url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
simp only [ge_iff_le, zero_le_one, uIcc_of_le, mem_Icc] at m
case hβ‚‚.hz z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : t ∈ uIcc 0 1 ⊒ |t| * abs z < 1
case hβ‚‚.hz z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| * abs z < 1
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚.hz z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : t ∈ uIcc 0 1 ⊒ |t| * abs z < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply m1
case hβ‚‚.hz z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| * abs z < 1
case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| ≀ 1
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚.hz z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| * abs z < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
simp only [abs_le]
case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| ≀ 1
case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ -1 ≀ t ∧ t ≀ 1
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ |t| ≀ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
exact ⟨by linarith, m.2⟩
case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ -1 ≀ t ∧ t ≀ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case hβ‚‚.hz.a z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ -1 ≀ t ∧ t ≀ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
linarith
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ -1 ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ -1 ≀ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
intro t m
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ⊒ βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : t ∈ uIcc 0 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ⊒ βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
simp only [ge_iff_le, zero_le_one, uIcc_of_le, mem_Icc] at m
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : t ∈ uIcc 0 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : t ∈ uIcc 0 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
exact (((hasDerivAt_mul_const _).const_sub _).log ((sub_pos.mpr (m1 _ m.2)).ne')).neg
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t t : ℝ m : 0 ≀ t ∧ t ≀ 1 ⊒ HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply ContinuousOn.intervalIntegrable_of_Icc zero_le_one
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ ContinuousOn (fun t => z / (1 + ↑t * z)) (Icc 0 1)
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply continuousOn_const.div (Continuous.continuousOn (by continuity))
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ ContinuousOn (fun t => z / (1 + ↑t * z)) (Icc 0 1)
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ βˆ€ x ∈ Icc 0 1, 1 + ↑x * z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ ContinuousOn (fun t => z / (1 + ↑t * z)) (Icc 0 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
intro t ⟨t0,t1⟩
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ βˆ€ x ∈ Icc 0 1, 1 + ↑x * z β‰  0
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 1 + ↑t * z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ βˆ€ x ∈ Icc 0 1, 1 + ↑x * z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
rw [←Complex.abs.ne_zero_iff]
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 1 + ↑t * z β‰  0
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs (1 + ↑t * z) β‰  0
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 1 + ↑t * z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply ne_of_gt
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs (1 + ↑t * z) β‰  0
case h z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 0 < abs (1 + ↑t * z)
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs (1 + ↑t * z) β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
calc abs (1 + t*z) _ β‰₯ Complex.abs 1 - abs (t*z) := Complex.abs.le_add _ _ _ = 1 - |t| * abs z := by simp only [map_one, map_mul, Complex.abs_ofReal] _ > 0 := by refine sub_pos.mpr (m1 _ (abs_le.mpr ⟨by linarith, t1⟩))
case h z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 0 < abs (1 + ↑t * z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 0 < abs (1 + ↑t * z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
continuity
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ Continuous fun t => 1 + ↑t * z
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t ⊒ Continuous fun t => 1 + ↑t * z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
simp only [map_one, map_mul, Complex.abs_ofReal]
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs 1 - abs (↑t * z) = 1 - |t| * abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs 1 - abs (↑t * z) = 1 - |t| * abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
refine sub_pos.mpr (m1 _ (abs_le.mpr ⟨by linarith, t1⟩))
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 1 - |t| * abs z > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ 1 - |t| * abs z > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
linarith
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ -1 ≀ t
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (-(-abs z / (1 - t * abs z))) t t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ -1 ≀ t TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply ContinuousOn.intervalIntegrable_of_Icc zero_le_one
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ IntervalIntegrable (fun t => abs z / (1 - t * abs z)) MeasureTheory.volume 0 1
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ ContinuousOn (fun t => abs z / (1 - t * abs z)) (Icc 0 1)
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ IntervalIntegrable (fun t => abs z / (1 - t * abs z)) MeasureTheory.volume 0 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
apply continuousOn_const.div (Continuous.continuousOn (by continuity))
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ ContinuousOn (fun t => abs z / (1 - t * abs z)) (Icc 0 1)
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ βˆ€ x ∈ Icc 0 1, 1 - x * abs z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ ContinuousOn (fun t => abs z / (1 - t * abs z)) (Icc 0 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
intro t ⟨_,t1⟩
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ βˆ€ x ∈ Icc 0 1, 1 - x * abs z β‰  0
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t t : ℝ left✝ : 0 ≀ t t1 : t ≀ 1 ⊒ 1 - t * abs z β‰  0
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ βˆ€ x ∈ Icc 0 1, 1 - x * abs z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
exact ne_of_gt (sub_pos.mpr (m1 _ t1))
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t t : ℝ left✝ : 0 ≀ t t1 : t ≀ 1 ⊒ 1 - t * abs z β‰  0
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t t : ℝ left✝ : 0 ≀ t t1 : t ≀ 1 ⊒ 1 - t * abs z β‰  0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
continuity
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ Continuous fun t => 1 - t * abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 dc : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => (1 + ↑t * z).log) (z / (1 + ↑t * z)) t ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 dr : βˆ€ t ∈ uIcc 0 1, HasDerivAt (fun t => -(1 - t * abs z).log) (abs z / (1 - t * abs z)) t ⊒ Continuous fun t => 1 - t * abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Complex.abs_log_one_add_le
[14, 1]
[65, 80]
simp only [map_one, map_mul, Complex.abs_ofReal, _root_.abs_of_nonneg t0]
z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 ir : IntervalIntegrable (fun t => abs z / (1 - t * abs z)) MeasureTheory.volume 0 1 t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs 1 - abs (↑t * z) = 1 - t * abs z
no goals
Please generate a tactic in lean4 to solve the state. STATE: z : β„‚ z1 : abs z < 1 m1 : βˆ€ t ≀ 1, t * abs z < 1 ic : IntervalIntegrable (fun t => z / (1 + ↑t * z)) MeasureTheory.volume 0 1 ir : IntervalIntegrable (fun t => abs z / (1 - t * abs z)) MeasureTheory.volume 0 1 t : ℝ t0 : 0 ≀ t t1 : t ≀ 1 ⊒ abs 1 - abs (↑t * z) = 1 - t * abs z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
have h := Complex.abs_log_one_add_le (z := x) ?_
x : ℝ x1 : |x| < 1 ⊒ |(1 + x).log| ≀ -(1 - |x|).log
case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (1 + ↑x).log ≀ -(1 - Complex.abs ↑x).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log case refine_1 x : ℝ x1 : |x| < 1 ⊒ Complex.abs ↑x < 1
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x1 : |x| < 1 ⊒ |(1 + x).log| ≀ -(1 - |x|).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
rw [←Complex.ofReal_one, ←Complex.ofReal_add, ←Complex.ofReal_log, Complex.abs_ofReal, Complex.abs_ofReal] at h
case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (1 + ↑x).log ≀ -(1 - Complex.abs ↑x).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log
case refine_2 x : ℝ x1 : |x| < 1 h : |(1 + x).log| ≀ -(1 - |x|).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log ⊒ 0 ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (1 + ↑x).log ≀ -(1 - Complex.abs ↑x).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
exact h
case refine_2 x : ℝ x1 : |x| < 1 h : |(1 + x).log| ≀ -(1 - |x|).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 x : ℝ x1 : |x| < 1 h : |(1 + x).log| ≀ -(1 - |x|).log ⊒ |(1 + x).log| ≀ -(1 - |x|).log TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
simp only [abs_lt] at x1
case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log ⊒ 0 ≀ 1 + x
case refine_2 x : ℝ h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log x1 : -1 < x ∧ x < 1 ⊒ 0 ≀ 1 + x
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 x : ℝ x1 : |x| < 1 h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log ⊒ 0 ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
linarith
case refine_2 x : ℝ h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log x1 : -1 < x ∧ x < 1 ⊒ 0 ≀ 1 + x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_2 x : ℝ h : Complex.abs (↑(1 + x)).log ≀ -(1 - Complex.abs ↑x).log x1 : -1 < x ∧ x < 1 ⊒ 0 ≀ 1 + x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.abs_log_one_add_le
[67, 1]
[75, 36]
simpa only [Complex.abs_ofReal]
case refine_1 x : ℝ x1 : |x| < 1 ⊒ Complex.abs ↑x < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case refine_1 x : ℝ x1 : |x| < 1 ⊒ Complex.abs ↑x < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.neg_log_one_sub_mono
[77, 1]
[80, 59]
linarith
x y : ℝ xy : x ≀ y y1 : y < 1 ⊒ 0 < 1 - y
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : ℝ xy : x ≀ y y1 : y < 1 ⊒ 0 < 1 - y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
Real.neg_log_one_sub_mono
[77, 1]
[80, 59]
linarith
x y : ℝ xy : x ≀ y y1 : y < 1 ⊒ 1 - y ≀ 1 - x
no goals
Please generate a tactic in lean4 to solve the state. STATE: x y : ℝ xy : x ≀ y y1 : y < 1 ⊒ 1 - y ≀ 1 - x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_two
[82, 1]
[87, 13]
apply le_trans (Real.neg_log_one_sub_mono x2 (by linarith)) ?_
x : ℝ x2 : x ≀ 1 / 2 ⊒ -(1 - x).log ≀ 2
x : ℝ x2 : x ≀ 1 / 2 ⊒ -(1 - 1 / 2).log ≀ 2
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x2 : x ≀ 1 / 2 ⊒ -(1 - x).log ≀ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_two
[82, 1]
[87, 13]
rw [neg_le, Real.le_log_iff_exp_le]
x : ℝ x2 : x ≀ 1 / 2 ⊒ -(1 - 1 / 2).log ≀ 2
x : ℝ x2 : x ≀ 1 / 2 ⊒ (-2).exp ≀ 1 - 1 / 2 x : ℝ x2 : x ≀ 1 / 2 ⊒ 0 < 1 - 1 / 2
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x2 : x ≀ 1 / 2 ⊒ -(1 - 1 / 2).log ≀ 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_two
[82, 1]
[87, 13]
linarith
x : ℝ x2 : x ≀ 1 / 2 ⊒ 1 / 2 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x2 : x ≀ 1 / 2 ⊒ 1 / 2 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_two
[82, 1]
[87, 13]
exact (exp_neg_ofNat_lt).le
x : ℝ x2 : x ≀ 1 / 2 ⊒ (-2).exp ≀ 1 - 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x2 : x ≀ 1 / 2 ⊒ (-2).exp ≀ 1 - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_two
[82, 1]
[87, 13]
norm_num
x : ℝ x2 : x ≀ 1 / 2 ⊒ 0 < 1 - 1 / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: x : ℝ x2 : x ≀ 1 / 2 ⊒ 0 < 1 - 1 / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
rcases le_min_iff.mp xc with ⟨x1,xc⟩
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ ⊒ -(1 - x).log ≀ c * x
case intro x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
by_cases xz : x = 0
case intro x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ ⊒ -(1 - x).log ≀ c * x
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : x = 0 ⊒ -(1 - x).log ≀ c * x case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case intro x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
by_cases xe : x = 1
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 ⊒ -(1 - x).log ≀ c * x
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ -(1 - x).log ≀ c * x case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
replace x1 := Ne.lt_of_le xe x1
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
have x0' : 0 < x := (Ne.symm xz).lt_of_le x0
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
have c1p : 0 < (c - 1) * 2 := mul_pos (sub_pos.mpr c1) (by norm_num)
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
have x1p : 0 < 1 - x := by linarith
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
have h := Complex.norm_log_one_add_sub_self_le (z := -x) (by simp only [norm_neg, Complex.norm_eq_abs, Complex.abs_ofReal, abs_of_nonneg x0]; exact x1)
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : β€–(1 + -↑x).log - -↑xβ€– ≀ β€–-↑xβ€– ^ 2 * (1 - β€–-↑xβ€–)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
simp only [Complex.norm_eq_abs, Complex.abs_ofReal, ←Complex.ofReal_one, ←Complex.ofReal_add, ←Complex.ofReal_log x1p.le, ←Complex.ofReal_sub, abs_le, abs_of_nonneg x0, ←Complex.ofReal_neg, ←sub_eq_add_neg, abs_neg] at h
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : β€–(1 + -↑x).log - -↑xβ€– ≀ β€–-↑xβ€– ^ 2 * (1 - β€–-↑xβ€–)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(x ^ 2 * (1 - x)⁻¹ / 2) ≀ (1 - x).log - -x ∧ (1 - x).log - -x ≀ x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : β€–(1 + -↑x).log - -↑xβ€– ≀ β€–-↑xβ€– ^ 2 * (1 - β€–-↑xβ€–)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
replace h : -Real.log (1 - x) ≀ x + x^2 * (1 - x)⁻¹ / 2 := by linarith
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(x ^ 2 * (1 - x)⁻¹ / 2) ≀ (1 - x).log - -x ∧ (1 - x).log - -x ≀ x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(x ^ 2 * (1 - x)⁻¹ / 2) ≀ (1 - x).log - -x ∧ (1 - x).log - -x ≀ x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
apply le_trans h
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x + x ^ 2 * (1 - x)⁻¹ / 2 ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
rw [pow_two, mul_assoc, mul_div_assoc, ←mul_one_add, mul_comm x _]
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x + x ^ 2 * (1 - x)⁻¹ / 2 ≀ c * x
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (1 + x * (1 - x)⁻¹ / 2) * x ≀ c * x
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x + x ^ 2 * (1 - x)⁻¹ / 2 ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
apply mul_le_mul_of_nonneg_right _ x0
case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (1 + x * (1 - x)⁻¹ / 2) * x ≀ c * x
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x * (1 - x)⁻¹ / 2 ≀ c
Please generate a tactic in lean4 to solve the state. STATE: case neg x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (1 + x * (1 - x)⁻¹ / 2) * x ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
nth_rw 1 [←inv_inv x]
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x * (1 - x)⁻¹ / 2 ≀ c
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x⁻¹⁻¹ * (1 - x)⁻¹ / 2 ≀ c
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x * (1 - x)⁻¹ / 2 ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
rw [←mul_inv, mul_sub, mul_one, inv_mul_cancel xz]
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x⁻¹⁻¹ * (1 - x)⁻¹ / 2 ≀ c
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + (x⁻¹ - 1)⁻¹ / 2 ≀ c
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + x⁻¹⁻¹ * (1 - x)⁻¹ / 2 ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
rw [add_comm, ←le_sub_iff_add_le, div_le_iff (by norm_num)]
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + (x⁻¹ - 1)⁻¹ / 2 ≀ c
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (x⁻¹ - 1)⁻¹ ≀ (c - 1) * 2
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 1 + (x⁻¹ - 1)⁻¹ / 2 ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
apply inv_le_of_inv_le c1p
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (x⁻¹ - 1)⁻¹ ≀ (c - 1) * 2
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ ((c - 1) * 2)⁻¹ ≀ x⁻¹ - 1
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ (x⁻¹ - 1)⁻¹ ≀ (c - 1) * 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
rw [le_sub_iff_add_le, le_inv (add_pos (inv_pos.mpr c1p) (by norm_num)) x0']
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ ((c - 1) * 2)⁻¹ ≀ x⁻¹ - 1
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ ((c - 1) * 2)⁻¹ ≀ x⁻¹ - 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
exact xc
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
simp only [xz, sub_zero, Real.log_one, neg_zero, mul_zero, le_refl]
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : x = 0 ⊒ -(1 - x).log ≀ c * x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : x = 0 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
simp only [xe, sub_self, Real.log_zero, neg_zero, mul_one]
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ -(1 - x).log ≀ c * x
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ 0 ≀ c
Please generate a tactic in lean4 to solve the state. STATE: case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ -(1 - x).log ≀ c * x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
linarith
case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ 0 ≀ c
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ x1 : x ≀ 1 xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : x = 1 ⊒ 0 ≀ c TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
norm_num
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x ⊒ 0 < 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x ⊒ 0 < 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
linarith
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 ⊒ 0 < 1 - x
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 ⊒ 0 < 1 - x TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
simp only [norm_neg, Complex.norm_eq_abs, Complex.abs_ofReal, abs_of_nonneg x0]
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ β€–-↑xβ€– < 1
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ x < 1
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ β€–-↑xβ€– < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
exact x1
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ x < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x ⊒ x < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
linarith
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(x ^ 2 * (1 - x)⁻¹ / 2) ≀ (1 - x).log - -x ∧ (1 - x).log - -x ≀ x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(x ^ 2 * (1 - x)⁻¹ / 2) ≀ (1 - x).log - -x ∧ (1 - x).log - -x ≀ x ^ 2 * (1 - x)⁻¹ / 2 ⊒ -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
norm_num
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 0 < 2
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 0 < 2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Multibrot/Log1p.lean
neg_log_one_sub_le_linear
[89, 1]
[116, 11]
norm_num
x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 0 < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: x c : ℝ x0 : 0 ≀ x c1 : 1 < c xc✝ : x ≀ min 1 (((c - 1) * 2)⁻¹ + 1)⁻¹ xc : x ≀ (((c - 1) * 2)⁻¹ + 1)⁻¹ xz : Β¬x = 0 xe : Β¬x = 1 x1 : x < 1 x0' : 0 < x c1p : 0 < (c - 1) * 2 x1p : 0 < 1 - x h : -(1 - x).log ≀ x + x ^ 2 * (1 - x)⁻¹ / 2 ⊒ 0 < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hc : (fun n ↦ Classical.choose ((sc.bddAbove_image (fc n).norm).exists_ge 0)) = c
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cs : βˆ€ n, 0 ≀ c n ∧ βˆ€ x, x ∈ s β†’ β€–f n xβ€– ≀ c n := fun n ↦ by simpa only [← hc, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] using Classical.choose_spec ((sc.bddAbove_image (fc n).norm).exists_ge 0)
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [Metric.uniformCauchySeqOn_iff] at u
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rcases u 1 (by norm_num) with ⟨N, H⟩
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
clear u
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hbs : Finset.image c (Finset.range (N + 1)) = bs
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have c0 : c 0 ∈ bs := by simp [← hbs]; exists 0; simp
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
generalize hb : 1 + bs.max' ⟨_, c0⟩ = b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆƒ b, 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
constructor
case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b ∧ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simpa only [← hc, mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] using Classical.choose_spec ((sc.bddAbove_image (fc n).norm).exists_ge 0)
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c n : β„• ⊒ 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : UniformCauchySeqOn f atTop s fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c n : β„• ⊒ 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
norm_num
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ 1 > 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X u : βˆ€ Ξ΅ > 0, βˆƒ N, βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < Ξ΅ fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n ⊒ 1 > 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ c 0 ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ c 0 ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists 0
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ βˆƒ a < N + 1, c a = c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs ⊒ 0 < N + 1 ∧ c 0 = c 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [← hb]
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹―
Please generate a tactic in lean4 to solve the state. STATE: case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exact add_nonneg (by norm_num) (_root_.trans (cs 0).1 (Finset.le_max' _ _ c0))
case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹―
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.left X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 + bs.max' β‹― TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
norm_num
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ 0 ≀ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
intro n x xs
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b ⊒ βˆ€ (n : β„•), βˆ€ x ∈ s, β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
by_cases nN : n ≀ N
case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case intro.right X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cn : c n ∈ bs := by simp [← hbs]; exists n; simp [Nat.lt_add_one_iff.mpr nN]
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exact _root_.trans ((cs n).2 x xs) (_root_.trans (Finset.le_max' _ _ cn) (by simp only [le_add_iff_nonneg_left, zero_le_one, ← hb]))
case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ c n ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ c n ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists n
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ βˆƒ a < N + 1, c a = c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [Nat.lt_add_one_iff.mpr nN]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N ⊒ n < N + 1 ∧ c n = c n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp only [le_add_iff_nonneg_left, zero_le_one, ← hb]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ bs.max' β‹― ≀ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : n ≀ N cn : c n ∈ bs ⊒ bs.max' β‹― ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp at nN
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : Β¬n ≀ N ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
specialize H N le_rfl n nN.le x xs
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• H : βˆ€ m β‰₯ N, βˆ€ n β‰₯ N, βˆ€ x ∈ s, dist (f m x) (f n x) < 1 bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have cN : c N ∈ bs := by simp [← hbs]; exists N; simp
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
have bN := _root_.trans ((cs N).2 x xs) (Finset.le_max' _ _ cN)
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
rw [dist_eq_norm] at H
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : β€–f N x - f n xβ€– < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
calc β€–f n xβ€– = β€–f N x - (f N x - f n x)β€– := by rw [sub_sub_cancel] _ ≀ β€–f N xβ€– + β€–f N x - f n xβ€– := norm_sub_le _ _ _ ≀ bs.max' _ + 1 := add_le_add bN H.le _ = 1 + bs.max' _ := by ring _ = b := by simp only [hb]
case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : β€–f N x - f n xβ€– < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : β€–f N x - f n xβ€– < 1 cN : c N ∈ bs bN : β€–f N xβ€– ≀ bs.max' β‹― ⊒ β€–f n xβ€– ≀ b TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
simp [← hbs]
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ c N ∈ bs
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ βˆƒ a < N + 1, c a = c N
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ c N ∈ bs TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Misc/Topology.lean
UniformCauchySeqOn.bounded
[21, 1]
[49, 35]
exists N
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ βˆƒ a < N + 1, c a = c N
X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ N < N + 1 ∧ c N = c N
Please generate a tactic in lean4 to solve the state. STATE: X Y : Type inst✝¹ : TopologicalSpace X inst✝ : NormedAddCommGroup Y f : β„• β†’ X β†’ Y s : Set X fc : βˆ€ (n : β„•), ContinuousOn (f n) s sc : IsCompact s c : β„• β†’ ℝ hc : (fun n => Classical.choose β‹―) = c cs : βˆ€ (n : β„•), 0 ≀ c n ∧ βˆ€ x ∈ s, β€–f n xβ€– ≀ c n N : β„• bs : Finset ℝ hbs : Finset.image c (Finset.range (N + 1)) = bs c0 : c 0 ∈ bs b : ℝ hb : 1 + bs.max' β‹― = b n : β„• x : X xs : x ∈ s nN : N < n H : dist (f N x) (f n x) < 1 ⊒ βˆƒ a < N + 1, c a = c N TACTIC: