url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ N < N + 1 ∧ c N = c N
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊢ N < N + 1 ∧ c N = c N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [sub_sub_cancel]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ = ‖f N x - (f N x - f n x)‖
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ ‖f n x‖ = ‖f N x - (f N x - f n x)‖ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
ring
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ bs.max' ⋯ + 1 = 1 + bs.max' ?m.16989
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ bs.max' ⋯ + 1 = 1 + bs.max' ?m.16989 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp only [hb]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ 1 + bs.max' ⋯ = b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : ℕ → X → Y s : Set X fc : ∀ (n : ℕ), ContinuousOn (f n) s sc : IsCompact s c : ℕ → ℝ hc : (fun n => Classical.choose ⋯) = c cs : ∀ (n : ℕ), 0 ≤ c n ∧ ∀ x ∈ s, ‖f n x‖ ≤ c n N : ℕ bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' ⋯ = b n : ℕ x : X xs : x ∈ s nN : N < n H : ‖f N x - f n x‖ < 1 cN : c N ∈ bs bN : ‖f N x‖ ≤ bs.max' ⋯ ⊢ 1 + bs.max' ⋯ = b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
refine ⟨fun h ↦ ?_, fun h ↦ h.inv₀ a0⟩
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 ⊢ Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ↔ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 ⊢ Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ↔ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
have h := h.inv₀ (inv_ne_zero a0)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
field_simp [a0] at h
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a)
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a)
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => (f x)⁻¹⁻¹) l (𝓝 a⁻¹⁻¹) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
tendsto_inv_iff_tendsto
[62, 1]
[67, 32]
exact h
A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a)
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Type inst✝ : NontriviallyNormedField B l : Filter A f : A → B a : B a0 : a ≠ 0 h✝ : Tendsto (fun x => (f x)⁻¹) l (𝓝 a⁻¹) h : Tendsto (fun x => f x) l (𝓝 a) ⊢ Tendsto f l (𝓝 a) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
generalize hs' : ofDual ⁻¹' s = s'
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x ⊢ Icc a b ⊆ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc a b ⊆ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x ⊢ Icc a b ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x m
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' ⊢ Icc a b ⊆ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' ⊢ Icc a b ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Icc] at m
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : x ∈ Icc a b ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
specialize @rev (toDual x)
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' rev : Icc (toDual b) (toDual a) ⊆ s' x : X m : a ≤ x ∧ x ≤ b ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.dual_Icc, Set.mem_preimage, Set.mem_Icc, and_imp, OrderDual.ofDual_toDual, ← hs'] at rev
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : toDual x ∈ Icc (toDual b) (toDual a) → toDual x ∈ s' ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact rev m.1 m.2
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : X m : a ≤ x ∧ x ≤ b rev : a ≤ x → x ≤ b → x ∈ s ⊢ x ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
apply IsClosed.Icc_subset_of_forall_mem_nhdsWithin
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc (toDual b) (toDual a) ⊆ s'
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s' case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ Icc (toDual b) (toDual a) ⊆ s' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
have e : s' ∩ Icc (toDual b) (toDual a) = ofDual ⁻¹' (s ∩ Icc a b) := by apply Set.ext; intro x; simp only [Set.dual_Icc, Set.preimage_inter, ← hs']
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
rw [e]
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a))
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b))
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (s' ∩ Icc (toDual b) (toDual a)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact IsClosed.preimage continuous_ofDual sc
case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hs X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' e : s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) ⊢ IsClosed (⇑ofDual ⁻¹' (s ∩ Icc a b)) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
apply Set.ext
X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b)
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ s' ∩ Icc (toDual b) (toDual a) = ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ (x : Xᵒᵈ), x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.dual_Icc, Set.preimage_inter, ← hs']
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ ⊢ x ∈ s' ∩ Icc (toDual b) (toDual a) ↔ x ∈ ⇑ofDual ⁻¹' (s ∩ Icc a b) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage, OrderDual.ofDual_toDual, sb, ← hs']
case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s'
no goals
Please generate a tactic in lean4 to solve the state. STATE: case ha X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ toDual b ∈ s' TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro x m
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' ⊢ ∀ x ∈ s' ∩ Ico (toDual b) (toDual a), s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage, Set.mem_inter_iff, Set.mem_Ico, OrderDual.toDual_le, OrderDual.lt_toDual] at m
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∩ Ico (toDual b) (toDual a) ⊢ s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [mem_nhdsWithin_iff_eventually, eventually_nhds_iff, Set.mem_inter_iff, Set.mem_Ioc, ← hs'] at so m ⊢
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s so : ∀ x ∈ s ∩ Ioc a b, s ∈ 𝓝[<] x s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ m : x ∈ s' ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ s' ∈ 𝓝[>] x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
rcases so (ofDual x) ⟨m.1, m.2.2, m.2.1⟩ with ⟨n, h, o, nx⟩
case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
Please generate a tactic in lean4 to solve the state. STATE: case hgt X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
use ofDual ⁻¹' n
case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n
Please generate a tactic in lean4 to solve the state. STATE: case hgt.intro.intro.intro X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∃ t, (∀ x_1 ∈ t, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen t ∧ x ∈ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
refine ⟨?_, o.preimage continuous_ofDual, mem_preimage.mpr nx⟩
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ (∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s) ∧ IsOpen (⇑ofDual ⁻¹' n) ∧ x ∈ ⇑ofDual ⁻¹' n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
intro y m xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n ⊢ ∀ x_1 ∈ ⇑ofDual ⁻¹' n, x_1 ∈ Ioi x → x_1 ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Ioi] at xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : y ∈ Ioi x ⊢ y ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_preimage]
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ y ∈ ⇑ofDual ⁻¹' s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
simp only [Set.mem_Iio, Set.mem_preimage, OrderDual.ofDual_lt_ofDual] at h
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X h : ∀ x_1 ∈ n, x_1 ∈ Iio (ofDual x) → x_1 ∈ s o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y ⊢ ofDual y ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsClosed.Icc_subset_of_forall_mem_nhds_within'
[76, 1]
[101, 20]
exact h _ m xy
case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h X : Type inst✝³ : ConditionallyCompleteLinearOrder X inst✝² : TopologicalSpace X inst✝¹ : OrderTopology X inst✝ : DenselyOrdered X a b : X s : Set X sc : IsClosed (s ∩ Icc a b) sb : b ∈ s s' : Set Xᵒᵈ hs' : ⇑ofDual ⁻¹' s = s' x : Xᵒᵈ so : ∀ (x : X), x ∈ s ∧ a < x ∧ x ≤ b → ∃ t, (∀ x_1 ∈ t, x_1 ∈ Iio x → x_1 ∈ s) ∧ IsOpen t ∧ x ∈ t m✝ : x ∈ ⇑ofDual ⁻¹' s ∧ ofDual x ≤ b ∧ a < ofDual x n : Set X o : IsOpen n nx : ofDual x ∈ n y : Xᵒᵈ m : y ∈ ⇑ofDual ⁻¹' n xy : x < y h : ∀ x_1 ∈ n, x_1 < ofDual x → x_1 ∈ s ⊢ ofDual y ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine isPreconnected_of_forall_pair fun x hx y hy ↦ ?_
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected S.sUnion
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected S.sUnion TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases mem_sUnion.1 hx with ⟨s, hs, hxs⟩
X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases mem_sUnion.1 hy with ⟨t, ht, hyt⟩
case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases eq_or_ne s t with rfl | hst
case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
exact ⟨s, subset_sUnion_of_mem hs, hxs, hyt, hSc s hs⟩
case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inl X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s ht : s ∈ S hyt : y ∈ s ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
rcases h hs ht hst ⟨x, hxs⟩ ⟨y, hyt⟩ with ⟨u, huS, hsu, hut, hu⟩
case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine ⟨s ∪ u ∪ t, ?_, ?_, ?_, ?_⟩
case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t)
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ ∃ t ⊆ S.sUnion, x ∈ t ∧ y ∈ t ∧ IsPreconnected t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*, subset_sUnion_of_mem]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_1 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ s ∪ u ∪ t ⊆ S.sUnion TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_2 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ x ∈ s ∪ u ∪ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
simp [*]
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_3 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ y ∈ s ∪ u ∪ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
refine ((hSc s hs).union' hsu hu).union' (hut.mono ?_) (hSc t ht)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ IsPreconnected (s ∪ u ∪ t) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.sUnion_of_pairwise_exists_isPreconnected
[103, 1]
[119, 63]
exact inter_subset_inter_left _ (subset_union_right _ _)
case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro.inr.intro.intro.intro.intro.refine_4 X : Type u_1 inst✝ : TopologicalSpace X S : Set (Set X) hSc : ∀ s ∈ S, IsPreconnected s h : S.Pairwise fun s t => s.Nonempty → t.Nonempty → ∃ u ⊆ S.sUnion, (s ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u x : X hx : x ∈ S.sUnion y : X hy : y ∈ S.sUnion s : Set X hs : s ∈ S hxs : x ∈ s t : Set X ht : t ∈ S hyt : y ∈ t hst : s ≠ t u : Set X huS : u ⊆ S.sUnion hsu : (s ∩ u).Nonempty hut : (u ∩ t).Nonempty hu : IsPreconnected u ⊢ u ∩ t ⊆ (s ∪ u) ∩ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
apply IsPreconnected.sUnion_of_pairwise_exists_isPreconnected (forall_mem_range.2 hsc)
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected (⋃ i, s i)
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ IsPreconnected (⋃ i, s i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
rintro _ ⟨i, rfl⟩ _ ⟨j, rfl⟩ hij
ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u
case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u ⊢ (range fun i => s i).Pairwise fun s_1 t => s_1.Nonempty → t.Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, (s_1 ∩ u).Nonempty ∧ (u ∩ t).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
[121, 1]
[128, 33]
exact h (ne_of_apply_ne s hij)
case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro ι : Type u_1 X : Type u_2 inst✝ : TopologicalSpace X s : ι → Set X hsc : ∀ (i : ι), IsPreconnected (s i) h : Pairwise fun i j => (s i).Nonempty → (s j).Nonempty → ∃ u ⊆ ⋃ i, s i, (s i ∩ u).Nonempty ∧ (u ∩ s j).Nonempty ∧ IsPreconnected u i j : ι hij : (fun i => s i) i ≠ (fun i => s i) j ⊢ ((fun i => s i) i).Nonempty → ((fun i => s i) j).Nonempty → ∃ u ⊆ (range fun i => s i).sUnion, ((fun i => s i) i ∩ u).Nonempty ∧ (u ∩ (fun i => s i) j).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
rw [← subset_interior_iff_mem_nhdsSet] at st
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : s ∈ 𝓝ˢ t ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : s ∈ 𝓝ˢ t ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
have hsub : t ⊆ ⋃ x : t, connectedComponentIn (interior s) x := fun x hx ↦ mem_iUnion.2 ⟨⟨x, hx⟩, mem_connectedComponentIn (st hx)⟩
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
refine ⟨_, isOpen_iUnion fun _ ↦ isOpen_interior.connectedComponentIn, hsub, iUnion_subset fun x ↦ ?_, ?_⟩
X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c
case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∃ c, IsOpen c ∧ t ⊆ c ∧ c ⊆ s ∧ IsPreconnected c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact (connectedComponentIn_subset _ _).trans interior_subset
case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x x : ↑t ⊢ connectedComponentIn (interior s) ↑x ⊆ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
apply IsPreconnected.iUnion_of_pairwise_exists_isPreconnected
case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i)
case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i) case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ IsPreconnected (⋃ i, connectedComponentIn (interior s) ↑i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact fun _ ↦ isPreconnected_connectedComponentIn
case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.hsc X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ ∀ (i : ↑t), IsPreconnected (connectedComponentIn (interior s) ↑i) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
local_preconnected_nhdsSet
[132, 1]
[144, 57]
exact fun x y _ _ _ ↦ ⟨t, hsub, ⟨x, mem_connectedComponentIn (st x.2), x.2⟩, ⟨y, y.2, mem_connectedComponentIn (st y.2)⟩, tc⟩
case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2.h X : Type inst✝ : TopologicalSpace X lc : LocallyConnectedSpace X s t : Set X tc : IsPreconnected t st : t ⊆ interior s hsub : t ⊆ ⋃ x, connectedComponentIn (interior s) ↑x ⊢ Pairwise fun i j => (connectedComponentIn (interior s) ↑i).Nonempty → (connectedComponentIn (interior s) ↑j).Nonempty → ∃ u ⊆ ⋃ i, connectedComponentIn (interior s) ↑i, (connectedComponentIn (interior s) ↑i ∩ u).Nonempty ∧ (u ∩ connectedComponentIn (interior s) ↑j).Nonempty ∧ IsPreconnected u TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
Prod.frequently
[170, 1]
[173, 6]
simp only [frequently_iff_neBot, ← prod_neBot, ← prod_inf_prod, prod_principal_principal]
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (∃ᶠ (x : A × B) in f ×ˢ g, p x.1 ∧ q x.2) ↔ (∃ᶠ (a : A) in f, p a) ∧ ∃ᶠ (b : B) in g, q b
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot
Please generate a tactic in lean4 to solve the state. STATE: A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (∃ᶠ (x : A × B) in f ×ˢ g, p x.1 ∧ q x.2) ↔ (∃ᶠ (a : A) in f, p a) ∧ ∃ᶠ (b : B) in g, q b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
Prod.frequently
[170, 1]
[173, 6]
rfl
A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Type f : Filter A g : Filter B p : A → Prop q : B → Prop ⊢ (f ×ˢ g ⊓ 𝓟 {x | p x.1 ∧ q x.2}).NeBot ↔ (f ×ˢ g ⊓ 𝓟 ({a | p a} ×ˢ {b | q b})).NeBot TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
rw [mapClusterPt_iff] at fa ⊢
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : MapClusterPt b a f ga : Tendsto g a (𝓝 c) ⊢ MapClusterPt (b, c) a fun x => (f x, g x)
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : MapClusterPt b a f ga : Tendsto g a (𝓝 c) ⊢ MapClusterPt (b, c) a fun x => (f x, g x) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
intro s n
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) ⊢ ∀ s ∈ 𝓝 (b, c), ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
rcases mem_nhds_prod_iff.mp n with ⟨u, un, v, vn, sub⟩
A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
apply (fa _ un).mp
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∃ᶠ (a : A) in a, (f a, g a) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
apply (Filter.tendsto_iff_forall_eventually_mem.mp ga v vn).mp
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, f x ∈ u → (f x, g x) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
MapClusterPt.prod
[176, 1]
[184, 67]
exact eventually_of_forall fun x gv fu ↦ sub (mk_mem_prod fu gv)
case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro.intro.intro A B C : Type inst✝¹ : TopologicalSpace B inst✝ : TopologicalSpace C f : A → B g : A → C a : Filter A b : B c : C fa : ∀ s ∈ 𝓝 b, ∃ᶠ (a : A) in a, f a ∈ s ga : Tendsto g a (𝓝 c) s : Set (B × C) n : s ∈ 𝓝 (b, c) u : Set B un : u ∈ 𝓝 b v : Set C vn : v ∈ 𝓝 c sub : u ×ˢ v ⊆ s ⊢ ∀ᶠ (x : A) in a, g x ∈ v → f x ∈ u → (f x, g x) ∈ s TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [push, pop]
N : Finset ℕ ⊢ push (pop N) = insert 0 N
N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ ⊢ push (pop N) = insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
apply Finset.ext
N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N
case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N
Please generate a tactic in lean4 to solve the state. STATE: N : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) = insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp
case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N
case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ ⊢ ∀ (a : ℕ), a ∈ insert 0 (Finset.image (fun n => n + 1) (Finset.image (fun n => n - 1) (N.erase 0))) ↔ a ∈ insert 0 N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro n
case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N
case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ ⊢ ∀ (a : ℕ), (a = 0 ∨ ∃ a_1, (¬a_1 = 0 ∧ a_1 ∈ N) ∧ a_1 - 1 + 1 = a) ↔ a = 0 ∨ a ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
by_cases n0 : n = 0
case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case a N : Finset ℕ n : ℕ ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp_rw [or_iff_right n0]
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
constructor
case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [n0]
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (n = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) ↔ n = 0 ∨ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
simp
case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos N : Finset ℕ n : ℕ n0 : n = 0 ⊢ (0 = 0 ∨ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = 0) ↔ 0 = 0 ∨ 0 ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro h
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ (∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n) → n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rcases h with ⟨x, ⟨x0, xN⟩, xn⟩
case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp N : Finset ℕ n : ℕ n0 : ¬n = 0 h : ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rw [Nat.sub_add_cancel (Nat.one_le_iff_ne_zero.mpr x0)] at xn
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x - 1 + 1 = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
rwa [←xn]
case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg.mp.intro.intro.intro N : Finset ℕ n : ℕ n0 : ¬n = 0 x : ℕ xn : x = n x0 : ¬x = 0 xN : x ∈ N ⊢ n ∈ N TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
intro h
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 ⊢ n ∈ N → ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
exists n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ ∃ a, (¬a = 0 ∧ a ∈ N) ∧ a - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
use ⟨n0,h⟩
case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n
case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n
Please generate a tactic in lean4 to solve the state. STATE: case neg.mpr N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ (¬n = 0 ∧ n ∈ N) ∧ n - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_pop
[26, 1]
[35, 61]
exact Nat.sub_add_cancel (Nat.one_le_iff_ne_zero.mpr n0)
case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n
no goals
Please generate a tactic in lean4 to solve the state. STATE: case right N : Finset ℕ n : ℕ n0 : ¬n = 0 h : n ∈ N ⊢ n - 1 + 1 = n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simp
A B : Finset ℕ ⊢ push A ≤ push B ↔ A ≤ B
A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ push A ≤ push B ↔ A ≤ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [push]
A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ push A ⊆ push B ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [push]
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ push B ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
constructor
A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B
case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ↔ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro AB
case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B
case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) → A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
rw [Finset.subset_iff] at AB ⊢
case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) ⊢ A ⊆ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro x xA
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ ∀ ⦃x : ℕ⦄, x ∈ A → x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
have h : x + 1 ∈ insert 0 (Finset.image (fun n : ℕ ↦ n + 1) A) := by simpa
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
specialize AB h
case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simp at AB
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) B) ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
assumption
case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp A B : Finset ℕ x : ℕ xA : x ∈ A h : x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) AB : x ∈ B ⊢ x ∈ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
simpa
A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A)
no goals
Please generate a tactic in lean4 to solve the state. STATE: A B : Finset ℕ AB : ∀ ⦃x : ℕ⦄, x ∈ insert 0 (Finset.image (fun n => n + 1) A) → x ∈ insert 0 (Finset.image (fun n => n + 1) B) x : ℕ xA : x ∈ A ⊢ x + 1 ∈ insert 0 (Finset.image (fun n => n + 1) A) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
intro AB
case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
Please generate a tactic in lean4 to solve the state. STATE: case mpr A B : Finset ℕ ⊢ A ⊆ B → insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
apply Finset.insert_subset_insert
case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B)
case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B
Please generate a tactic in lean4 to solve the state. STATE: case mpr A B : Finset ℕ AB : A ⊆ B ⊢ insert 0 (Finset.image (fun n => n + 1) A) ⊆ insert 0 (Finset.image (fun n => n + 1) B) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
apply Finset.image_mono
case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B
case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B
Please generate a tactic in lean4 to solve the state. STATE: case mpr.h A B : Finset ℕ AB : A ⊆ B ⊢ Finset.image (fun n => n + 1) A ⊆ Finset.image (fun n => n + 1) B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_le_push
[38, 1]
[44, 85]
assumption
case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.h.a A B : Finset ℕ AB : A ⊆ B ⊢ A ≤ B TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
rw [push]
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (push N).sum (cons a f)
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (push N).sum (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
simp
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f)
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1)
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = (insert 0 (Finset.image (fun n => n + 1) N)).sum (cons a f) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_sum
[47, 1]
[49, 23]
rfl
X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: X : Type inst✝ : AddCommGroup X a : X f : ℕ → X N : Finset ℕ ⊢ a + N.sum f = cons a f 0 + N.sum fun x => cons a f (x + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Finset.lean
push_prod
[52, 1]
[53, 23]
rw [push]
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (push N).prod (cons a f)
a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (insert 0 (Finset.image (fun n => n + 1) N)).prod (cons a f)
Please generate a tactic in lean4 to solve the state. STATE: a : ℂ f : ℕ → ℂ N : Finset ℕ ⊢ a * N.prod f = (push N).prod (cons a f) TACTIC: