please generate a tactic in lean4 to solve the state. STATE: case h ⊢ ∀ (x : Finset ℕ), x ∈ {x | ∃ y, push y = x} ↔ x ∈ {N | 0 ∈ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro N
case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x
case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h ⊢ ∀ (x : Finset ℕ), (∃ y, push y = x) ↔ 0 ∈ x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
constructor
case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N
case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N
Please generate a tactic in lean4 to solve the state. STATE: case h N : Finset ℕ ⊢ (∃ y, push y = N) ↔ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro h
case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N
case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp N : Finset ℕ ⊢ (∃ y, push y = N) → 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rcases h with ⟨M, H⟩
case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp N : Finset ℕ h : ∃ y, push y = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [push] at H
case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : push M = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [← H]
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M)
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exact Finset.mem_insert_self 0 _
case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mp.intro N M : Finset ℕ H : insert 0 (Finset.image (fun n => n + 1) M) = N ⊢ 0 ∈ insert 0 (Finset.image (fun n => n + 1) M) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
intro N0
case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ ⊢ 0 ∈ N → ∃ y, push y = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exists pop N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ ∃ y, push y = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
rw [push_pop]
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ push (pop N) = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_range
[56, 1]
[59, 76]
exact Finset.insert_eq_of_mem N0
case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h.mpr N : Finset ℕ N0 : 0 ∈ N ⊢ insert 0 N = N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
apply Filter.comap_embedding_atTop
⊢ Filter.comap push atTop = atTop
case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: ⊢ Filter.comap push atTop = atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
exact @push_le_push
case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: case hm ⊢ ∀ (b₁ b₂ : Finset ℕ), push b₁ ≤ push b₂ ↔ b₁ ≤ b₂ case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
intro N
case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b
case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b
Please generate a tactic in lean4 to solve the state. STATE: case hu ⊢ ∀ (c : Finset ℕ), ∃ b, c ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
exists pop N
case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b
case hu N : Finset ℕ ⊢ N ≤ push (pop N)
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ ∃ b, N ≤ push b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
rw [push_pop]
case hu N : Finset ℕ ⊢ N ≤ push (pop N)
case hu N : Finset ℕ ⊢ N ≤ insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ N ≤ push (pop N) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_comap_atTop
[61, 1]
[64, 45]
simp
case hu N : Finset ℕ ⊢ N ≤ insert 0 N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hu N : Finset ℕ ⊢ N ≤ insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
nth_rw 1 [← push_comap_atTop]
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) atTop l ↔ Filter.Tendsto f atTop l
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) atTop l ↔ Filter.Tendsto f atTop l TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
apply Filter.tendsto_comap'_iff
A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l
case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ Filter.Tendsto (f ∘ push) (Filter.comap push atTop) l ↔ Filter.Tendsto f atTop l TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
rw [push_range]
case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A ⊢ Set.range push ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
have h : {N : Finset ℕ | 0 ∈ N} = {N : Finset ℕ | {0} ≤ N} := by simp
case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
rw [h]
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | 0 ∈ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
exact Filter.mem_atTop _
case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h A : Type f : Finset ℕ → A l : Filter A h : {N | 0 ∈ N} = {N | {0} ≤ N} ⊢ {N | {0} ≤ N} ∈ atTop TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
tendsto_comp_push
[67, 1]
[72, 35]
simp
A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} = {N | {0} ≤ N}
no goals
Please generate a tactic in lean4 to solve the state. STATE: A : Type f : Finset ℕ → A l : Filter A ⊢ {N | 0 ∈ N} = {N | {0} ≤ N} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
induction' N using Finset.induction with n N Nn h
N : Finset ℕ f : ℕ → ℂ ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n)
case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n) case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n)
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ f : ℕ → ℂ ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
simp
case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case empty f : ℕ → ℂ ⊢ Complex.abs (∅.sum fun n => f n) ≤ ∅.sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
rw [Finset.sum_insert Nn]
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs ((insert n N).sum fun n => f n) ≤ (insert n N).sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
rw [Finset.sum_insert Nn]
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ (insert n N).sum fun n => Complex.abs (f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
trans abs (f n) + abs (N.sum fun n ↦ f n)
case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: case insert f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
exact Complex.abs.add_le _ _
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n)
no goals
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n + N.sum fun x => f x) ≤ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
apply add_le_add_left
f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x)
case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x)
Please generate a tactic in lean4 to solve the state. STATE: f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (f n) + Complex.abs (N.sum fun n => f n) ≤ Complex.abs (f n) + N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
finset_complex_abs_sum_le
[75, 1]
[81, 40]
assumption
case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case bc f : ℕ → ℂ n : ℕ N : Finset ℕ Nn : n ∉ N h : Complex.abs (N.sum fun n => f n) ≤ N.sum fun n => Complex.abs (f n) ⊢ Complex.abs (N.sum fun n => f n) ≤ N.sum fun x => Complex.abs (f x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
rw [Finset.subset_iff]
A B : Finset ℕ ⊢ B ⊆ A ∪ B \ A
A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ B ⊆ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
intro x Bx
A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ ∀ ⦃x : ℕ⦄, x ∈ B → x ∈ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
rw [Finset.mem_union, Finset.mem_sdiff]
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∪ B \ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
by_cases Ax : x ∈ A
A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ x : ℕ Bx : x ∈ B ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
left
case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A
Please generate a tactic in lean4 to solve the state. STATE: case pos A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
exact Ax
case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∈ A ⊢ x ∈ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
right
case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A
case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A
Please generate a tactic in lean4 to solve the state. STATE: case neg A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ A ∨ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
subset_union_sdiff
[83, 1]
[88, 26]
exact ⟨Bx, Ax⟩
case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.h A B : Finset ℕ x : ℕ Bx : x ∈ B Ax : x ∉ A ⊢ x ∈ B ∧ x ∉ A TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have c0 : 0 < abs c := lt_trans (by norm_num) c16
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have z0 : 0 < abs z := lt_of_lt_of_le c0 cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
set s := superF d
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z ⊢ ⋯.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
set t := closedBall (0 : ℂ) (abs c)⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
suffices e : EqOn (fun z : ℂ ↦ s.bottcher c (z : 𝕊)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t by have z0' : z ≠ 0 := Complex.abs.ne_zero_iff.mp z0.ne' convert @e z⁻¹ _; rw [inv_coe (inv_ne_zero z0'), inv_inv] simp only [mem_closedBall, Complex.dist_eq, sub_zero, map_inv₀, inv_le_inv z0 c0, cz, t]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have a0 : HolomorphicOn I I (fun z : ℂ ↦ s.bottcher c (z : 𝕊)⁻¹) t := by intro z m refine (s.bottcher_holomorphicOn _ ?_).along_snd.comp (holomorphic_inv.comp holomorphic_coe _) simp only [mem_closedBall, Complex.dist_eq, sub_zero, t] at m by_cases z0 : z = 0; simp only [z0, coe_zero, inv_zero']; exact s.post_a c rw [inv_coe z0]; refine postcritical_large (by linarith) ?_ rwa [map_inv₀, le_inv c0]; exact Complex.abs.pos z0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t := by intro z m; apply AnalyticAt.holomorphicAt apply bottcherNear_analytic_z (superNearF d c) simp only [mem_setOf, mem_closedBall, Complex.dist_eq, sub_zero, t] at m ⊢ refine lt_of_le_of_lt m ?_ refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_ exact max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine (a0.eq_of_locally_eq a1 (convex_closedBall _ _).isPreconnected ?_).self_of_nhdsSet
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
use 0, mem_closedBall_self (by bound)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∃ x ∈ t, (𝓝 x).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have e : ∀ᶠ z in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (z : 𝕊)⁻¹ := by simp only [Super.bottcherNear, extChartAt_inf_apply, inv_inv, toComplex_coe, RiemannSphere.inv_inf, toComplex_zero, sub_zero, Super.fl, eq_self_iff_true, Filter.eventually_true]
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine Filter.EventuallyEq.trans ?_ (Filter.EventuallyEq.symm e)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have i : Tendsto (fun z : ℂ ↦ (z : 𝕊)⁻¹) (𝓝 0) (𝓝 ∞) := by have h : ContinuousAt (fun z : ℂ ↦ (z : 𝕊)⁻¹) 0 := (RiemannSphere.continuous_inv.comp continuous_coe).continuousAt simp only [ContinuousAt, coe_zero, inv_zero'] at h; exact h
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact i.eventually (s.bottcher_eq_bottcherNear c)
case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ i : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ (𝓝 0).EventuallyEq (fun z => s.bottcher c (↑z)⁻¹) fun x => s.bottcherNear c (↑x)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have z0' : z ≠ 0 := Complex.abs.ne_zero_iff.mp z0.ne'
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
convert @e z⁻¹ _
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹
case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ s.bottcher c ↑z = bottcherNear (fl (f d) ∞ c) d z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rw [inv_coe (inv_ne_zero z0'), inv_inv]
case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case h.e'_2.h.e'_13 c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ ↑z = (↑z⁻¹)⁻¹ c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, map_inv₀, inv_le_inv z0 c0, cz, t]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ e : EqOn (fun z => s.bottcher c (↑z)⁻¹) (bottcherNear (fl (f d) ∞ c) d) t z0' : z ≠ 0 ⊢ z⁻¹ ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
intro z m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ ⊢ HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine (s.bottcher_holomorphicOn _ ?_).along_snd.comp (holomorphic_inv.comp holomorphic_coe _)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (fun z => s.bottcher c (↑z)⁻¹) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_closedBall, Complex.dist_eq, sub_zero, t] at m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : z ∈ t ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
by_cases z0 : z = 0
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [z0, coe_zero, inv_zero']
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact s.post_a c
case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case pos c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : z = 0 ⊢ (c, ∞) ∈ s.post case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rw [inv_coe z0]
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, (↑z)⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine postcritical_large (by linarith) ?_
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ (c, ↑z⁻¹) ∈ s.post TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
rwa [map_inv₀, le_inv c0]
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ Complex.abs (c, ↑z⁻¹).1 ≤ Complex.abs z⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact Complex.abs.pos z0
case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 0 < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
linarith
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 4 ≤ Complex.abs (c, ↑z⁻¹).1
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0✝ : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ z0 : ¬z = 0 ⊢ 4 ≤ Complex.abs (c, ↑z⁻¹).1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
intro z m
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t ⊢ HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
apply AnalyticAt.holomorphicAt
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z
case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ HolomorphicAt I I (bottcherNear (fl (f d) ∞ c) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
apply bottcherNear_analytic_z (superNearF d c)
case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
Please generate a tactic in lean4 to solve the state. STATE: case fa c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ AnalyticAt ℂ (bottcherNear (fl (f d) ∞ c) d) z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [mem_setOf, mem_closedBall, Complex.dist_eq, sub_zero, t] at m ⊢
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : z ∈ t ⊢ z ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine lt_of_le_of_lt m ?_
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ (Complex.abs c)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))
case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case fa.a c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ max 16 (Complex.abs c / 2) < Complex.abs c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z✝ : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z✝ c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z✝ s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t z : ℂ m : Complex.abs z ≤ (Complex.abs c)⁻¹ ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
bound
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ 0 ≤ (Complex.abs c)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ 0 ≤ (Complex.abs c)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [Super.bottcherNear, extChartAt_inf_apply, inv_inv, toComplex_coe, RiemannSphere.inv_inf, toComplex_zero, sub_zero, Super.fl, eq_self_iff_true, Filter.eventually_true]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t ⊢ ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
have h : ContinuousAt (fun z : ℂ ↦ (z : 𝕊)⁻¹) 0 := (RiemannSphere.continuous_inv.comp continuous_coe).continuousAt
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
simp only [ContinuousAt, coe_zero, inv_zero'] at h
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : ContinuousAt (fun z => (↑z)⁻¹) 0 ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
bottcher_eq_bottcherNear_z
[39, 1]
[74, 52]
exact h
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞)
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z c0 : 0 < Complex.abs c z0 : 0 < Complex.abs z s : Super (f d) d ∞ := superF d t : Set ℂ := closedBall 0 (Complex.abs c)⁻¹ a0 : HolomorphicOn I I (fun z => s.bottcher c (↑z)⁻¹) t a1 : HolomorphicOn I I (bottcherNear (fl (f d) ∞ c) d) t e : ∀ᶠ (z : ℂ) in 𝓝 0, bottcherNear (fl (f d) ∞ c) d z = s.bottcherNear c (↑z)⁻¹ h : Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) ⊢ Tendsto (fun z => (↑z)⁻¹) (𝓝 0) (𝓝 ∞) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
simp only [mem_setOf, map_inv₀]
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ z⁻¹ ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹}
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ z⁻¹ ∈ {z | Complex.abs z < (max 16 (Complex.abs c / 2))⁻¹} TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
refine inv_lt_inv_of_lt (lt_of_lt_of_le (by norm_num) (le_max_left _ _)) ?_
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ (Complex.abs z)⁻¹ < (max 16 (Complex.abs c / 2))⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
exact lt_of_lt_of_le (max_lt c16 (half_lt_self (lt_trans (by norm_num) c16))) cz
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ max 16 (Complex.abs c / 2) < Complex.abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
inv_mem_t
[82, 1]
[86, 83]
norm_num
c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16
no goals
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z ⊢ 0 < 16 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
set s := superF d
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have z0 : abs z ≠ 0 := (lt_of_lt_of_le (lt_trans (by norm_num) c16) cz).ne'
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have i8 : (abs z)⁻¹ ≤ 1 / 8 := by rw [one_div]; apply inv_le_inv_of_le; norm_num exact le_trans (by norm_num) (le_trans c16.le cz)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have i1 : (abs z)⁻¹ ≤ 1 := le_trans i8 (by norm_num)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
simp only [term]
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (term (fl (f d) ∞ c) d n z⁻¹ - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
have wc := iterates_converge (superNearF d c) n (inv_mem_t c16 cz)
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
generalize hw : (fl (f d) ∞ c)^[n] z⁻¹ = w
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d ((fl (f d) ∞ c)^[n] z⁻¹) ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
rw [hw] at wc
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 wc : Complex.abs ((fl (f d) ∞ c)^[n] z⁻¹) ≤ (5 / 8) ^ n * Complex.abs z⁻¹ w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Bottcher.lean
term_approx
[89, 1]
[131, 66]
replace wc : abs w ≤ (abs z)⁻¹ := by rw [map_inv₀] at wc exact le_trans wc (mul_le_of_le_one_left (inv_nonneg.mpr (Complex.abs.nonneg _)) (by bound))
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w wc : Complex.abs w ≤ (Complex.abs z)⁻¹ ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: c✝ : ℂ d✝ : ℕ inst✝¹ : Fact (2 ≤ d✝) d : ℕ inst✝ : Fact (2 ≤ d) c z : ℂ c16 : 16 < Complex.abs c cz : Complex.abs c ≤ Complex.abs z n : ℕ s : Super (f d) d ∞ := superF d z0 : Complex.abs z ≠ 0 i8 : (Complex.abs z)⁻¹ ≤ 1 / 8 i1 : (Complex.abs z)⁻¹ ≤ 1 w : ℂ wc : Complex.abs w ≤ (5 / 8) ^ n * Complex.abs z⁻¹ hw : (fl (f d) ∞ c)^[n] z⁻¹ = w ⊢ Complex.abs (g (fl (f d) ∞ c) d w ^ (1 / ↑(d ^ (n + 1))) - 1) ≤ 2 * (1 / 2) ^ n * (Complex.abs z)⁻¹ TACTIC: