exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
baa558d0a295c1d68e26bb4e607b687a
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//Utilities import java.io.*; import java.util.*; public class a { static int t; static int n, e; static boolean[] isPrime; static int maxx = (int)1e6; static TreeSet<Integer>[] tset; static int[] a; static long res; public static void main(String[] args) throws IOException { isPrime = new boolean[maxx+5]; Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for (int i = 2; i <= maxx; i++) { if (isPrime[i]) { for (long j = (long)i * i; j <= maxx; j += i) { isPrime[(int)j] = false; } } } t = in.iscan(); while (t-- > 0) { n = in.iscan(); e = in.iscan(); tset = new TreeSet[n+1]; for (int i = 0; i <= n; i++) { tset[i] = new TreeSet<Integer>(); } a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.iscan(); if (a[i] != 1) { tset[i%e].add(i); } if (i + e >= n) { tset[i%e].add(i+e); } } res = 0; for (int i = 0; i < n; i++) { if (isPrime[a[i]]) { int ll = i, rr = tset[i%e].higher(i) - e; res += (rr - ll + 1) / e; if (e == 1) res--; } else if (a[i] == 1) { int nxt = tset[i%e].higher(i); if (nxt < n) { if (isPrime[a[nxt]]) { int ll = nxt, rr = tset[i%e].higher(nxt) - e; res += (rr - ll + 1) / e + 1; if (e == 1) res--; } } } } out.println(res); } out.close(); } static INPUT in = new INPUT(System.in); static PrintWriter out = new PrintWriter(System.out); private static class INPUT { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public INPUT (InputStream stream) { this.stream = stream; } public INPUT (String file) throws IOException { this.stream = new FileInputStream (file); } public int cscan () throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read (buf); } if (numChars == -1) return numChars; return buf[curChar++]; } public int iscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } int res = 0; do { res = (res << 1) + (res << 3); res += c - '0'; c = cscan (); } while (!space (c)); return res * sgn; } public String sscan () throws IOException { int c = cscan (); while (space (c)) c = cscan (); StringBuilder res = new StringBuilder (); do { res.appendCodePoint (c); c = cscan (); } while (!space (c)); return res.toString (); } public double dscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } double res = 0; while (!space (c) && c != '.') { if (c == 'e' || c == 'E') return res * UTILITIES.fast_pow (10, iscan ()); res *= 10; res += c - '0'; c = cscan (); } if (c == '.') { c = cscan (); double m = 1; while (!space (c)) { if (c == 'e' || c == 'E') return res * UTILITIES.fast_pow (10, iscan ()); m /= 10; res += (c - '0') * m; c = cscan (); } } return res * sgn; } public long lscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } long res = 0; do { res = (res << 1) + (res << 3); res += c - '0'; c = cscan (); } while (!space (c)); return res * sgn; } public boolean space (int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } public static class UTILITIES { static final double EPS = 10e-6; public static void sort(int[] a, boolean increasing) { ArrayList<Integer> arr = new ArrayList<Integer>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static void sort(long[] a, boolean increasing) { ArrayList<Long> arr = new ArrayList<Long>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static void sort(double[] a, boolean increasing) { ArrayList<Double> arr = new ArrayList<Double>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static int lower_bound (int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) high = mid; else low = mid + 1; } return low; } public static int upper_bound (int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > x) high = mid; else low = mid + 1; } return low; } public static void updateMap(HashMap<Integer, Integer> map, int key, int v) { if (!map.containsKey(key)) { map.put(key, v); } else { map.put(key, map.get(key) + v); } if (map.get(key) == 0) { map.remove(key); } } public static long gcd (long a, long b) { return b == 0 ? a : gcd (b, a % b); } public static long lcm (long a, long b) { return a * b / gcd (a, b); } public static long fast_pow_mod (long b, long x, int mod) { if (x == 0) return 1; if (x == 1) return b; if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod; return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod; } public static long fast_pow (long b, long x) { if (x == 0) return 1; if (x == 1) return b; if (x % 2 == 0) return fast_pow (b * b, x / 2); return b * fast_pow (b * b, x / 2); } public static long choose (long n, long k) { k = Math.min (k, n - k); long val = 1; for (int i = 0; i < k; ++i) val = val * (n - i) / (i + 1); return val; } public static long permute (int n, int k) { if (n < k) return 0; long val = 1; for (int i = 0; i < k; ++i) val = (val * (n - i)); return val; } // start of permutation and lower/upper bound template public static void nextPermutation(int[] nums) { //find first decreasing digit int mark = -1; for (int i = nums.length - 1; i > 0; i--) { if (nums[i] > nums[i - 1]) { mark = i - 1; break; } } if (mark == -1) { reverse(nums, 0, nums.length - 1); return; } int idx = nums.length-1; for (int i = nums.length-1; i >= mark+1; i--) { if (nums[i] > nums[mark]) { idx = i; break; } } swap(nums, mark, idx); reverse(nums, mark + 1, nums.length - 1); } public static void swap(int[] nums, int i, int j) { int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } public static void reverse(int[] nums, int i, int j) { while (i < j) { swap(nums, i, j); i++; j--; } } static int lower_bound (int[] arr, int hi, int cmp) { int low = 0, high = hi, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= cmp) high = mid; else low = mid + 1; } return low; } static int upper_bound (int[] arr, int hi, int cmp) { int low = 0, high = hi, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > cmp) high = mid; else low = mid + 1; } return low; } // end of permutation and lower/upper bound template } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
c0ea9ae7b10be48f846104a19b87428d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.lang.Exception; import java.util.ArrayList; public class Main{ static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null||!st.hasMoreElements()){ try{ st=new StringTokenizer(br.readLine()); }catch(IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){return Integer.parseInt(next());} long nextLong(){return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} String nextLine(){ String str=""; try{ if(st.hasMoreTokens()) str=st.nextToken("\n"); else str=br.readLine(); }catch(IOException e){ e.printStackTrace(); } return str; } } static class Pair{ int first; boolean second; public Pair(int first,boolean second){ this.first=first; this.second=second; } } static FastReader sc=new FastReader(); static int nMax=1000000; static boolean[] notPrime=new boolean[nMax+1]; static void prec(){ notPrime[0]=notPrime[1]=true; for(int i=2;i*i<=nMax;i++){ if(!notPrime[i]){ for(int j=i*i;j<=nMax;j+=i){ notPrime[j]=true; } } } } static void solve(){ int n=sc.nextInt(); int e=sc.nextInt(); Pair[] a=new Pair[n]; for(int i=0;i<n;i++){ int x=sc.nextInt(); a[i]=new Pair(x,false); } long sum=0; ArrayList<Integer> list=new ArrayList<Integer>(); for(int i=0;i<n;i++){ int mem=1; int cnt=0; int j=i; if(!a[j].second&&(!notPrime[a[j].first]||a[j].first==1)){ while(j<n){ a[j].second=true; if(!notPrime[a[j].first]){ list.add(cnt); cnt=0; }else if(a[j].first==1){ cnt++; }else{ list.add(cnt); mem=0; break; } j+=e; } if(mem==1) list.add(cnt); }else continue; int sz=list.size(); for(int k=0;k<sz-1;k++){ sum+=(long)list.get(k)*(list.get(k+1)+1)+list.get(k+1); } list.clear(); } System.out.println(sum); } public static void main(String args[])throws java.lang.Exception{ prec(); int t=sc.nextInt(); while(t-->0){ solve(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
ae7406eea9af7639f176799b80f29135
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/***** ---> :) Vijender Srivastava (: <--- *****/ import java.util.Queue; import java.util.LinkedList; import java.util.*; import java.lang.*; // import java.lang.reflect.Array; import java.io.*; public class Main { static FastReader sc =new FastReader(); static PrintWriter out=new PrintWriter(System.out); static long mod=998244353; static StringBuilder sb = new StringBuilder(); /* start */ public static void main(String [] args) { // int testcases = 1; int testcases = i(); while(testcases-->0) { solve(); } out.flush(); out.close(); } static void solve() { int n = i(); int e = i(); int a[] = input(n); long ans = 0; for(int i=0;i<n;i++) { if(prime(a[i])) { long left = 1,right = 1; int l = i-e,r = i+e; while(l>=0 && a[l]==1) { left++; l-=e; } while(r<n && a[r]==1) { right++; r+=e; } ans+=(left*right)-1; } } pl(ans); } /* end */ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void p(Object o) { out.print(o); } static void pl(Object o) { out.println(o); } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static char[] inputC() { String s = sc.nextLine(); return s.toCharArray(); } static int[] input(int n) { int A[]=new int[n]; for(int i=0;i<n;i++) { A[i]=sc.nextInt(); } return A; } static long[] inputL(int n) { long A[]=new long[n]; for(int i=0;i<n;i++) { A[i]=sc.nextLong(); } return A; } static long[] putL(long a[]) { long A[]=new long[a.length]; for(int i=0;i<a.length;i++) { A[i]=a[i]; } return A; } static String[] inputS(int n) { String A[]=new String[n]; for(int i=0;i<n;i++) { A[i]=sc.next(); } return A; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static String reverse(String s) { StringBuffer p=new StringBuffer(s); p.reverse(); return p.toString(); } static int min(int a,int b) { return Math.min(a, b); } static int min(int a,int b,int c) { return Math.min(a, Math.min(b, c)); } static int min(int a,int b,int c,int d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static int max(int a,int b) { return Math.max(a, b); } static int max(int a,int b,int c) { return Math.max(a, Math.max(b, c)); } static int max(int a,int b,int c,int d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long min(long a,long b) { return Math.min(a, b); } static long min(long a,long b,long c) { return Math.min(a, Math.min(b, c)); } static long min(long a,long b,long c,long d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static long max(long a,long b) { return Math.max(a, b); } static long max(long a,long b,long c) { return Math.max(a, Math.max(b, c)); } static long max(long a,long b,long c,long d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long sum(int A[]) { long sum=0; for(int i : A) { sum+=i; } return sum; } static long sum(long A[]) { long sum=0; for(long i : A) { sum+=i; } return sum; } static void print(int A[]) { for(int i : A) { System.out.print(i+" "); } System.out.println(); } static void print(long A[]) { for(long i : A) { System.out.print(i+" "); } System.out.println(); } static long mod(long x) { return ((x%mod + mod)%mod); } static long power(long x, long y) { if(y==0) return 1; if(x==0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x) ; y = y >> 1; x = (x * x); } return res; } static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long[] sort(long a[]) { ArrayList<Long> arr = new ArrayList<>(); for(long i : a) { arr.add(i); } Collections.sort(arr); for(int i = 0; i < arr.size(); i++) { a[i] = arr.get(i); } return a; } static int[] sort(int a[]) { ArrayList<Integer> arr = new ArrayList<>(); for(Integer i : a) { arr.add(i); } Collections.sort(arr); for(int i = 0; i < arr.size(); i++) { a[i] = arr.get(i); } return a; } //pair class private static class Pair implements Comparable<Pair> { int first, second; public Pair(int f, int s) { first = f; second = s; } @Override public int compareTo(Pair p) { if (first > p.first) return 1; else if (first < p.first) return -1; else { if (second < p.second) return 1; else if (second > p.second) return -1; else return 0; } } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
ef2bcf40bd07f2c7c2c641488b4601a1
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.Arrays; import java.util.Scanner; //Complex Market Analysis public class ComplexMarketAnalysis { public static void main(String[] args) { ComplexMarketAnalysis.solution(); } public static void solution() { Scanner scanner = new Scanner(System.in); int numCases = Integer.parseInt(scanner.nextLine()); for (int i = 0; i < numCases; i++) { String[] tokens = scanner.nextLine().split(" "); int e = Integer.parseInt(tokens[1]); int[] arr = Arrays.stream(scanner.nextLine().split(" ")).mapToInt(Integer::parseInt).toArray(); int[] pre = new int[arr.length]; long count = 0; for (int j = 0; j < arr.length; j++) { pre[j] = arr[j] == 1 ? 1 : 0; if (j - e >= 0 && arr[j] == 1) { pre[j] += pre[j - e]; } } int[] suf = new int[arr.length]; for (int j = arr.length - 1; j >= 0; j--) { suf[j] = arr[j] == 1 ? 1 : 0; if (j + e < arr.length && arr[j] == 1) { suf[j] += suf[j + e]; } } for (int j = 0; j < arr.length; j++) { if (isPrime(arr[j])) { long left = j - e >= 0 ? pre[j - e] : 0; long right = j + e < arr.length ? suf[j + e] : 0; count = count + left + right + (left * right); } } System.out.println(count); } } private static boolean isPrime(int num) { int sqrt = (int) Math.sqrt(num); for (int i = 2; i <= sqrt; i++) { if (num % i == 0) { return false; } } return num > 1; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3c505c76228d7d629bea53144b7cf2cb
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class J { static ArrayList<Boolean> isPrime; static ArrayList<Integer> primes; static ArrayList<Integer> spf; static void preComputePrimes(int n){ isPrime = new ArrayList<>(n); primes = new ArrayList<>(); spf = new ArrayList<>(n); for(int i=0;i<n;i++){ isPrime.add(true); spf.add(2); } isPrime.set(0, false); isPrime.set(1, false); for(int i=2;i<n;i++){ if(isPrime.get(i)){ primes.add(i); spf.set(i, i); } for(int j=0;j<primes.size() && primes.get(j)<=spf.get(i) && primes.get(j)*i<n;j++){ isPrime.set(i*primes.get(j), false); spf.set(i*primes.get(j), primes.get(j)); } } } static long countPairs(List<Integer> list){ int l = -1; long count = 0; long product = 1; for(int i=0;i<list.size();i++){ if(!isPrime.get(list.get(i)) && list.get(i) != 1){ product = 1; l = -1; continue; } if(l == -1){ l = i; product *= list.get(i); continue; } if(list.get(i) == 1){ count += (i - l); } else{ if(product == 1){ product *= list.get(i); count += (i - l); } else{ while(product != 1){ product /= list.get(l); l++; } product *= list.get(i); count += (i - l); } } } l = 0; for(int i=0;i<list.size();i++){ if(list.get(i) == 1){ count -= (i - l); } else{ l = i + 1; } } return count; } public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); preComputePrimes(1000100); int t = sc.nextInt(); StringBuilder sb = new StringBuilder(); while (t-->0){ int n = sc.nextInt(); int e = sc.nextInt(); int[] arr = sc.nextIntArray(n); long count = 0; for(int j=0;j<e;j++){ List<Integer> list = new ArrayList<>(); for(int i=j;i<n;i+=e){ list.add(arr[i]); } count = count + countPairs(list); } sb.append(count).append("\n"); } System.out.println(sb); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3c2fe32c330aca4ef8984b5858b6047d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
// ceil using integer division: ceil(x/y) = (x+y-1)/y import java.lang.reflect.Array; import java.util.*; import java.lang.*; import java.io.*; public class practice { public static void main(String[] args) throws IOException { Reader.init(System.in); int t = Reader.nextInt(); boolean[] prime = new boolean[(int)1e6 + 1]; for (int i = 0; i <= (int)1e6; i++) prime[i] = true; for (int p = 2; p * p <= (int)1e6; p++) { if (prime[p]){ for (int i = p * p; i <= (int)1e6; i += p) { prime[i] = false; } } } while(t-->0){ int n = Reader.nextInt(); int e = Reader.nextInt(); long[] arr = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Reader.nextLong(); } long[][] dp = new long[n][2]; long ans = 0; for(int i = n-1;i>=0;i--){ if(arr[i]==1){ if(i+e<n){ if(arr[i+e]==1){ dp[i][1] = 1 + dp[i+e][1]; dp[i][0] = dp[i+e][0]; } else if(prime[(int) arr[i+e]]){ dp[i][1] = 1; dp[i][0] = 1 + dp[i+e][0]; } else{ dp[i][1] = 1; } } else{ dp[i][1] = 1; } } else if(prime[(int)arr[i]]){ if(i+e<n && arr[i+e]==1){ dp[i][0] = dp[i+e][1]; } } ans += dp[i][0]; } // for(int i = 0;i<n;i++){ // System.out.println(dp[i][0] +" "+ dp[i][1]); // } System.out.println(ans); } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static long nextLong() throws IOException{ return Long.parseLong(next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
ab07f73985f22263354cb8510e7da4aa
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class CF1609C extends PrintWriter { CF1609C() { super(System.out); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1609C o = new CF1609C(); o.main(); o.flush(); } static final int A = 1000000; boolean[] composite = new boolean[A + 1]; { for (int a = 2; a <= A; a++) { if (composite[a]) continue; for (int b = a + a; b <= A; b += a) composite[b] = true; } } void main() { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int e = sc.nextInt(); int[] aa = new int[n]; for (int i = 0; i < n; i++) { int a = sc.nextInt(); if (a == 1) aa[i] = 1; else if (!composite[a]) aa[i] = 2; } int[] pp = new int[n]; int[] qq = new int[n]; for (int r = 0; r < e; r++) for (int i = r, j; i < n; i = j) { j = i + e; if (aa[i] != 1) continue; while (j < n && aa[j] == 1) j += e; int k = (j - i) / e; if (i >= e && aa[i - e] == 2) qq[i - e] = k; if (j < n && aa[j] == 2) pp[j] = k; } long ans = 0; for (int i = 0; i < n; i++) ans += (long) (pp[i] + 1) * (qq[i] + 1) - 1; println(ans); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
207530e6b0f002bb33bff77a75c02188
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* Rating: 1367 Date: 08-01-2022 Time: 17-30-13 Author: Kartik Papney Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/ Leetcode: https://leetcode.com/kartikpapney/ Codechef: https://www.codechef.com/users/kartikpapney */ import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class C_Complex_Market_Analysis { static HashSet<Integer> set = new HashSet<>(); public static void s() { int n = sc.nextInt(), e = sc.nextInt(); int[] arr = sc.readArray(n); long ans = 0; for (int i = 0; i < arr.length; i++) { if (set.contains(arr[i])) { long l = 0; long r = 0; for (int j = i + e; j < n; j += e) { if (arr[j] == 1) r++; else break; } for (int j = i - e; j >= 0; j -= e) { if (arr[j] == 1) l++; else break; } ans += l + r + l * r; } } p.writeln(ans); } public static void main(String[] args) { set.addAll(Functions.generatePrimes((int) 1e6)); int t = 1; t = sc.nextInt(); while (t-- != 0) { s(); } p.print(); } static final Integer MOD = (int) 1e9 + 7; static final FastReader sc = new FastReader(); static final Print p = new Print(); static class Functions { static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static int max(int[] a) { int max = Integer.MIN_VALUE; for (int val : a) max = Math.max(val, max); return max; } static int min(int[] a) { int min = Integer.MAX_VALUE; for (int val : a) min = Math.min(val, min); return min; } static long min(long[] a) { long min = Long.MAX_VALUE; for (long val : a) min = Math.min(val, min); return min; } static long max(long[] a) { long max = Long.MIN_VALUE; for (long val : a) max = Math.max(val, max); return max; } static long sum(long[] a) { long sum = 0; for (long val : a) sum += val; return sum; } static int sum(int[] a) { int sum = 0; for (int val : a) sum += val; return sum; } public static long mod_add(long a, long b) { return (a % MOD + b % MOD + MOD) % MOD; } public static long pow(long a, long b) { long res = 1; while (b > 0) { if ((b & 1) != 0) res = mod_mul(res, a); a = mod_mul(a, a); b >>= 1; } return res; } public static long mod_mul(long a, long b) { long res = 0; a %= MOD; while (b > 0) { if ((b & 1) > 0) { res = mod_add(res, a); } a = (2 * a) % MOD; b >>= 1; } return res; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long factorial(long n) { long res = 1; for (int i = 1; i <= n; i++) { res = (i % MOD * res % MOD) % MOD; } return res; } public static int count(int[] arr, int x) { int count = 0; for (int val : arr) if (val == x) count++; return count; } public static ArrayList<Integer> generatePrimes(int n) { boolean[] primes = new boolean[n]; for (int i = 2; i < primes.length; i++) primes[i] = true; for (long i = 2; i < primes.length; i++) { if (primes[(int) i]) { for (long j = i * i; j < primes.length; j += i) { primes[(int) j] = false; } } } ArrayList<Integer> arr = new ArrayList<>(); for (int i = 0; i < primes.length; i++) { if (primes[i]) arr.add(i); } return arr; } } static class Print { StringBuffer strb = new StringBuffer(); public void write(Object str) { strb.append(str); } public void writes(Object str) { char c = ' '; strb.append(str).append(c); } public void writeln(Object str) { char c = '\n'; strb.append(str).append(c); } public void writeln() { char c = '\n'; strb.append(c); } public void writes(int[] arr) { for (int val : arr) { write(val); write(' '); } } public void writes(long[] arr) { for (long val : arr) { write(val); write(' '); } } public void writeln(int[] arr) { for (int val : arr) { writeln(val); } } public void print() { System.out.print(strb); } public void println() { System.out.println(strb); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } double[] readArrayDouble(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } String nextLine() { String str = new String(); try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
670727acba2e4f35fb2998394f5f1cd3
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Reader.init(System.in); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); int primes [] = new int[1000001]; primes[0] = primes[1] = 1; int i = 2; while ( i <= 1000000){ if ( primes[i] == 0){ int j = i+i; while ( j <= 1000000){ primes[j] = 1; j+=i; } } i++; } int t = Reader.nextInt(); while ( t > 0 ){ int n = Reader.nextInt(); int e = Reader.nextInt(); int array [] = new int[n]; i = 0; while ( i < n){ array[i] = Reader.nextInt(); i++; } long dp [] = new long[n]; long ans = 0; i = n-1; while ( i >= 0){ boolean b = i + e < n && array[i + e] == 1; if ( primes[array[i]] == 0){ if (b){ dp[i] = dp[i+e]+1; ans+=dp[i]; } } else if (b){ dp[i] = dp[i+e]+1; } i--; } i = 0; while ( i< n){ if ( array[i] == 1){ dp[i] = 0; } i++; } i = n-1; while ( i >= 0){ if ( array[i] == 1){ boolean b = (i+e < n); if ( b){ if ( primes[array[i+e]] == 0){ dp[i] = dp[i+e]+1; ans+=dp[i]; } else if ( array[i+e] == 1){ dp[i] = dp[i+e]; ans+=dp[i]; } } } i--; }output.write(ans+"\n"); t--; } output.flush(); } public static long sub(long sum,long [] array,long k,long all){ boolean a = false; long copySum = sum; long allowed = all; long first = array[0] - allowed; copySum -= array[0]; copySum += first; int last = array.length - 1; for (int i = 1; i <= all && i <= array.length-1 ; i++){ if ( copySum <= k){ a = true; break; } else{ copySum++; copySum+=(i-1); first++; copySum-=array[last]; copySum+=first; last--; if ( copySum <= k){ a = true; break; } } } if ( copySum <= k){ a = true; } if ( a == true){ return 1; } else { return -1; } } private static long newbs(long low,long high,long k,long n,long ans,long f,long sum1,long[] array){ if ( low <= high ){ long mid = low + (high-low)/2; System.out.println("M "+mid); long value = f-mid; long sum = sum1; sum-=f; sum+=mid; int i =(int) n-1; while( i != -1 && sum > k ){ sum+=array[0]; sum-=array[i]; value++; i--; } if ( i == -1){ value--; } if ( value <= ans){ low = mid+1; return newbs(low,high,k,n,value,f,sum1,array); } else{ high = mid-1; return newbs(low,high,k,n,ans,f,sum1,array); } } return ans; } private static int bs(int low,int high,ArrayList<Integer> array,int find){ if ( low <= high ){ int mid = low + (high-low)/2; if ( array.get(mid) > find){ high = mid -1; return bs(low,high,array,find); } else if ( array.get(mid) < find){ low = mid+1; return bs(low,high,array,find); } return mid; } return -1; } private static long max(long a, long b) { return Math.max(a,b); } private static long min(long a,long b){ return Math.min(a,b); } public static long modularExponentiation(long a,long b,long mod){ if ( b == 1){ return a; } else{ long ans = modularExponentiation(a,b/2,mod)%mod; if ( b%2 == 1){ return (a*((ans*ans)%mod))%mod; } return ((ans*ans)%mod); } } public static long sum(long n){ return (n*(n+1))/2; } public static long abs(long a){ return a < 0 ? (-1*a) : a; } public static long gcd(long a,long b){ if ( a == 0){ return b; } else{ return gcd(b%a,a); } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException{ return Long.parseLong(next()); } } /* class NComparator implements Comparator<Node>{ @Override public int compare(Node o1, Node o2) { if ( o2.position > o1.position){ return 1; } else if ( o2.position < o1.position){ return -1; } else{ if ( o2.time < o1.time){ return 1; } else if ( o2.time > o2.time){ return -1; } else{ return 0; } } } } */ class DComparator implements Comparator<Long>{ @Override public int compare(Long o1, Long o2) { if ( o2 > o1){ return 1; } else if ( o2 < o1){ return -1; } else{ return 0; } } } class Node{ int v; int m; Node(int V){ v =V; m =0; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
dbe03bc7a719560c2a277fcfa3178f00
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; int m = 1000_000; boolean prime[] = new boolean[m + 1]; for (int i = 0; i <= m; i++) prime[i] = true; for (int p = 2; p * p <= m; p++) { if (prime[p] == true) { for (int i = p * p; i <= m; i += p) prime[i] = false; } } int inc = 0; while (t-- > 0) { inc++; st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int e = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int arr[] = new int[n]; int onec[] = new int[n]; for (int i = 0; i < n; i++) { int e2 = Integer.parseInt(st.nextToken()); arr[i] = e2; if (e2 == 1) onec[i]++; if (i >= e) { if (arr[i - e] == 1) { onec[i] += onec[i - e]; } } } // if(inc == 119) // output.write(Arrays.toString(arr) + " " + e + "\n"); // output.write(Arrays.toString(onec) + "\n"); long res = 0; for (int i = n - 1; i >= n - e; i--) { int tempc = 0; for (int j = i; j >= 0; j -= e) { if (arr[j] == 1) { tempc++; continue; } else { if (!prime[arr[j]]) { tempc = 0; continue; } // output.write("for i = " + i + " j = " + j + " temp = " + tempc + " onec[j] = " + onec[j] + " res before = " + res + " \n"); res += tempc; res += onec[j]; if (onec[j] > 0 && tempc > 0) res += ((long)tempc * (long)onec[j]); tempc = 0; // output.write("for i = " + i + " j = " + j + " temp = " + tempc + " onec[j] = " + onec[j] + " res before = " + res + " \n"); } } } output.write(res + "\n"); // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
7073cf257d606056c7af0090526f8d8b
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static int mod = (int) (1e9 + 7); static boolean isPrime[]; static void sieve(){ isPrime[1]=false; for(int i=2;i*i<=isPrime.length;i++){ if(isPrime[i]==false)continue; for(int j=i+i;j<isPrime.length;j+=i){ isPrime[j]=false; } } } static void solve() { int n=i(); int e=i(); int[]arr=new int [n+1]; for(int i=1;i<=n;i++)arr[i]=i(); long ans=0; for(int i=1;i<=n;i++){ if(!isPrime[arr[i]])continue; long pehle=0; for(int j=i-e;j>=0;j-=e){ if(arr[j]==1)pehle++; else break; } long aft=0; for(int j=i+e;j<=n;j+=e){ if(arr[j]==1)aft++; else break; } ans+=((pehle*(aft+1))+aft); } sb.append(ans+"\n"); } public static void main(String[] args) { sb = new StringBuilder(); int test = i(); isPrime=new boolean[(int)(1e6+2)]; Arrays.fill(isPrime,true); sieve(); while (test-- > 0) { solve(); } System.out.println(sb); } /* * fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) * { fact[i]=((long)(i%mod)1L(long)(fact[i-1]%mod))%mod; } */ //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = -1; } int find(int a) { if (parent[a] < 0) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; long y; Pair(int x, long y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static char[] sort(char[] a2) { int n = a2.length; ArrayList<Character> l = new ArrayList<>(); for (char i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
7b88768d474b845708586f4f95a42d3c
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.Arrays; import java.util.InputMismatchException; /** * Provide prove of correctness before implementation. Implementation can cost a * lot of time. * Anti test that prove that it's wrong. * <p> * Do not confuse i j k g indexes, upTo and length. Do extra methods!!! Write * more informative names to simulation * <p> * Will program ever exceed limit? * Try all approaches with prove of correctness if task is not obvious. * If you are given formula/rule: Try to play with it. * Analytic solution/Hardcoded solution/Constructive/Greedy/DP/Math/Brute * force/Symmetric data * Number theory * Game theory (optimal play) that consider local and global strategy. */ public class TemplateFast { int n = 1_000_000; boolean[] prime = new boolean[n + 1]; private void precalculate() { Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i <= n; ++i) if (prime[i]) if (i * 1L * i <= n) for (int j = i * i; j <= n; j += i) prime[j] = false; } private void solveOne() { int n = nextInt(); int e = nextInt(); int[] a = nextIntArr(n); int[] dp = new int[n]; int[] one = new int[n]; for(int i = 0 ; i < n; i++) { if(a[i] == 1) { one[i] = 1; } } for (int i = e; i < n; i++) { if (a[i] == 1 && a[i - e] == 1) { one[i] = one[i - e] + 1; } if (prime[a[i]] && a[i - e] == 1) { dp[i] = one[i - e]; } if (prime[a[i]] && prime[a[i - e]]) { dp[i] = 0; } if (a[i] == 1 && prime[a[i - e]]) { dp[i] = dp[i - e] + 1; } if (a[i] == 1 && a[i - e] == 1) { dp[i] = dp[i - e]; } } //System.out.println(Arrays.toString(dp)); long ans = 0; for (int i = 0; i < n; i++) { ans += dp[i]; } System.out.println(ans); } private void solve() { // System.out.println(); precalculate(); int t = System.in.readInt(); for (int tt = 0; tt < t; tt++) { solveOne(); } } class AssertionRuntimeException extends RuntimeException { AssertionRuntimeException(Object expected, Object actual, Object... input) { super("expected = " + expected + ",\n actual = " + actual + ",\n " + Arrays.deepToString(input)); } } private int nextInt() { return System.in.readInt(); } private long nextLong() { return System.in.readLong(); } private String nextString() { return System.in.readString(); } private int[] nextIntArr(int n) { return System.in.readIntArray(n); } private long[] nextLongArr(int n) { return System.in.readLongArray(n); } public static void main(String[] args) { new TemplateFast().run(); } static class System { private static FastInputStream in; private static FastPrintStream out; } private void run() { System.in = new FastInputStream(java.lang.System.in); System.out = new FastPrintStream(java.lang.System.out); solve(); System.out.flush(); } private static class FastPrintStream { private static final int BUF_SIZE = 8192; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastPrintStream() { this(java.lang.System.out); } public FastPrintStream(OutputStream os) { this.out = os; } public FastPrintStream(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastPrintStream print(byte b) { buf[ptr++] = b; if (ptr == BUF_SIZE) innerflush(); return this; } public FastPrintStream print(char c) { return print((byte) c); } public FastPrintStream print(char[] s) { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); } return this; } public FastPrintStream print(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); }); return this; } // can be optimized public FastPrintStream print0(char[] s) { if (ptr + s.length < BUF_SIZE) { for (char c : s) { buf[ptr++] = (byte) c; } } else { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); } } return this; } // can be optimized public FastPrintStream print0(String s) { if (ptr + s.length() < BUF_SIZE) { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); } } else { for (int i = 0; i < s.length(); i++) { buf[ptr++] = (byte) s.charAt(i); if (ptr == BUF_SIZE) innerflush(); } } return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastPrintStream print(int x) { if (x == Integer.MIN_VALUE) { return print((long) x); } if (ptr + 12 >= BUF_SIZE) innerflush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastPrintStream print(long x) { if (x == Long.MIN_VALUE) { return print("" + x); } if (ptr + 21 >= BUF_SIZE) innerflush(); if (x < 0) { print((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } public FastPrintStream print(double x, int precision) { if (x < 0) { print('-'); x = -x; } x += Math.pow(10, -precision) / 2; // if(x < 0){ x = 0; } print((long) x).print("."); x -= (long) x; for (int i = 0; i < precision; i++) { x *= 10; print((char) ('0' + (int) x)); x -= (int) x; } return this; } public FastPrintStream println(char c) { return print(c).println(); } public FastPrintStream println(int x) { return print(x).println(); } public FastPrintStream println(long x) { return print(x).println(); } public FastPrintStream println(String x) { return print(x).println(); } public FastPrintStream println(double x, int precision) { return print(x, precision).println(); } public FastPrintStream println() { return print((byte) '\n'); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } } private static class FastInputStream { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public FastInputStream(InputStream stream) { this.stream = stream; } public double[] readDoubleArray(int size) { double[] array = new double[size]; for (int i = 0; i < size; i++) { array[i] = readDouble(); } return array; } public String[] readStringArray(int size) { String[] array = new String[size]; for (int i = 0; i < size; i++) { array[i] = readString(); } return array; } public char[] readCharArray(int size) { char[] array = new char[size]; for (int i = 0; i < size; i++) { array[i] = readCharacter(); } return array; } public void readIntArrays(int[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readInt(); } } } public void readLongArrays(long[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readLong(); } } } public void readDoubleArrays(double[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readDouble(); } } } public char[][] readTable(int rowCount, int columnCount) { char[][] table = new char[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = this.readCharArray(columnCount); } return table; } public int[][] readIntTable(int rowCount, int columnCount) { int[][] table = new int[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = readIntArray(columnCount); } return table; } public double[][] readDoubleTable(int rowCount, int columnCount) { double[][] table = new double[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = this.readDoubleArray(columnCount); } return table; } public long[][] readLongTable(int rowCount, int columnCount) { long[][] table = new long[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = readLongArray(columnCount); } return table; } public String[][] readStringTable(int rowCount, int columnCount) { String[][] table = new String[rowCount][]; for (int i = 0; i < rowCount; i++) { table[i] = this.readStringArray(columnCount); } return table; } public String readText() { StringBuilder result = new StringBuilder(); while (true) { int character = read(); if (character == '\r') { continue; } if (character == -1) { break; } result.append((char) character); } return result.toString(); } public void readStringArrays(String[]... arrays) { for (int i = 0; i < arrays[0].length; i++) { for (int j = 0; j < arrays.length; j++) { arrays[j][i] = readString(); } } } public long[] readLongArray(int size) { long[] array = new long[size]; for (int i = 0; i < size; i++) { array[i] = readLong(); } return array; } public int[] readIntArray(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = readInt(); } return array; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int peek() { if (numChars == -1) { return -1; } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) { return -1; } } return buf[curChar]; } public int peekNonWhitespace() { while (isWhitespace(peek())) { read(); } return peek(); } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) { return readLine(); } else { return readLine0(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') { return res * Math.pow(10, readInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) { read(); } return value == -1; } public String next() { return readString(); } public SpaceCharFilter getFilter() { return filter; } public void setFilter(SpaceCharFilter filter) { this.filter = filter; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
fde3b00c1d5f262c489bc72d25900f60
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.HashMap; import java.util.Arrays; import java.util.Scanner; public class C519{ public static boolean isPrime(int n){ if (n==1) return false; for(int i=2;i*i<=n;i++){ if (n%i==0) return false; } return true; } public static void main(String[] args){ Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-- >0){ int n=sc.nextInt(); int e=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); boolean arePrimes[]=new boolean[n]; for(int i=0;i<n;i++) arePrimes[i]=isPrime(arr[i]); long ans=0; for(int i=0;i<n;i++){ if (arePrimes[i]){ int left=0; int index=i-e; while(index>=0 && arr[index]==1) { index-=e; left++; } index=i+e; int right=0; while(index<n && arr[index]==1) { index+=e; right++; } ans+=(long)(left+1)*(right+1)-1; } } System.out.println(ans); } sc.close(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
0e45dcea522771dee8a1253a38b8f576
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//some updates in import stuff import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class Main{ static int mod = (int) (Math.pow(10, 9)+7); static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 }; static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 }; static final double eps = 1e-10; static Set<Integer> primeNumbers = new HashSet<>(); public static void main(String[] args) { MyScanner sc = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); primeSieve(100_00_00); //code below int test = sc.nextInt(); while(test -- > 0){ int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for(int i= 0; i < n; i++){ arr[i] = sc.nextInt(); } //divide it in k k types arrays if you want //k loops wiill be there basically for now long answer = 0; for(int i= 0; i < k; i++){ long last = 0; long one = -1; boolean prime = false; int num = 0; for(int j= i; j < n; j += k){ if(arr[j] == 1){ //important fix here boss if(prime) answer += (last+1); if(one == -1) one = num; }else if(!primeNumbers.contains(arr[j])){ // out.println(2); last = 0; one = -1; prime = false; }else{ // out.println(3); if(one == -1){ last = 0; }else{ last = num-one; one = -1; answer += last; } prime = true; } num++; // out.println(answer); } } out.println(answer); } out.close(); } //Updation Required //Fenwick Tree (customisable) //Segment Tree (customisable) //-----CURRENTLY PRESENT-------// //Graph //DSU //powerMODe //power //Segment Tree (work on this one) //Prime Sieve //Count Divisors //Next Permutation //Get NCR //isVowel //Sort (int) //Sort (long) //Binomial Coefficient //Pair //Triplet //lcm (int & long) //gcd (int & long) //gcd (for binomial coefficient) //swap (int & char) //reverse //Fast input and output //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //GRAPH (basic structure) public static class Graph{ public int V; public ArrayList<ArrayList<Integer>> edges; //2 -> [0,1,2] (current) Graph(int V){ this.V = V; edges = new ArrayList<>(V+1); for(int i= 0; i <= V; i++){ edges.add(new ArrayList<>()); } } public void addEdge(int from , int to){ edges.get(from).add(to); } } //DSU (path and rank optimised) public static class DisjointUnionSets { int[] rank, parent; int n; public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; Arrays.fill(rank, 1); Arrays.fill(parent,-1); this.n = n; } public int find(int curr){ if(parent[curr] == -1) return curr; //path compression optimisation return parent[curr] = find(parent[curr]); } public void union(int a, int b){ int s1 = find(a); int s2 = find(b); if(s1 != s2){ if(rank[s1] < rank[s2]){ parent[s1] = s2; rank[s2] += rank[s1]; }else{ parent[s2] = s1; rank[s1] += rank[s2]; } } } } //with mod public static long powerMOD(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ x %= mod; res %= mod; res = (res * x)%mod; } // y must be even now y = y >> 1; // y = y/2 x%= mod; x = (x * x)%mod; // Change x to x^2 } return res%mod; } //without mod public static long power(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ res = (res * x); } // y must be even now y = y >> 1; // y = y/ x = (x * x); } return res; } public static class segmentTree{ public long[] arr; public long[] tree; public long[] lazy; segmentTree(long[] array){ int n = array.length; arr = new long[n]; for(int i= 0; i < n; i++) arr[i] = array[i]; tree = new long[4*n + 1]; lazy = new long[4*n + 1]; } public void build(int[]arr, int s, int e, int[] tree, int index){ if(s == e){ tree[index] = arr[s]; return; } //otherwise divide in two parts and fill both sides simply int mid = (s+e)/2; build(arr, s, mid, tree, 2*index); build(arr, mid+1, e, tree, 2*index+1); //who will build the current position dude tree[index] = Math.min(tree[2*index], tree[2*index+1]); } public int query(int sr, int er, int sc, int ec, int index, int[] tree){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(sc != ec){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap if(sr > ec || sc > er) return Integer.MAX_VALUE; //found the index baby if(sr <= sc && ec <= er) return tree[index]; //finding the index on both sides hehehehhe int mid = (sc + ec)/2; int left = query(sr, er, sc, mid, 2*index, tree); int right = query(sr, er, mid+1, ec, 2*index + 1, tree); return Integer.min(left, right); } //now we will do point update implementation //it should be simple then we expected for sure public void update(int index, int indexr, int increment, int[] tree, int s, int e){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] = lazy[index]; lazy[2*index] = lazy[index]; } lazy[index] = 0; } //no overlap if(indexr < s || indexr > e) return; //found the required index if(s == e){ tree[index] += increment; return; } //search for the index on both sides int mid = (s+e)/2; update(2*index, indexr, increment, tree, s, mid); update(2*index+1, indexr, increment, tree, mid+1, e); //now update the current range simply tree[index] = Math.min(tree[2*index+1], tree[2*index]); } public void rangeUpdate(int[] tree , int index, int s, int e, int sr, int er, int increment){ //if not at all in the same range if(e < sr || er < s) return; //complete then also move forward if(s == e){ tree[index] += increment; return; } //otherwise move in both subparts int mid = (s+e)/2; rangeUpdate(tree, 2*index, s, mid, sr, er, increment); rangeUpdate(tree, 2*index + 1, mid+1, e, sr, er, increment); //update current range too na //i always forget this step for some reasons hehehe, idiot tree[index] = Math.min(tree[2*index], tree[2*index + 1]); } public void rangeUpdateLazy(int[] tree, int index, int s, int e, int sr, int er, int increment){ //update lazy values //resolve lazy value before going down if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap case if(sr > e || s > er) return; //complete overlap if(sr <= s && er >= e){ tree[index] += increment; if(s != e){ lazy[2*index+1] += increment; lazy[2*index] += increment; } return; } //otherwise go on both left and right side and do your shit int mid = (s + e)/2; rangeUpdateLazy(tree, 2*index, s, mid, sr, er, increment); rangeUpdateLazy(tree, 2*index + 1, mid+1, e, sr, er, increment); tree[index] = Math.min(tree[2*index+1], tree[2*index]); return; } } //prime sieve public static void primeSieve(int n){ BitSet bitset = new BitSet(n+1); for(long i = 0; i < n ; i++){ if (i == 0 || i == 1) { bitset.set((int) i); continue; } if(bitset.get((int) i)) continue; primeNumbers.add((int)i); for(long j = i; j <= n ; j+= i) bitset.set((int)j); } } //number of divisors // public static int countDivisors(long number){ // if(number == 1) return 1; // List<Integer> primeFactors = new ArrayList<>(); // int index = 0; // long curr = primeNumbers.get(index); // while(curr * curr <= number){ // while(number % curr == 0){ // number = number/curr; // primeFactors.add((int) curr); // } // index++; // curr = primeNumbers.get(index); // } // if(number != 1) primeFactors.add((int) number); // int current = primeFactors.get(0); // int totalDivisors = 1; // int currentCount = 2; // for (int i = 1; i < primeFactors.size(); i++) { // if (primeFactors.get(i) == current) { // currentCount++; // } else { // totalDivisors *= currentCount; // currentCount = 2; // current = primeFactors.get(i); // } // } // totalDivisors *= currentCount; // return totalDivisors; // } // //now adding next permutation function to java hehe // public static boolean next_permutation(int[] p) { // for (int a = p.length - 2; a >= 0; --a) // if (p[a] < p[a + 1]) // for (int b = p.length - 1;; --b) // if (p[b] > p[a]) { // int t = p[a]; // p[a] = p[b]; // p[b] = t; // for (++a, b = p.length - 1; a < b; ++a, --b) { // t = p[a]; // p[a] = p[b]; // p[b] = t; // } // return true; // } // return false; // } //finding the value of NCR in O(RlogN) time and O(1) space public static long getNcR(int n, int r) { long p = 1, k = 1; if (n - r < r) r = n - r; if (r != 0) { while (r > 0) { p *= n; k *= r; long m = __gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } //is vowel function public static boolean isVowel(char c) { return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U'); } //to sort the array with better method public static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //sort long public static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for calculating binomialCoeff public static int binomialCoeff(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = C[j] + C[j - 1]; } return C[k]; } //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } //Triplet with int int int public static class Triplet{ public int a; public int b; public int c; Triplet(int a , int b, int c){ this.a = a; this.b = b; this.c = c; } @Override public String toString(){ return a + " -> " + b; } } //Shortcut function public static long lcm(long a , long b){ return a * (b/gcd(a,b)); } //let's make one for calculating lcm basically public static int lcm(int a , int b){ return (a * b)/gcd(a,b); } //int version for gcd public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b , a%b); } //long version for gcd public static long gcd(long a, long b){ if(b == 0) return a; return gcd(b , a%b); } //for ncr calculator(ignore this code) public static long __gcd(long n1, long n2) { long gcd = 1; for (int i = 1; i <= n1 && i <= n2; ++i) { // Checks if i is factor of both integers if (n1 % i == 0 && n2 % i == 0) { gcd = i; } } return gcd; } //swapping two elements in an array public static void swap(int[] arr, int left , int right){ int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //for char array public static void swap(char[] arr, int left , int right){ char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //reversing an array public static void reverse(int[] arr){ int left = 0; int right = arr.length-1; while(left <= right){ swap(arr, left,right); left++; right--; } } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
5fdd59b6a5b2816ccddb90b146e6d6da
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class Main { static int MOD = 1000000007; // After writing solution, quick scan for: // array out of bounds // special cases e.g. n=1? // npe, particularly in maps // // Big numbers arithmetic bugs: // int overflow // sorting, or taking max, after MOD void solve() throws IOException { int T = ri(); boolean[] isPrime = sieve(1000000); for (int Ti = 0; Ti < T; Ti++) { int[] ne = ril(2); int n = ne[0]; int e = ne[1]; int[] a = ril(n); // a[i] * a[i+e] * a[i+2*e] * ... * a[i+k*e] // Obviously, the sequence should be all 1s with a single non-1. // e is the skip factor, we can think as e separate lists. long ans = 0; for (int i = 0; i < e; i++) { // Lets aggregate as 1s, X, 1s, X, 1s, X, ..., here 1s can be 0. List<Integer> list = new ArrayList<>(); int countOnes = 0; for (int curr = i; curr < n; curr += e) { if (a[curr] == 1) countOnes++; else { list.add(countOnes); countOnes = 0; list.add(a[curr]); } } list.add(countOnes); for (int j = 1; j < list.size(); j += 2) { if (!isPrime[list.get(j)]) continue; ans += (long) (list.get(j-1)+1) * (list.get(j+1)+1); } } for (int ai : a) if (isPrime[ai]) ans--; pw.println(ans); } } // IMPORTANT // DID YOU CHECK THE COMMON MISTAKES ABOVE? // Computes and returns an array prime, where prime[i] is true if i is prime // and false otherwise (for i <= n). Implemented using linear sieve. O(n). public static boolean[] sieve(int n) { List<Integer> primes = new ArrayList<>(); boolean[] prime = new boolean[n + 1]; Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i <= n; i++) { if (prime[i]) primes.add(i); for (int j = 0; j < primes.size() && i * primes.get(j) <= n; j++) { prime[i * primes.get(j)] = false; if (i % primes.get(j) == 0) break; } } return prime; } // Template code below BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) throws IOException { Main m = new Main(); m.solve(); m.close(); } void close() throws IOException { pw.flush(); pw.close(); br.close(); } int ri() throws IOException { return Integer.parseInt(br.readLine().trim()); } long rl() throws IOException { return Long.parseLong(br.readLine().trim()); } int[] ril(int n) throws IOException { int[] nums = new int[n]; int c = 0; for (int i = 0; i < n; i++) { int sign = 1; c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } nums[i] = x * sign; } while (c != '\n' && c != -1) c = br.read(); return nums; } long[] rll(int n) throws IOException { long[] nums = new long[n]; int c = 0; for (int i = 0; i < n; i++) { int sign = 1; c = br.read(); long x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } nums[i] = x * sign; } while (c != '\n' && c != -1) c = br.read(); return nums; } int[] rkil() throws IOException { int sign = 1; int c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } return ril(x); } long[] rkll() throws IOException { int sign = 1; int c = br.read(); int x = 0; if (c == '-') { sign = -1; c = br.read(); } while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = br.read(); } return rll(x); } char[] rs() throws IOException { return br.readLine().toCharArray(); } void sort(int[] A) { Random r = new Random(); for (int i = A.length-1; i > 0; i--) { int j = r.nextInt(i+1); int temp = A[i]; A[i] = A[j]; A[j] = temp; } Arrays.sort(A); } void printDouble(double d) { pw.printf("%.16f", d); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
db27908dfd381a8bab265910845da130
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main { static final int M = 1000000007; static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long[] readArrayLong(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[] readArrayInt(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } static class Pair<F, S> { public F first; public S second; Pair(F first, S second) { this.first = first; this.second = second; } public F getFirst() { return this.first; } public S getSecond() { return this.second; } } static long __gcd(long a, long b) { if (b == 0) return a; return __gcd(b, a % b); } /* Iterative Function to calculate (x^y) in O(log y) */ static long power(long a, long b) { if (b == 0) return 1; if (b % 2 == 1) return (a * power((a * a) % M, b / 2)) % M; return power((a * a) % M, b / 2); } public static void main(String[] args) throws IOException { FastScanner fs = new FastScanner(); int T = fs.nextInt(); // int T = 1; StringBuffer res = new StringBuffer(); boolean[] isPrime = new boolean[1000001]; seive(isPrime); for (int t = 1; t <= T; t++) { int n = fs.nextInt(), e = fs.nextInt(); int[] a = fs.readArrayInt(n); long ans = 0; for (int i = 0; i < n; i++) { long l = 0, r = 0; if (isPrime[a[i]]) { for (int j = i + e; j < n; j += e) { if (a[j] == 1) r++; else break; } for (int j = i - e; j >= 0; j -= e) { if (a[j] == 1) l++; else break; } } ans += (l + r + l * r); } res.append(ans).append("\n"); } System.out.println(res); } private static void seive(boolean[] isPrime) { isPrime[0] = isPrime[1] = false; for (int i = 2; i < isPrime.length; i++) { isPrime[i] = true; } for (int i = 2; i * i < isPrime.length; i++) { if (isPrime[i]) { for (int j = i * i; j < isPrime.length; j += i) { isPrime[j] = false; } } } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
4ae01ae983fd321ba9021387fb42a930
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args){ Scanner in = new Scanner(System.in); boolean pass[] = new boolean[1000006]; int arr[] = new int[200005]; pass[1] = true; for(int i = 2;i<=1000000;i++) { if(pass[i])continue; for(int j = 2;(long)i*j<=1000000;j++) { pass[i*j] = true; } } int t = in.nextInt(); while(t-->0) { int n,d; n = in.nextInt(); d = in.nextInt(); for(int i = 1;i<=n;i++) { arr[i] = in.nextInt(); } long res = 0; for(int i = 1;i<=d;i++) { int p = i; while(p<=n) { while(p<=n&&pass[arr[p]]) { p+=d; } int l = p - d; int r = p + d; long a = 0; long b = 0; if(p>n)break; while(l>=1&&arr[l]==1) { l-=d; a++; } while(r<=n&&arr[r]==1) { r+=d; b++; } res += (a+1)*(b+1) - 1; p += d; } } System.out.println(res); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 11
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e6aaa1fe63ab66959381003fd3365d74
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { int first, second,third; public Tuple(int first, int second, int third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int[] parent; int[] rank; //Size of the trees is used as the rank public DSU(int n) { parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) //finding through path compression { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public boolean union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return false; //if they are already connected we exit by returning false. // if a's parent is less than b's parent if(rank[a] < rank[b]) { //then move a under b parent[a] = b; } //else if rank of j's parent is less than i's parent else if(rank[a] > rank[b]) { //then move b under a parent[b] = a; } //if both have the same rank. else { //move a under b (it doesnt matter if its the other way around. parent[b] = a; rank[a] = 1 + rank[a]; } return true; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long modPow(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return modPow(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Integer> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Integer> l = new ArrayList<>(); for (int p = 2; p*p<=n; p++) { if (prime[p] == true) { for(int i = p*p; i<=n; i += p) { prime[i] = false; } } } for (int p = 2; p<=n; p++) { if (prime[p] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(long a[], long x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(long a[], long x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(), k = sc.nextInt(); int[] a = sc.readArray(n); long res = 0; for(int i = 0;i<n;i++) { if(isPrime(a[i])) { int j = i + k, c = 1; while(j < n && a[j] == 1) { c+=1; j+=k; } j = i - k; res += c; while(j >= 0 && a[j] == 1) { res += c; j -= k; } res-=1; } } fout.println(res); } fout.close(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
f5470a8540b4bba2f415eaac38f3bbcc
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { int first, second,third; public Tuple(int first, int second, int third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int[] parent; int[] rank; //Size of the trees is used as the rank public DSU(int n) { parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) //finding through path compression { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public boolean union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return false; //if they are already connected we exit by returning false. // if a's parent is less than b's parent if(rank[a] < rank[b]) { //then move a under b parent[a] = b; } //else if rank of j's parent is less than i's parent else if(rank[a] > rank[b]) { //then move b under a parent[b] = a; } //if both have the same rank. else { //move a under b (it doesnt matter if its the other way around. parent[b] = a; rank[a] = 1 + rank[a]; } return true; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long modPow(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return modPow(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Integer> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Integer> l = new ArrayList<>(); for (int p = 2; p*p<=n; p++) { if (prime[p] == true) { for(int i = p*p; i<=n; i += p) { prime[i] = false; } } } for (int p = 2; p<=n; p++) { if (prime[p] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(long a[], long x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(long a[], long x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(), k = sc.nextInt(); int[] a = sc.readArray(n); long res = 0; int[] dp = new int[n]; for(int i = 0;i<n;i++) { if(isPrime(a[i])) { int j = i + k, c = 1; while(j < n && a[j] == 1) { c+=1; j+=k; } j = i - k; res += c; while(j >= 0 && a[j] == 1) { res += c; j -= k; } res--; } } fout.println(res); } fout.close(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
debd1b4192dc257eb97fd92863d320d7
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.StringTokenizer; public class C_Complex_Marke_Analysis { static Scanner in=new Scanner(); static PrintWriter out=new PrintWriter( new OutputStreamWriter(System.out) ); static int testCases,n,k,N=10000007; static int a[]; static boolean primes[]=new boolean[10000007]; static StringBuilder finalAns=new StringBuilder(); static void solve(){ boolean visited[]=new boolean[n+1]; long ans=0; ArrayList<Integer> ones=new ArrayList<>(); for(int i=1;i<=n;i++){ // ArrayList<Integer> ones=new ArrayList<>(); int one=0; if(!visited[i] ){ // visited[i]=true; ones=new ArrayList<>(); //one=0; for(int j=i;j<=n;j+=k){ if((a[j]!=1 && !primes[a[j]] ) || visited[j] ){ break; } visited[j]=true; if(a[j]==1 ){ one++; }else{ ones.add(one); one=0; } } if(ones.size()==0 ){ continue; } ones.add(one); int y=ones.size(); long arr[]=new long[y]; int index=0; while(!ones.isEmpty() ){ arr[index++]=ones.popFront(); } for(int j=0;j<y;j++){ ans+=arr[j]; if(j>0 && j<y-1){ ans+=arr[j]; } if(j<y-1){ ans+=arr[j]*arr[j+1]; } } } } finalAns.append(ans).append("\n"); // out.println(ans); //out.flush(); } public static void main(String[] amit) throws IOException { testCases=in.nextInt(); findPrimes(); for(int t=0;t<testCases;t++){ n=in.nextInt(); k=in.nextInt(); a=new int[n+1]; for(int i=1;i<=n;i++){ a[i]=in.nextInt(); } solve(); } out.print(finalAns.toString()); out.flush(); in.close(); } static void findPrimes(){ boolean used[]=new boolean[N+1]; for(int i=2;i<N;i++){ if(!used[i] ){ primes[i]=true; for(int j=i;j<N;j+=i){ used[j]=true; } } } } static String sum(String a,String b){ StringBuilder ans=new StringBuilder(); int n1=a.length(),m=b.length(); if(n1>m ){ String t=a; a=b; b=t; } n1=a.length(); m=b.length(); StringBuilder str1=new StringBuilder(a).reverse(); StringBuilder str2=new StringBuilder(b).reverse(); char first[]=str1.toString().toCharArray(); char second[]=str2.toString().toCharArray(); int carry=0; for(int i=0;i<n1;i++){ int sum=(first[i]-'0')+(second[i]-'0')+carry; ans.append(sum%10 ); carry=sum/10; } for(int i=n1;i<m;i++){ int sum=(second[i]-'0')+carry; ans.append(sum%10 ); sum/=10; } if(carry>0){ ans.append(carry); } ans.reverse(); return ans.toString(); } static String mul(String num1, String num2) { int len1 = num1.length(); int len2 = num2.length(); if (len1 == 0 || len2 == 0) return "0"; int result[] = new int[len1 + len2]; int i_n1 = 0; int i_n2 = 0; for (int i = len1 - 1; i >= 0; i--) { int carry = 0; int n1 = num1.charAt(i) - '0'; i_n2 = 0; for (int j = len2 - 1; j >= 0; j--) { int n2 = num2.charAt(j) - '0'; int sum = n1 * n2 + result[i_n1 + i_n2] + carry; carry = sum / 10; result[i_n1 + i_n2] = sum % 10; i_n2++; } if (carry > 0) result[i_n1 + i_n2] += carry; i_n1++; } int i = result.length - 1; while (i >= 0 && result[i] == 0) i--; if (i == -1) return "0"; String s = ""; while (i >= 0) s += (result[i--]); return s; } static int multiply(int x, int res[], int res_size) { int carry = 0; for (int i = 0; i < res_size; i++) { int prod = res[i] * x + carry; res[i] = prod % 10; carry = prod / 10; } while (carry > 0) { res[res_size] = carry % 10; carry = carry / 10; res_size++; } return res_size; } static long power(int x, int n) { int MAX = 100000; if(n == 0 ){ return 1; } int res[] = new int[MAX]; int res_size = 0; int temp = x; while (temp != 0) { res[res_size++] = temp % 10; temp = temp / 10; } for (int i = 2; i <= n; i++) res_size = multiply(x, res, res_size); StringBuilder sb=new StringBuilder(); for (int i = res_size - 1; i >= 0; i--) sb.append(res[i]); return Long.parseLong(sb.toString()); } static class Node<T>{ T data; Node<T> next; public Node() { this.next=null; } public Node(T data) { this.data = data; this.next=null; } public T getData() { return data; } public void setData(T data) { this.data = data; } public Node<T> getNext() { return next; } public void setNext(Node<T> next) { this.next = next; } @Override public String toString(){ return this.getData().toString()+" "; } } static class ArrayList<T>{ Node<T> head,tail; int len; public ArrayList() { this.head=null; this.tail=null; this.len=0; } int size(){ return len; } boolean isEmpty(){ return len==0; } int indexOf(T data){ if( isEmpty() ){ throw new ArrayIndexOutOfBoundsException(); } Node<T> temp=head; int index=0,i=0; while(temp!=null){ if( temp.getData()==data ){ index=i; } i++; temp=temp.getNext(); } return index; } void add(T data){ Node<T> newNode=new Node<>(data); if( isEmpty() ){ head=newNode; tail=newNode; len++; }else{ tail.setNext(newNode); tail=newNode; len++; } } void see(){ if( isEmpty() ){ throw new ArrayIndexOutOfBoundsException(); } Node<T> temp=head; while( temp!=null ){ out.print(temp.getData().toString()+" "); out.flush(); temp=temp.getNext(); } out.println(); out.flush(); } void inserFirst(T data){ Node<T> newNode=new Node<>(data); Node<T> temp=head; if( isEmpty() ){ head=newNode; tail=newNode; len++; }else{ newNode.setNext(temp); head=newNode; len++; } } T get(int index){ if( isEmpty() || index>=len ){ throw new ArrayIndexOutOfBoundsException(); } Node<T> temp=head; if(index==0){ return temp.getData(); } int i=0; T data=null; while(temp!=null){ if( i==index ){ data=temp.getData(); } i++; temp=temp.getNext(); } return data; } void addAt(T data,int index){ if( index>=len ){ throw new ArrayIndexOutOfBoundsException(); } Node<T> newNode=new Node<>(data); int i=0; Node<T> temp=head; while( temp.next!=null ){ if(i==index){ newNode.setNext(temp.next); temp.next=newNode; } i++; temp=temp.getNext(); } // temp.setNext(temp); len++; } T popFront(){ if( isEmpty() ){ throw new ArrayIndexOutOfBoundsException(); } T data=head.getData(); if( head==tail ){ head=null; tail=null; }else{ head=head.getNext(); } len--; return data; } void removeAt(int index){ if( index>=len ){ throw new ArrayIndexOutOfBoundsException(); } if(index==0){ this.popFront(); return; } Node<T> temp=head; int i=0; Node<T> n=new Node<>(); while(temp!=null){ if(i==index){ n.next=temp.next; temp.next=n; break; } i++; n=temp; temp=temp.getNext(); } tail=n; --len; } void clearAll(){ this.head=null; this.tail=null; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void merge(long a[],int left,int right,int mid){ int n1=mid-left+1,n2=right-mid; long L[]=new long[n1]; long R[]=new long[n2]; for(int i=0;i<n1;i++){ L[i]=a[left+i]; } for(int i=0;i<n2;i++){ R[i]=a[mid+1+i]; } int i=0,j=0,k1=left; while(i<n1 && j<n2){ if( L[i]<=R[j] ){ a[k1]=L[i]; i++; }else{ a[k1]=R[j]; j++; } k1++; } while(i<n1){ a[k1]=L[i]; i++; k1++; } while(j<n2){ a[k1]=R[j]; j++; k1++; } } static void sort(long a[],int left,int right){ if(left>=right){ return; } int mid=(left+right)/2; sort(a,left,mid); sort(a,mid+1,right); merge(a,left,right,mid); } static class Node1<T>{ T data; Node1 next; public Node1(T data) { this.data = data; this.next=null; } public T getData() { return data; } public void setData(T data) { this.data = data; } public Node1 getNext() { return next; } public void setNext(Node1 next) { this.next = next; } } static class Stack<T>{ int len; Node1<T> node; public Stack() { len=0; node=null; } boolean isEmpty(){ return len==0; } int size(){ return len; } void push(T data){ Node1<T> temp=new Node1<>(data); temp.setNext(this.node); node=temp; len++; } T top(){ if( isEmpty() ){ throw new ArrayIndexOutOfBoundsException(); } return this.node.getData(); } T pop(){ if( isEmpty() ){ throw new ArrayIndexOutOfBoundsException(); } T data=this.node.getData(); this.node=this.node.getNext(); len--; return data; } } static class Scanner{ BufferedReader in; StringTokenizer st; public Scanner() { in=new BufferedReader( new InputStreamReader(System.in) ); } String next() throws IOException{ while(st==null || !st.hasMoreElements()){ st=new StringTokenizer(in.readLine()); } return st.nextToken(); } int nextInt() throws IOException{ return Integer.parseInt(next()); } long nextLong() throws IOException{ return Long.parseLong(next()); } String nextLine() throws IOException{ return in.readLine(); } char nextChar() throws IOException{ return next().charAt(0); } double nextDouble() throws IOException{ return Double.parseDouble(next()); } float nextFloat() throws IOException{ return Float.parseFloat(next()); } boolean nextBoolean() throws IOException{ return Boolean.parseBoolean(next()); } void close() throws IOException{ in.close(); } } } /* 1 7 3 10 2 1 3 1 19 3 */ /* 6 7 3 10 2 1 3 1 19 3 3 2 1 13 1 9 3 2 4 2 1 1 1 1 4 2 3 1 1 1 1 4 1 1 2 1 1 2 2 1 2 */ /* 1 9 3 2 4 2 1 1 1 1 4 2 */
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3834a738d8c2bd6a90c7375cd954d0a9
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class solution { static boolean prime[] = new boolean[1000001]; public static void main(String[] args) { FScanner sc = new FScanner(); Arrays.fill(prime, true); sieve(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int e=sc.nextInt(); int arr[]=new int[n]; long l[]=new long[n]; long r[]=new long[n]; for(int i=0;i<n;i++) { arr[i]=sc.nextInt(); } long ans=0; for(int i=0;i<n;i++) { if(arr[i]==1) { l[i]=1; } if(i-e>=0 && arr[i-e]==1) {l[i]+=l[i-e];} } for(int i=n-1;i>=0;i--) { if(arr[i]==1) { r[i]=1; } if(i+e<n && arr[i+e]==1) { r[i]+=r[i+e]; } } for(int i=0;i<n;i++) { if(prime[arr[i]]) { long l_count=0,r_count=0; if(i-e>=0 && arr[i-e]==1) l_count=l[i-e]; if(i+e<n && arr[i+e]==1) r_count=r[i+e]; ans=ans+ (l_count+1)*(r_count+1)-1; } } System.out.println(ans); } } public static void sieve() { prime[0]=prime[1]=false; int n=1000000; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } } } class pair implements Comparable<pair>{ int f;int ind; public pair(int f,int ind) { this.f=f; this.ind=ind; } public int compareTo(pair p) {return this.f-p.f;} } class FScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer sb = new StringTokenizer(""); String next(){ while(!sb.hasMoreTokens()){ try{ sb = new StringTokenizer(br.readLine()); } catch(IOException e){ } } return sb.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } float nextFloat(){ return Float.parseFloat(next()); } double nextDouble(){ return Double.parseDouble(next()); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
16598fbecd854ecbc8c94ee9ea8c89ee
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] hi) { FastIO io = new FastIO(); int t = io.nextInt(); while (t --> 0) { int n = io.nextInt(), e = io.nextInt(); int[] array = new int[n]; boolean[] prime = new boolean[n]; for (int i=0; i<n; i++) { array[i] = io.nextInt(); } //System.out.println(Arrays.toString(prime)); long answer = 0; for (int i=0; i<e; i++) { long left = 0, right = 0; boolean side = true; for (int j=i; j<n; j+=e) { if (side) { if (array[j] == 1) { left++; } else if (isPrime(array[j])) { side = false; } else if (!isPrime(array[j])) { left = 0; right = 0; } } else { if (array[j] == 1) { right++; } else if (isPrime(array[j])) { answer += (left + right + (left*right)); left = right; right = 0; } else if (!isPrime(array[j])) { answer += (left + right + (left*right)); left = 0; right = 0; side = true; } } } if (!side) { answer += (left + right + (left*right)); } } io.println(answer); } io.close(); } static long[] dp = new long[(int)Math.pow(10, 7)]; static boolean isPrime(int n) { if (n == 1) { return false; } if (dp[n] != 0) { if (dp[n] == 1) return true; else return false; } for (int i=2; i<=Math.sqrt(n); i++) { if (n%i == 0) { dp[n] = 2; return false; } } dp[n] = 1; return true; } static class FastIO extends PrintWriter { BufferedReader br; StringTokenizer st; public FastIO() { super(System.out); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { try { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } catch (Exception e) { return null; } } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { return Long.parseLong(next()); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } super.close(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
8eebda916826d11cc2e5d9a5426dc4fe
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] hi) { FastIO io = new FastIO(); int t = io.nextInt(); while (t --> 0) { int n = io.nextInt(), e = io.nextInt(); int[] array = new int[n]; boolean[] prime = new boolean[n]; for (int i=0; i<n; i++) { array[i] = io.nextInt(); prime[i] = isPrime(array[i]); } //System.out.println(Arrays.toString(prime)); long answer = 0; for (int i=0; i<e; i++) { long left = 0, right = 0; boolean side = true; for (int j=i; j<n; j+=e) { if (side) { if (array[j] == 1) { left++; } else if (prime[j]) { side = false; } else if (!prime[j]) { left = 0; right = 0; } } else { if (array[j] == 1) { right++; } else if (prime[j]) { answer += (left + right + (left*right)); left = right; right = 0; } else if (!prime[j]) { answer += (left + right + (left*right)); left = 0; right = 0; side = true; } } } if (!side) { answer += (left + right + (left*right)); } } io.println(answer); } io.close(); } static boolean isPrime(int n) { if (n == 1) { return false; } for (int i=2; i<=Math.sqrt(n); i++) { if (n%i == 0) { return false; } } return true; } static class FastIO extends PrintWriter { BufferedReader br; StringTokenizer st; public FastIO() { super(System.out); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { try { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } catch (Exception e) { return null; } } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { return Long.parseLong(next()); } public void close() { try { br.close(); } catch (IOException e) { e.printStackTrace(); } super.close(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
d0d5989fef01f35cc82158dcb5aad566
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/*========================================================================== * AUTHOR: RonWonWon * CREATED: 01.12.2021 01:54:42 /*==========================================================================*/ import java.io.*; import java.util.*; public class C { public static void main(String[] args) throws IOException { /* in.ini(); PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); */ long startTime = System.nanoTime(); int t = in.nextInt(), T = 1; prime = new int[1_000_002]; prime[1] = 1; for(int i=2;i*i<=1_000_001;i++){ if(prime[i]==0) for(int p=i*i;p<=1_000_001;p+=i) prime[p] = 1; } while(t-->0) { int n = in.nextInt(), e = in.nextInt(); a = in.readArrayL(n); long cnt = 0; long pre[] = new long[n]; for(int i=0;i<e;i++) pre[i] = a[i]-1; for(int i=e;i<n;i++){ pre[i] = pre[i-e] + a[i]-1; } for(int i=0;i<n;i++){ if(prime[(int)a[i]]!=0) continue; long x = bs1(pre,i,e); long y = bs2(pre,i,e); if(y==0) cnt += x; else if(x==0) cnt += y; else cnt += (x+1)*(y+1) - 1; //out.println(i+" "+x+" "+y); } out.println(cnt); //out.println("Case #"+T+": "+ans); T++; } /* startTime = System.nanoTime() - startTime; System.err.println("Time: "+(startTime/1000000)); */ out.flush(); } static int bs2(long pre[], int i, int e){ int n = pre.length, low = 1, mid, high = 1_000_000; while(low<=high){ mid = (low+high)>>1; if(i-(long)e*mid<0) high = mid-1; else{ long p = pre[i] - pre[i-e*mid] + a[i-e*mid]-1; if(p+1==a[i]) low = mid+1; else high = mid-1; } } return high; } static int bs1(long pre[], int i, int e){ int n = pre.length, low = 1, mid, high = 1_000_000; while(low<=high){ mid = (low+high)>>1; if(i+(long)e*mid>=n) high = mid-1; else{ long p = pre[i+e*mid] - pre[i] + a[i]-1; if(p+1==a[i]) low = mid+1; else high = mid-1; } } return high; } static int prime[]; static long a[]; static FastScanner in = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); static int oo = Integer.MAX_VALUE; static long ooo = Long.MAX_VALUE; static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); void ini() throws FileNotFoundException { br = new BufferedReader(new FileReader("input.txt")); } String next() { while(!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch(IOException e) {} return st.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } long[] readArrayL(int n) { long a[] = new long[n]; for(int i=0;i<n;i++) a[i] = nextLong(); return a; } double nextDouble() { return Double.parseDouble(next()); } double[] readArrayD(int n) { double a[] = new double[n]; for(int i=0;i<n;i++) a[i] = nextDouble(); return a; } } static final Random random = new Random(); static void ruffleSort(int[] a){ int n = a.length; for(int i=0;i<n;i++){ int j = random.nextInt(n), temp = a[j]; a[j] = a[i]; a[i] = temp; } Arrays.sort(a); } static void ruffleSortL(long[] a){ int n = a.length; for(int i=0;i<n;i++){ int j = random.nextInt(n); long temp = a[j]; a[j] = a[i]; a[i] = temp; } Arrays.sort(a); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
6479b67c466739ffff26d9eabccfe0ed
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; import java.lang.*; import static java.lang.Math.*; // Sachin_2961 submission // public class Codeforces { static boolean[] mark; static void solve() { int n = fs.nInt(), e = fs.nInt(); int[]ar = new int[n]; for(int i=0;i<n;i++) ar[i] = fs.nInt(); long ans = 0; for(int i=0;i<n;i++){ if( mark[ar[i]] ){ int k = i + e; long cnt1 = 0; while (k < n && ar[k] == 1){ k+=e; cnt1++; } k = i - e; long cnt2 = 0; while ( k >=0 && ar[k] == 1){ k -= e; cnt2++; } ans += (cnt1+1)*(cnt2+1) -1; // out.println(ar[i]+" "+k); } } out.println(ans); } static boolean[] findPrime(int bound) { mark = new boolean[bound + 1]; mark[0] = false; mark[1] = false; for (int i = 2; i <= bound; i++) mark[i] = true; for (int i = 2; i * i <= bound; i++) { if (mark[i]) { for (int j = i * i; j <= bound; j += i) mark[j] = false; } } return mark; } static class Pair{ int f,s; Pair(int f,int s){ this.f = f; this.s = s; } } static boolean multipleTestCase = true; static FastScanner fs; static PrintWriter out; public static void main(String[]args){ try{ out = new PrintWriter(System.out); fs = new FastScanner(); int tc = multipleTestCase?fs.nInt():1; findPrime((int)1e6+10); while (tc-->0)solve(); out.flush(); out.close(); }catch (Exception e){ e.printStackTrace(); } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String n() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String Line() { String str = ""; try { str = br.readLine(); }catch (IOException e) { e.printStackTrace(); } return str; } int nInt() {return Integer.parseInt(n()); } long nLong() {return Long.parseLong(n());} double nDouble(){return Double.parseDouble(n());} int[]aI(int n){ int[]ar = new int[n]; for(int i=0;i<n;i++) ar[i] = nInt(); return ar; } } public static void sort(int[] arr){ ArrayList<Integer> ls = new ArrayList<Integer>(); for(int x: arr) ls.add(x); Collections.sort(ls); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } public static void sort(long[] arr){ ArrayList<Long> ls = new ArrayList<>(); for(long x: arr) ls.add(x); Collections.sort(ls); for(int i=0; i < arr.length; i++) arr[i] = ls.get(i); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e01a4570a6510381a3a47f4a0fac01e3
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class C1609{ static FastScanner fs = null; public static void main(String[] args) { fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = fs.nextInt(); int N = (int)1e6+4; boolean prime[] = new boolean[N]; for(int i=2;i<=Math.sqrt(N);i++){ for(int j = i*i;j<N;j+=i){ prime[j] = true; } } prime[1] = true; while(t-->0){ int n = fs.nextInt(); int e = fs.nextInt(); int a[] = new int[n+1]; int s = 0; for(int i=1;i<=n;i++){ int num = fs.nextInt(); if(!prime[num]) s+=1; a[i] = num; } long ans = (long)0; if(e==1){ int pre[] = new int[n+2]; int suf[] = new int[n+2]; pre[0] = 0; suf[n+1] = 0; for(int i=1;i<=n;i++){ if(a[i]==1){ pre[i]=pre[i-1]+1; } else{ pre[i] = 0; } } for(int i=n;i>=1;i--){ if(a[i]==1){ suf[i]=suf[i+1]+1; } else{ suf[i] = 0; } } for(int i=1;i<=n;i++){ if(!prime[a[i]]){ long su = (long)(pre[i-1]); long s2 = (long)suf[i+1]+(long)1; ans+=((su*s2)); ans+=((s2-(long)1)); } } // if(s!=0) // ans+=pre[n]; } else{ for(int i=1;i<=n;i++){ int on = 0; int p = 0; for(int k = 0;k<=(n/e);k++){ int id = i+k*e; if(id>n) break; if(a[id]==1){ on+=1; } else if(!prime[a[id]]){ p+=1; } else{ break; } if(p>2){ break; } if(p==1){ if(on>=1) ans+=(long)1; } } } } out.println(ans); } out.close(); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
1d516c34a858751bb72b74704f306021
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 5* Codechef Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 6* Codechef Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 7* Codechef Goal: Become better in CP! Key: Consistency and Discipline Desire: SDE @ Google USA Motto: Do what i Love <=> Love what i do */ import java.util.*; import java.io.*; import java.math.*; public class Coder { static StringBuffer str=new StringBuffer(); static int e, n; static int a[]; static int sz=(int)1e6+1; static boolean np[]=new boolean[sz]; static void cal(){ np[0]=np[1]=true; for(int i=2;i*i<sz;i++){ if(!np[i]){ for(int j=i*i;j<sz;j+=i){ np[j]=true; } } } } static void solve(){ // left[i]=min. valid index // right[i]=max. valid index int left[]=new int[n]; int right[]=new int[n]; for(int i=0;i<e;i++){ int j=i; int mn=n; while(j<n){ if(!np[a[j]]){ left[j]=mn; mn=n; }else if(a[j]==1){ mn=Math.min(j, mn); }else{ mn=n; } j+=e; } } for(int i=n-1;i>n-1-e;i--){ int j=i; int mx=0; while(j>=0){ if(!np[a[j]]){ right[j]=mx; mx=0; }else if(a[j]==1){ mx=Math.max(j, mx); }else{ mx=0; } j-=e; } } long ans=0; for(int i=0;i<n;i++){ if(!np[a[i]]){ int mn=left[i]; int mx=right[i]; if(mn!=n && mx!=0) ans+=((mx-i)/e + 1) * 1l * ((i-mn)/e + 1)-1; else if(mx!=0){ ans+=(mx-i)/e; }else if(mn!=n){ ans+=(i-mn)/e; } } } str.append(ans).append("\n"); } public static void main(String[] args) throws java.lang.Exception { BufferedReader bf; PrintWriter pw; boolean lenv=false; if(lenv){ bf = new BufferedReader( new FileReader("input.txt")); pw=new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); }else{ bf = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); } cal(); int t = Integer.parseInt(bf.readLine().trim()); while (t-- > 0) { String s[]=bf.readLine().trim().split("\\s+"); n=Integer.parseInt(s[0]); e=Integer.parseInt(s[1]); a=new int[n]; s=bf.readLine().trim().split("\\s+"); for(int i=0;i<n;i++) a[i]=Integer.parseInt(s[i]); solve(); } pw.println(str); pw.flush(); // System.outin.print(str); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
a262e59e1ba945eb14d9bc432c918f82
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; /* Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 🔥 5* Codechef Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 🔥🔥 6* Codechef Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 🔥🔥🔥 7* Codechef Goal: Become better in CP! Key: Consistency! */ public class Coder { static StringBuffer str=new StringBuffer(); static int n, e; static int a[]; static boolean prime[]=new boolean[(int)1e6+1]; static void cal(){ prime[0]=prime[1]=true; for(int i=2;i*i<=(int)1e6;i++){ if(!prime[i]){ for(int j=i*i;j<=(int)1e6;j+=i){ prime[j]=true; } } } } static long solve2(List<Integer> l){ long prev=0; long ans=0; for(int i=0;i<l.size();i++){ if(prime[l.get(i)]){ if(l.get(i)==1) prev++; else prev=0; continue; } int j=i+1; int next=0; while(j<l.size() && l.get(j)==1){ next++; j++; } i=j-1; ans+=(prev+1) * (next+1) - 1; prev=next; } return ans; } static void solve(){ long ans=0; for(int i=0;i<e;i++){ List<Integer> l=new ArrayList<>(); for(int j=i;j<=n;j+=e) l.add(a[j]); ans+=solve2(l); } str.append(ans).append("\n"); } public static void main(String[] args) throws java.lang.Exception { BufferedReader bf; PrintWriter pw; boolean lenv=false; if(lenv){ bf = new BufferedReader( new FileReader("input.txt")); pw=new PrintWriter(new BufferedWriter(new FileWriter("output.txt"))); }else{ bf = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); } cal(); int t = Integer.parseInt(bf.readLine().trim()); while (t-- > 0) { String s[]=bf.readLine().trim().split("\\s+"); n=Integer.parseInt(s[0]); e=Integer.parseInt(s[1]); a=new int[n+1]; s=bf.readLine().trim().split("\\s+"); for(int i=1;i<=n;i++){ a[i]=Integer.parseInt(s[i-1]); } solve(); } pw.print(str); pw.flush(); // System.out.print(str); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
6fac94c56d28dddb1cfd75a4f75b4b29
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.*; public class c731 { public static void main(String[] args) throws IOException { //try { FastReader sc = new FastReader(); BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); int n = 1000000; boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++){ if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } HashSet<Integer> check = new HashSet<Integer>(); for (int i = 2; i <= n; i++){ if (prime[i] == true) // System.out.print(i + " "); check.add(i); } int t = sc.nextInt(); for(int o = 0 ; o<t;o++) { int m = sc.nextInt(); int e = sc.nextInt(); int[] arr = new int[m]; for(int i = 0 ; i<m;i++) { arr[i] = sc.nextInt(); } long ans = 0; for(int i = 0 ; i<m;i++) { if(!check.contains(arr[i])) { continue; } int c1 = 0; int k = i + e; while(k<m) { if(arr[k]!=1) { break; } k+=e; c1++; } int c2 = 0; int l = i - e; while(l>=0) { if(arr[l]!=1) { break; } l-=e; c2++; } ans += (long)c1 + (long)c2 + (long)c1*c2; } //System.out.println(ans); //for(int i = 0 ; i<m;i++) { // if(!check.contains(arr[i]) && arr[i]!=1) { // continue; // } // if(check.contains(arr[i])) { // int k = i + e; // while(k<m){ // if(arr[k] !=1) { // break; // } // ans++; // k+=e; // // } // }else { // int k = i +e; // int f = 0; // if(k<m && check.contains(arr[k])) { // ans++; // f = 1; // } // if(f == 1) { // k += e; // while(k<m) { // if(arr[k]!=1) { // break; // } // ans++; // k+=e; // } // } // // } // // //} System.out.println(ans); } //}catch(Exception e ) { // return; //} } public static long smallestDivisor(long n){ if (n % 2 == 0) return 2; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0) return i; } return n; } public static boolean check(String s , ArrayList<Integer> al) { String st = ""; int a = 0; for(int x : al) { st += s.substring(a,x); a = x+1; } st += s.substring(a,s.length()); int i = 0; int j = st.length()-1; // System.out.println(st + " " + al); while(i<=j) { if(st.charAt(i)!=st.charAt(j)) { return false; } i++; j--; } return true; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
a5e6ee58a6f36770da89d9d4e85f7252
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class C { public static void main(String[] args) { FastScanner sc = new FastScanner(); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(), e = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++) a[i] = sc.nextInt(); long res = 0; for(int i = 0; i < e; i++) { boolean primeBeforeOnes = false; long onesBeforePrime = 0; long numOnes = 0; for(int j = i; j < n; j += e) { if(a[j] == 1) numOnes++; else { if(primeBeforeOnes) { res += (numOnes + 1) * (onesBeforePrime + 1) - 1; } if(isPrime(a[j])) { onesBeforePrime = numOnes; primeBeforeOnes = true; } else primeBeforeOnes = false; numOnes = 0; } } if(primeBeforeOnes) { res += (numOnes + 1) * (onesBeforePrime + 1) - 1; } } System.out.println(res); } } static boolean isPrime(int n) { if (n<= 1) { return false; } if(n == 2) return true; if(n % 2 == 0) return false; for (int i = 3; i * i <= n; i+=2) { if (n % i == 0) { return false; } } return true; } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
915bf0fc008918b5b8dd1c314921ce0d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package practice.codeforces.deltix; import java.util.HashSet; import java.util.Scanner; import java.util.Set; // https://codeforces.com/contest/1609/problem/C public class C { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); for (int i = 0; i < t; i++) { int n = scanner.nextInt(); int e = scanner.nextInt(); int[] a = new int[n]; for (int j = 0; j < n; j++) { a[j] = scanner.nextInt(); } System.out.println(count(a, e)); } scanner.close(); } private static Set<Integer> primes = new HashSet<>(); static { primes.add(2); } private static int maxPrime = 2; private static boolean isPrime(int i, boolean fromOutside) { if (i < 2) { return false; } if (i <= maxPrime) { return primes.contains(i); } for (int p : primes) { if (i % p == 0) { return false; } } if (!fromOutside) { primes.add(i); maxPrime = i; return true; } for (int p = maxPrime; p < Math.sqrt(i) + 1; p++) { if (isPrime(p, false)) { if (i % p == 0) { return false; } } } return true; } private static int countOld(int[] a, int e) { int count = 0; for (int i = 0; i < a.length; i++) { if (a[i] == 1) { int numOfOnesPrev = 1; int numOfOnesPost = 0; boolean foundPrime = false; for (int j = i + e; j < a.length; j += e) { if (a[j] == 1) { if (!foundPrime) { a[j] = -1; // to skip it on further iterations numOfOnesPrev++; } else { numOfOnesPost++; } } else if (isPrime(a[j], true) && !foundPrime) { foundPrime = true; a[j] = -1; } else { break; } } if (foundPrime) { count += (numOfOnesPrev + 1) * (numOfOnesPost + 1) - 1; } } else if (isPrime(a[i], true)) { for (int j = i + e; j < a.length; j += e) { if (a[j] == 1) { count++; } else { break; } } } } return count; } private static long count(int[] a, int e) { long count = 0; for (int i = 0; i < a.length && i < e; i++) { long numOfOnesPrev = 0; long numOfOnesPost = 0; boolean foundPrime = false; for (int j = i; j < a.length; j += e) { if (a[j] == 1) { if (!foundPrime) { numOfOnesPrev++; } else { numOfOnesPost++; } } else if (isPrime(a[j], true)) { if (foundPrime) { count += (numOfOnesPrev + 1) * (numOfOnesPost + 1) - 1; numOfOnesPrev = numOfOnesPost; numOfOnesPost = 0; } else { foundPrime = true; } } else { if (foundPrime) { count += (numOfOnesPrev + 1) * (numOfOnesPost + 1) - 1; } numOfOnesPrev = 0; numOfOnesPost = 0; foundPrime = false; } } if (foundPrime) { count += (numOfOnesPrev + 1) * (numOfOnesPost + 1) - 1; } } return count; } private static void check(int expected, int e, int... a) { long c = count(a, e); if (count(a, e) == expected) { System.out.println("ok"); } else { System.out.println(c + " != " + expected); } } // public static void main(String[] args) { // check(2, 3, 10, 2, 1, 3, 1, 19, 3); // check(4, 3, 2, 4, 2, 1, 1, 1, 1, 4, 2); // check(8, 1, 1, 1, 3, 1, 1); // check(2, 1, 3, 1, 1); // check(2, 1, 1, 1, 3); // check(0, 1, 2, 3); // check(1, 1, 4, 1, 3); // check(0, 1, 4, 1, 6, 3); // check(1, 1, 4, 4, 2, 1, 4); // check(0, 1, 4, 3, 5, 4); // check(2, 1, 4, 3, 1, 5, 4); // check(2, 1, 1, 2, 3, 5, 1); // check(8, 1, 1, 2, 1, 1, 3, 5, 1); // check(0, 1, 1, 1, 1, 1, 1); // check(0, 1, 4); // check(0, 1, 4, 6, 8, 3, 6, 9, 10); // // } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e9404eb0038dfd165bb4a324fb7be93c
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); int t; //t = in.nextInt(); t = 1; while (t > 0) { solver.call(in,out); t--; } out.close(); } static class TaskA { int[] isPrime = new int[1000005]; public void call(InputReader in, PrintWriter out) { init(); int t; t = in.nextInt(); //t = 1; while (t > 0) { int n, e; n = in.nextInt(); e = in.nextInt(); int[] arr = new int[n]; ArrayList<Integer>[] arrayLists = new ArrayList[e]; for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); } for (int i = 0; i < e; i++) { arrayLists[i] = new ArrayList<>(); for (int j = i; j < n; j += e) { if(arr[j]!=1) arrayLists[i].add(j); } } int k, l, r, mid; long c = 0; for (int i = 0; i < n; i++) { k = ((n-1) - i)/e; if(k==0) break; if(arr[i]==1){ l = -1; r = arrayLists[i%e].size(); while(l+1 < r){ mid = (l + r)/2; if(arrayLists[i%e].get(mid) < i){ l = mid; } else{ r = mid; } } if(r!=arrayLists[i%e].size()){ if(arrayLists[i%e].size()==r+1){ if(prime(arr[arrayLists[i%e].get(r)])) { c += (n-1 - (arrayLists[i % e].get(r))) / e; c++; } } else{ if(prime(arr[arrayLists[i%e].get(r)])) { c+= (arrayLists[i%e].get(r + 1) -(arrayLists[i%e].get(r))) / e; } } } } else{ if(prime(arr[i])){ l = -1; r = arrayLists[i%e].size(); while(l+1 < r){ mid = (l + r)/2; if(arrayLists[i%e].get(mid)<=i){ l = mid; } else{ r = mid; } } if(r==arrayLists[i%e].size()){ c += (n-1 - i) / e; } else{ c+= (arrayLists[i%e].get(r) - i) / e -1; } } } } out.println(c); t--; } out.close(); } public boolean prime(long a){ return isPrime[(int) a] == 0; } public void init(){ isPrime[1] = 1; for (int i = 2; i*i <= 1000002; i++) { if(isPrime[i]==0){ for (int j = i*i; j < 1000002; j+=i) { isPrime[j] = 1; } } } } } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a,b; public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return o.a - this.a; } } static class arrayListClass { ArrayList<Integer> arrayList2 ; public arrayListClass(ArrayList<Integer> arrayList) { this.arrayList2 = arrayList; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
39fd7fcc8a17f9c714af5c90d6807376
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.StringTokenizer; /** * Accomplished using the EduTools plugin by JetBrains https://plugins.jetbrains.com/plugin/10081-edutools */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Task solver = new Task(); solver.solve(1, in, out); out.close(); } public static class Task { private boolean[] notPrime; private void init() { notPrime = new boolean[1000002]; for(int i=2;i<=1000001;i++) { for(int j=2;j*i<=1000001;j++) { notPrime[i*j] = true; } } } private boolean isPrime(Integer num) { return !notPrime[num]; } public void solve(int cnt, InputReader in, PrintWriter out) { cnt = in.nextInt(); init(); for (int c = 0; c < cnt; c++) { int n = in.nextInt(); int e = in.nextInt(); int[] a = new int[n + 1]; int[] l = new int[n+1]; //记录以e为间隔,到当前数为止的>1的数的数量 int[] r = new int[n+1]; //记录以e为间隔,最近一个大于1的数的索引 for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); } //记录当前点往左连续1的个数,不包含当前点 for(int i=1;i<=n;i++) { if(a[i]==1) { l[i] = i-e>=1?l[i-e]+1:1; } else { l[i] = 0; } } for(int i=n;i>=1;i--) { if(a[i]==1) { r[i] = i+e<=n?r[i+e]+1:1; } else { r[i] = 0; } } long ret = 0; for(int i=1;i<=n;i++) { if(a[i]>1 && isPrime(a[i])) { long l1 = i-e>=1?l[i-e]:0; long r1 = i+e<=n?r[i+e]:0; ret+=l1*r1+l1+r1; } } out.println(ret); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
6bfc112ad402008a7e5d745f88d84521
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package Div2.C; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashSet; import java.util.List; import java.util.Set; public class ComplexMarketAnalysis { private static int LIM = 1000000; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); List<Integer> primes = getPrimes(); Set<Integer> primesSet = new HashSet<>(primes); int t = Integer.parseInt(br.readLine()); while (t > 0) { String[] ne = br.readLine().split(" "); int n = Integer.parseInt(ne[0]); int e = Integer.parseInt(ne[1]); String[] str = br.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = Integer.parseInt(str[i]); long ans = 0; for (int i = 0; i <= e - 1; i++) { int j = i; boolean primeEncountered = false; int onesBeforePrime = 0; int onesAfterPrime = 0; while (j < n) { if(a[j]>1){ if(!primesSet.contains(a[j])){ if (primeEncountered && onesAfterPrime + onesBeforePrime > 0) { ans += (long)(onesBeforePrime + 1) * (onesAfterPrime + 1) - 1; } onesBeforePrime = 0; onesAfterPrime = 0; primeEncountered = false; }else{ if(!primeEncountered){ primeEncountered = true; }else{ if(onesAfterPrime + onesBeforePrime > 0) { ans += (long)(onesBeforePrime + 1) * (onesAfterPrime + 1) - 1; onesBeforePrime = onesAfterPrime; onesAfterPrime = 0; } } } }else{ if(primeEncountered){ onesAfterPrime+=1; }else onesBeforePrime+=1; } j=j+e; } if(primeEncountered && onesAfterPrime + onesBeforePrime > 0) { ans += (long)(onesBeforePrime + 1) * (onesAfterPrime + 1) - 1; } } System.out.println(ans); t--; } } private static List<Integer> getPrimes() { List<Integer> primes = new ArrayList<>(); boolean[] sieve = new boolean[LIM + 1]; for (int i = 2; i * i <= LIM; i++) { if (!sieve[i]) { for (long j = i * i; j <= LIM; j += i) { sieve[(int) j] = true; } } } for (int i = 2; i <= LIM; i++) { if (!sieve[i]) primes.add(i); } return primes; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
912ca413ed5934ed43ec2facb4916cd5
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package com.company; import java.io.FileInputStream; import java.io.InputStream; import java.io.StringReader; import java.util.*; public class Main { public static class Dsu{ int[] parent; Set<Integer>[] rest; Set<Integer>[] restrictions; Dsu(int n, int[][] restrictions) { parent = new int[n]; rest = new Set[n]; for(int i =0; i < n; i ++) parent[i]=i; for(int i =0; i < n; i++) { rest[i] = new HashSet<>(); rest[i].add(i); } this.restrictions = new Set[n]; for(int i =0; i < n; i++) { this.restrictions[i] = new HashSet<>(); } for(int[] restriction : restrictions) { this.restrictions[restriction[0]].add(restriction[1]); this.restrictions[restriction[1]].add(restriction[0]); } } int find(int son) { if(parent[son]==son) return son; return find(parent[son]); } boolean union(int p, int q) { int pp = find(p); int pq = find(q); if(pp==pq) return true; if(valid(rest[pp],restrictions[pq])) { rest[pp].addAll(rest[pq]); parent[pq] = pp; return true; } return false; } boolean valid(Set<Integer> s1, Set<Integer> s2) { for(Integer i : s1) { if(s2.contains(i)) return false; //System.out.println(i); } return true; } } public static boolean[] friendRequests(int n, int[][] restrictions, int[][] requests) { boolean[] ans = new boolean[requests.length]; Dsu dsu = new Dsu(n,restrictions); int i =0; for(int[] req : requests) { ans[i++] = dsu.union(req[0],req[1]); } return ans; } public static void main(String[] args) { // write your code here boolean prime[] = new boolean[1000000 + 1]; for (int i = 0; i <= 1000000; i++) prime[i] = true; for (int p = 2; p * p <= 1000000; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= 1000000; i += p) prime[i] = false; } } Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); while (t-->0) { int n = scanner.nextInt(); int e = scanner.nextInt(); int[] arr = new int[n]; for(int i =0; i < n ; i++) arr[i] = scanner.nextInt(); long sol = 0; for(int i =0 ; i < n; i++) { if(arr[i]>1&&prime[arr[i]]) { int j = i+e; int temp=0; while(j<n&&arr[j]==1) { sol++; j+=e; temp++; } j = i-e; while(j>=0&&arr[j]==1) { sol+=temp+1; j-=e; } } } System.out.println(sol); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
003d24d27dc8e80264140ca35371effc
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; public class C{ static int[] p; public static void main(String[] args) throws IOException{ // br = new BufferedReader(new FileReader(".in")); // out = new PrintWriter(new FileWriter(".out")); // new Thread(null, new (), "fisa balls", 1<<28).start(); int t =readInt(); p= new int[(int)1e6+10]; p[0]=p[1]=0; for (int i = 2; i <p.length;i++) { if (p[i] == 0) { for (int j =i; j < p.length; j+=i) { int temp = j; while(temp%i==0) { p[j]++; temp/=i; } } } } while(t-->0) { int n = readInt(), e =readInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) a[i]=readInt(); long ans = 0; for (int i = 0 ; i < e; i++) { List<Integer> shit = new ArrayList<Integer>(); for (int j = i; j < n; j+=e) { shit.add(a[j]); } int[] pre = new int[shit.size()+1]; for (int j = 0; j < shit.size(); j++) { pre[j+1] = p[shit.get(j)]; pre[j+1]+=pre[j]; } //for(int x: pre) System.out.print(x + " |"); //System.out.println(); for (int j = 1; j < pre.length; j++) { if (pre[j]-pre[j-1] >= 2) continue; if (pre[j]-pre[j-1] ==0) { // Find largest shitter greater than this and the zero int l = j, r = pre.length; while(l+1<r) { int mid = (l+r)/2; if (pre[mid] - pre[j-1] <= 1) l = mid; else r = mid; } int last = l; l = j; r = pre.length; while(l+1<r) { int mid = (l+r)/2; if (pre[mid] - pre[j-1]<=0) l = mid; else r= mid; } ans += last-l; //System.out.println(last - l + " shi"); } else { // In the one case, you want as many zeroes as possible int l = j, r = pre.length; while (l+1<r) { int mid = (l+r)/2; if (pre[mid] == pre[j]) l = mid; else r = mid; } ans += l-j; } } //System.out.println("Ansy" + ans); } out.println(ans); } out.close(); } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static StringTokenizer st = new StringTokenizer(""); static String read() throws IOException{ while (!st.hasMoreElements()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public static int readInt() throws IOException{return Integer.parseInt(read());} public static long readLong() throws IOException{return Long.parseLong(read());} }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
82340b80bcb2adc2dd285d5a43d2b548
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* || श्री राम समर्थ || || जय जय रघुवीर समर्थ || */ import java.io.IOException; import java.io.InputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.util.*; import static java.util.Arrays.sort; public class CodeforcesTemp { static Reader scan = new Reader(); static FastPrinter out = new FastPrinter(); static int max = 1000001; static int primes[] = new int[max]; public static void main(String[] args) throws IOException { int tt = scan.nextInt(); // int tt = 1; primeinit(); for (int tc = 1; tc <= tt; tc++) { long n= scan.nextLong(); long e= scan.nextLong(); long[] arr= scan.nextLongArray(n); long[] dp=new long[(int) n]; for (int i = 0; i < n; i++) { if(arr[i]==1){ dp[i]=Math.max(1,dp[i]); if((i+e)<n && arr[(int) (i+e)]==1){ dp[(int) (i+e)]=dp[i]+1; } } } long[] dp2=new long[(int) n]; for (int i = (int) (n-1); i >=0; i--) { if(arr[i]==1){ dp2[i]=Math.max(1,dp2[i]); if((i-e)>=0 && arr[(int) (i-e)]==1){ dp2[(int) (i-e)]=dp2[i]+1; } } } long ans=0; for (int i = 0; i < n; i++) { if(arr[i]==1)continue; if(primes[(int) arr[i]]==0){ long res=1; if((i-e)>=0){ res+=dp[(int) (i-e)]; } if((i+e)<n && arr[(int) (i+e)]==1){ long res1=(res-1)*(dp2[(int) (i+e)]+1); res1+=dp2[(int) (i+e)]; ans+=res1; }else{ ans+=(res-1); } } } out.println(ans); out.flush(); } out.close(); } static void primeinit() { primes[1] = 1; for(int i = 2;i<max;i++) { if(primes[i]==0) { for(int j = 2;j*i<max;j++) primes[i*j] = 1; } } } static class Reader { private final InputStream in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private static final long LONG_MAX_TENTHS = 922337203685477580L; private static final int LONG_MAX_LAST_DIGIT = 7; private static final int LONG_MIN_LAST_DIGIT = 8; public Reader(InputStream in) { this.in = in; } public Reader() { this(System.in); } private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { int digit = b - '0'; if (n >= LONG_MAX_TENTHS) { if (n == LONG_MAX_TENTHS) { if (minus) { if (digit <= LONG_MIN_LAST_DIGIT) { n = -n * 10 - digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } else { if (digit <= LONG_MAX_LAST_DIGIT) { n = n * 10 + digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } } throw new ArithmeticException( String.format(" overflows long.")); } n = n * 10 + digit; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } public long[] nextLongArray(long length) { long[] array = new long[(int) length]; for (int i = 0; i < length; i++) array[i] = this.nextLong(); return array; } public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map) { long[] array = new long[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsLong(this.nextLong()); return array; } public int[] nextIntArray(int length) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = this.nextInt(); return array; } public int[][] nextIntArrayMulti(int length, int width) { int[][] arrays = new int[width][length]; for (int i = 0; i < length; i++) { for (int j = 0; j < width; j++) arrays[j][i] = this.nextInt(); } return arrays; } public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsInt(this.nextInt()); return array; } public double[] nextDoubleArray(int length) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = this.nextDouble(); return array; } public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsDouble(this.nextDouble()); return array; } public long[][] nextLongMatrix(int height, int width) { long[][] mat = new long[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextLong(); } return mat; } public int[][] nextIntMatrix(int height, int width) { int[][] mat = new int[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextInt(); } return mat; } public double[][] nextDoubleMatrix(int height, int width) { double[][] mat = new double[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextDouble(); } return mat; } public char[][] nextCharMatrix(int height, int width) { char[][] mat = new char[height][width]; for (int h = 0; h < height; h++) { String s = this.next(); for (int w = 0; w < width; w++) { mat[h][w] = s.charAt(w); } } return mat; } } static class FastPrinter extends PrintWriter { public FastPrinter(PrintStream stream) { super(stream); } public FastPrinter() { super(System.out); } private static String dtos(double x, int n) { StringBuilder sb = new StringBuilder(); if (x < 0) { sb.append('-'); x = -x; } x += Math.pow(10, -n) / 2; sb.append((long) x); sb.append("."); x -= (long) x; for (int i = 0; i < n; i++) { x *= 10; sb.append((int) x); x -= (int) x; } return sb.toString(); } @Override public void print(float f) { super.print(dtos(f, 20)); } @Override public void println(float f) { super.println(dtos(f, 20)); } @Override public void print(double d) { super.print(dtos(d, 20)); } @Override public void println(double d) { super.println(dtos(d, 20)); } public void printArray(int[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(int[] array) { this.printArray(array, " "); } public void printArray(int[] array, String separator, java.util.function.IntUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsInt(array[i])); super.print(separator); } super.println(map.applyAsInt(array[n - 1])); } public void printArray(int[] array, java.util.function.IntUnaryOperator map) { this.printArray(array, " ", map); } public void printArray(long[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(long[] array) { this.printArray(array, " "); } public void printArray(long[] array, String separator, java.util.function.LongUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsLong(array[i])); super.print(separator); } super.println(map.applyAsLong(array[n - 1])); } public void printArray(long[] array, java.util.function.LongUnaryOperator map) { this.printArray(array, " ", map); } public void printMatrix(int[][] arr) { for (int i = 0; i < arr.length; i++) { this.printArray(arr[i]); } } public void printCharMatrix(char[][] arr, int n, int m) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { this.print(arr[i][j] + " "); } this.println(); } } } static Random __r = new Random(); static int randInt(int min, int max) { return __r.nextInt(max - min + 1) + min; } static void reverse(int[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(long[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(double[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(char[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(char[] arr, int i, int j) { while (i < j) { char temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void reverse(int[] arr, int i, int j) { while (i < j) { int temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void reverse(long[] arr, int i, int j) { while (i < j) { long temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void shuffle(int[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void shuffle(long[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } private static int getlowest(int l) { if (l >= 1000000000) return 1000000000; if (l >= 100000000) return 100000000; if (l >= 10000000) return 10000000; if (l >= 1000000) return 1000000; if (l >= 100000) return 100000; if (l >= 10000) return 10000; if (l >= 1000) return 1000; if (l >= 100) return 100; if (l >= 10) return 10; return 1; } static void shuffle(double[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void rsort(int[] a) { shuffle(a); sort(a); } static void rsort(long[] a) { shuffle(a); sort(a); } static void rsort(double[] a) { shuffle(a); sort(a); } static int[] copy(int[] a) { int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static long[] copy(long[] a) { long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static double[] copy(double[] a) { double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static char[] copy(char[] a) { char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
51328d4ab48667860778ab2e50343d43
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* || श्री राम समर्थ || || जय जय रघुवीर समर्थ || */ import java.io.IOException; import java.io.InputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.util.*; import static java.util.Arrays.sort; public class CodeforcesTemp { static Reader scan = new Reader(); static FastPrinter out = new FastPrinter(); public static void main(String[] args) throws IOException { int tt = scan.nextInt(); // int tt = 1; HashSet<Long> isprime = getprimes(); for (int tc = 1; tc <= tt; tc++) { long n= scan.nextLong(); long e= scan.nextLong(); long[] arr= scan.nextLongArray(n); long[] dp=new long[(int) n]; for (int i = 0; i < n; i++) { if(arr[i]==1){ dp[i]=Math.max(1,dp[i]); if((i+e)<n && arr[(int) (i+e)]==1){ dp[(int) (i+e)]=dp[i]+1; } } } long[] dp2=new long[(int) n]; for (int i = (int) (n-1); i >=0; i--) { if(arr[i]==1){ dp2[i]=Math.max(1,dp2[i]); if((i-e)>=0 && arr[(int) (i-e)]==1){ dp2[(int) (i-e)]=dp2[i]+1; } } } long ans=0; for (int i = 0; i < n; i++) { if(arr[i]==1)continue; if(isprime.contains(arr[i])){ long res=1; if((i-e)>=0){ res+=dp[(int) (i-e)]; } if((i+e)<n && arr[(int) (i+e)]==1){ long res1=(res-1)*(dp2[(int) (i+e)]+1); res1+=dp2[(int) (i+e)]; ans+=res1; }else{ ans+=(res-1); } } } out.println(ans); out.flush(); } out.close(); } public static HashSet<Long> getPrimesInIntervalInclusive(int lower, int higher) { HashSet<Long> primes = new HashSet<>(); boolean[] sieve = new boolean[higher + 1]; for (int i = 2; i < sieve.length; i++) { if (!sieve[i]) { for (int j = 2 * i; j < sieve.length; j += i) { sieve[j] = true; } if (i >= lower) { primes.add((long) i); } } } return primes; } private static HashSet<Long> getprimes() { HashSet<Long> primes = getPrimesInIntervalInclusive(1, 1000_000); return primes; } static class Reader { private final InputStream in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private static final long LONG_MAX_TENTHS = 922337203685477580L; private static final int LONG_MAX_LAST_DIGIT = 7; private static final int LONG_MIN_LAST_DIGIT = 8; public Reader(InputStream in) { this.in = in; } public Reader() { this(System.in); } private boolean hasNextByte() { if (ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch (IOException e) { e.printStackTrace(); } if (buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1; } private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() { while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { int digit = b - '0'; if (n >= LONG_MAX_TENTHS) { if (n == LONG_MAX_TENTHS) { if (minus) { if (digit <= LONG_MIN_LAST_DIGIT) { n = -n * 10 - digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } else { if (digit <= LONG_MAX_LAST_DIGIT) { n = n * 10 + digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } } throw new ArithmeticException( String.format(" overflows long.")); } n = n * 10 + digit; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } public long[] nextLongArray(long length) { long[] array = new long[(int) length]; for (int i = 0; i < length; i++) array[i] = this.nextLong(); return array; } public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map) { long[] array = new long[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsLong(this.nextLong()); return array; } public int[] nextIntArray(int length) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = this.nextInt(); return array; } public int[][] nextIntArrayMulti(int length, int width) { int[][] arrays = new int[width][length]; for (int i = 0; i < length; i++) { for (int j = 0; j < width; j++) arrays[j][i] = this.nextInt(); } return arrays; } public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsInt(this.nextInt()); return array; } public double[] nextDoubleArray(int length) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = this.nextDouble(); return array; } public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsDouble(this.nextDouble()); return array; } public long[][] nextLongMatrix(int height, int width) { long[][] mat = new long[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextLong(); } return mat; } public int[][] nextIntMatrix(int height, int width) { int[][] mat = new int[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextInt(); } return mat; } public double[][] nextDoubleMatrix(int height, int width) { double[][] mat = new double[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextDouble(); } return mat; } public char[][] nextCharMatrix(int height, int width) { char[][] mat = new char[height][width]; for (int h = 0; h < height; h++) { String s = this.next(); for (int w = 0; w < width; w++) { mat[h][w] = s.charAt(w); } } return mat; } } static class FastPrinter extends PrintWriter { public FastPrinter(PrintStream stream) { super(stream); } public FastPrinter() { super(System.out); } private static String dtos(double x, int n) { StringBuilder sb = new StringBuilder(); if (x < 0) { sb.append('-'); x = -x; } x += Math.pow(10, -n) / 2; sb.append((long) x); sb.append("."); x -= (long) x; for (int i = 0; i < n; i++) { x *= 10; sb.append((int) x); x -= (int) x; } return sb.toString(); } @Override public void print(float f) { super.print(dtos(f, 20)); } @Override public void println(float f) { super.println(dtos(f, 20)); } @Override public void print(double d) { super.print(dtos(d, 20)); } @Override public void println(double d) { super.println(dtos(d, 20)); } public void printArray(int[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(int[] array) { this.printArray(array, " "); } public void printArray(int[] array, String separator, java.util.function.IntUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsInt(array[i])); super.print(separator); } super.println(map.applyAsInt(array[n - 1])); } public void printArray(int[] array, java.util.function.IntUnaryOperator map) { this.printArray(array, " ", map); } public void printArray(long[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(long[] array) { this.printArray(array, " "); } public void printArray(long[] array, String separator, java.util.function.LongUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsLong(array[i])); super.print(separator); } super.println(map.applyAsLong(array[n - 1])); } public void printArray(long[] array, java.util.function.LongUnaryOperator map) { this.printArray(array, " ", map); } public void printMatrix(int[][] arr) { for (int i = 0; i < arr.length; i++) { this.printArray(arr[i]); } } public void printCharMatrix(char[][] arr, int n, int m) { for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { this.print(arr[i][j] + " "); } this.println(); } } } static Random __r = new Random(); static int randInt(int min, int max) { return __r.nextInt(max - min + 1) + min; } static void reverse(int[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(long[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(double[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(char[] a) { for (int i = 0, n = a.length, half = n / 2; i < half; ++i) { char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap; } } static void reverse(char[] arr, int i, int j) { while (i < j) { char temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void reverse(int[] arr, int i, int j) { while (i < j) { int temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void reverse(long[] arr, int i, int j) { while (i < j) { long temp = arr[j]; arr[j] = arr[i]; arr[i] = temp; i++; j--; } } static void shuffle(int[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void shuffle(long[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } private static int getlowest(int l) { if (l >= 1000000000) return 1000000000; if (l >= 100000000) return 100000000; if (l >= 10000000) return 10000000; if (l >= 1000000) return 1000000; if (l >= 100000) return 100000; if (l >= 10000) return 10000; if (l >= 1000) return 1000; if (l >= 100) return 100; if (l >= 10) return 10; return 1; } static void shuffle(double[] a) { int n = a.length - 1; for (int i = 0; i < n; ++i) { int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap; } } static void rsort(int[] a) { shuffle(a); sort(a); } static void rsort(long[] a) { shuffle(a); sort(a); } static void rsort(double[] a) { shuffle(a); sort(a); } static int[] copy(int[] a) { int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static long[] copy(long[] a) { long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static double[] copy(double[] a) { double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } static char[] copy(char[] a) { char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
39608c046365446f08a0368c29b72892
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main{ static Scanner sc = new Scanner(new BufferedInputStream(System.in)); static int sc(){return sc.nextInt();} static long scl(){return sc.nextLong();} static double scd(){return sc.nextDouble();}; static String scs(){return sc.next();}; static char scf(){return scs().charAt(0);} static char[] carr(){return sc.next().toCharArray();}; static char[] chars(){ char[] s = carr(); char[] c = new char[s.length+1]; System.arraycopy(s,0,c,1,s.length); return c; } static PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); static void println (Object o) {out.println(o);} static void println() {out.println();} static void print(Object o) {out.print(o);} static int[] dx = new int[]{-1,0,1,0},dy = new int[]{0,-1,0,1}; static final int N = (int)4e6+10,M = 2010,INF = 0x3f3f3f3f,P = 131,MOD = (int)1e9+7; static int n; // static int[] h = naew int[N],e = new int[N],ne = new int[N],w = new int[N]; // static int idx; static int[] a = new int[N]; static boolean[] st = new boolean[N]; static int[] primes = new int[N]; static int idx; static Set<Integer> set = new HashSet(); static void getPrimes(int x){ for(int i = 2;i<=x;i++){ if(!st[i]) primes[idx++] = i; for(int j = 0;primes[j]<=x/i;j++){ st[primes[j]*i] = true; if(i%primes[j] == 0) break; } } } public static void main(String[] args) throws Exception{ int t = sc(); getPrimes(N/2); for(int i = 0;i<idx;i++) set.add(primes[i]); while(t-->0){ long res = 0; int n = sc(),k = sc(); for(int i = 1;i<=n;i++) a[i] = sc(); for(int i = 1;i<=k;i++){ boolean f = false; boolean fi = false; long len = 0; long nlen = 0; for(int j = i;j<=n;j+=k){ if(a[j] == 1) { if(f){ res+=len+1; nlen++; } else len++; fi = true; }else if(set.contains(a[j])){ if(f) { len = nlen; nlen = 0; } res+=len; f = true; }else { len = 0; nlen = 0; f = false; fi = false; } } } println(res); } out.close(); } static class D{ int x,y; D(int x,int y){this.x = x;this.y = y;} } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
4e57192704d4c892e64d966e60f897ab
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import static java.lang.Math.*; import java.io.*; import java.math.*; import java.util.*; public class cf1 { static FastReader x = new FastReader(); static OutputStream outputStream = System.out; static PrintWriter out = new PrintWriter(outputStream); /*---------------------------------------CODE STARTS HERE-------------------------*/ public static void main(String[] args) { int t = x.nextInt(); boolean s[] = esieve(1000001); StringBuilder str = new StringBuilder(); while (t > 0) { int n =x.nextInt(); int e = x.nextInt(); s[1]=false; HashSet<Integer> prime = new HashSet<>(); HashSet<Integer> one = new HashSet<>(); int a[] = new int[n]; for(int i=0;i<n;i++) { a[i] = x.nextInt(); if(s[a[i]]) { // System.out.println("prime "+a[i]); prime.add(i); }else if(a[i]==1) { one.add(i); } } long ans =0; for(int curr:prime) { int temp =curr; long tans =0,tans1=0; while(temp<n&&one.contains(temp+e)) { tans++; // System.out.println(temp+" i"); temp = temp+e; } ans+=tans; temp = curr; while(temp>0&&one.contains(temp-e)) { tans1++; // System.out.println(temp+" d"); temp=temp-e; } if(tans1>0) ans+=((tans*tans1)+tans1); } System.out.println(ans); str.append("\n"); t--; } out.println(str); out.flush(); } /*--------------------------------------------FAST I/O--------------------------------*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } char nextchar() { char ch = ' '; try { ch = (char) br.read(); } catch (IOException e) { e.printStackTrace(); } return ch; } } /*--------------------------------------------BOILER PLATE---------------------------*/ static int[] readarr(int n) { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = x.nextInt(); } return arr; } static int[] sortint(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) { al.add(i); } Collections.sort(al); for (int i = 0; i < a.length; i++) { a[i] = al.get(i); } return a; } static long[] sortlong(long a[]) { ArrayList<Long> al = new ArrayList<>(); for (long i : a) { al.add(i); } Collections.sort(al); for (int i = 0; i < al.size(); i++) { a[i] = al.get(i); } return a; } static int pow(int x, int y) { int result = 1; while (y > 0) { if (y % 2 == 0) { x = x * x; y = y / 2; } else { result = result * x; y = y - 1; } } return result; } static int[] revsort(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) { al.add(i); } Collections.sort(al, Comparator.reverseOrder()); for (int i = 0; i < a.length; i++) { a[i] = al.get(i); } return a; } static int[] gcd(int a, int b, int ar[]) { if (b == 0) { ar[0] = a; ar[1] = 1; ar[2] = 0; return ar; } ar = gcd(b, a % b, ar); int t = ar[1]; ar[1] = ar[2]; ar[2] = t - (a / b) * ar[2]; return ar; } static boolean[] esieve(int n) { boolean p[] = new boolean[n + 1]; Arrays.fill(p, true); for (int i = 2; i * i <= n; i++) { if (p[i] == true) { for (int j = i * i; j <= n; j += i) { p[j] = false; } } } return p; } static ArrayList<Integer> primes(int n) { boolean p[] = new boolean[n + 1]; ArrayList<Integer> al = new ArrayList<>(); Arrays.fill(p, true); int i = 0; for (i = 2; i * i <= n; i++) { if (p[i] == true) { al.add(i); for (int j = i * i; j <= n; j += i) { p[j] = false; } } } for (i = i; i <= n; i++) { if (p[i] == true) { al.add(i); } } return al; } static int etf(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res /= i; res *= (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res /= n; res *= (n - 1); } return res; } static int gcd(int a, int b) { if (a == 0) { return b; } return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) { return b; } return gcd(b % a, a); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
03de96cd0610382e5d37d038b0f4be5d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { FastReader in = new FastReader(); PrintWriter out = new PrintWriter(System.out); boolean[] isPrime = sieve((int)1e6); int T = in.nextInt(); for(int ttt = 1; ttt <= T; ttt++) { int n = in.nextInt(); int e = in.nextInt(); int[] a = in.readInt(n); long ans = 0; for(int i = 0; i < n; i++) { if(isPrime[a[i]]) { long prev = 0, nxt = 0; for(int j = i-e; j >= 0; j-=e) { if(a[j]!=1) break; prev++; } for(int j = i+e; j < n; j+=e) { if(a[j]!=1) break; nxt++; } ans += (prev+1)*(nxt+1)-1; } } out.println(ans); } out.close(); } private static boolean[] sieve(int n) { boolean[] isPrime = new boolean[n+1]; for(int i = 2; i <= n; i++) isPrime[i] = true; for(int i = 2; i*i <= n; i++) { for(int j = i*i; j <= n; j+=i) isPrime[j] = false; } return isPrime; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch(IOException e) { e.printStackTrace(); } return str; } int[] readInt(int size) { int[] arr = new int[size]; for(int i = 0; i < size; i++) arr[i] = Integer.parseInt(next()); return arr; } long[] readLong(int size) { long[] arr = new long[size]; for(int i = 0; i < size; i++) arr[i] = Long.parseLong(next()); return arr; } int[][] read2dArray(int rows, int cols) { int[][] arr = new int[rows][cols]; for(int i = 0; i < rows; i++) { for(int j = 0; j < cols; j++) arr[i][j] = Integer.parseInt(next()); } return arr; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
aa648d649ab6c03386bf8ad479b2f62e
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import static java.lang.Math.sqrt; import static java.lang.System.out; import java.util.*; import java.io.*; import java.math.*; public class Main { static FastReader sc; // static FastWriter out; public static void main(String hi[]){ initializeIO(); sc=new FastReader(); // FastWriter out=new FastWriter(); int t=sc.nextInt(); boolean[] seave=sieveOfEratosthenes((int)(1e6)); while(t--!=0){ int n=sc.nextInt(); int k=sc.nextInt(); int[] arr=rintArray(n); long[] pre=new long[n]; long[] suff=new long[n]; // long max=maxOfArray(arr); boolean[] vis=new boolean[n]; long ans=0; for(int i=0;i<n;i++){ if(seave[arr[i]]&&!vis[i]){ long l=0; long r=0; for(int j=i+k;j<n;j=j+k){ if(arr[j]==1){ r++; vis[j]=true; }else{ break; } } for(int j=i-k;j>=0;j=j-k){ if(arr[j]==1){ l++; vis[j]=true; }else{ break; } } ans+=((l+1)*(r+1))-1; // out.println(i+" "+arr[i]+" "+l+" "+r+" "+ans); } } out.println(ans); } // System.out.println(String.format("%.10f", max)); } private static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static boolean[] sieveOfEratosthenes(long n) { boolean prime[] = new boolean[(int)n + 1]; for (int i = 2; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true){ // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } return prime; } public static long maxProfit(List<Long> prices) { long sofar=0; long max_v=0; for(int i=0;i<prices.size();i++){ sofar+=prices.get(i); if (sofar<0) { sofar=0; } max_v=Math.max(max_v,sofar); } return max_v; } static boolean isMemberAC(int a, int d, int x) { // If difference is 0, then x must // be same as a. if (d == 0) return (x == a); // Else difference between x and a // must be divisible by d. return ((x - a) % d == 0 && (x - a) / d >= 0); } private static void sort(int[] arr){ int n=arr.length; List<Integer> li=new ArrayList<>(); for(int x:arr){ li.add(x); } Collections.sort(li); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static long sum(int[] arr){ long sum=0; for(int x:arr){ sum+=x; } return sum; } private static long[] readLongArray(int n){ long[] arr=new long[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextLong(); } return arr; } private static long evenSumFibo(long n){ long l1=0,l2=2; long sum=0; while (l2<n) { long l3=(4*l2)+l1; sum+=l2; if(l3>n)break; l1=l2; l2=l3; } return sum; } private static void initializeIO(){ try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println(e.getMessage()); } } private static int maxOfArray(int[] arr){ int max=Integer.MIN_VALUE; for(int x:arr){ max=Math.max(max,x); } return max; } private static long maxOfArray(long[] arr){ long max=Long.MIN_VALUE; for(long x:arr){ max=Math.max(max,x); } return max; } private static int[][] getIntervals(int n,int m){ int[][] arr=new int[n][m]; for(int j=0;j<n;j++){ for(int i=0;i<m;i++){ arr[j][m]=sc.nextInt(); } } return arr; } private static int gcd(int a,int b){ if(b==0)return a; return gcd(b,a%b); } private static int[] rintArray(int n){ int[] arr=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } return arr; } private static double[] readDoubleArray(int n){ double[] arr=new double[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextDouble(); } return arr; } private static long[] rlongArray(int n){ long[] arr=new long[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextLong(); } return arr; } private static String[] rstringArray(int n){ String[] arr=new String[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextLine(); } return arr; } private static void print(int[] arr){ out.println(Arrays.toString(arr)); } private static void print(long[] arr){ out.println(Arrays.toString(arr)); } private static void print(String[] arr){ out.println(Arrays.toString(arr)); } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null || !st.hasMoreTokens()){ try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str=""; try { str=br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } static class FastWriter { private final BufferedWriter bw; public FastWriter() { this.bw = new BufferedWriter(new OutputStreamWriter(System.out)); } public void print(Object object) throws IOException { bw.append("" + object); } public void println(Object object) throws IOException { print(object); bw.append("\n"); } public void close() throws IOException { bw.close(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
cf087456409889c826d9877e3afe2954
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.lang.reflect.Array; import java.util.*; import java.io.*; //import static com.sun.tools.javac.jvm.ByteCodes.swap; public class fastTemp { static FastScanner fs = null; public static void main(String[] args) { fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = fs.nextInt(); sieveOfEratosthenes(2_000_001); while(t-->0) { int n = fs.nextInt(); int e = fs.nextInt(); int a[] = new int[n]; for(int i=0;i<n;i++){ a[i] = fs.nextInt(); } long ans = 0; for(int i=0;i<n;i++){ if(prime[a[i]] && a[i]!=1){ long l=0; long r=0; for(int j=i+e;j<n;j+=e){ if(a[j]==1){ r++; }else{ break; } } for(int j=i-e;j>=0;j-=e){ if(a[j]==1){ l++; }else{ break; } } ans += r+l+(r*l); } } System.out.println(ans); } out.close(); } public static void union(int a,int b,int rank[],int [] p){ int x = get(a,rank,p); int y = get(b,rank,p); if(rank[x]==rank[y]){ rank[x]++; } if(rank[x]>rank[y]){ p[y] = x; }else{ p[x] = y; } } public static int get(int a,int [] rank,int []p){ return p[a] = (p[a]==a)? a : get(p[a],rank,p); } public static long[] sort(long arr[]) { List<Long> list = new ArrayList<>(); for(long i:arr) list.add(i); Collections.sort(list); for(int i = 0;i<list.size();i++) { arr[i] = list.get(i); } return arr; } static class p { int id; int id1; p(int id,int id1){ this.id=id; this.id1=id1; } } static long power(long x, long y, long p) { // Initialize result long res = 1; // Update x if it is more than or // equal to p x = x % p; while (y > 0) { // If y is odd, multiply x // with result if (y % 2 == 1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // Returns n^(-1) mod p static long modInverse(long n, long p) { return power(n, p - 2, p); } // Returns nCr % p using Fermat's // little theorem. static long nCrModPFermat(long n, long r, long p) { if (n<r) return 0; // Base case if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r long[] fac = new long[(int)n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)n] * modInverse(fac[(int)r], p) % p * modInverse(fac[(int)n - (int)r], p) % p) % p; } //public static int dijkstra(int src , int dist[] ){ // //PriorityQueue<Pair> q = new PriorityQueue<>(); //q.add(new Pair(1,0)); // //while(q.size()>0){ // // Pair rem = q.remove(); // for(Pair x:graph[rem.y]){ // if(dist[x.y]>dist[rem.y]+x.wt){ // dist[x.y] = dist[rem.y] + x.wt; // q.add(new Pair(x.y,dist[x.y])); // } // } // //} // //return dist[dist.length-1]; // //} // T --> O(n) && S--> O(d) public static long lower(long arr[], long key) { int l = 0, r = arr.length-1; long ans = -1; while(l<=r) { int mid = l +(r-l)/2; if(arr[mid]<=key) { ans = arr[mid]; l = mid+1; } else { r = mid-1; } } return ans; } public static long upper(long arr[], long key) { int l = 0, r = arr.length-1; long ans = -1; while(l<=r) { int mid = l +(r-l)/2; if(arr[mid] >= key) { ans = arr[mid]; r = mid-1; } else { l = mid+1; } } return ans; } public static class String1 implements Comparable<String1>{ String str; int id; String1(String str , int id){ this.str = str; this.id = id; } public int compareTo(String1 o){ int i=0; while(i<str.length() && str.charAt(i)==o.str.charAt(i)){ i++; } if(i<str.length()){ if(i%2==1){ return o.str.compareTo(str); // descending order }else{ return str.compareTo(o.str); // ascending order } } return str.compareTo(o.str); } } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } // ------------------------------------------swap---------------------------------------------------------------------- static void swap(int arr[],int i,int j) { int temp=arr[i]; arr[i]=arr[j]; arr[j]=temp; } //-------------------------------------------seiveOfEratosthenes---------------------------------------------------- static boolean prime[]; static void sieveOfEratosthenes(int n) { // Create a boolean array // "prime[0..n]" and // initialize all entries // it as true. A value in // prime[i] will finally be // false if i is Not a // prime, else true. prime= new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers // for (int i = 2; i <= n; i++) // { // if (prime[i] == true) // System.out.print(i + " "); // } } //------------------------------------------- power------------------------------------------------------------------ public static long power(int a , int b) { if (b == 0) { return 1; } else if (b == 1) { return a; } else { long R = power(a, b / 2); if (b % 2 != 0) { return (((power(a, b / 2))) * a * ((power(a, b / 2)))); } else { return ((power(a, b / 2))) * ((power(a, b / 2))); } } } public static int log2(int x) { return (int) (Math.log(x) / Math.log(2)); } //---------------------------------------EXTENDED EUCLID ALGO-------------------------------------------------------- // public static class Pair{ // int x; // int y; // public Pair(int x,int y){ // this.x = x; // this.y = y ; // } // } // public static Pair Euclid(int a,int b){ // // if(b==0){ // return new Pair(1,0); // answer of x and y // } // // Pair dash = Euclid(b,a%b); // // return new Pair(dash.y , dash.x - (a/b)*dash.y); // // // } //--------------------------------GCD------------------GCD-----------GCD-------------------------------------------- public static long gcd(long a,long b){ if(b==0){ return a; } return gcd(b,a%b); } public static void BFS(ArrayList<Integer>[] graph) { } // This is an extension of method 2. Instead of moving one by one, divide the array in different sets //where number of sets is equal to GCD of n and d and move the elements within sets. //If GCD is 1 as is for the above example array (n = 7 and d =2), then elements will be moved within one set only, we just start with temp = arr[0] and keep moving arr[I+d] to arr[I] and finally store temp at the right place. //Here is an example for n =12 and d = 3. GCD is 3 and // void leftRotate(int arr[], int d, int n) // { // /* To handle if d >= n */ // d = d % n; // int i, j, k, temp; // int g_c_d = gcd(d, n); // for (i = 0; i < g_c_d; i++) { // /* move i-th values of blocks */ // temp = arr[i]; // j = i; // while (true) { // k = j + d; // if (k >= n) // k = k - n; // if (k == i) // break; // arr[j] = arr[k]; // j = k; // } // arr[j] = temp; // } // } } // Fenwick / BinaryIndexed Tree USE IT - FenwickTree ft1=new FenwickTree(n);
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
aa73830a71c56b97859bb548dee4cbe9
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main { static long startTime = System.currentTimeMillis(); // for global initializations and methods starts here static int N = (int) (2e6) + 5; //static int counter = 0; static boolean[] primes = new boolean[N + 1]; static List<Integer> prime = new ArrayList<>(); static void seive() { for (int i = 0; i <= N; i++) primes[i] = true; primes[0] = primes[1] = false; for (int p = 2; p * p <= N; p++) { if (primes[p]) { for (int i = p * p; i <= N; i += p) { primes[i] = false; } } } for (int i = 2; i <= N; i++) if (primes[i]) prime.add(i); } // global initialisations and methods end here static void run() { boolean tc = true; AdityaFastIO r = new AdityaFastIO(); //FastReader r = new FastReader(); try (OutputStream out = new BufferedOutputStream(System.out)) { //long startTime = System.currentTimeMillis(); int testcases = tc ? r.ni() : 1; int tcCounter = 1; // Hold Here Sparky------------------->>> // Solution Starts Here seive(); start: while (testcases-- > 0) { int n = r.ni(); int e = r.ni(); int[] arr = new int[n + 1]; for (int i = 1; i <= n; i++) arr[i] = r.ni(); long res = 0; int pr = 1; while (pr <= e) { List<Integer> ans = new ArrayList<>(); for (int i = pr; i <= n; i += e) { if (primes[arr[i]]) ans.add(2); else if (arr[i] == 1) ans.add(1); else ans.add(0); } int count = 0; List<Pair> al = new ArrayList<>(); for (int ele : ans) { if (ele == 1) count++; else { if (count > 0) al.add(new Pair(count, 1)); if (ele == 0) al.add(new Pair(0, 0)); else al.add(new Pair(0, 2)); count = 0; } } if (count > 0) al.add(new Pair(count, 1)); for (int i = 0; i < al.size(); i++) { if (al.get(i).second == 1) { if (i + 1 < al.size() && al.get(i + 1).second == 2) res += al.get(i).first; if (i + 1 < al.size() && al.get(i + 1).second == 2 && i + 2 < al.size() && al.get(i + 2).second == 1) res += (long) al.get(i).first * al.get(i + 2).first; } if (al.get(i).second == 2 && i + 1 < al.size() && al.get(i + 1).second == 1) res += al.get(i + 1).first; } pr++; } out.write((res + " ").getBytes()); out.write(("\n").getBytes()); } // Solution Ends Here } catch (IOException e) { e.printStackTrace(); } } static class AdityaFastIO { final private int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public BufferedReader br; public StringTokenizer st; public AdityaFastIO() { br = new BufferedReader(new InputStreamReader(System.in)); din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public AdityaFastIO(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public String readLine() throws IOException { byte[] buf = new byte[100000001]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nl() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nd() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { run(); } static long mod = 998244353; static long modInv(long base, long e) { long result = 1; base %= mod; while (e > 0) { if ((e & 1) > 0) result = result * base % mod; base = base * base % mod; e >>= 1; } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int ni() { return Integer.parseInt(word()); } long nl() { return Long.parseLong(word()); } double nd() { return Double.parseDouble(word()); } } static int MOD = (int) (1e9 + 7); static long powerLL(long x, long n) { long result = 1; while (n > 0) { if (n % 2 == 1) result = result * x % MOD; n = n / 2; x = x * x % MOD; } return result; } static long powerStrings(int i1, int i2) { String sa = String.valueOf(i1); String sb = String.valueOf(i2); long a = 0, b = 0; for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD; for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1); return powerLL(a, b); } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long lower_bound(int[] arr, int x) { int l = -1, r = arr.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (arr[m] >= x) r = m; else l = m; } return r; } static int upper_bound(int[] arr, int x) { int l = -1, r = arr.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (arr[m] <= x) l = m; else r = m; } return l + 1; } static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) { graph.get(edge1).add(edge2); graph.get(edge2).add(edge1); } public static class Pair implements Comparable<Pair> { int first; int second; public Pair(int first, int second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(Pair o) { // TODO Auto-generated method stub if (this.first != o.first) return (int) (this.first - o.first); else return (int) (this.second - o.second); } } public static class PairC<X, Y> implements Comparable<PairC> { X first; Y second; public PairC(X first, Y second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairC o) { // TODO Auto-generated method stub return o.compareTo((PairC) first); } } static boolean isCollectionsSorted(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false; return true; } static boolean isCollectionsSortedReverseOrder(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false; return true; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
699046c5f3da168edc60a1de6a63d62c
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class Division { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int t = nextInt(); boolean chisla[] = new boolean[1000010]; TreeSet<Integer> set = new TreeSet<>(); for (int j = 2; j < chisla.length; j++) { if (!chisla[j]) { set.add(j); int copy = j + j; for (int k = copy; k < chisla.length; k += j) { chisla[k] = true; } } } for (int i = 0; i < t; i++) { int a = nextInt(); int e = nextInt(); int mas[] = new int[a]; for (int j = 0; j < a; j++) { mas[j] = nextInt(); } long ans = 0; for (int j = 0; j < mas.length; j++) { if (set.contains(mas[j])) { int c = 1; for (int k = j + e; k < mas.length; k += e) { if (mas[k] == 1) { ans++; c++; }else break; } long cc = c; for (int k = j - e; k>=0; k -= e) { if (mas[k] == 1) { ans += cc; }else break; } } } System.out.println(ans); } } static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter out = new PrintWriter(System.out); static StringTokenizer in = new StringTokenizer(""); public static boolean hasNext() throws IOException { if (in.hasMoreTokens()) return true; String s; while ((s = br.readLine()) != null) { in = new StringTokenizer(s); if (in.hasMoreTokens()) return true; } return false; } public static String nextToken() throws IOException { while (!in.hasMoreTokens()) { in = new StringTokenizer(br.readLine()); } return in.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public static double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } public static long nextLong() throws IOException { return Long.parseLong(nextToken()); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
429c14bb51496f7da59ea54749ae934a
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C { static BufferedReader br; static StringTokenizer st; static PrintWriter pw; static String nextToken() { try { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } static int nextInt() { return Integer.parseInt(nextToken()); } static long nextLong() { return Long.parseLong(nextToken()); } static double nextDouble() { return Double.parseDouble(nextToken()); } static String nextLine() { try { return br.readLine(); } catch (IOException e) { throw new IllegalArgumentException(); } } static char nextChar() { try { return (char) br.read(); } catch (IOException e) { throw new IllegalArgumentException(e); } } public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); int t = 1; t = nextInt(); while (t-- > 0) { solve(); } pw.close(); } private static void solve() { int n = nextInt(); int e = nextInt(); long ans = 0L; int[][] arr = new int[e][3]; for (int i = 0; i < e; i++) { arr[i][0] = -1; } for (int i = 0; i < n; i++) { int t = nextInt(); if (i < e) { if (t == 1) { arr[i][2]++; } if (t > 1) { if (isPrime(t)) { arr[i][0] = t; } } continue; } int id = i % e; if (t == 1) { if (arr[id][0] != -1) { ans++; ans += arr[id][1]; } arr[id][2]++; } if (t > 1) { if (isPrime(t)) { ans += arr[id][2]; arr[id][1] = arr[id][2]; arr[id][2] = 0; arr[id][0] = t; } else { arr[id][1] = 0; arr[id][2] = 0; arr[id][0] = -1; } } } pw.println(ans); pw.flush(); } private static boolean isPrime(int t) { if (t == 2) return true; for (int i = 2; i < Math.sqrt(t) + 1; i++) { if (t % i == 0) return false; } return true; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
bc8ccb44ecb7e61ff6244a88a8c075bb
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/** * check out my youtube channel sh0rkyboy * https://tinyurl.com/zdxe2y4z * I do screencasts, solutions, and other fun stuff in the future */ import java.util.*; import java.io.*; import static java.lang.Math.min; import static java.lang.Math.abs; import static java.lang.Math.max; public class EdA { static long[] mods = {1000000007, 998244353, 1000000009}; static long mod = mods[0]; public static MyScanner sc; public static PrintWriter out; public static void main(String[] largewang) throws Exception{ // TODO Auto-generated method stub sc = new MyScanner(); out = new PrintWriter(System.out); int[] prime = prime(1000000); int t = sc.nextInt(); while (t-->0) { int n = sc.nextInt(); int e = sc.nextInt(); long ans = 0; int[] arr = readArrayInt(n); for(int j = 0;j<e;j++){ int prevOne = 0; int currOne = 0; int prevNumber = 0; int currNumber = 0; boolean isNoneOne = false; for(int k = j;k<n;k+=e) { if (arr[k] != 1){ isNoneOne = true; if (prime[currNumber] == 1) { ans += (long)((long)prevOne*(long)currOne + (long)prevOne + (long)currOne); } prevNumber = currNumber; prevOne = currOne; currNumber = arr[k]; currOne = 0; } else { currOne++; } } if (isNoneOne && prime[currNumber] == 1) ans += (long)((long)prevOne*(long)currOne + (long)prevOne + (long)currOne); } out.println(ans); } out.close(); } public static int[] prime(int n){ int[] isPrime = new int[n+1]; Arrays.fill(isPrime, 1); for(int i = 2;i<=n;i++){ if (isPrime[i] == 1){ for(long j = (long)i*(long)i;j<=n;j+=i){ isPrime[(int)j] = 0; } } } isPrime[0] = 0; isPrime[1] = 0; return isPrime; } public static void sort(int[] array){ ArrayList<Integer> copy = new ArrayList<>(); for (int i : array) copy.add(i); Collections.sort(copy); for(int i = 0;i<array.length;i++) array[i] = copy.get(i); } static String[] readArrayString(int n){ String[] array = new String[n]; for(int j =0 ;j<n;j++) array[j] = sc.next(); return array; } static int[] readArrayInt(int n){ int[] array = new int[n]; for(int j = 0;j<n;j++) array[j] = sc.nextInt(); return array; } static int[] readArrayInt1(int n){ int[] array = new int[n+1]; for(int j = 1;j<=n;j++){ array[j] = sc.nextInt(); } return array; } static long[] readArrayLong(int n){ long[] array = new long[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextLong(); return array; } static double[] readArrayDouble(int n){ double[] array = new double[n]; for(int j =0 ;j<n;j++) array[j] = sc.nextDouble(); return array; } static int minIndex(int[] array){ int minValue = Integer.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(long[] array){ long minValue = Long.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static int minIndex(double[] array){ double minValue = Double.MAX_VALUE; int minIndex = -1; for(int j = 0;j<array.length;j++){ if (array[j] < minValue){ minValue = array[j]; minIndex = j; } } return minIndex; } static long power(long x, long y){ if (y == 0) return 1; if (y%2 == 1) return (x*power(x, y-1))%mod; return power((x*x)%mod, y/2)%mod; } static void verdict(boolean a){ out.println(a ? "YES" : "NO"); } public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } //StringJoiner sj = new StringJoiner(" "); //sj.add(strings) //sj.toString() gives string of those stuff w spaces or whatever that sequence is
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
eada94fdfe56f749bfc9281a9891ff67
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* Author:-crazy_coder- */ import java.io.*; import java.util.*; public class cp{ static long mod=1000000007; static int ans=0; static int[] par=new int[100005]; static int[] rank=new int[100005]; static BufferedReader br=new BufferedReader (new InputStreamReader(System.in)); static PrintWriter pw=new PrintWriter(System.out); public static void main(String[] args)throws Exception{ int T=Integer.parseInt(br.readLine()); // int t=1; // comp(); boolean isPrime[]=sieveOfEratosthenes(1000006); while(T-->0){ solve(isPrime); } pw.flush(); } public static void solve(boolean[] isPrime)throws Exception{ String[] str=br.readLine().split(" "); int n=Integer.parseInt(str[0]); int e=Integer.parseInt(str[1]); int[] arr=new int[n]; str=br.readLine().split(" "); for(int i=0;i<n;i++)arr[i]=Integer.parseInt(str[i]); long ans=0l; for(int i=0;i<n;i++){ long l=0l,r=0l; int temp=e; if(isPrime[arr[i]]){ while(i-temp>=0&&arr[i-temp]==1){l++;temp+=e;} temp=e; while(i+temp<n&&arr[i+temp]==1){r++;temp+=e;} } ans+=(l+r+l*r); } pw.println(ans); } public static boolean[] sieveOfEratosthenes(int n){ boolean isPrime[]=new boolean[n+1]; Arrays.fill(isPrime,true); isPrime[0]=false; isPrime[1]=false; for(int i=2;i*i<n;i++){ for(int j=i*i;j<=n;j+=i){ isPrime[j]=false; } } return isPrime; } public static long NCR(int n,int r){ if(r==0||r==n)return 1; return (fac[n]*invfact[r]%mod)*invfact[n-r]%mod; } static long[] fac=new long[100]; static long[] invfact=new long[100]; public static void comp(){ fac[0]=1; invfact[0]=1; for(int i=1;i<100;i++){ fac[i]=(fac[i-1]*i)%mod; invfact[i]=modInverse(fac[i]); } } public static long modInverse(long n){ return power(n,mod-2); } public static long power(long x,long y){ long res=1; x=x%mod; while(y>0){ if((y&1)==1)res=(res*x)%mod; y=y>>1; x=(x*x)%mod; } return res; } //*************************************DSU************************************ */ public static void initialize(int n){ for(int i=1;i<=n;i++){ par[i]=i; rank[i]=1; } } public static void union(int x,int y){ int lx=find(x); int ly=find(y); if(lx!=ly){ if(rank[lx]>rank[ly]){ par[ly]=lx; }else if(rank[lx]<rank[ly]){ par[lx]=ly; }else{ par[lx]=ly; rank[ly]++; } } } public static int find(int x){ if(par[x]==x){ return x; } int temp=find(par[x]); par[x]=temp; return temp; } //************************************DSU END********************************** */ public static boolean isPresent(ArrayList<Long> zero,long val){ for(long x:zero){ if(x==val)return true; } return false; } public static class Pair implements Comparable<Pair>{ int val; int k; Pair(int val,int k){ this.val=val; this.k=k; } public int compareTo(Pair o){ return this.val-o.val; } } public static int countDigit(int x){ return (int)Math.log10(x)+1; } //****************************function to find all factor************************************************* public static ArrayList<Long> findAllFactors(long num){ ArrayList<Long> factors = new ArrayList<Long>(); for(long i = 1; i <= num/i; ++i) { if(num % i == 0) { //if i is a factor, num/i is also a factor factors.add(i); factors.add(num/i); } } //sort the factors Collections.sort(factors); return factors; } //*************************** function to find GCD of two number******************************************* public static long gcd(long a,long b){ if(b==0)return a; return gcd(b,a%b); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
8d54083621db38024e20787a3a3c9c45
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class Analysis { static BufferedReader bf; static PrintWriter out; static Scanner sc; static StringTokenizer st; public static void main (String[] args)throws IOException { bf = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new Scanner(System.in); int t = Integer.parseInt(bf.readLine()); boolean primes[] = new boolean[1000001]; primes[0] = true; primes[1] = true; for(int i = 2;i*i<primes.length;i++){ for(int j = i*2;j<primes.length;j+=i){ if(primes[j])continue; primes[j] = true; } } while(t-->0){ solve(primes); } } public static void solve(boolean[]primes)throws IOException{ int n = nextInt(); int e = nextInt(); long[]arr = new long[n]; for(int i =0;i<n;i++){ arr[i] = nextLong(); } long count =0; for(int i=0;i<n;i++){ if(!primes[(int)arr[i]]){ long leftCount = 0; long rightCount = 0; for(int j = i-e;j>=0;j-=e){ if(arr[j] != 1)break; leftCount++; } for(int j = i+e;j<n;j+=e){ if(arr[j] != 1)break; rightCount++; } count += (leftCount * (1+rightCount)); count += rightCount; } } println(count); } // code for input public static void print(String s ){ System.out.print(s); } public static void print(int num ){ System.out.print(num); } public static void print(long num ){ System.out.print(num); } public static void println(String s){ System.out.println(s); } public static void println(int num){ System.out.println(num); } public static void println(long num){ System.out.println(num); } public static void println(){ System.out.println(); } public static int Int(String s){ return Integer.parseInt(s); } public static long Long(String s){ return Long.parseLong(s); } public static String[] nextStringArray()throws IOException{ return bf.readLine().split(" "); } public static String nextString()throws IOException{ return bf.readLine(); } public static long[] nextLongArray(int n)throws IOException{ String[]str = bf.readLine().split(" "); long[]arr = new long[n]; for(int i =0;i<n;i++){ arr[i] = Long.parseLong(str[i]); } return arr; } public static int[][] newIntMatrix(int r,int c)throws IOException{ int[][]arr = new int[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Integer.parseInt(str[j]); } } return arr; } public static long[][] newLongMatrix(int r,int c)throws IOException{ long[][]arr = new long[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Long.parseLong(str[j]); } } return arr; } static class pair{ int one; int two; pair(int one,int two){ this.one = one ; this.two =two; } } public static long gcd(long a,long b){ if(b == 0)return a; return gcd(b,a%b); } public static long lcm(long a,long b){ return (a*b)/(gcd(a,b)); } public static boolean isPalindrome(String s){ int i = 0; int j = s.length()-1; while(i<=j){ if(s.charAt(i) != s.charAt(j)){ return false; } i++; j--; } return true; } // these functions are to calculate the number of smaller elements after self public static void sort(int[]arr,int l,int r){ if(l < r){ int mid = (l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); smallerNumberAfterSelf(arr, l, mid, r); } } public static void smallerNumberAfterSelf(int[]arr,int l,int mid,int r){ int n1 = mid - l +1; int n2 = r - mid; int []a = new int[n1]; int[]b = new int[n2]; for(int i = 0;i<n1;i++){ a[i] = arr[l+i]; } for(int i =0;i<n2;i++){ b[i] = arr[mid+i+1]; } int i = 0; int j =0; int k = l; while(i<n1 && j < n2){ if(a[i] < b[j]){ arr[k++] = a[i++]; } else{ arr[k++] = b[j++]; } } while(i<n1){ arr[k++] = a[i++]; } while(j<n2){ arr[k++] = b[j++]; } } public static String next(){ while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bf.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } static int nextInt() { return Integer.parseInt(next()); } static long nextLong() { return Long.parseLong(next()); } static double nextDouble() { return Double.parseDouble(next()); } static String nextLine(){ String str = ""; try { str = bf.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // use some math tricks it might help // sometimes just try to think in straightforward plan in A and B problems don't always complecate the questions with thinking too much differently // always use long number to do 10^9+7 modulo // if a problem is related to binary string it could also be related to parenthesis // *****try to use binary search(it is a very beautiful thing it can work in some of the very unexpected problems ) in the question it might work****** // try sorting // try to think in opposite direction of question it might work in your way // if a problem is related to maths try to relate some of the continuous subarray with variables like - > a+b+c+d or a,b,c,d in general // if the question is to much related to left and/or right side of any element in an array then try monotonic stack it could work. // in range query sums try to do binary search it could work // analyse the time complexity of program thoroughly // anylyse the test cases properly // if we divide any number by 2 till it gets 1 then there will be (number - 1) operation required // try to do the opposite operation of what is given in the problem //think about the base cases properly //If a question is related to numbers try prime factorisation or something related to number theory // keep in mind unique strings //you can calculate the number of inversion in O(n log n) // in a matrix you could sometimes think about row and cols indenpendentaly.
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
8fcb5a8d67cc01901def3d3e521b388d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Random; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; // A -> CodeForcesProblemSet public final class A { static FastReader fr = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static final int gigamod = 1000000007; static int t = 1; static double epsilon = 0.0000001; public static void main(String[] args) { boolean[] isPrime = primeGenerator(1000001); t = fr.nextInt(); OUTER: for (int tc = 0; tc < t; tc++) { int n = fr.nextInt(), e = fr.nextInt(); int[] arr = fr.nextIntArray(n); // Observations: // 1. The whole product can be a prime number only when there are // all ones except an element which will be a prime. ArrayList<Integer>[] idxModLists = (ArrayList<Integer>[]) new ArrayList[e]; for (int i = 0; i < e; i++) idxModLists[i] = new ArrayList<>(); for (int i = 0; i < n; i++) idxModLists[i % e].add(arr[i]); /*for (int i = 0; i < e; i++) { for (int elem : idxModLists[i]) out.print(elem + " "); out.println(); }*/ // Now, we will process each list individually. long numPairs = 0; for (ArrayList<Integer> list : idxModLists) { int s = list.size(); for (int i = 0; i < s; i++) { int elem = list.get(i); if (elem != 1 && !isPrime[elem]) continue; int j = i; int primeIdx = -1; if (isPrime[elem]) primeIdx = i; // We need a chain of ones, then a prime and then ones. while (primeIdx == -1 && j < s - 1 && (list.get(j + 1) == 1 || isPrime[list.get(j + 1)])) { j++; if (isPrime[list.get(j)]) primeIdx = j; } // If we didn't find the prime at all, if (primeIdx == -1) { i = j; continue; } // Now we will only consider ones. while (j < s - 1 && list.get(j + 1) == 1) j++; // 'k' has to be at least one. if (i == primeIdx && j == i) continue; // The starting positions will be [i, primeIdx - 1]. // The ending positions will be [primeIdx, j]. numPairs += (long) (primeIdx - i) * (j + 1 - primeIdx); // If j != primeIdx, we can start from primeIdx as well. if (j > primeIdx) numPairs += (j - primeIdx); i = primeIdx; } // out.println(numPairs); } out.println(numPairs); } out.close(); } // Manual implementation of RB-BST for C++ PBDS functionality. // Modification required according to requirements. public static final class RedBlackCountSet { // Colors for Nodes: private static final boolean RED = true; private static final boolean BLACK = false; // Pointer to the root: private Node root; // Public constructor: public RedBlackCountSet() { root = null; } // Node class for storing key value pairs: private class Node { long key; long value; Node left, right; boolean color; long size; // Size of the subtree rooted at that node. public Node(long key, long value, boolean color) { this.key = key; this.value = value; this.left = this.right = null; this.color = color; this.size = value; } } /***** Invariant Maintenance functions: *****/ // When a temporary 4 node is formed: private Node flipColors(Node node) { node.left.color = node.right.color = BLACK; node.color = RED; return node; } // When there's a right leaning red link and it is not a 3 node: private Node rotateLeft(Node node) { Node rn = node.right; node.right = rn.left; rn.left = node; rn.color = node.color; node.color = RED; return rn; } // When there are 2 red links in a row: private Node rotateRight(Node node) { Node ln = node.left; node.left = ln.right; ln.right = node; ln.color = node.color; node.color = RED; return ln; } /***** Invariant Maintenance functions end *****/ // Public functions: public void put(long key) { root = put(root, key); root.color = BLACK; // One of the invariants. } private Node put(Node node, long key) { // Standard insertion procedure: if (node == null) return new Node(key, 1, RED); // Recursing: int cmp = Long.compare(key, node.key); if (cmp < 0) node.left = put(node.left, key); else if (cmp > 0) node.right = put(node.right, key); else node.value++; // Invariant maintenance: if (node.left != null && node.right != null) { if (node.right.color = RED && node.left.color == BLACK) node = rotateLeft(node); if (node.left.color == RED && node.left.left.color == RED) node = rotateRight(node); if (node.left.color == RED && node.right.color == RED) node = flipColors(node); } // Property maintenance: node.size = node.value + size(node.left) + size(node.right); return node; } private long size(Node node) { if (node == null) return 0; else return node.size; } public long rank(long key) { return rank(root, key); } // Modify according to requirements. private long rank(Node node, long key) { if (node == null) return 0; int cmp = Long.compare(key, node.key); if (cmp < 0) return rank(node.left, key); else if (cmp > 0) return node.value + size(node.left) + rank(node.right, key); else return size(node.left); } } static long modDiv(long a, long b) { return mod(a * power(b, gigamod - 2)); } static class SegTree { // Setting up the parameters. int n; long[] sumTree; long[] ogArr; long[] maxTree; long[] minTree; public static final int sumMode = 0; public static final int maxMode = 1; public static final int minMode = 2; // Constructor public SegTree(long[] arr, int mode) { if (mode == sumMode) { Arrays.fill(sumTree = new long[4 * (n = ((ogArr = arr.clone()).length))], -1); buildSum(0, n - 1, 0); } else if (mode == maxMode) { Arrays.fill(maxTree = new long[4 * (n = ((ogArr = arr.clone()).length))], -1); buildMax(0, n - 1, 0); } else if (mode == minMode) { Arrays.fill(minTree = new long[4 * (n = ((ogArr = arr.clone()).length))], Long.MAX_VALUE - 1); buildMin(0, n - 1, 0); } } /**********Code for sum***********/ /*********************************/ // Build the segment tree node-by-node private long buildSum(int l, int r, int segIdx) { return sumTree[segIdx] = (l == r) ? ogArr[l] : (buildSum(l, l + (r - l) / 2, 2 * segIdx + 1) + buildSum((l + (r - l) / 2) + 1, r, 2 * segIdx + 2)); } // Change a single element public void changeForSum(int idx, long to) { changeForSum(idx, to, 0, n - 1, 0); } private long changeForSum(int idx, long to, int l, int r, int segIdx) { return sumTree[segIdx] = ((l == r) ? (ogArr[idx] = to) : ((0 * ((idx <= (l + (r - l) / 2)) ? changeForSum(idx, to, l, l + (r - l) / 2, 2 * segIdx + 1) : changeForSum(idx, to, (l + (r - l) / 2) + 1, r, 2 * segIdx + 2))) + sumTree[2 * segIdx + 1] + sumTree[2 * segIdx + 2])); } // Return the sum arr[l, r] public long segSum(int l, int r) { if (l > r) return 0; return segSum(l, r, 0, n - 1, 0); } private long segSum(int segL, int segR, int l, int r, int segIdx) { if (segL == l && segR == r) return sumTree[segIdx]; if (segR <= l + (r - l) / 2) return segSum(segL, segR, l, l + (r - l) / 2, 2 * segIdx + 1); if (segL >= l + (r - l) / 2 + 1) return segSum(segL, segR, l + (r - l) / 2 + 1, r, 2 * segIdx + 2); return segSum(segL, l + (r - l) / 2, l, l + (r - l) / 2, 2 * segIdx + 1) + segSum(l + (r - l) / 2 + 1, segR, l + (r - l) / 2 + 1, r, 2 * segIdx + 2); } /********End of code for sum********/ /***********************************/ /*******Start of code for max*******/ /***********************************/ // Build the max tree node-by-node private long buildMax(int l, int r, int segIdx) { return maxTree[segIdx] = (l == r) ? ogArr[l] : Math.max(buildMax(l, (l + (r - l) / 2), 2 * segIdx + 1), buildMax(l + (r - l) / 2 + 1, r, 2 * segIdx + 2)); } // Change a single element public void changeForMax(int idx, long to) { changeForMax(0, n - 1, idx, to, 0); } private long changeForMax(int l, int r, int idx, long to, int segIdx) { return maxTree[segIdx] = (l == r && l == idx) ? (ogArr[idx] = to) : Math.max(changeForMax(l, l + (r - l) / 2, idx, to, 2 * segIdx + 1), changeForMax(l + (r - l) / 2 + 1, r, idx, to, 2 * segIdx + 2)); } public long segMax(int segL, int segR) { if (segL > segR) return 0; return segMax(0, n - 1, segL, segR, 0); } private long segMax(int l, int r, int segL, int segR, int segIdx) { int midL = l + (r - l) / 2; if (segL == segR && segL == l) return ogArr[segL]; if (segR <= midL) return segMax(l, midL, segL, segR, 2 * segIdx + 1); if (segL >= midL + 1) return segMax(midL + 1, r, segL, segR, 2 * segIdx + 2); return Math.max(segMax(l, midL, segL, midL, 2 * segIdx + 1), segMax(midL + 1, r, midL + 1, segR, 2 * segIdx + 2)); } /*******End of code for max*********/ /***********************************/ /*******Start of code for min*******/ /***********************************/ private long buildMin(int l, int r, int segIdx) { return minTree[segIdx] = (l == r) ? ogArr[l] : Math.min(buildMin(l, (l + (r - l) / 2), 2 * segIdx + 1), buildMin(l + (r - l) / 2 + 1, r, 2 * segIdx + 2)); } // Change a single element public void changeForMin(int idx, long to) { changeForMin(0, n - 1, idx, to, 0); } private long changeForMin(int l, int r, int idx, long to, int segIdx) { return minTree[segIdx] = (l == r && l == idx) ? (ogArr[idx] = to) : Math.min(changeForMin(l, l + (r - l) / 2, idx, to, 2 * segIdx + 1), changeForMin(l + (r - l) / 2 + 1, r, idx, to, 2 * segIdx + 2)); } public long segMin(int segL, int segR) { if (segL > segR) return 0; return segMin(0, n - 1, segL, segR, 0); } private long segMin(int l, int r, int segL, int segR, int segIdx) { int midL = l + (r - l) / 2; if (segL == segR && segL == l) return ogArr[segL]; if (segR <= midL) return segMin(l, midL, segL, segR, 2 * segIdx + 1); if (segL >= midL + 1) return segMin(midL + 1, r, segL, segR, 2 * segIdx + 2); return Math.min(segMin(l, midL, segL, midL, 2 * segIdx + 1), segMin(midL + 1, r, midL + 1, segR, 2 * segIdx + 2)); } /*******End of code for min*********/ /***********************************/ public String toString() { return A.toString(minTree); } } static void coprimeGenerator(int m, int n, ArrayList<Point> coprimes, int limit, int numCoprimes) { if (m > limit) return; if (m <= limit && n <= limit) coprimes.add(new Point(m, n)); if (coprimes.size() > numCoprimes) return; coprimeGenerator(2 * m - n, m, coprimes, limit, numCoprimes); coprimeGenerator(2 * m + n, m, coprimes, limit, numCoprimes); coprimeGenerator(m + 2 * n, n, coprimes, limit, numCoprimes); } // Returns the length of the longest prefix that is also // a suffix (no overlap). static int longestPrefixSuffix(String s) { int n = s.length(); int[] arr = new int[n]; arr[0] = 0; int len = 0; for (int i = 1; i < n;) { if (s.charAt(len) == s.charAt(i)) { len++; arr[i++] = len; } else { if (len != 0) { len = arr[len - 1]; } else { arr[i] = 0; i++; } } } return arr[n - 1]; } static long hash(long i) { return (i * 2654435761L % gigamod); } static long hash2(long key) { long h = Long.hashCode(key); h ^= (h >>> 20) ^ (h >>> 12) ^ (h >>> 7) ^ (h >>> 4); return h & (gigamod-1); } static long power(long x, long y) { // int p = 998244353; int p = gigamod; long res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p if (x == 0) return 0; // In case x is divisible by p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long power2(long x, long y) { // int p = 998244353; // int p = gigamod; long res = 1; // Initialize result // x = x /*% p*/; // Update x if it is more than or // equal to p if (x == 0) return 0; // In case x is divisible by p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = (res * x) /*% p*/; // y must be even now y = y >> 1; // y = y/2 x = (x * x) /*% p*/; } return res; } // Maps elements in a 2D matrix serially to elements in // a 1D array. static int mapTo1D(int row, int col, int n, int m) { return row * m + col; } // Inverse of what the one above does. static int[] mapTo2D(int idx, int n, int m) { int[] rnc = new int[2]; rnc[0] = idx / m; rnc[1] = idx % m; return rnc; } // Checks if s has subsequence t. static boolean hasSubsequence(String s, String t) { char[] schars = s.toCharArray(); char[] tchars = t.toCharArray(); int slen = schars.length, tlen = tchars.length; int tctr = 0; if (slen < tlen) return false; for (int i = 0; i < slen || i < tlen; i++) { if (tctr == tlen) break; if (schars[i] == tchars[tctr]) { tctr++; } } if (tctr == tlen) return true; return false; } // Returns the binary string of length at least bits. static String toBinaryString(long num, int bits) { StringBuilder sb = new StringBuilder(Long.toBinaryString(num)); sb.reverse(); for (int i = sb.length(); i < bits; i++) sb.append('0'); return sb.reverse().toString(); } @SuppressWarnings("serial") static class CountMap<T> extends TreeMap<T, Integer>{ CountMap() { } CountMap(T[] arr) { this.putCM(arr); } public Integer putCM(T key) { if (super.containsKey(key)) { return super.put(key, super.get(key) + 1); } else { return super.put(key, 1); } } public Integer removeCM(T key) { Integer count = super.get(key); if (count == null) return -1; if (count == 1) return super.remove(key); else return super.put(key, super.get(key) - 1); } public Integer getCM(T key) { Integer count = super.get(key); if (count == null) return 0; return count; } public void putCM(T[] arr) { for (T l : arr) this.putCM(l); } } static class Point implements Comparable<Point> { long x; long y; int id; Point() { x = y = id = 0; } Point(Point p) { this.x = p.x; this.y = p.y; this.id = p.id; } /*Point(double a, double b) { x = a; y = b; }*/ Point(long a, long b, int id) { this.x = a; this.y = b; this.id = id; } Point(long a, long b) { this.x = a; this.y = b; } @Override public int compareTo(Point o) { if (this.x > o.x) return 1; if (this.x < o.x) return -1; if (this.y > o.y) return 1; if (this.y < o.y) return -1; return 0; } public boolean equals(Point that) { return this.compareTo(that) == 0; } } static class PointComparator implements Comparator<Point> { @Override public int compare(Point o1, Point o2) { // Comparision will be done on the basis of the start // of the segment and then on the length of the segment. if (o1.id > o2.id) return -1; if (o1.id < o2.id) return 1; return 0; } } static double distToOrigin(Point p1) { return Math.sqrt(Math.pow(p1.y, 2) + Math.pow(p1.x, 2)); } static double distance(Point p1, Point p2) { double y2 = p2.y, y1 = p1.y; double x2 = p2.x, x1 = p1.x; double distance = Math.sqrt(Math.pow(y2-y1, 2) + Math.pow(x2-x1, 2)); return distance; } // Returns the largest power of k that fits into n. static int largestFittingPower(long n, long k) { int lo = 0, hi = logk(Long.MAX_VALUE, 3); int largestPower = -1; while (lo <= hi) { int mid = lo + (hi - lo)/2; long val = (long) Math.pow(k, mid); if (val <= n) { largestPower = mid; lo = mid + 1; } else { hi = mid - 1; } } return largestPower; } // Returns map of factor and its power in the number. static HashMap<Long, Integer> primeFactorization(long num) { HashMap<Long, Integer> map = new HashMap<>(); while (num % 2 == 0) { num /= 2; Integer pwrCnt = map.get(2L); map.put(2L, pwrCnt != null ? pwrCnt + 1 : 1); } for (long i = 3; i * i <= num; i += 2) { while (num % i == 0) { num /= i; Integer pwrCnt = map.get(i); map.put(i, pwrCnt != null ? pwrCnt + 1 : 1); } } // If the number is prime, we have to add it to the // map. if (num != 1) map.put(num, 1); return map; } // Returns map of factor and its power in the number. static HashMap<Integer, Integer> primeFactorization(int num) { HashMap<Integer, Integer> map = new HashMap<>(); while (num % 2 == 0) { num /= 2; Integer pwrCnt = map.get(2); map.put(2, pwrCnt != null ? pwrCnt + 1 : 1); } for (int i = 3; i * i <= num; i += 2) { while (num % i == 0) { num /= i; Integer pwrCnt = map.get(i); map.put(i, pwrCnt != null ? pwrCnt + 1 : 1); } } // If the number is prime, we have to add it to the // map. if (num != 1) map.put(num, 1); return map; } static HashSet<Long> divisors(long num) { HashSet<Long> divisors = new HashSet<Long>(); divisors.add(1L); divisors.add(num); for (long i = 2; i * i <= num; i++) { if (num % i == 0) { divisors.add(num/i); divisors.add(i); } } return divisors; } // Returns the index of the first element // larger than or equal to val. static int bsearch(int[] arr, int val, int lo, int hi) { int idx = -1; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (arr[mid] >= val) { idx = mid; hi = mid - 1; } else lo = mid + 1; } return idx; } static int bsearch(long[] arr, long val, int lo, int hi) { int idx = -1; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (arr[mid] >= val) { idx = mid; hi = mid - 1; } else lo = mid + 1; } return idx; } // Returns the index of the last element // smaller than or equal to val. static int bsearch(long[] arr, long val, int lo, int hi, boolean sMode) { int idx = -1; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (arr[mid] > val) { hi = mid - 1; } else { idx = mid; lo = mid + 1; } } return idx; } static int bsearch(int[] arr, long val, int lo, int hi, boolean sMode) { int idx = -1; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (arr[mid] > val) { hi = mid - 1; } else { idx = mid; lo = mid + 1; } } return idx; } static long factorial(long n) { if (n <= 1) return 1; long factorial = 1; for (int i = 1; i <= n; i++) factorial = mod(factorial * i); return factorial; } static long factorialInDivision(long a, long b) { if (a == b) return 1; if (b < a) { long temp = a; a = b; b = temp; } long factorial = 1; for (long i = a + 1; i <= b; i++) factorial = mod(factorial * i); return factorial; } static BigInteger factorialInDivision(BigInteger a, BigInteger b) { if (a.equals(b)) return BigInteger.ONE; return a.multiply(factorialInDivision(a.subtract(BigInteger.ONE), b)); } static long nCr(long n, long r) { long p = gigamod; // Base case if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r long fac[] = new long[(int)n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)n] * modInverse(fac[(int)r], p) % p * modInverse(fac[(int)n - (int)r], p) % p) % p; } static long modInverse(long n, long p) { return power(n, p - 2, p); } static long power(long x, long y, long p) { long res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p while (y > 0) { // If y is odd, multiply x with result if ((y & 1)==1) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static long nPr(long n, long r) { return factorialInDivision(n, n - r); } static int log2(long n) { return (int)(Math.log(n) / Math.log(2)); } static double log2(long n, boolean doubleMode) { return (Math.log(n) / Math.log(2)); } static int logk(long n, long k) { return (int)(Math.log(n) / Math.log(k)); } // Sieve of Eratosthenes: static boolean[] primeGenerator(int upto) { boolean[] isPrime = new boolean[upto + 1]; Arrays.fill(isPrime, true); isPrime[1] = isPrime[0] = false; for (long i = 2; i * i < upto + 1; i++) if (isPrime[(int) i]) // Mark all the multiples greater than or equal // to the square of i to be false. for (long j = i; j * i < upto + 1; j++) isPrime[(int) j * (int) i] = false; return isPrime; } static int gcd(int a, int b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static long gcd(long a, long b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static int gcd(int[] arr) { int n = arr.length; int gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static long gcd(long[] arr) { int n = arr.length; long gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static long lcm(int[] arr) { long lcm = arr[0]; int n = arr.length; for (int i = 1; i < n; i++) { lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); } return lcm; } static long lcm(long[] arr) { long lcm = arr[0]; int n = arr.length; for (int i = 1; i < n; i++) { lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); } return lcm; } static long lcm(int a, int b) { return (a * b)/gcd(a, b); } static long lcm(long a, long b) { return (a * b)/gcd(a, b); } static boolean less(int a, int b) { return a < b ? true : false; } static boolean isSorted(int[] a) { for (int i = 1; i < a.length; i++) { if (less(a[i], a[i - 1])) return false; } return true; } static boolean isSorted(long[] a) { for (int i = 1; i < a.length; i++) { if (a[i] < a[i - 1]) return false; } return true; } static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(long[] a, int i, int j) { long temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(double[] a, int i, int j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(char[] a, int i, int j) { char temp = a[i]; a[i] = a[j]; a[j] = temp; } static void sort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void reverseSort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void shuffleArray(long[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { long tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(int[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { int tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(double[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { double tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } private static void shuffleArray(char[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { char tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static String toString(int[] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) sb.append(dp[i] + " "); return sb.toString(); } static String toString(boolean[] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) sb.append(dp[i] + " "); return sb.toString(); } static String toString(long[] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) sb.append(dp[i] + " "); return sb.toString(); } static String toString(char[] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) sb.append(dp[i] + ""); return sb.toString(); } static String toString(int[][] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) { for (int j = 0; j < dp[i].length; j++) { sb.append(dp[i][j] + " "); } sb.append('\n'); } return sb.toString(); } static String toString(long[][] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) { for (int j = 0; j < dp[i].length; j++) { sb.append(dp[i][j] + " "); } sb.append('\n'); } return sb.toString(); } static String toString(double[][] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) { for (int j = 0; j < dp[i].length; j++) { sb.append(dp[i][j] + " "); } sb.append('\n'); } return sb.toString(); } static String toString(char[][] dp) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < dp.length; i++) { for (int j = 0; j < dp[i].length; j++) { sb.append(dp[i][j] + " "); } sb.append('\n'); } return sb.toString(); } static char toChar(int i) { return (char) (i + 48); } static long mod(long a, long m) { return (a%m + m) % m; } static long mod(long num) { return (num % gigamod + gigamod) % gigamod; } // Uses weighted quick-union with path compression. static class UnionFind { private int[] parent; // parent[i] = parent of i private int[] size; // size[i] = number of sites in tree rooted at i // Note: not necessarily correct if i is not a root node private int count; // number of components public UnionFind(int n) { count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } // Number of connected components. public int count() { return count; } // Find the root of p. public int find(int p) { int root = p; while (root != parent[root]) root = parent[root]; while (p != root) { int newp = parent[p]; parent[p] = root; p = newp; } return root; } public boolean connected(int p, int q) { return find(p) == find(q); } public int numConnectedTo(int node) { return size[find(node)]; } // Weighted union. public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // make smaller root point to larger one if (size[rootP] < size[rootQ]) { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } else { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } count--; } public static int[] connectedComponents(UnionFind uf) { // We can do this in nlogn. int n = uf.size.length; int[] compoColors = new int[n]; for (int i = 0; i < n; i++) compoColors[i] = uf.find(i); HashMap<Integer, Integer> oldToNew = new HashMap<>(); int newCtr = 0; for (int i = 0; i < n; i++) { int thisOldColor = compoColors[i]; Integer thisNewColor = oldToNew.get(thisOldColor); if (thisNewColor == null) thisNewColor = newCtr++; oldToNew.put(thisOldColor, thisNewColor); compoColors[i] = thisNewColor; } return compoColors; } } static class UGraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; public UGraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); adj[to].add(from); } public HashSet<Integer> adj(int from) { return adj[from]; } public int degree(int v) { return adj[v].size(); } public int V() { return adj.length; } public int E() { return E; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static void dfsMark(int current, boolean[] marked, UGraph g) { if (marked[current]) return; marked[current] = true; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, marked, g); } public static void dfsMark(int current, int from, long[] distTo, boolean[] marked, UGraph g, ArrayList<Integer> endPoints) { if (marked[current]) return; marked[current] = true; if (from != -1) distTo[current] = distTo[from] + 1; HashSet<Integer> adj = g.adj(current); int alreadyMarkedCtr = 0; for (int adjc : adj) { if (marked[adjc]) alreadyMarkedCtr++; dfsMark(adjc, current, distTo, marked, g, endPoints); } if (alreadyMarkedCtr == adj.size()) endPoints.add(current); } public static void bfsOrder(int current, UGraph g) { } public static void dfsMark(int current, int[] colorIds, int color, UGraph g) { if (colorIds[current] != -1) return; colorIds[current] = color; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, colorIds, color, g); } public static int[] connectedComponents(UGraph g) { int n = g.V(); int[] componentId = new int[n]; Arrays.fill(componentId, -1); int colorCtr = 0; for (int i = 0; i < n; i++) { if (componentId[i] != -1) continue; dfsMark(i, componentId, colorCtr, g); colorCtr++; } return componentId; } public static boolean hasCycle(UGraph ug) { int n = ug.V(); boolean[] marked = new boolean[n]; boolean[] hasCycleFirst = new boolean[1]; for (int i = 0; i < n; i++) { if (marked[i]) continue; hcDfsMark(i, ug, marked, hasCycleFirst, -1); } return hasCycleFirst[0]; } // Helper for hasCycle. private static void hcDfsMark(int current, UGraph ug, boolean[] marked, boolean[] hasCycleFirst, int parent) { if (marked[current]) return; if (hasCycleFirst[0]) return; marked[current] = true; HashSet<Integer> adjc = ug.adj(current); for (int adj : adjc) { if (marked[adj] && adj != parent && parent != -1) { hasCycleFirst[0] = true; return; } hcDfsMark(adj, ug, marked, hasCycleFirst, current); } } } static class Digraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; public Digraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); } public HashSet<Integer> adj(int from) { return adj[from]; } public int V() { return adj.length; } public int E() { return E; } public Digraph reversed() { Digraph dg = new Digraph(V()); for (int i = 0; i < V(); i++) for (int adjVert : adj(i)) dg.addEdge(adjVert, i); return dg; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static void dfsMark(int source, boolean[] marked, Digraph g) { if (marked[source]) return; marked[source] = true; Iterable<Integer> adj = g.adj(source); for (int adjc : adj) dfsMark(adjc, marked, g); } public static void bfsOrder(int source, Digraph g) { } public static int[] KosarajuSharirSCC(Digraph dg) { int[] id = new int[dg.V()]; Digraph reversed = dg.reversed(); // Gotta perform topological sort on this one to get the stack. Stack<Integer> revStack = Digraph.topologicalSort(reversed); // Initializing id and idCtr. id = new int[dg.V()]; int idCtr = -1; // Creating a 'marked' array. boolean[] marked = new boolean[dg.V()]; while (!revStack.isEmpty()) { int vertex = revStack.pop(); if (!marked[vertex]) sccDFS(dg, vertex, marked, ++idCtr, id); } return id; } private static void sccDFS(Digraph dg, int source, boolean[] marked, int idCtr, int[] id) { marked[source] = true; id[source] = idCtr; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) sccDFS(dg, adjVertex, marked, idCtr, id); } public static Stack<Integer> topologicalSort(Digraph dg) { // dg has to be a directed acyclic graph. // We'll have to run dfs on the digraph and push the deepest nodes on stack first. // We'll need a Stack<Integer> and a int[] marked. Stack<Integer> topologicalStack = new Stack<Integer>(); boolean[] marked = new boolean[dg.V()]; // Calling dfs for (int i = 0; i < dg.V(); i++) if (!marked[i]) runDfs(dg, topologicalStack, marked, i); return topologicalStack; } static void runDfs(Digraph dg, Stack<Integer> topologicalStack, boolean[] marked, int source) { marked[source] = true; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) runDfs(dg, topologicalStack, marked, adjVertex); topologicalStack.add(source); } public static boolean hasCycle(Digraph dg) { int n = dg.V(); boolean[] marked = new boolean[n]; boolean[] hasCycleFirst = new boolean[1]; for (int i = 0; i < n; i++) { if (marked[i]) continue; hcDfsMark(i, dg, marked, hasCycleFirst, -1); } return hasCycleFirst[0]; } // Helper for hasCycle. private static void hcDfsMark(int current, Digraph dg, boolean[] marked, boolean[] hasCycleFirst, int parent) { if (marked[current]) return; if (hasCycleFirst[0]) return; marked[current] = true; HashSet<Integer> adjc = dg.adj(current); for (int adj : adjc) { if (marked[adj] && adj != parent && parent != -1) { hasCycleFirst[0] = true; return; } hcDfsMark(adj, dg, marked, hasCycleFirst, current); } } } static class Edge { int from; int to; long weight; public Edge(int from, int to, long weight) { this.from = from; this.to = to; this.weight = weight; } } static class WeightedUGraph { // Adjacency list. private HashSet<Edge>[] adj; private static final String NEWLINE = "\n"; private int E; public WeightedUGraph(int V) { adj = (HashSet<Edge>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Edge>(); } public void addEdge(int from, int to, int weight) { if (adj[from].contains(new Edge(from, to, weight))) return; E++; adj[from].add(new Edge(from, to, weight)); adj[to].add(new Edge(to, from, weight)); } public HashSet<Edge> adj(int from) { return adj[from]; } public int degree(int v) { return adj[v].size(); } public int V() { return adj.length; } public int E() { return E; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (Edge w : adj[v]) { s.append(w.toString() + " "); } s.append(NEWLINE); } return s.toString(); } public static void dfsMark(int current, boolean[] marked, UGraph g) { if (marked[current]) return; marked[current] = true; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, marked, g); } public static void dfsMark(int current, int from, long[] distTo, boolean[] marked, UGraph g, ArrayList<Integer> endPoints) { if (marked[current]) return; marked[current] = true; if (from != -1) distTo[current] = distTo[from] + 1; HashSet<Integer> adj = g.adj(current); int alreadyMarkedCtr = 0; for (int adjc : adj) { if (marked[adjc]) alreadyMarkedCtr++; dfsMark(adjc, current, distTo, marked, g, endPoints); } if (alreadyMarkedCtr == adj.size()) endPoints.add(current); } public static void bfsOrder(int current, UGraph g) { } public static void dfsMark(int current, int[] colorIds, int color, UGraph g) { if (colorIds[current] != -1) return; colorIds[current] = color; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, colorIds, color, g); } public static int[] connectedComponents(UGraph g) { int n = g.V(); int[] componentId = new int[n]; Arrays.fill(componentId, -1); int colorCtr = 0; for (int i = 0; i < n; i++) { if (componentId[i] != -1) continue; dfsMark(i, componentId, colorCtr, g); colorCtr++; } return componentId; } public static boolean hasCycle(UGraph ug) { int n = ug.V(); boolean[] marked = new boolean[n]; boolean[] hasCycleFirst = new boolean[1]; for (int i = 0; i < n; i++) { if (marked[i]) continue; hcDfsMark(i, ug, marked, hasCycleFirst, -1); } return hasCycleFirst[0]; } // Helper for hasCycle. private static void hcDfsMark(int current, UGraph ug, boolean[] marked, boolean[] hasCycleFirst, int parent) { if (marked[current]) return; if (hasCycleFirst[0]) return; marked[current] = true; HashSet<Integer> adjc = ug.adj(current); for (int adj : adjc) { if (marked[adj] && adj != parent && parent != -1) { hasCycleFirst[0] = true; return; } hcDfsMark(adj, ug, marked, hasCycleFirst, current); } } } static class FastReader { private BufferedReader bfr; private StringTokenizer st; public FastReader() { bfr = new BufferedReader(new InputStreamReader(System.in)); } String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bfr.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return next().toCharArray()[0]; } String nextString() { return next(); } int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } double[] nextDoubleArray(int n) { double[] arr = new double[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextDouble(); return arr; } long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } int[][] nextIntGrid(int n, int m) { int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) { char[] line = fr.next().toCharArray(); for (int j = 0; j < m; j++) grid[i][j] = line[j] - 48; } return grid; } } } // NOTES: // ASCII VALUE OF 'A': 65 // ASCII VALUE OF 'a': 97 // Range of long: 9 * 10^18 // ASCII VALUE OF '0': 48 // Primes upto 'n' can be given by (n / (logn)).
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
6794a0c3c65cb18b55f3dd47350acb5d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class ComplexMarketAnalysis { public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); PrintWriter pr = new PrintWriter(new OutputStreamWriter(System.out)); int t = fr.nextInt(); boolean[] comp = new boolean[1000005]; // sieve for (int i = 2; i < comp.length; i++) { if (comp[i]) continue; for (int j = i + i; j < comp.length; j += i) { comp[j] = true; } } while (t-- > 0) { int n = fr.nextInt(); int e = fr.nextInt(); int[] arr = new int[n + 1]; for (int i = 1; i <= n; i++) { int a = fr.nextInt(); arr[i] = a; } long total = 0; boolean[] chained = new boolean[n + 1]; ArrayList<Integer> ones = new ArrayList<>(); int currentOnes = 0; for (int i = 1; i <= n; i++) { // reset structures ones.clear(); currentOnes = 0; // pr.println("Start: " + i); // loop through sequence for (int j = i; j <= n; j += e) { if ((arr[j] != 1 && comp[arr[j]]) || chained[j]) { break; } chained[j] = true; if (arr[j] == 1) { // pr.println("is one: " + j); currentOnes++; } else { // pr.println("end of group: " + j + " : cur : " + currentOnes); ones.add(currentOnes); currentOnes = 0; } } if (ones.size() == 0) continue; ones.add(currentOnes); for (int j = 0; j < ones.size(); j++) { total += ones.get(j); if (j > 0 && j < ones.size() - 1) { total += ones.get(j); } if (j < ones.size() - 1) { total += (long)(ones.get(j)) * (long)(ones.get(j + 1)); } } } pr.println(total); } pr.close(); } static class Pair { int x, y; public Pair(int x, int y) { this.x = x; this.y = y; } } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static int toInt(String s) { return Integer.parseInt(s); } // MERGE SORT IMPLEMENTATION void sort(int[] arr, int l, int r) { if (l < r) { int m = l + (r - l) / 2; sort(arr, l, m); sort(arr, m + 1, r); // call merge merge(arr, l, m, r); } } void merge(int[] arr, int l, int m, int r) { // find sizes int len1 = m - l + 1; int len2 = r - m; int[] L = new int[len1]; int[] R = new int[len2]; // push to copies for (int i = 0; i < L.length; i++) L[i] = arr[l + i]; for (int i = 0; i < R.length; i++) { R[i] = arr[m + 1 + i]; } // fill in new array int i = 0, j = 0; int k = l; while (i < len1 && j < len2) { if (L[i] < R[i]) { arr[k] = L[i]; i++; } else { arr[k] = R[i]; j++; } k++; } // add remaining elements while (i < len1) { arr[k] = L[i]; i++; k++; } while (j < len2) { arr[k] = R[j]; j++; k++; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() throws FileNotFoundException { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
efbf5ccecfa6a2630c52b2f56e6834b5
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class new1{ public static void main(String[] args) throws IOException{ //long l1 = System.currentTimeMillis(); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); FastReader s = new FastReader(); int[] seive = new int[1000001]; for(int i = 2; i < seive.length; i++) { for(int j = i; j < seive.length; j = j + i) { if(seive[j] == 0) seive[j] = i; } } // System.out.println(seive[9]); int t = s.nextInt(); for(int z = 0; z < t; z++) { int n = s.nextInt(); int e = s.nextInt(); int[] arr =new int[n + 1]; for(int i = 1; i <= n; i++) arr[i] = s.nextInt(); long count = 0; if(e == 1) { TreeSet<Integer> ts = new TreeSet<Integer>(); for(int i = 1; i <= n; i++) { if(arr[i] != 1) ts.add(i); } int i = 1; // System.out.println(ts.toString()); while(i < n) { if(!ts.isEmpty() && arr[ts.first()] == seive[arr[ts.first()]]) { int fi = ts.first(); int se = n + 1; if(ts.last() != fi) se = ts.higher(fi); count = count + se - fi; if(i == fi) count--; } //System.out.println(ts.toString() + " " + count + " " + i); if(ts.contains(i)) ts.remove(i); i++; } } else { for(int i = 1; i < n; i++) { long prod = arr[i]; for(int j = i + e; j <= n; j = j + e) { if(prod > 1 && arr[j] > 1) break; prod = prod * arr[j]; if(seive[(int) prod] == prod) count = count + 1; //System.out.println(count + " " + i + " " + j); } } } System.out.println(count); } // output.flush(); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; }}
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
fa1d8a130abe538f5c29cbfddbee2a7f
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class C { public static void main(String[] args) { for (int t = IO.nextInt(), i = 0; i < t; i++) new SolC().solve(); IO.close(); } } class SolC { int n, e; int[] a; int[] cntL, cntR; SolC() { n = IO.nextInt(); e = IO.nextInt(); a = new int[n]; for (int i = 0; i < n; i++) a[i] = IO.nextInt(); } void solve() { computeOnes(); long ans = 0; for (int i = 0; i < n; i++) { if (isPrime(a[i])) { ans += (long) (cntL[i] + 1) * (cntR[i] + 1) - 1; } } IO.writer.println(ans); } void computeOnes() { cntL = new int[n]; cntR = new int[n]; for (int i = 0; i < n; i++) { if (a[i] == 1 && i + e < n) cntL[i+e] = 1; if (i-e >= 0 && a[i-e] == 1) cntL[i] += cntL[i-e]; } for (int i = n-1; i >= 0; i--) { if (a[i] == 1 && i - e >= 0) cntR[i-e] = 1; if (i+e < n && a[i+e] == 1) cntR[i] += cntR[i+e]; } //IO.writer.println(Arrays.toString(cntL)); //IO.writer.println(Arrays.toString(cntR)); } boolean isPrime(int v) { if (v == 1) return false; if (v > 2 && v % 2 == 0) return false; for (int i = 3; i <= Math.sqrt(v); i += 2) if (v % i == 0) return false; return true; } } class IO { static final BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static final PrintWriter writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); private static StringTokenizer tokens; static String readLine() { try { return reader.readLine(); } catch (Exception e) { throw new RuntimeException(e); } } static void initializeTokens() { while (null == tokens || !tokens.hasMoreTokens()) tokens = new StringTokenizer(readLine()); } static String next() { initializeTokens(); return tokens.nextToken(); } static String next(String delim) { initializeTokens(); return tokens.nextToken(delim); } static int nextInt() { return Integer.parseInt(next()); } static long nextLong() { return Long.parseLong(next()); } static void close() { try { reader.close(); writer.close(); } catch (Exception e) { throw new RuntimeException(e); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e71ffa9174ec1beb28cde610b3edff50
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/** * @author vivek * programming is thinking, not typing */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class C { // static boolean isPrime(long n) { // // if (n <= 1) // return false; // // else if (n == 2) // return true; // // else if (n % 2 == 0) // return false; // // for (long i = 3; i <= Math.sqrt(n); i += 2) { // if (n % i == 0) // return false; // } // return true; // } private static void solveTC(int __) { /* For Google */ // ans.append("Case #").append(__).append(": "); //code start int n = scn.nextInt(); int e = scn.nextInt(); long[] arr = scn.nextLongArray(n); int[] dpa = new int[n]; int[] dpb = new int[n]; for (int i = 0, j = n - 1; i < n; i++, j--) { if (i - e >= 0) { dpa[i] = (arr[i - e] == 1 ? dpa[i - e] + 1 : 0); } if (j + e < n) { dpb[j] = (arr[j + e] == 1 ? dpb[j + e] + 1 : 0); } } long ans = 0; for (int i = 0; i < n; i++) { if (isPrime[(int) arr[i]]) { ans += calc(dpa[i], dpb[i]); } } print(ans); //code end print("\n"); } private static long calc(long left, long right) { return left + right + left * right; } public static void main(String[] args) { scn = new Scanner(); ans = new StringBuilder(); int t = scn.nextInt(); // int t = 1; int limit= 1_000_001 ; sieve(limit); /* try { System.setOut(new PrintStream(new File("file_i_o\\output.txt"))); } catch (FileNotFoundException e) { e.printStackTrace(); } */ for (int i = 1; i <= t; i++) { solveTC(i); } System.out.print(ans); } //Stuff for prime start /** * sorting algos */ private static void sort(int[] arr) { ArrayList<Integer> li = new ArrayList<>(arr.length); for (int ele : arr) li.add(ele); Collections.sort(li); for (int i = 0; i < li.size(); i++) { arr[i] = li.get(i); } } private static void sort(long[] arr) { ArrayList<Long> li = new ArrayList<>(arr.length); for (long ele : arr) li.add(ele); Collections.sort(li); for (int i = 0; i < li.size(); i++) { arr[i] = li.get(i); } } private static void sort(float[] arr) { ArrayList<Float> li = new ArrayList<>(arr.length); for (float ele : arr) li.add(ele); Collections.sort(li); for (int i = 0; i < li.size(); i++) { arr[i] = li.get(i); } } private static void sort(double[] arr) { ArrayList<Double> li = new ArrayList<>(arr.length); for (double ele : arr) li.add(ele); Collections.sort(li); for (int i = 0; i < li.size(); i++) { arr[i] = li.get(i); } } /** * List containing prime numbers <br> * <b>i<sup>th</sup></b> position contains <b>i<sup>th</sup></b> prime number <br> * 0th index is <b>null</b> */ private static ArrayList<Integer> listOfPrimes; /** * query <b>i<sup>th</sup></b> element to get if its prime of not */ private static boolean[] isPrime; /** * Performs Sieve of Erathosnesis and initialise isPrime array and listOfPrimes list * * @param limit the number till which sieve is to be performed */ private static void sieve(int limit) { listOfPrimes = new ArrayList<>(); listOfPrimes.add(null); boolean[] array = new boolean[limit + 1]; Arrays.fill(array, true); array[0] = false; array[1] = false; for (int i = 2; i <= limit; i++) { if (array[i]) { for (long j = (long) i * i; j <= limit; j += i) { array[(int) j] = false; } } } isPrime = array; for (int i = 0; i <= limit; i++) { if (array[i]) { listOfPrimes.add(i); } } } //stuff for prime end /** * Calculates the Least Common Multiple of two numbers * * @param a First number * @param b Second Number * @return Least Common Multiple of <b>a</b> and <b>b</b> */ private static long lcm(long a, long b) { return a * b / gcd(a, b); } /** * Calculates the Greatest Common Divisor of two numbers * * @param a First number * @param b Second Number * @return Greatest Common Divisor of <b>a</b> and <b>b</b> */ private static long gcd(long a, long b) { return (b == 0) ? a : gcd(b, a % b); } static void print(Object obj) { ans.append(obj.toString()); } static Scanner scn; static StringBuilder ans; //Fast Scanner static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); /* try { br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("file_i_o\\input.txt")))); } catch (FileNotFoundException e) { e.printStackTrace(); } */ } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } Integer[] nextIntegerArray(int n) { Integer[] array = new Integer[n]; for (int i = 0; i < n; i++) { array[i] = nextInt(); } return array; } long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; i++) { array[i] = nextLong(); } return array; } String[] nextStringArray() { return nextLine().split(" "); } String[] nextStringArray(int n) { String[] array = new String[n]; for (int i = 0; i < n; i++) { array[i] = next(); } return array; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3e5b417ec4dd18a99edb7f17eddc6a62
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class s1 { public static FastScanner scan; public static PrintWriter out; public static void main(String[] args) throws Exception { scan=new FastScanner(System.in); out=new PrintWriter(System.out); // int T=1; int T=scan.nextInt(); while(T-->0) { int n=scan.nextInt(),e=scan.nextInt(); int[] a=new int[n]; HashSet<Integer> prime=new HashSet<>(); HashMap<Integer,Integer> before=new HashMap<>(); HashMap<Integer,Integer> last=new HashMap<>(); long ans=0; for(int i=0;i<n;i++) { a[i]=scan.nextInt(); int mod=i%e; if(a[i]==1) { last.put(mod,last.getOrDefault(mod,0)+1); if(prime.contains(mod)) ans++; if(before.containsKey(mod)) ans+=before.get(mod); } else { int cur=a[i]; boolean can=false; for(int j=2;j*j<=cur&&!can;j++) if(cur%j==0) can=true; if(!can) { prime.add(mod); if(last.containsKey(mod)) { ans+=last.get(mod); before.put(mod,last.get(mod)); } last.put(mod,0); } else { if(prime.contains(mod)) prime.remove(mod); before.put(mod,0); last.put(mod,0); } } } out.println(ans); } out.close(); } } class Pair { int a,b; Pair(int a,int b) { this.a=a; this.b=b; } } class FastScanner { private InputStream stream; private byte[] buf=new byte[1024]; private int curChar; private int numChars; public FastScanner(InputStream stream) { this.stream=stream; } int read() { if(numChars==-1) throw new InputMismatchException(); if(curChar>=numChars) { curChar=0; try { numChars=stream.read(buf); } catch(IOException e) { throw new InputMismatchException(); } if(numChars<=0) return -1; } return buf[curChar++]; } boolean isSpaceChar(int c) { return c==' '||c=='\n'||c=='\r'||c=='\t'||c==-1; } boolean isEndline(int c) { return c=='\n'||c=='\r'||c==-1; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String next() { int c=read(); while(isSpaceChar(c)) c=read(); StringBuilder res=new StringBuilder(); do { res.appendCodePoint(c); c=read(); } while(!isSpaceChar(c)); return res.toString(); } String nextLine() { int c=read(); while(isEndline(c)) c=read(); StringBuilder res=new StringBuilder(); do { res.appendCodePoint(c); c=read(); } while(!isEndline(c)); return res.toString(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
2b052a34cc55430f7ebd8c04317035c8
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; public class code1 { static boolean[] seive=new boolean[(int)1e8]; static void seiveofprime(int n){ Arrays.fill(seive,true); seive[0]=false; seive[1]= false; for (int i = 2; i <=n; i++) { if(!seive[i]) continue; for (int j = i*2;j<=n; j+=i) { seive[j]=false; } } } static Scanner sc = new Scanner(System.in); public static void main(String[] args) { seiveofprime((int)1e7); int t= sc.nextInt(); while(t-->0){ solve(); } } static void solve() { int n = sc.nextInt(); int e = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long ans=0; for (int i = 0; i < n; i++) { if(seive[a[i]]){ int j=i-e; long left=0; while(j>=0 && a[j]==1){ left++; j-=e; } long right=0; j=i+e; while(j<n && a[j]==1){ right++; j+=e; } ans+=Math.max(((left+1)*(right+1))-1,Math.max(left,right)); } } System.out.println(ans); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
7234a1abf2bf0a0705fc94b70016353d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static class Pair implements Comparable < Pair > { int d; int i; Pair(int d, int i) { this.d = d; this.i = i; } public int compareTo(Pair o) { return this.d - o.d; } } public static class SegmentTree { long[] st; long[] lazy; int n; SegmentTree(long[] arr, int n) { this.n = n; st = new long[4 * n]; lazy = new long[4 * n]; construct(arr, 0, n - 1, 0); } public long construct(long[] arr, int si, int ei, int node) { if (si == ei) { st[node] = arr[si]; return arr[si]; } int mid = (si + ei) / 2; long left = construct(arr, si, mid, 2 * node + 1); long right = construct(arr, mid + 1, ei, 2 * node + 2); st[node] = left + right; return st[node]; } public long get(int l, int r) { return get(0, n - 1, l, r, 0); } public long get(int si, int ei, int l, int r, int node) { if (r < si || l > ei) return 0; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) return st[node]; int mid = (si + ei) / 2; return get(si, mid, l, r, 2 * node + 1) + get(mid + 1, ei, l, r, 2 * node + 2); } public void update(int index, int value) { update(0, n - 1, index, 0, value); } public void update(int si, int ei, int index, int node, int val) { if (si == ei) { st[node] = val; return; } int mid = (si + ei) / 2; if (index <= mid) { update(si, mid, index, 2 * node + 1, val); } else { update(mid + 1, ei, index, 2 * node + 2, val); } st[node] = st[2 * node + 1] + st[2 * node + 2]; } public void rangeUpdate(int l, int r, int val) { rangeUpdate(0, n - 1, l, r, 0, val); } public void rangeUpdate(int si, int ei, int l, int r, int node, int val) { if (r < si || l > ei) return; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) { st[node] += val * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += val; lazy[2 * node + 2] += val; } return; } int mid = (si + ei) / 2; rangeUpdate(si, mid, l, r, 2 * node + 1, val); rangeUpdate(mid + 1, ei, l, r, 2 * node + 2, val); st[node] = st[2 * node + 1] + st[2 * node + 2]; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { try { System.setIn(new FileInputStream(new File("input.txt"))); System.setOut(new PrintStream(new File("output.txt"))); } catch (Exception e) { } } Reader sc = new Reader(); int tc = sc.nextInt(); StringBuilder sb = new StringBuilder(); while (tc-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = sc.nextInt(); int left[] = new int[n]; int right[] = new int[n]; for (int i = 0; i < n; i++) { if (arr[i] == 1) { if (i - k >= 0) left[i] = left[i - k] + 1; else left[i] = 1; } } for (int i = n - 1; i >= 0; i--) { if (arr[i] == 1) { if (i + k < n) right[i] = right[i + k] + 1; else right[i] = 1; } } long ans = 0; for (int i = 0; i < n; i++) { if (isPrime(arr[i]) == false) continue; long l = 0; if (i - k >= 0) { ans += left[i - k]; l = left[i - k]; } long r = 0; if (i + k < n) { ans += right[i + k]; r = right[i + k]; } ans += (l * r); } sb.append(ans); sb.append("\n"); } System.out.println(sb); } static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return gcd(a - b, b); return gcd(a, b - a); } public static int Xor(int n) { if (n % 4 == 0) return n; // If n%4 gives remainder 1 if (n % 4 == 1) return 1; // If n%4 gives remainder 2 if (n % 4 == 2) return n + 1; // If n%4 gives remainder 3 return 0; } public static long pow(long a, long b, long mod) { long res = 1; while (b > 0) { if ((b & 1) > 0) res = (res * a) % mod; b = b >> 1; a = ((a % mod) * (a % mod)) % mod; } return (res % mod + mod) % mod; } public static boolean isEqual(ArrayList<Integer> a, ArrayList<Integer> b, int n) { HashSet<Integer> hs = new HashSet<>(); if (a.size() < (n / 2) || b.size() < (n / 2)) return false; int s1 = 0; for (int ele : a) hs.add(ele); for (int ele : b) hs.add(ele); if (hs.size() == n) return true; return false; } public static double digit(long num) { return Math.floor(Math.log10(num) + 1); } public static int count(ArrayList<Integer> al, int num) { if (al.get(al.size() - 1) == num) return 0; int k = al.get(al.size() - 1); ArrayList<Integer> temp = new ArrayList<>(); for (int i = 0; i < al.size(); i++) { if (al.get(i) > k) temp.add(al.get(i)); } return 1 + count(temp, num); } public static String Util(String s) { for (int i = s.length() - 1; i >= 1; i--) { int l = s.charAt(i - 1) - '0'; int r = s.charAt(i) - '0'; if (l + r >= 10) { return s.substring(0, i - 1) + (l + r) + s.substring(i + 1); } } int l = s.charAt(0) - '0'; int r = s.charAt(1) - '0'; return (l + r) + s.substring(2); } public static boolean isPos(int idx, long[] arr, long[] diff) { if (idx == 0) { for (int i = 0; i <= Math.min(arr[0], arr[1]); i++) { diff[idx] = i; arr[0] -= i; arr[1] -= i; if (isPos(idx + 1, arr, diff)) { return true; } arr[0] += i; arr[1] += i; } } else if (idx == 1) { if (arr[2] - arr[1] >= 0) { long k = arr[1]; diff[idx] = k; arr[1] = 0; arr[2] -= k; if (isPos(idx + 1, arr, diff)) { return true; } arr[1] = k; arr[2] += k; } else return false; } else { if (arr[2] == arr[0] && arr[1] == 0) { diff[2] = arr[2]; return true; } else { return false; } } return false; } public static boolean isPal(String s) { for (int i = 0; i < s.length(); i++) { if (s.charAt(i) != s.charAt(s.length() - 1 - i)) return false; } return true; } static int upperBound(ArrayList<Long> arr, long key) { int mid, N = arr.size(); // Initialise starting index and // ending index int low = 0; int high = N; // Till low is less than high while (low < high && low != N) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is greater than or equal // to arr[mid], then find in // right subarray if (key >= arr.get(mid)) { low = mid + 1; } // If key is less than arr[mid] // then find in left subarray else { high = mid; } } // If key is greater than last element which is // array[n-1] then upper bound // does not exists in the array return low; } static int lowerBound(ArrayList<Long> array, long key) { // Initialize starting index and // ending index int low = 0, high = array.size(); int mid; // Till high does not crosses low while (low < high) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is less than or equal // to array[mid], then find in // left subarray if (key <= array.get(mid)) { high = mid; } // If key is greater than array[mid], // then find in right subarray else { low = mid + 1; } } // If key is greater than last element which is // array[n-1] then lower bound // does not exists in the array if (low < array.size() && array.get(low) < key) { low++; } // Returning the lower_bound index return low; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
d304a73d9cbe6b6958489eef653b9dd1
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package labels.implementation.p_01_cf_1609_C; import java.util.Arrays; import java.util.Scanner; /** * https://codeforces.com/problemset/problem/1609/C * C. Complex Market Analysis * */ public class Main { static int MAX = (int) (1e6 + 5); static boolean[] isPrime = new boolean[MAX]; static void init() { Arrays.fill(isPrime, true); isPrime[0] = isPrime[1] = false; for(int i = 2; i * i < MAX; i++) { if(isPrime[i]) { for(int j = i * i; j < MAX; j += i) { isPrime[j] = false; } } } } public static void main(String[] args) { init(); Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- > 0) { solve(sc); } } static void solve(Scanner sc) { int n = sc.nextInt(), e = sc.nextInt(); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = sc.nextInt(); } long ans = 0; for(int i = 0; i < n; i++) { if(isPrime[a[i]]) { long bef = 0, aft = 0; for(int j = i - e; j >= 0; j -= e) { if(a[j] != 1) { break; } bef++; } for(int j = i + e; j < n; j += e) { if(a[j] != 1) { break; } aft ++; } ans += aft + bef * (aft + 1); } } System.out.println(ans); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
72843e3f5a75103bec03afd33551cd35
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import static java.lang.Math.*; import java.io.*; public class S { public static int surv = 0; public static void main(String args[])throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int test = Integer.parseInt(br.readLine()); StringBuilder sb = new StringBuilder(); int primes[] = new int[1000001]; for(int i = 2; i*i < primes.length; i++){ if(primes[i] == 0){ for(int j = i*i; j < primes.length; j+= i){ primes[j] = 1; } } } while(test > 0){ test--; StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int e = Integer.parseInt(st.nextToken()); int a[] = new int[n]; st = new StringTokenizer(br.readLine()); for(int i = 0; i < n; i++){ a[i] = Integer.parseInt(st.nextToken()); } solve(a, n, e, primes, sb); } System.out.print(sb.toString()); } final static int MOD = 1000000007; public static void solve(int a[], int n, int e, int primes[], StringBuilder sb){ long ans = 0; for(int i = 0; i < n; i++){ int curr = a[i]; if(primes[curr] == 0 && curr > 1){ long l = 0; long r = 0; for(int j = i - e; j >= 0; j-= e){ if(a[j] != 1)break; l++; } for(int j = i + e; j < n; j+= e){ if(a[j] != 1)break; r++; } ans += (l+r + l*r); } } sb.append(ans + "\n"); } public static long powerr(long base, long exp){ if(exp < 2)return base; if(exp % 2 == 0){ long ans = powerr(base, exp/2) % MOD; ans *= ans; ans %= MOD; return ans; }else{ return (((powerr(base, exp-1)) % MOD) * base) % MOD; } } public static long power(long a, long b){ if(b == 0)return 1l; long ans = power(a, b/2); ans *= ans; ans %= MOD; if(b % 2 != 0){ ans *= a; } return ans % MOD; } public static int logLong(long a){ int ans = 0; long b = 1; while(b < a){ b*=2; ans++; } return ans; } public static void rec(int a[], int l, int r, int d, int d_map[]){ if(l > r)return; if(l == r){ d_map[a[l]] = d; return; } int max = 0; int max_ind = -1; for(int i = l; i <= r; i++){ if(a[i] > max){ max_ind = i; max = a[i]; } } d_map[a[max_ind]] = d; rec(a, l, max_ind - 1, d+1, d_map); rec(a, max_ind + 1, r, d+1, d_map); } public static void sort(int a[]){ List<Integer> l = new ArrayList<Integer>(); for(int val : a){ l.add(val); } Collections.sort(l); int k = 0; for(int val : l){ a[k++] = val; } } public static void sortLong(long a[]){ List<Long> l = new ArrayList<Long>(); for(long val : a){ l.add(val); } Collections.sort(l); int k = 0; for(long val : l){ a[k++] = val; } } public static boolean isPal(String s){ int l = 0; int r = s.length() - 1; while(l <= r){ if(s.charAt(l) != s.charAt(r)){ return false; } l++; r--; } return true; } public static int gcd(int a, int b){ if(b > a){ int temp = a; a = b; b = temp; } if(b == 0)return a; return gcd(b, a%b); } /* public static long gcd(long a, long b){ if(b > a){ long temp = a; a = b; b = temp; } if(b == 0)return a; return gcd(b, a%b); }*/ // public static long lcm(long a, long b){ // return a * b/gcd(a, b); // } /*public static class DJSet{ public int a[]; public DJSet(int n){ this.a = new int[n]; Arrays.fill(a, -1); } public int find(int val){ if(a[val] >= 0){ a[val] = find(a[val]); return a[val]; }else{ return val; } } public boolean union(int val1, int val2){ int p1 = find(val1); int p2 = find(val2); if(p1 == p2){ return false; } int size1 = Math.abs(a[p1]); int size2 = Math.abs(a[p2]); if(size1 >= size2){ a[p2] = p1; a[p1] = (size1 + size2) * -1; }else{ a[p1] = p2; a[p2] = (size1 + size2) * -1; } return true; }*/ /* public static class DSU{ public int a[]; public DSU(int size){ this.a = new int[size]; Arrays.fill(a, -1); } public int find(int u){ if(a[u] < 0)return u; a[u] = find(a[u]); return a[u]; } public boolean union(int u, int v){ int p1 = find(u); int p2 = find(v); if(p1 == p2)return false; int size1 = a[p1] * -1; int size2 = a[p2] * -1; if(size1 >= size2){ a[p2] = p1; a[p1] = (size1 + size2) * -1; }else{ a[p1] = p2; a[p2] = (size1 + size2) * -1; } return true; } }*/ }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
7503225de1685107476e6c3aa8ec7f13
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* * Everything is Hard * Before Easy * Jai Mata Dii */ import java.util.*; import java.io.*; public class Main { static class FastReader{ BufferedReader br;StringTokenizer st;public FastReader(){br = new BufferedReader(new InputStreamReader(System.in));}String next(){while (st == null || !st.hasMoreElements()){try{st = new StringTokenizer(br.readLine());}catch (IOException e){e.printStackTrace();}}return st.nextToken();}int nextInt(){ return Integer.parseInt(next());}long nextLong(){return Long.parseLong(next());}double nextDouble(){return Double.parseDouble(next());}String nextLine(){String str = ""; try{str = br.readLine(); } catch (IOException e) {e.printStackTrace();} return str; }} static long mod = (long)(1e9+7); // static long mod = 998244353; // static Scanner sc = new Scanner(System.in); static FastReader sc = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static int ans; public static void main (String[] args) { int ttt = 1; ttt = sc.nextInt(); sieve(); HashSet<Integer> p = new HashSet<>(); for(int i=2;i<=1000005;i++) { if(!prime[i]) // System.out.println(i); p.add(i); } z :for(int tc=1;tc<=ttt;tc++){ int n = sc.nextInt(); int e = sc.nextInt(); int a[] = new int[n]; for(int i=0;i<n;i++) { a[i] = sc.nextInt(); } long dp[] = new long[n]; for(int i=n-1;i>=0;i--) { if(a[i] == 1) { dp[i] = 1; if(i + e < n) { dp[i] += dp[i+e]; } } } long ans = 0; long left[] = new long[n]; for(int i=0;i<n;i++) { if(a[i] == 1) { left[i] = 1; if(i - e >= 0) { left[i] += left[i-e]; } } } for(int i=0;i<n;i++) { long cur = 0; if(p.contains(a[i]) && i-e >= 0) { // System.out.println(i); cur = cur + left[i-e]; } if(p.contains(a[i]) && i+e<n) { if(dp[i+e]!=0) { cur = (cur)+(dp[i+e]); } } if(p.contains(a[i]) && i-e>=0 && i+e<n) { cur = (cur)+(dp[i+e]*left[i-e]); } ans = ans + cur; } out.write(ans+"\n"); } out.close(); } static boolean prime[] = new boolean[1000009]; static void sieve() { prime[0] = true; prime[1] = true; int max = 1000005; for(int i=2;i*i<=max;i++) { if(!prime[i]) { for(int j=i*i;j<=max;j+=i) { prime[j] = true; // fac[j] = i; } } } } static long pow(long a, long b){long ret = 1;while(b>0){if(b%2 == 0){a = (a*a)%mod;b /= 2;}else{ret = (ret*a)%mod;b--;}}return ret%mod;} static long gcd(long a,long b){if(b==0) return a; return gcd(b,a%b); } private static void sort(int[] a) {List<Integer> k = new ArrayList<>();for(int val : a) k.add(val);Collections.sort(k);for(int i=0;i<a.length;i++) a[i] = k.get(i);} private static void ini(List<Integer>[] tre2){for(int i=0;i<tre2.length;i++){tre2[i] = new ArrayList<>();}} private static void init(List<int[]>[] tre2){for(int i=0;i<tre2.length;i++){tre2[i] = new ArrayList<>();}} private static void sort(long[] a) {List<Long> k = new ArrayList<>();for(long val : a) k.add(val);Collections.sort(k);for(int i=0;i<a.length;i++) a[i] = k.get(i);} }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3b495d8aabe07a7161b4b960bcde27ae
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Main { static FastScanner sc = new FastScanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static StringBuilder sb = new StringBuilder(); static long mod = (long) 1e9 + 7; static Sieve s = new Sieve(1000005); public static void main(String[] args) throws Exception { int n = sc.nextInt(); for(int i = 0; i < n; i++) solve(); pw.flush(); } public static void solve() { int n = sc.nextInt(); int K = sc.nextInt(); ArrayList<ArrayList<Integer>> arr = new ArrayList<>(); for(int i = 0; i < K; i++) arr.add(new ArrayList<>()); for(int i = 0; i < n; i++){ int v = sc.nextInt(); arr.get(i % K).add(v); } long ans = 0; boolean is1 = true; for(int i = 0; i < K; i++){ ArrayList<Integer> a = arr.get(i); int N = a.size(); int right = 0; for(int left = 0; left < N; left++){ while (right < N && (a.get(right) == 1 || s.isPrime(a.get(right)))) { if(a.get(right) != 1){ if(is1){ is1 = false; }else{ break; } } ++right; } ans += Math.max(0,right-left-1); if (right == left) ++right; // right が left に重なったら right も動かす else if(a.get(left) != 1) is1 = true; } right = 0; for(int left = 0; left < N; left++){ while (right < N && a.get(right) == 1) { ++right; } ans -= Math.max(0,right-left-1); if (right == left) ++right; // right が left に重なったら right も動かす } //pw.println(ans); } pw.println(ans); } static class GeekInteger { public static void save_sort(int[] array) { shuffle(array); Arrays.sort(array); } public static int[] shuffle(int[] array) { int n = array.length; Random random = new Random(); for (int i = 0, j; i < n; i++) { j = i + random.nextInt(n - i); int randomElement = array[j]; array[j] = array[i]; array[i] = randomElement; } return array; } public static void save_sort(long[] array) { shuffle(array); Arrays.sort(array); } public static long[] shuffle(long[] array) { int n = array.length; Random random = new Random(); for (int i = 0, j; i < n; i++) { j = i + random.nextInt(n - i); long randomElement = array[j]; array[j] = array[i]; array[i] = randomElement; } return array; } } } class Sieve{ static int n; static int[] f; static ArrayList<Integer> prime; public Sieve(int n){ long ln = n; prime = new ArrayList<Integer>(); f = new int[n+1]; f[0] = f[1] = -1; for(int i = 2; i <= n; i++){ if(f[i] != 0){ continue; } f[i] = i; prime.add(i); long li = (long)i; for(long j = li*li; j <= ln; j += li){ if(f[(int)j] == 0){ f[(int)j] = i; } } } } public static boolean isPrime(int x){ return f[x] == x; } public static ArrayList<Integer> factorList(int x){ ArrayList<Integer> res = new ArrayList<Integer>(); while(x != 1){ res.add(f[x]); x /= f[x]; } return res; } public static HashMap<Integer,Integer> factor(int x){ ArrayList<Integer> fl = factorList(x); HashMap<Integer,Integer> res = new HashMap<Integer,Integer>(); if(fl.size()==0){ return new HashMap<Integer,Integer>(); } int prev = fl.get(0); int cnt = 0; for(int p : fl){ if(prev == p){ cnt++; }else{ res.put(prev,cnt); prev = p; cnt = 1; } } res.put(prev,cnt); return res; } } class FastScanner { private BufferedReader reader = null; private StringTokenizer tokenizer = null; public FastScanner(InputStream in) { reader = new BufferedReader(new InputStreamReader(in)); tokenizer = null; } public FastScanner(FileReader in) { reader = new BufferedReader(in); tokenizer = null; } public String next() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public String nextLine() { if (tokenizer == null || !tokenizer.hasMoreTokens()) { try { return reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken("\n"); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String[] nextArray(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) a[i] = next(); return a; } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
60048f8a5a109e525779f1e63613670e
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.ArrayList; import java.util.HashSet; import java.util.Scanner; /** * * @author Lenovo */ public class Problem { public static void main(String[] args) { Scanner in=new Scanner(System.in); int t=in.nextInt(); int[] n=new int[t]; int[] e=new int[t]; int[][] g=new int[t][]; for(int i=0;i<t;i++) { n[i]=in.nextInt(); e[i]=in.nextInt(); g[i]=new int[n[i]]; for(int j=0;j<n[i];j++) {g[i][j]=in.nextInt();} } ArrayList<Integer> m=new ArrayList<Integer>(); m.add(2); m.add(3); m.add(5); m.add(7); int count=0; m:while(count<3){ boolean prime=true; int x=m.get(m.size()-1); int q=m.size(); for(int i=x+1;i<x*x;i++) {prime=true; for(int j=0;j<q;j++) {if (i%m.get(j)==0) {prime=false;break;}} if (prime) m.add(i); if (i>1000000) break m; } count++; } HashSet<Integer>h =new HashSet<Integer>(); for(int i=0;i<m.size();i++) h.add(m.get(i)); long[] count1array=new long[t]; for(int i=0;i<t;i++) { long count1=0; boolean[] one=new boolean[n[i]]; ArrayList<Integer> prime=new ArrayList<Integer>(); for(int j=0;j<n[i];j++) {if (g[i][j]==1) one[j]=true;} for(int j=0;j<n[i];j++) {if (one[j]) continue; if (h.contains(g[i][j])) prime.add(j); } for(int j=0;j<prime.size();j++) {int k=0; int l=0; while((prime.get(j)+e[i]*(k+1)<n[i])&&one[prime.get(j)+e[i]*(k+1)]) k++; while ((prime.get(j)-e[i]*(l+1)>=0)&&one[prime.get(j)-e[i]*(l+1)]) l++; count1+=k; count1+=l; count1+=(long)k*(long)l; } count1array[i]=count1; } for(int i=0;i<t;i++) System.out.println(count1array[i]); }}
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
bc4add70a29e20bf8a91a9e50e959ea9
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; public class Main { public static void calcPrimes(int n, boolean prime[]){ for(int i=0;i<=n;i++){ prime[i] = true; } prime[0] = prime[1] = false; for(int i=2;i<=n;i++){ if(prime[i]){ for(int j=i*2;j<=n;j+=i){ prime[j] = false; } } } } public static void main(String[] args) { int maxNumber = 1000000; boolean prime[] = new boolean[maxNumber+1]; calcPrimes(maxNumber, prime); int t, n, e; Scanner scan = new Scanner(System.in); t = scan.nextInt(); while(t-- > 0){ n = scan.nextInt(); e = scan.nextInt(); int arr[] = new int[n]; int lo[] = new int[n]; int ro[] = new int[n]; for(int i=0;i<n;i++){ arr[i] = scan.nextInt(); lo[i] = ro[i] = 0; } for(int i=0;i<n;i++){ if(arr[i] == 1){ lo[i] = 1; if(i - e >= 0){ lo[i] += lo[i-e]; } } } for(int i=n-1;i>=0;i--){ if(arr[i] == 1){ ro[i] = 1; if(i+e < n){ ro[i] += ro[i+e]; } } } long ans = 0; for(int i=0;i<n;i++){ if(prime[arr[i]]){ int fromLeft = i-e >= 0? lo[i-e]: 0; int fromRight = i+e < n? ro[i+e]: 0; if(fromLeft > 0 && fromRight > 0){ ans += (long)fromLeft * (fromRight+1); ans += fromRight; }else if(fromLeft > 0){ ans += fromLeft; }else if(fromRight > 0){ ans += fromRight; } } } System.out.println(ans); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
973d941665c7e815695940d7260dff2b
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; public class Contest_yandexA{ public static void main(String[] args) { Scanner input = new Scanner(System.in); boolean[] isPrime = new boolean[1000001]; for (int i = 2; i <= 1000000; ++i) isPrime[i] = true; for (int i = 2; i <= 1000; ++i) { for (int j = i*i; j <= 1000000; j+=i) isPrime[j] = false; } int t = input.nextInt(); for (int z = 0; z < t; ++z) { int n = input.nextInt(); int e = input.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = input.nextInt(); long ans = 0; for (int i = 0; i < n; ++i) { if (isPrime[a[i]]) { long bef = 0; long aft = 0; for (int j = i-e; j >= 0; j-=e) { if (a[j]!=1) break; ++bef; } for (int j = i+e; j < n; j+=e) { if (a[j]!=1) break; ++aft; } ans += (bef+1)*(aft+1)-1; } } System.out.println(ans); } } public static int gcd(int a,int b){ if(b == 0){ return a; } return gcd(b,a%b); } public static int lcm(int a,int b){ return (a / gcd(a, b)) * b; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
f1f1e7b7ef19ba4c274eb7e3ecd19722
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//Complex Market Analysis import java.io.*; import java.util.*; public class C1609{ public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int N = 1000005; boolean[] isprime = new boolean[N]; Arrays.fill(isprime,true); for(int k = 2; k < N; k++){ if(isprime[k]){ for(int j = 2*k; j < N; j += k){ isprime[j] = false; } } } isprime[0] = false; isprime[1] = false; int t = Integer.parseInt(f.readLine()); for(int q = 1; q <= t; q++){ StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); int e = Integer.parseInt(st.nextToken()); st = new StringTokenizer(f.readLine()); int[] array = new int[n]; for(int k = 0; k < n; k++){ array[k] = Integer.parseInt(st.nextToken()); } int[] left = new int[n]; int[] right = new int[n]; Arrays.fill(left,-1); Arrays.fill(right,-1); for(int k = 0; k < e; k++){ int curleft = -1; for(int j = k; j < n; j += e){ left[j] = curleft; if(array[j] == 1){ if(curleft == -1){ curleft = j; } } else { curleft = -1; } } int curright = -1; for(int j = n-k-1; j >= 0; j -= e){ right[j] = curright; if(array[j] == 1){ if(curright == -1){ curright = j; } } else { curright = -1; } } } long answer = 0L; for(int k = 0; k < n; k++){ if(!isprime[array[k]]) continue; long onleft = left[k] == -1 ? 1L : ((long)((k-left[k])/e)+1); long onright = right[k] == -1 ? 1L : ((long)((right[k]-k)/e)+1); answer += onleft*onright-1; } out.println(answer); } out.close(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
f44e8e6103b677f63b4bb6bc8e01c5ec
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Omar { static PrintWriter pw = new PrintWriter(System.out); static Scanner sc=new Scanner(System.in); static int[] lp; static void sieveLinear(int N) { ArrayList<Integer> primes = new ArrayList<Integer>(); lp = new int[N + 1]; // lp[i] = least prime divisor of i for (int i = 2; i <= N; ++i) { if (lp[i] == 0) { primes.add(i); lp[i] = i; } int curLP = lp[i]; for (int p : primes)// all primes smaller than or equal my lowest prime divisor if (p > curLP || p * 1l * i > N) break; else lp[p * i] = p; } } public static void main(String[] args) throws IOException { sieveLinear(1000000); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(),e=sc.nextInt(); int []arr=sc.nextIntArray(n); int []ones=new int[n],ones2=new int[n]; for(int i=0;i<n;i++) { if(arr[i]==1) ones[i]++; if(arr[i]==1&& i-e>=0)ones[i]+=ones[i-e]; } for(int i=n-1;i>=0;i--) { if(arr[i]==1) ones2[i]++; if(i+e<n && arr[i]==1)ones2[i]+=ones2[i+e]; } long ans=0; for(int i=0;i<n;i++) { if(lp[arr[i]]==arr[i]) { int onesBe=0,onesAF=0; if(i-e>=0)onesBe=ones[i-e]; if(i+e<n)onesAF=ones2[i+e]; ans+=1l*onesBe*(1+onesAF); ans+=onesAF; } } pw.println(ans); } pw.flush(); } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static class PairPoint { pair p1; pair p2; public PairPoint(pair p1, pair p2) { this.p1 = p1; this.p2 = p2; } public String toString() { return p1.toString() + p2.toString(); } public boolean equals(PairPoint pp) { if (p1.equals(pp.p1) && p2.equals(pp.p2)) return true; return false; } } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(String file) throws IOException { br = new BufferedReader(new FileReader(file)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String readAllLines(BufferedReader reader) throws IOException { StringBuilder content = new StringBuilder(); String line; while ((line = reader.readLine()) != null) { content.append(line); content.append(System.lineSeparator()); } return content.toString(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
f5bbe8c6dd116445ab34463b4bd91768
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package codeforce.div2.deltix.Autumn2021; import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.StringTokenizer; import static java.util.stream.Collectors.joining; /** * @author pribic (Priyank Doshi) * @see <a href="https://codeforces.com/contest/1609/problem/C" target="_top">https://codeforces.com/contest/1609/problem/C</a> * @since 28/11/21 8:39 PM */ public class C { static FastScanner sc = new FastScanner(System.in); static boolean[] isPrime; public static void main(String[] args) { prePrime(); try (PrintWriter out = new PrintWriter(System.out)) { int T = sc.nextInt(); for (int tt = 1; tt <= T; tt++) { int n = sc.nextInt(); int e = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } List<Integer> primeIdx = new ArrayList<>(); for (int i = 0; i < n; i++) { if (isPrime[arr[i]]) primeIdx.add(i); } long cnt = 0; for (int pIDx : primeIdx) { long mul = 1; long right = 1; while (pIDx + mul * e < n && arr[pIDx + (int) mul * e] == 1) { right++; mul++; } long left = 1; mul = 1; while (pIDx - mul * e >= 0 && arr[pIDx - (int) mul * e] == 1) { left++; mul++; } cnt += left * right - 1; } System.out.println(cnt); } } } private static void prePrime() { isPrime = new boolean[1000000 + 1]; Arrays.fill(isPrime, true); isPrime[1] = false; for (int i = 2; i < isPrime.length; i++) { if (isPrime[i]) { for (int j = 2 * i; j < isPrime.length; j += i) isPrime[j] = false; } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f), 32768); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
3508e82bc3d3f9ee4c45f1f1978a72ac
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package codeforce.div2.deltix.Autumn2021; import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.StringTokenizer; import static java.util.stream.Collectors.joining; /** * @author pribic (Priyank Doshi) * @see <a href="https://codeforces.com/contest/1609/problem/C" target="_top">https://codeforces.com/contest/1609/problem/C</a> * @since 28/11/21 8:39 PM */ public class C { static FastScanner sc = new FastScanner(System.in); static boolean[] isPrime; public static void main(String[] args) { prePrime(); try (PrintWriter out = new PrintWriter(System.out)) { int T = sc.nextInt(); for (int tt = 1; tt <= T; tt++) { int n = sc.nextInt(); int e = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } List<Integer> primeIdx = new ArrayList<>(); for (int i = 0; i < n; i++) { if (isPrime[arr[i]]) primeIdx.add(i); } long cnt = 0; for (int pIDx : primeIdx) { long mul = 1; long right = 0; while (pIDx + mul * e < n && arr[pIDx + (int) mul * e] == 1) { right++; mul++; } long left = 0; mul = 1; while (pIDx - mul * e >= 0 && arr[pIDx - (int) mul * e] == 1) { left++; mul++; } cnt += right; cnt += left; cnt += left * right; } System.out.println(cnt); } } } private static void prePrime() { isPrime = new boolean[1000000 + 1]; Arrays.fill(isPrime, true); isPrime[1] = false; for (int i = 2; i < isPrime.length; i++) { if (isPrime[i]) { for (int j = 2 * i; j < isPrime.length; j += i) isPrime[j] = false; } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f), 32768); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
48baf4e8da622f16a1077876430a408f
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; public class Solution{ public static boolean isPrime(int num) { if (num <= 1) return false; for (int i = 2; i <= Math. sqrt(num); i++) { if (num % i == 0) return false; } return true; } public static void main(String args[])throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw=new BufferedWriter(new OutputStreamWriter(System.out)); int t=Integer.parseInt(br.readLine()); while(t-->0) { String str[]=br.readLine().split(" "); int n = Integer.parseInt(str[0]); int e = Integer.parseInt(str[1]); String str2[]=br.readLine().split(" "); int a[]=new int[n]; for(int i=0;i<n;i++) { a[i]=Integer.parseInt(str2[i]); } long count =0; for(int i=0;i<n;i++) { if(isPrime(a[i])) { int p=0; for(int k=i-e;k>=0&&a[k]==1;k=k-e) { count++; p++; } for(int k=i+e;k<n&&a[k]==1;k=k+e) count=count+p+1; } } System.out.println(count+"\n"); } bw.close(); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
5b7b757c51509b9f42fbcaab30f0420e
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static boolean[] prime ; public static void main(String[] args) { FastReader sc = new FastReader(); prime(1000000); int t = sc.nextInt(); for (int i = 0; i < t; i++) { int n = sc.nextInt(); int e = sc.nextInt(); int m = (n-1)/e + 2 ; int[][]arr = new int[e][m]; for (int j = 1 ; j < n+1; j++) { int eind = j%e ; int mind = (j-1)/e ; arr[eind][mind] = sc.nextInt(); } long ans = 0 ; for (int j = 0 ; j < e ; j++) { int l1 = 0 ; int r1 = 0 ; int state = -1 ; for (int k = 0 ; k < m; k++) { if (state == -1) { if (arr[j][k] == 1) { l1++; } else if (prime[arr[j][k]]) { ans +=l1 ; state = 0 ; } else { l1 = 0 ; } } else if (state == 0 ) { if (arr[j][k] == 1) { r1++ ; } else if (prime[arr[j][k]]) { ans+=r1; ans+= (long) l1 *r1; ans+= r1 ; l1 = r1 ; r1 = 0 ; } else { ans+=r1; ans+= (long) l1 *r1; l1 = 0 ; r1 = 0 ; state = -1 ; } } } } System.out.println(ans); } } static void prime(int x) { //sieve algorithm. nlog(log(n)). prime = new boolean[(x + 1)]; Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i * i <= x; i++) if (prime[i]) for (int j = i * i; j <= x; j += i) prime[j] = false; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
535da97db3f7188ff490ab1a051242c2
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int z=0;z<t;z++){ int n=sc.nextInt(); int e=sc.nextInt(); int arr[]=new int[n]; HashSet<Integer> set=new HashSet<>(); for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); if(arr[i]==1) continue; int j=2; int flag=0; while(j*j<=arr[i]){ if(arr[i]%j==0){ flag=1; break; } j++; } if(flag==0){ set.add(arr[i]); } } int dp[][]=new int[n][2]; for(int i=0;i<n;i++){ if(arr[i]==1){ dp[i][0]=1; if(i-e>=0){ dp[i][0]+=dp[i-e][0]; } } } for(int i=n-1;i>=0;i--){ if(arr[i]==1){ dp[i][1]=1; if(i+e<n){ dp[i][1]+=dp[i+e][1]; } } } long count=0; for(int i=0;i<n;i++){ long size1=0,size2=0; if(set.contains(arr[i])){ if(i-e>=0 && arr[i-e]==1){ size1+=dp[i-e][0]; } if(i+e<n && arr[i+e]==1){ size2+=dp[i+e][1]; } } long size=size1+size2; if(size>=1) count+=(size+(1L*size1*size2)); } System.out.println(count); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
349b1f62ecb2deea647310528f56c6ac
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class c { public static void main(String[] args) { FastScanner scan=new FastScanner(); PrintWriter out=new PrintWriter(System.out); boolean[] prime=new boolean[1000001]; Arrays.fill(prime,true); prime[1]=false; for(int i=2;i<prime.length;i++) { if(!prime[i]) continue; for(int j=i+i;j<prime.length;j+=i) { prime[j]=false; } } int t=scan.nextInt(); for(int tt=0;tt<t;tt++) { int n=scan.nextInt(), step=scan.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++) a[i]=scan.nextInt(); // System.out.println("go"); long res=0L; long[] onesleft=new long[n]; long[] onesright=new long[n]; for(int start=0;start<step;start++) { int ones=0; for(int i=start;i<n;i+=step) { onesleft[i]=ones; if(a[i]==1) ones++; else ones=0; } } for(int e=0;e<step;e++) { int start=n-e-1; int ones=0; for(int i=start;i>=0;i-=step) { onesright[i]=ones; if(a[i]==1) ones++; else ones=0; } } // System.out.println(Arrays.toString(onesleft)); // System.out.println(Arrays.toString(onesright)); for(int start=0;start<step;start++) { for(int i=start;i<n;i+=step) { if(prime[a[i]]) { res+=(onesleft[i]+1)*(onesright[i]+1)-1; } } } out.println(res); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
c4739299f0e91514ee3ecb3b1b2623c7
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public final class Main { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)}; static int mod = (int) (1e9 + 7); static int mod2 = 998244353; public static void main(String[] args) { int tt = i(); while (tt-- > 0) { solve(); } out.flush(); } public static void solve() { int n = i(); int e = i(); int[] a = input(n); long ans = 0; for (int i = 0; i < e; i++) { List<Integer> list = new ArrayList<>(); int j = i; while (j < n) { list.add(a[j]); j += e; } int[] ro = new int[list.size()]; int[] lo = new int[list.size()]; for (int k = 0; k < list.size(); k++) { lo[k] = (list.get(k) == 1 ? (1 + ((k - 1 >= 0) ? lo[k - 1] : 0)) : 0); } for (int k = list.size() - 1; k >= 0; k--) { ro[k] = (list.get(k) == 1 ? (1 + ((k + 1 < list.size()) ? ro[k + 1] : 0)) : 0); } for (int k = 0; k < list.size(); k++) { if (isPrime(list.get(k))) { int left = ((k - 1 >= 0) ? lo[k - 1] : 0); int right = ((k + 1 < list.size()) ? ro[k + 1] : 0); ans += (long) (left) * right + left + right; } } } out.println(ans); } static long[] pre(int[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static long[] pre(long[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(List<Integer> A) { for (int a : A) { out.print(a + " "); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static double d() { return in.nextDouble(); } static String s() { return in.nextLine(); } static String c() { return in.next(); } static int[][] inputWithIdx(int N) { int A[][] = new int[N][2]; for (int i = 0; i < N; i++) { A[i] = new int[]{i, in.nextInt()}; } return A; } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long LCM(int a, int b) { return (long) a / GCD(a, b) * b; } static long LCM(long a, long b) { return a / GCD(a, b) * b; } static void shuffleAndSort(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int[] temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr, comparator); } static void shuffleAndSort(long[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); long temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static boolean isPerfectSquare(double number) { double sqrt = Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static void swap(char A[], int a, int b) { char t = A[a]; A[a] = A[b]; A[b] = t; } static long pow(long a, long b, int mod) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow *= x; } x = x * x; b /= 2; } return pow; } static long modInverse(long x, int mod) { return pow(x, mod - 2, mod); } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } public static String reverse(String str) { if (str == null) { return null; } return new StringBuilder(str).reverse().toString(); } public static void reverse(int[] arr) { for (int i = 0; i < arr.length / 2; i++) { int tmp = arr[i]; arr[arr.length - 1 - i] = tmp; arr[i] = arr[arr.length - 1 - i]; } } public static String repeat(char ch, int repeat) { if (repeat <= 0) { return ""; } final char[] buf = new char[repeat]; for (int i = repeat - 1; i >= 0; i--) { buf[i] = ch; } return new String(buf); } public static int[] manacher(String s) { char[] chars = s.toCharArray(); int n = s.length(); int[] d1 = new int[n]; for (int i = 0, l = 0, r = -1; i < n; i++) { int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1); while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) { k++; } d1[i] = k--; if (i + k > r) { l = i - k; r = i + k; } } return d1; } public static int[] kmp(String s) { int n = s.length(); int[] res = new int[n]; for (int i = 1; i < n; ++i) { int j = res[i - 1]; while (j > 0 && s.charAt(i) != s.charAt(j)) { j = res[j - 1]; } if (s.charAt(i) == s.charAt(j)) { ++j; } res[i] = j; } return res; } } class Pair { int i; int j; Pair(int i, int j) { this.i = i; this.j = j; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Pair pair = (Pair) o; return i == pair.i && j == pair.j; } @Override public int hashCode() { return Objects.hash(i, j); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Node { int val; public Node(int val) { this.val = val; } } class ST { int n; Node[] st; ST(int n) { this.n = n; st = new Node[4 * Integer.highestOneBit(n)]; } void build(Node[] nodes) { build(0, 0, n - 1, nodes); } private void build(int id, int l, int r, Node[] nodes) { if (l == r) { st[id] = nodes[l]; return; } int mid = (l + r) >> 1; build((id << 1) + 1, l, mid, nodes); build((id << 1) + 2, mid + 1, r, nodes); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } void update(int i, Node node) { update(0, 0, n - 1, i, node); } private void update(int id, int l, int r, int i, Node node) { if (i < l || r < i) { return; } if (l == r) { st[id] = node; return; } int mid = (l + r) >> 1; update((id << 1) + 1, l, mid, i, node); update((id << 1) + 2, mid + 1, r, i, node); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } Node get(int x, int y) { return get(0, 0, n - 1, x, y); } private Node get(int id, int l, int r, int x, int y) { if (x > r || y < l) { return new Node(0); } if (x <= l && r <= y) { return st[id]; } int mid = (l + r) >> 1; return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y)); } Node comb(Node a, Node b) { if (a == null) { return b; } if (b == null) { return a; } return new Node(a.val | b.val); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
7766bdc4f6bcf11b88792aa72a4f19ae
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class C { public static void main(String[] args) throws IOException { /**/ Scanner sc = new Scanner(new BufferedReader(new InputStreamReader(System.in))); /*/ Scanner sc = new Scanner(new BufferedReader(new InputStreamReader(new FileInputStream("src/c.in")))); /**/ boolean[] isPrime = new boolean[1000001]; for (int i = 2; i <= 1000000; ++i) isPrime[i] = true; for (int i = 2; i <= 1000; ++i) { for (int j = i*i; j <= 1000000; j+=i) isPrime[j] = false; } int t = sc.nextInt(); for (int z = 0; z < t; ++z) { int n = sc.nextInt(); int e = sc.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = sc.nextInt(); long ans = 0; for (int i = 0; i < n; ++i) { if (isPrime[a[i]]) { long bef = 0; long aft = 0; for (int j = i-e; j >= 0; j-=e) { if (a[j]!=1) break; ++bef; } for (int j = i+e; j < n; j+=e) { if (a[j]!=1) break; ++aft; } ans += (bef+1)*(aft+1)-1; } } System.out.println(ans); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
c250f93d26cae3d32990217583780198
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; /* 1 7 3 10 2 1 3 1 19 3 */ public class C{ static FastReader sc=null; static boolean prime[]; static int nax=(int)1e6+5; public static void main(String[] args) { sc=new FastReader(); sieve(); int t=sc.nextInt(); for(int tt=0;tt<t;tt++) { int n=sc.nextInt(),e=sc.nextInt(); int a[]=sc.readArray(n); int left[]=new int[n],right[]=new int[n]; Arrays.fill(left, 1); Arrays.fill(right, 1); for(int i=0;i<n;i++) { if(i-e>=0 && a[i-e]==1) { left[i]+=left[i-e]; } } for(int i=n-1;i>=0;i--) { if(i+e<n && a[i+e]==1) { right[i]+=right[i+e]; } } long ans=0; for(int i=0;i<n;i++) { if(prime[a[i]]) { ans+=(left[i]*1L*right[i])-1; } } System.out.println(ans); } } static void sieve() { prime=new boolean[nax]; Arrays.fill(prime, true); prime[0]=prime[1]=false; for(int i=2;i<nax;i++) { if(prime[i])for(int j=2*i;j<nax;j+=i)prime[j]=false; } } static int[] ruffleSort(int a[]) { ArrayList<Integer> al=new ArrayList<>(); for(int i:a)al.add(i); Collections.sort(al); for(int i=0;i<a.length;i++)a[i]=al.get(i); return a; } static void print(int a[]) { for(int e:a) { System.out.print(e+" "); } System.out.println(); } static class FastReader{ StringTokenizer st=new StringTokenizer(""); BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); String next() { while(!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch(IOException e){ e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[]=new int[n]; for(int i=0;i<n;i++)a[i]=sc.nextInt(); return a; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
224056a1359f2bdf2c7dfbf08c81a532
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package kg.my_algorithms.Codeforces; /* If you can't Calculate, then Stimulate */ /* 1) Physical Strength 2) Mental Strength 3) Emotional Strength */ import java.util.*; import java.io.*; public class Solution { static boolean[] isPrime = new boolean[1_000_001]; private static final FastReader fr = new FastReader(); public static void main(String[] args) throws IOException { BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringBuilder sb = new StringBuilder(); Arrays.fill(isPrime,true); for(int i=2;i<isPrime.length;i++){ if(isPrime[i]){ for(int j=2*i;j<isPrime.length;j+=i) isPrime[j] = false; } } // System.out.println("Is 2 a prime number= " + isPrime[2]); int testCases = fr.nextInt(); for(int test=1;test<=testCases;test++){ int n = fr.nextInt(); int e = fr.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) arr[i] = fr.nextInt(); long res = 0L; for(int i=0;i<e;i++){ List<Integer> list = new ArrayList<>(); for(int j=i;j<n;j=j+e) list.add(arr[j]); res += getNumberOfPairs(list); } sb.append(res).append("\n"); } output.write(sb.toString()); output.flush(); } private static long getNumberOfPairs(List<Integer> list){ int[] numberOfOnesLeft = new int[list.size()]; List<Integer> primeIndex = new ArrayList<>(); for(int i=0;i<list.size();i++){ if(i==0){ if(list.get(0)==1) numberOfOnesLeft[0] = 1; else if(isPrime[list.get(0)]) primeIndex.add(i); continue; } int value = list.get(i); if(list.get(i-1)==1) numberOfOnesLeft[i] = numberOfOnesLeft[i-1]; if(value == 1) numberOfOnesLeft[i]++; else if(isPrime[value]) primeIndex.add(i); } int[] numberOfOnesRight = new int[list.size()]; for(int i=list.size()-1;i>=0;i--){ if(i==list.size()-1){ if(list.get(i)==1) numberOfOnesRight[i] = 1; continue; } int value = list.get(i); if(list.get(i+1)==1) numberOfOnesRight[i] = numberOfOnesRight[i+1]; if(value==1) numberOfOnesRight[i]++; } long res = 0; for(int index: primeIndex){ int leftOnes = numberOfOnesLeft[index]; int rightOnes = numberOfOnesRight[index]; // if(list.get(0)==2){ // System.out.println("lo= " + leftOnes+" ro= "+ rightOnes); // } res += ((leftOnes+1L)*(rightOnes+1L)-1L); } // if(list.get(0)==2){ // System.out.println("noor= " + Arrays.toString(numberOfOnesRight)); // } // System.out.println("list= " + list +" res= " + res); return res; } } /* 1 7 3 10 2 1 3 1 19 3 */ //Fast Input class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()){ str = st.nextToken("\n"); } else{ str = br.readLine(); } } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
23e661df9b3ea4f2cedfe198aaa53f92
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class ComplexMarketAnalysis { public static void main(String[] args) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pr=new PrintWriter(System.out); int t=Integer.parseInt(br.readLine()); while(t!=0){ solve(br,pr); t--; } pr.flush(); pr.close(); } public static void solve(BufferedReader br,PrintWriter pr) throws IOException{ String[] temp=br.readLine().split(" "); int n=Integer.parseInt(temp[0]); int e=Integer.parseInt(temp[1]); temp=br.readLine().split(" "); int[] nums=new int[n]; int[] flag=new int[n]; for(int i=0;i<n;i++){ nums[i]=Integer.parseInt(temp[i]); if(nums[i]==1){ flag[i]=1; } else if(isPrime(nums[i])){ flag[i]=2; } } long res=0; for(int i=0;i<n;i++){ if(flag[i]==2){ int left=0; for(int j=i-e;j>=0;j-=e){ if(flag[j]==1){ left++; } else{ break; } } int right=0; for(int j=i+e;j<n;j+=e){ if(flag[j]==1){ right++; } else{ break; } } res+=(long)(left+1)*(long)(right+1)-1; } } pr.println(res); } public static boolean isPrime(int num) { if (num <= 1) { return false; } for (int i = 2; i <= Math.sqrt(num); i++) { if (num % i == 0) { return false; } } return true; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
aa8f4f166ebe960ad9bbbbc31d590149
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.Scanner; public class C1609 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t=0; t<T; t++) { int N = in.nextInt(); int E = in.nextInt(); int[] A = new int[N]; for (int n=0; n<N; n++) { A[n] = in.nextInt(); } long answer = 0; for (int n=0; n<N; n++) { if (isPrime(A[n])) { long onesBefore = 0; int i = n-E; while (i >= 0 && A[i] == 1) { onesBefore++; i -= E; } long onesAfter = 0; i = n+E; while (i < N && A[i] == 1) { onesAfter++; i += E; } answer += (onesBefore+1)*(onesAfter+1)-1; } } System.out.println(answer); } } private static boolean isPrime(int number) { if (number == 1) return false; for (int d=2; d*d<=number; d++) { if (number%d == 0) { return false; } } return true; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
73c0ade33fc90b6b23e56db52f518281
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; public class Contest_yandexA{ public static void main(String[] args) { Scanner input = new Scanner(System.in); boolean[] isPrime = new boolean[1000001]; for (int i = 2; i <= 1000000; ++i) isPrime[i] = true; for (int i = 2; i <= 1000; ++i) { for (int j = i*i; j <= 1000000; j+=i) isPrime[j] = false; } int t = input.nextInt(); for (int z = 0; z < t; ++z) { int n = input.nextInt(); int e = input.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; ++i) a[i] = input.nextInt(); long ans = 0; for (int i = 0; i < n; ++i) { if (isPrime[a[i]]) { long bef = 0; long aft = 0; for (int j = i-e; j >= 0; j-=e) { if (a[j]!=1) break; ++bef; } for (int j = i+e; j < n; j+=e) { if (a[j]!=1) break; ++aft; } ans += (bef+1)*(aft+1)-1; } } System.out.println(ans); } } public static int gcd(int a,int b){ if(b == 0){ return a; } return gcd(b,a%b); } public static int lcm(int a,int b){ return (a / gcd(a, b)) * b; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
88c504e511202083405f3e76c3c4ee95
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.util.InputMismatchException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.Arrays; public class Codeforces1609C{ static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } public static void main (String args[]) throws NumberFormatException, IOException { InputReader in = new InputReader(System.in); PrintWriter pr = new PrintWriter(System.out); int numTc = in.nextInt(); for(int tc = 0; tc <numTc; tc++) { int n = in.nextInt(); int e = in.nextInt(); int data []= in.nextIntArray(n); boolean vis[] = new boolean [n]; long dp [] = new long [n]; long total = 0; for(int start = 0; start<n; start++) { if(vis[start]) continue; int itr = start; int num1 = 0; while(itr<n) { vis[itr] = true; if(data[itr] == 1) { num1++; } else { if(isPrime(data[itr])) { total+= num1; dp[itr] = num1; } num1 = 0; } itr+=e; } num1 = 0; itr-=e; while(itr>=0) { if(data[itr] == 1) { num1++; } else { if(isPrime(data[itr])) { total+= num1; total+= num1*dp[itr]; } num1 = 0; } itr-=e; } } pr.println(total); } pr.flush(); } static class InputReader { private boolean finished = false; private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int peek() { if (numChars == -1) { return -1; } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { return -1; } if (numChars <= 0) { return -1; } } return buf[curChar]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuilder buf = new StringBuilder(); int c = read(); while (c != '\n' && c != -1) { if (c != '\r') { buf.appendCodePoint(c); } c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) { s = readLine0(); } return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) { return readLine(); } else { return readLine0(); } } public BigInteger readBigInteger() { try { return new BigInteger(nextString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char nextCharacter() { int c = read(); while (isSpaceChar(c)) { c = read(); } return (char) c; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') { return res * Math.pow(10, nextInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') { return res * Math.pow(10, nextInt()); } if (c < '0' || c > '9') { throw new InputMismatchException(); } m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public boolean isExhausted() { int value; while (isSpaceChar(value = peek()) && value != -1) { read(); } return value == -1; } public String next() { return nextString(); } public SpaceCharFilter getFilter() { return filter; } public void setFilter(SpaceCharFilter filter) { this.filter = filter; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int[] nextSortedIntArray(int n) { int array[] = nextIntArray(n); Arrays.sort(array); return array; } public int[] nextSumIntArray(int n) { int[] array = new int[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextLongArray(int n) { long[] array = new long[n]; for (int i = 0; i < n; ++i) array[i] = nextLong(); return array; } public long[] nextSumLongArray(int n) { long[] array = new long[n]; array[0] = nextInt(); for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt(); return array; } public long[] nextSortedLongArray(int n) { long array[] = nextLongArray(n); Arrays.sort(array); return array; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
749a7da7df3f5f95663bc3fc63ddb106
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.PriorityQueue; import java.util.Queue; import java.util.Scanner; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; public class Practice1 { // static long[] sort(long[] arr) { // int n=arr.length; // ArrayList<Long> al=new ArrayList<>(); // for(int i=0;i<n;i++) { // al.add(arr[i]); // } // Collections.sort(al); // for(int i=0;i<n;i++) { // arr[i]=al.get(i); // } // return arr; // } // // static long nCr(int n, int r) // { // // int x=1000000007; // long dp[][]=new long[2][r+1]; // // for(int i=0;i<=n;i++){ // for(int j=0;j<=i&&j<=r;j++){ // if(i==0||j==0||i==j){ // dp[i%2][j]=1; // }else { // // // dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1])%x; // dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1]); // } // // } // } // // return dp[n%2][r]; // // } // public static class UnionFind { private final int[] p; public UnionFind(int n) { p = new int[n]; for (int i = 0; i < n; i++) { p[i] = i; } } public int find(int x) { return x == p[x] ? x : (p[x] = find(p[x])); } public void union(int x, int y) { x = find(x); y = find(y); if (x != y) { p[x] = y; } } } public static boolean ispalin(String str) { int n=str.length(); for(int i=0;i<n/2;i++) { if(str.charAt(i)!=str.charAt(n-i-1)) { return false; } } return true; } static long power(long N,long R) { long x=1000000007; if(R==0) return 1; if(R==1) return N; long temp= power(N,R/2)%x; // (a*b)%p = (a%p*b%p)*p temp=(temp*temp)%x; if(R%2==0){ return temp%x; }else{ return (N*temp)%x; } } public static String binary(int n) { StringBuffer ans=new StringBuffer(); int a=4; while(a-->0) { int temp=(n&1); if(temp!=0) { ans.append('1'); }else { ans.append('0'); } n =n>>1; } ans=ans.reverse(); return ans.toString(); } public static int find(String[][] arr,boolean[][] vis,int dir,int i,int j) { if(i<0||i>=arr.length||j<0||j>=arr[0].length) return 0; if(vis[i][j]==true) return 0; if(dir==1&&arr[i][j].charAt(0)=='1') return 0; if(dir==2&&arr[i][j].charAt(1)=='1') return 0; if(dir==3&&arr[i][j].charAt(2)=='1') return 0; if(dir==4&&arr[i][j].charAt(3)=='1') return 0; vis[i][j]=true; int a=find(arr,vis,1,i+1,j); int b=find(arr,vis,2,i-1,j); int c=find(arr,vis,3,i,j+1); int d=find(arr,vis,4,i,j-1); return 1+a+b+c+d; } // static ArrayList<Integer> allDivisors(int n) { // ArrayList<Integer> al=new ArrayList<>(); // int i=2; // while(i*i<=n) { // if(n%i==0) al.add(i); // if(n%i==0&&i*i!=n) al.add(n/i); // i++; // } // return al; // } // static int[] sort(int[] arr) { // int n=arr.length; // ArrayList<Integer> al=new ArrayList<>(); // for(int i=0;i<n;i++) { // al.add(arr[i]); // } // Collections.sort(al); // for(int i=0;i<n;i++) { // arr[i]=al.get(i); // } // return arr; // } // /** Code for Dijkstra's algorithm **/ public static class ListNode { int vertex, weight; ListNode(int v, int w) { vertex = v; weight = w; } int getVertex() { return vertex; } int getWeight() { return weight; } } public static int[] dijkstra( int V, ArrayList<ArrayList<ListNode> > graph, int source) { int[] distance = new int[V]; for (int i = 0; i < V; i++) distance[i] = Integer.MAX_VALUE; distance[0] = 0; PriorityQueue<ListNode> pq = new PriorityQueue<>( (v1, v2) -> v1.getWeight() - v2.getWeight()); pq.add(new ListNode(source, 0)); while (pq.size() > 0) { ListNode current = pq.poll(); for (ListNode n : graph.get(current.getVertex())) { if (distance[current.getVertex()] + n.getWeight() < distance[n.getVertex()]) { distance[n.getVertex()] = n.getWeight() + distance[current.getVertex()]; pq.add(new ListNode( n.getVertex(), distance[n.getVertex()])); } } } // If you want to calculate distance from source to // a particular target, you can return // distance[target] return distance; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static class Pair{ int l; int r; char c; Pair(int l,int r,char c){ this.l=l; this.r=r; this.c=c; } } public static void fill(int[][] arr,boolean[][] vis, int i,int j,int k,int l) { int n=arr.length; int m=arr[0].length; if(i<0||j<0||i>=n||j>=m||vis[i][j]==true) return; vis[i][j]=true; int max=0; if(i+1<n) { max=Math.max(arr[i+1][j],max); } if(i-1>=0) { max=Math.max(arr[i-1][j],max); } if(j+1<m) { max=Math.max(arr[i][j+1],max); } if(j-1>=0) { max=Math.max(arr[i][j-1],max); } arr[i][j]=Math.min(l-max,k); fill(arr,vis,i+1,j,k,l); fill(arr,vis,i-1,j,k,l); fill(arr,vis,i,j+1,k,l); fill(arr,vis,i,j-1,k,l); } static long nCr(int n, int r) { // int x=1000000007; long dp[][]=new long[2][r+1]; for(int i=0;i<=n;i++){ for(int j=0;j<=i&&j<=r;j++){ if(i==0||j==0||i==j){ dp[i%2][j]=1; }else { // dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1])%x; dp[i%2][j]=(dp[(i-1)%2][j]+dp[(i-1)%2][j-1]); } } } return dp[n%2][r]; } static int[] sort(int[] arr) { int n=arr.length; ArrayList<Integer> al=new ArrayList<>(); for(int i=0;i<n;i++) { al.add(arr[i]); } Collections.sort(al); for(int i=0;i<n;i++) { arr[i]=al.get(i); } return arr; } static boolean isPrime(int n) { if (n <= 1) return false; else if (n == 2) return true; else if (n % 2 == 0) return false; for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } public static void main (String[] args) { PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // out.print(); //out.println(); FastReader sc=new FastReader(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int e=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) { arr[i]=sc.nextInt(); } int[] dpleft=new int[n]; int[] dpright=new int[n]; for(int i=n-1;i>=0;i--) { if(arr[i]==1) { if(i+e>=n) { dpright[i]=1; }else { dpright[i]=dpright[i+e]+1; } } } for(int i=0;i<n;i++) { if(arr[i]==1) { if(i-e<0) { dpleft[i]=1; }else { dpleft[i]=dpleft[i-e]+1; } } } long count=0; for(int i=0;i<n;i++) { if(isPrime(arr[i])==true) { long a=0,b=0; if(i-e>=0) a=dpleft[i-e]; if(i+e<n) b=dpright[i+e]; if(a!=0&&b!=0) { count +=a*b+a+b; }else { count +=a+b; } } } out.println(count); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
75fa24af3046e48ac3d49c142177dc49
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import static java.lang.Math.*; import java.io.*; import java.math.*; import java.util.*; public class cf1 { static FastReader x = new FastReader(); static OutputStream outputStream = System.out; static PrintWriter out = new PrintWriter(outputStream); /*---------------------------------------CODE STARTS HERE-------------------------*/ public static void main(String[] args) { int t = x.nextInt(); boolean s[] = esieve(1000001); StringBuilder str = new StringBuilder(); while (t > 0) { int n =x.nextInt(); int e = x.nextInt(); s[1]=false; HashSet<Integer> prime = new HashSet<>(); HashSet<Integer> one = new HashSet<>(); int a[] = new int[n]; for(int i=0;i<n;i++) { a[i] = x.nextInt(); if(s[a[i]]) { // System.out.println("prime "+a[i]); prime.add(i); }else if(a[i]==1) { one.add(i); } } long ans =0; for(int curr:prime) { int temp =curr; long tans =0,tans1=0; while(temp<n&&one.contains(temp+e)) { tans++; // System.out.println(temp+" i"); temp = temp+e; } ans+=tans; temp = curr; while(temp>0&&one.contains(temp-e)) { tans1++; // System.out.println(temp+" d"); temp=temp-e; } if(tans1>0) ans+=((tans*tans1)+tans1); } System.out.println(ans); str.append("\n"); t--; } out.println(str); out.flush(); } /*--------------------------------------------FAST I/O--------------------------------*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } char nextchar() { char ch = ' '; try { ch = (char) br.read(); } catch (IOException e) { e.printStackTrace(); } return ch; } } /*--------------------------------------------BOILER PLATE---------------------------*/ static int[] readarr(int n) { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = x.nextInt(); } return arr; } static int[] sortint(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) { al.add(i); } Collections.sort(al); for (int i = 0; i < a.length; i++) { a[i] = al.get(i); } return a; } static long[] sortlong(long a[]) { ArrayList<Long> al = new ArrayList<>(); for (long i : a) { al.add(i); } Collections.sort(al); for (int i = 0; i < al.size(); i++) { a[i] = al.get(i); } return a; } static int pow(int x, int y) { int result = 1; while (y > 0) { if (y % 2 == 0) { x = x * x; y = y / 2; } else { result = result * x; y = y - 1; } } return result; } static int[] revsort(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) { al.add(i); } Collections.sort(al, Comparator.reverseOrder()); for (int i = 0; i < a.length; i++) { a[i] = al.get(i); } return a; } static int[] gcd(int a, int b, int ar[]) { if (b == 0) { ar[0] = a; ar[1] = 1; ar[2] = 0; return ar; } ar = gcd(b, a % b, ar); int t = ar[1]; ar[1] = ar[2]; ar[2] = t - (a / b) * ar[2]; return ar; } static boolean[] esieve(int n) { boolean p[] = new boolean[n + 1]; Arrays.fill(p, true); for (int i = 2; i * i <= n; i++) { if (p[i] == true) { for (int j = i * i; j <= n; j += i) { p[j] = false; } } } return p; } static ArrayList<Integer> primes(int n) { boolean p[] = new boolean[n + 1]; ArrayList<Integer> al = new ArrayList<>(); Arrays.fill(p, true); int i = 0; for (i = 2; i * i <= n; i++) { if (p[i] == true) { al.add(i); for (int j = i * i; j <= n; j += i) { p[j] = false; } } } for (i = i; i <= n; i++) { if (p[i] == true) { al.add(i); } } return al; } static int etf(int n) { int res = n; for (int i = 2; i * i <= n; i++) { if (n % i == 0) { res /= i; res *= (i - 1); while (n % i == 0) { n /= i; } } } if (n > 1) { res /= n; res *= (n - 1); } return res; } static int gcd(int a, int b) { if (a == 0) { return b; } return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) { return b; } return gcd(b % a, a); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
1e26899c313e4ef5bf41f8578d01504d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class MarketAnalysis{ static long mod = 1000000007L; static MyScanner sc = new MyScanner(); static void solve() { int n = sc.nextInt(); int e = sc.nextInt(); int arr[] = sc.readIntArray(n); int left[] = new int[n]; int right[] = new int[n]; for(int i = 0;i<n;i++){ if(arr[i]==1){ left[i] = 1+((i-e>=0)?left[i-e]:0); } } for(int i = n-1;i>=0;i--){ if(arr[i]==1){ right[i] = 1+((i+e<n)?right[i+e]:0); } } long ans = 0; for(int i = 0;i<n;i++){ if(isPrime(arr[i])){ long val1 = 1+((i-e>=0)?left[i-e]:0); long val2 = 1+((i+e<n)?right[i+e]:0); ans += ((val1*val2)-1); } } out.println(ans); } static boolean isPrime(int n){ if(n<=1) return false; if(n==2 || n==3) return true; if(n%2==0 || n%3==0){ return false; } for(int i = 5;i*i<=n;i+= 6){ if(n%i==0 || n%(i+2)==0) return false; } return true; } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); while(t-- >0){ solve(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
cddae30da58e10f2b1dae48da89425a2
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class Solution { public static void main(String[] args) throws Exception { Set<Integer> primes = getPrimes(100); int tc = io.nextInt(); for (int i = 0; i < tc; i++) { solve(); } io.close(); } static Set<Integer> primes = getPrimes(1_000_005); private static void solve() throws Exception { int n = io.nextInt(); int e = io.nextInt(); int[] data = io.nextInts(n); List<List<Integer>> groups = new ArrayList<>(); for (int i = 0; i < e; i++) { groups.add(new ArrayList<>()); } for (int i = 0; i < n; i++) { groups.get(i % e).add(data[i]); } long output = 0; for (int a = 0; a < groups.size(); a++) { List<Integer> grup = groups.get(a); boolean prevPrime = false; int prevOne = 0; int currOne = 0; for (int i = 0; i < grup.size(); i++) { if (grup.get(i) == 1) { currOne++; if (prevPrime) { output += prevOne + 1; } } else if (primes.contains(grup.get(i))) { prevPrime = true; prevOne = currOne; currOne = 0; output += prevOne; } else { prevPrime = false; prevOne = 0; currOne = 0; } } } io.println(output); } private static Set<Integer> getPrimes(int limit) { boolean[] isPrime = new boolean[limit]; Arrays.fill(isPrime, true); Set<Integer> primes = new HashSet<>(); for (int i = 2; i < limit; i++) { if (isPrime[i]) { for (int j = i + i; j < limit; j += i) { isPrime[j] = false; } primes.add(i); } } return primes; } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(a.length); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } //-----------PrintWriter for faster output--------------------------------- public static FastIO io = new FastIO(); //-----------MyScanner class for faster input---------- static class FastIO extends PrintWriter { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar, numChars; // standard input public FastIO() { this(System.in, System.out); } public FastIO(InputStream i, OutputStream o) { super(o); stream = i; } // file input public FastIO(String i, String o) throws IOException { super(new FileWriter(o)); stream = new FileInputStream(i); } // throws InputMismatchException() if previously detected end of file private int nextByte() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars == -1) return -1; // end of file } return buf[curChar++]; } // to read in entire lines, replace c <= ' ' // with a function that checks whether c is a line break public String next() { int c; do { c = nextByte(); } while (c <= ' '); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > ' '); return res.toString(); } public String nextLine() { int c; do { c = nextByte(); } while (c < '\n'); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > '\n'); return res.toString(); } public int nextInt() { int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = 10 * res + c - '0'; c = nextByte(); } while (c > ' '); return res * sgn; } public long nextLong() { int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = 10 * res + c - '0'; c = nextByte(); } while (c > ' '); return res * sgn; } int[] nextInts(int n) { int[] data = new int[n]; for (int i = 0; i < n; i++) { data[i] = io.nextInt(); } return data; } public double nextDouble() { return Double.parseDouble(next()); } } //-------------------------------------------------------- }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e7a6d8fd05e95e2702f875f9426d0714
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { static long fans[] = new long[200001]; static long inv[] = new long[200001]; static long mod = 1000000007; static void init() { fans[0] = 1; inv[0] = 1; fans[1] = 1; inv[1] = 1; for (int i = 2; i < 200001; i++) { fans[i] = ((long) i * fans[i - 1]) % mod; inv[i] = power(fans[i], mod - 2); } } static long ncr(int n, int r) { return (((fans[n] * inv[n - r]) % mod) * (inv[r])) % mod; } static int max = 1000001; static boolean primes[] = new boolean[max]; static void primeinit() { primes[1] = true; for(int i = 2;i<max;i++) { if(!primes[i]) { for(int j = 2;j*i<max;j++) primes[i*j] = true; } } } public static void main(String[] args) throws java.lang.Exception { FastReader in = new FastReader(System.in); StringBuilder sb = new StringBuilder(); primeinit(); int t = 1; t = in.nextInt(); while (t > 0) { --t; int n = in.nextInt(); int e = in.nextInt(); int arr[] = new int[n]; for(int i = 0;i<arr.length;i++) arr[i] = in.nextInt(); int left[] = new int[n]; int right[] = new int[n]; for(int i = 0,j = n-1;i<n;i++,j--) { if(arr[i] == 1) left[i] = 1 + (i-e>=0?left[i-e]:0); if(arr[j] == 1) right[j] = 1 + (j+e<n?right[j+e]:0); } long ans = 0; for(int i = 0;i<n;i++) { if(!primes[arr[i]]) { long val1 = 1 + (i-e>=0?left[i-e]:0); long val2 = 1 + (i+e<n?right[i+e]:0); ans+= ((val1*val2)-1); } } sb.append(ans+"\n"); } System.out.print(sb); } static long power(long x, long y) { long res = 1; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = ((res % mod) * (x % mod)) % mod; // y must be even now y = y >> 1; // y = y/2 x = ((x % mod) * (x % mod)) % mod; // Change x to x^2 } return res; } static long[] generateArray(FastReader in, int n) throws IOException { long arr[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = in.nextLong(); return arr; } static long[][] generatematrix(FastReader in, int n, int m) throws IOException { long arr[][] = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { arr[i][j] = in.nextLong(); } } return arr; } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } String nextLine() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c != 10 && c != 13; c = scan()) { sb.append((char) c); } return sb.toString(); } char nextChar() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; return (char) c; } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
dac6d43c7cb0fb425459aeff217cc689
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.math.BigInteger; public final class A { static PrintWriter out = new PrintWriter(System.out); static StringBuilder ans=new StringBuilder(); static FastReader in=new FastReader(); static ArrayList<Integer> g[]; static long mod=(long) 998244353,INF=Long.MAX_VALUE; static boolean set[]; static int par[],col[],D[]; static long A[]; public static void main(String args[])throws IOException { /* * star,rope,TPST * BS,LST,MS,MQ */ int prime[]=new int[(int)(1e6)+5]; for(int i=2; i<=1e6; i++) { if(prime[i]==0) { long x=i; if(x*x<=1e6) { for(int j=i*i; j<=1e6; j+=i) { prime[j]=1; } } } } prime[1]=1; int T=i(); while(T-->0) { int N=i(),e=i(); int A[]=input(N); long tot=0; long post[]=new long[N+1]; long pre[]=new long[N+1]; for(int i=N-1; i>=0; i--) { if(A[i]==1) { if(i+e<N )post[i]=post[i+e]; post[i]++; } } for(int i=0; i<N; i++) { if(A[i]==1) { if(i>=e)pre[i]=pre[i-e]; pre[i]++; } } //print(pre); // print(post); for(int i=0; i<N; i++) { if(prime[A[i]]==0) { long l=0,r=0; //if(i+e>=N && i-e<0)continue; if( i+e<N) { r=post[i+e]; } if(i-e>=0) { l=pre[i-e]; } tot+=l; tot+=r; tot+=(l*r); } } ans.append(tot+"\n"); } out.println(ans); out.close(); } static int compute(char X[],int i) { int N=X.length; int c=0; for(int j=i-2; j<=i+2; j++) { if(j>=0 && j+2<N) { if(X[j]=='a'&& X[j+1]=='b' && X[j+2]=='c')c++; } } return c; } static boolean f(long X[],long V[],double m) { double l=0,r=1e18; for(int i=0; i<X.length; i++) { double d=((double)(V[i]))*m; double x=(double)X[i]; l=Math.max(l, x-d); r=Math.min(r, x+d); // System.out.println(l+" "+r); } return l<=r; } static int query(long a,TreeNode root) { long p=1L<<30; TreeNode temp=root; while(p!=0) { System.out.println(a+" "+p); if((a&p)!=0) { temp=temp.right; } else temp=temp.left; p>>=1; } return temp.index; } static void delete(long a,TreeNode root) { long p=1L<<30; TreeNode temp=root; while(p!=0) { if((a&p)!=0) { temp.right.cnt--; temp=temp.right; } else { temp.left.cnt--; temp=temp.left; } p>>=1; } } static void insert(long a,TreeNode root,int i) { long p=1L<<30; TreeNode temp=root; while(p!=0) { if((a&p)!=0) { temp.right.cnt++; temp=temp.right; } else { temp.left.cnt++; temp=temp.left; } p>>=1; } temp.index=i; } static TreeNode create(int p) { TreeNode root=new TreeNode(0); if(p!=0) { root.left=create(p-1); root.right=create(p-1); } return root; } static boolean f(long A[],long m,int N) { long B[]=new long[N]; for(int i=0; i<N; i++) { B[i]=A[i]; } for(int i=N-1; i>=0; i--) { if(B[i]<m)return false; if(i>=2) { long extra=Math.min(B[i]-m, A[i]); long x=extra/3L; B[i-2]+=2L*x; B[i-1]+=x; } } return true; } static int f(int l,int r,long A[],long x) { while(r-l>1) { int m=(l+r)/2; if(A[m]>=x)l=m; else r=m; } return r; } static boolean f(long m,long H,long A[],int N) { long s=m; for(int i=0; i<N-1;i++) { s+=Math.min(m, A[i+1]-A[i]); } return s>=H; } static boolean f(int i,int j,long last,boolean win[]) { if(i>j)return false; if(A[i]<=last && A[j]<=last)return false; long a=A[i],b=A[j]; //System.out.println(a+" "+b); if(a==b) { return win[i] | win[j]; } else if(a>b) { boolean f=false; if(b>last)f=!f(i,j-1,b,win); return win[i] | f; } else { boolean f=false; if(a>last)f=!f(i+1,j,a,win); return win[j] | f; } } static long ask(long l,long r) { System.out.println("? "+l+" "+r); return l(); } static long f(long N,long M) { long s=0; if(N%3==0) { N/=3; s=N*M; } else { long b=N%3; N/=3; N++; s=N*M; N--; long a=N*M; if(M%3==0) { M/=3; a+=(b*M); } else { M/=3; M++; a+=(b*M); } s=Math.min(s, a); } return s; } static int ask(StringBuilder sb,int a) { System.out.println(sb+""+a); return i(); } static void swap(char X[],int i,int j) { char x=X[i]; X[i]=X[j]; X[j]=x; } static int min(int a,int b,int c) { return Math.min(Math.min(a, b), c); } static long and(int i,int j) { System.out.println("and "+i+" "+j); return l(); } static long or(int i,int j) { System.out.println("or "+i+" "+j); return l(); } static int len=0,number=0; static void f(char X[],int i,int num,int l) { if(i==X.length) { if(num==0)return; //update our num if(isPrime(num))return; if(l<len) { len=l; number=num; } return; } int a=X[i]-'0'; f(X,i+1,num*10+a,l+1); f(X,i+1,num,l); } static boolean is_Sorted(int A[]) { int N=A.length; for(int i=1; i<=N; i++)if(A[i-1]!=i)return false; return true; } static boolean f(StringBuilder sb,String Y,String order) { StringBuilder res=new StringBuilder(sb.toString()); HashSet<Character> set=new HashSet<>(); for(char ch:order.toCharArray()) { set.add(ch); for(int i=0; i<sb.length(); i++) { char x=sb.charAt(i); if(set.contains(x))continue; res.append(x); } } String str=res.toString(); return str.equals(Y); } static boolean all_Zero(int f[]) { for(int a:f)if(a!=0)return false; return true; } static long form(int a,int l) { long x=0; while(l-->0) { x*=10; x+=a; } return x; } static int count(String X) { HashSet<Integer> set=new HashSet<>(); for(char x:X.toCharArray())set.add(x-'0'); return set.size(); } static int f(long K) { long l=0,r=K; while(r-l>1) { long m=(l+r)/2; if(m*m<K)l=m; else r=m; } return (int)l; } // static void build(int v,int tl,int tr,long A[]) // { // if(tl==tr) // { // seg[v]=A[tl]; // } // else // { // int tm=(tl+tr)/2; // build(v*2,tl,tm,A); // build(v*2+1,tm+1,tr,A); // seg[v]=Math.min(seg[v*2], seg[v*2+1]); // } // } static int [] sub(int A[],int B[]) { int N=A.length; int f[]=new int[N]; for(int i=N-1; i>=0; i--) { if(B[i]<A[i]) { B[i]+=26; B[i-1]-=1; } f[i]=B[i]-A[i]; } for(int i=0; i<N; i++) { if(f[i]%2!=0)f[i+1]+=26; f[i]/=2; } return f; } static int[] f(int N) { char X[]=in.next().toCharArray(); int A[]=new int[N]; for(int i=0; i<N; i++)A[i]=X[i]-'a'; return A; } static int max(int a ,int b,int c,int d) { a=Math.max(a, b); c=Math.max(c,d); return Math.max(a, c); } static int min(int a ,int b,int c,int d) { a=Math.min(a, b); c=Math.min(c,d); return Math.min(a, c); } static HashMap<Integer,Integer> Hash(int A[]) { HashMap<Integer,Integer> mp=new HashMap<>(); for(int a:A) { int f=mp.getOrDefault(a,0)+1; mp.put(a, f); } return mp; } static long mul(long a, long b) { return ( a %mod * 1L * b%mod )%mod; } static void swap(int A[],int a,int b) { int t=A[a]; A[a]=A[b]; A[b]=t; } static int find(int a) { if(par[a]<0)return a; return par[a]=find(par[a]); } static void union(int a,int b) { a=find(a); b=find(b); if(a!=b) { par[a]+=par[b]; par[b]=a; } } static boolean isSorted(int A[]) { for(int i=1; i<A.length; i++) { if(A[i]<A[i-1])return false; } return true; } static boolean isDivisible(StringBuilder X,int i,long num) { long r=0; for(; i<X.length(); i++) { r=r*10+(X.charAt(i)-'0'); r=r%num; } return r==0; } static int lower_Bound(int A[],int low,int high, int x) { if (low > high) if (x >= A[high]) return A[high]; int mid = (low + high) / 2; if (A[mid] == x) return A[mid]; if (mid > 0 && A[mid - 1] <= x && x < A[mid]) return A[mid - 1]; if (x < A[mid]) return lower_Bound( A, low, mid - 1, x); return lower_Bound(A, mid + 1, high, x); } static String f(String A) { String X=""; for(int i=A.length()-1; i>=0; i--) { int c=A.charAt(i)-'0'; X+=(c+1)%2; } return X; } static void sort(long[] a) //check for long { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static String swap(String X,int i,int j) { char ch[]=X.toCharArray(); char a=ch[i]; ch[i]=ch[j]; ch[j]=a; return new String(ch); } static int sD(long n) { if (n % 2 == 0 ) return 2; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0 ) return i; } return (int)n; } static void setGraph(int N) { par=new int[N+1]; D=new int[N+1]; g=new ArrayList[N+1]; set=new boolean[N+1]; col=new int[N+1]; for(int i=0; i<=N; i++) { col[i]=-1; g[i]=new ArrayList<>(); D[i]=Integer.MAX_VALUE; } } static long pow(long a,long b) { //long mod=1000000007; long pow=1; long x=a; while(b!=0) { if((b&1)!=0)pow=(pow*x)%mod; x=(x*x)%mod; b/=2; } return pow; } static long toggleBits(long x)//one's complement || Toggle bits { int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1; return ((1<<n)-1)^x; } static int countBits(long a) { return (int)(Math.log(a)/Math.log(2)+1); } static long fact(long N) { long n=2; if(N<=1)return 1; else { for(int i=3; i<=N; i++)n=(n*i)%mod; } return n; } static int kadane(int A[]) { int lsum=A[0],gsum=A[0]; for(int i=1; i<A.length; i++) { lsum=Math.max(lsum+A[i],A[i]); gsum=Math.max(gsum,lsum); } return gsum; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static boolean isPrime(long N) { if (N<=1) return false; if (N<=3) return true; if (N%2 == 0 || N%3 == 0) return false; for (int i=5; i*i<=N; i=i+6) if (N%i == 0 || N%(i+2) == 0) return false; return true; } static void print(char A[]) { for(char c:A)System.out.print(c+" "); System.out.println(); } static void print(boolean A[]) { for(boolean c:A)System.out.print(c+" "); System.out.println(); } static void print(int A[]) { for(int a:A)System.out.print(a+" "); System.out.println(); } static void print(long A[]) { for(long i:A)System.out.print(i+ " "); System.out.println(); } static void print(boolean A[][]) { for(boolean a[]:A)print(a); } static void print(long A[][]) { for(long a[]:A)print(a); } static void print(int A[][]) { for(int a[]:A)print(a); } static void print(ArrayList<Integer> A) { for(int a:A)System.out.print(a+" "); System.out.println(); } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } static long GCD(long a,long b) { if(b==0) { return a; } else return GCD(b,a%b ); } } class pair implements Comparable<pair> { long a,l,r; boolean left; int index; pair(long a,long l,int i) { this.a=a; index=i; this.l=l; } public int compareTo(pair x) { if(this.a==x.a) { if(this.l>x.l)return -1; else if(x.l>this.l)return 1; return 0; } if(this.a>x.a)return 1; return -1; } } class TreeNode { int cnt,index; TreeNode left,right; TreeNode(int c) { cnt=c; index=-1; } TreeNode(int c,int index) { cnt=c; this.index=index; } } //Code For FastReader //Code For FastReader //Code For FastReader //Code For FastReader class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
a275226b36834500d8c0487d01b9bf31
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
/* stream Butter! eggyHide eggyVengeance I need U xiao rerun when */ import static java.lang.Math.*; import java.util.*; import java.io.*; import java.math.*; public class x1609C { static final int MAX = 1000000; public static void main(String hi[]) throws Exception { int[] prime = new int[MAX+1]; for(int d=2; d <= MAX; d++) if(prime[d] == 0) for(int v=d; v <= MAX; v+=d) prime[v] = d; BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); while(T-->0) { st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); int E = Integer.parseInt(st.nextToken()); int[] arr = readArr(N, infile, st); long res = 0L; for(int a=0; a < E; a++) { ArrayList<Integer> ls = new ArrayList<Integer>(); for(int i=a; i < N; i+=E) { if(arr[i] == 1) ls.add(1); else if(prime[arr[i]] == arr[i]) ls.add(2); else ls.add(1000); } //print(ls); int left = -1; for(int i=0; i < ls.size(); i++) { if(ls.get(i) == 1000) { res += solve(left, i, ls); left = i; } if(ls.get(i) == 2) res--; } res += solve(left, ls.size(), ls); } sb.append(res+"\n"); } System.out.print(sb); } public static long solve(int L, int R, ArrayList<Integer> ls) { //count # of subarrays that have exactly 1 prime number long res = 0L; ArrayList<Integer> blocks = new ArrayList<Integer>(); int curr = 0; for(int a=L+1; a < R; a++) { if(ls.get(a) == 1) curr++; else { blocks.add(curr); curr = 0; } } blocks.add(curr); //print(blocks); System.out.println(res); for(int i=1; i < blocks.size(); i++) res += (long)(blocks.get(i-1)+1)*(blocks.get(i)+1); //System.out.println(res+"\n"); return res; } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } public static void print(ArrayList<Integer> arr) { //for debugging only for(int x: arr) System.out.print(x+" "); System.out.println(); } } /* 1 7 3 10 2 1 3 1 19 3 (10, 3, 3) (2, 1) (1, 19) */
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
110665be6c3bf5a134369d4bc4c448ec
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.math.BigDecimal; import java.util.*; public class Main { private static final int ma = (int) 4e5 + 10; static int a[] = new int[ma]; static int vis[] = new int[ma]; static int one[] = new int[ma]; static boolean prime[] = new boolean[1000005]; public static void main(String[] args) throws Exception { initReader(); int t = nextInt(); int n, e; for (int i = 2; i <= 1000000; i++) { if (!prime[i]) { for (int j = i * 2; j <= 1000000; j += i) { prime[j] = true; } } } while (t-- != 0) { n = nextInt(); e = nextInt(); for (int i = 1; i <= n; i++) { a[i] = nextInt(); vis[i] = one[i] = 0; } for (int i=n;i<=n+e;i++) vis[i]=one[i]=0; long ans = 0; for (int i = n; i >= 1; i--) { if (a[i] == 1) { vis[i] = vis[i + e]; one[i] = one[i + e] + 1; ans += vis[i]; } else if (!prime[a[i]]) { ans += one[i + e]; vis[i] = one[i + e] + 1; one[i] = 0; } } pw.println(ans); } pw.close(); } /***************************************************************************************/ static BufferedReader reader; static StringTokenizer tokenizer; static PrintWriter pw; public static void initReader() throws IOException { reader = new BufferedReader(new InputStreamReader(System.in)); tokenizer = new StringTokenizer(""); pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); // 从文件读写 // reader = new BufferedReader(new FileReader("test.in")); // tokenizer = new StringTokenizer(""); // pw = new PrintWriter(new BufferedWriter(new FileWriter("test1.out"))); } public static boolean hasNext() { try { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } } catch (Exception e) { return false; } return true; } public static String next() throws IOException { while (!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public static String nextLine() { try { return reader.readLine(); } catch (Exception e) { return null; } } public static int nextInt() throws IOException { return Integer.parseInt(next()); } public static long nextLong() throws IOException { return Long.parseLong(next()); } public static double nextDouble() throws IOException { return Double.parseDouble(next()); } public static char nextChar() throws IOException { return next().charAt(0); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
29a8db0d4d0c7de681e0db16f57814cb
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.BitSet; import java.util.Calendar; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.PriorityQueue; import java.util.SortedSet; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; /** * # * * @author pttrung */ public class C_Deltix_2021 { public static long MOD = 1000000007; static long[][] dp; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); int T = in.nextInt(); boolean[] p = new boolean[1000001]; for (int i = 2; i < p.length; i++) { if (p[i]) { continue; } for (int j = i + i; j < p.length; j += i) { p[j] = true; } } p[0] = true; p[1] = true; for (int z = 0; z < T; z++) { //System.out.println("START " + z); int n = in.nextInt(); int e = in.nextInt(); int[] data = new int[n]; int[] cur = new int[e]; for (int i = 0; i < e; i++) { cur[i] = i; } int[] dp = new int[n]; long result = 0; for (int i = 0; i < n; i++) { data[i] = in.nextInt(); if (!p[data[i]]) { dp[i] = Integer.min(i, cur[i % e]); } if (data[i] != 1) { cur[i % e] = i + e; } } Arrays.fill(cur, n - 1); for (int i = n - 1; i >= 0; i--) { if (!p[data[i]]) { int last = Integer.max(cur[i % e], i); long a = (last - i) / e; long b = (i - dp[i]) / e; result += a; result += (a + 1) * b; } if (data[i] != 1) { cur[i % e] = i - e; } } out.println(result); } out.close(); } static long abs(long a) { return a < 0 ? -a : a; } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point implements Comparable<Point> { int x; long y; public Point(int start, long end) { this.x = start; this.y = end; } @Override public int compareTo(Point o) { return Integer.compare(x, o.x); } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, int b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val; } else { return val * (val * a); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); //br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
aaf397412f6dccfdaa0107c134707d77
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; /** * @author Naitik * */ public class Main { static FastReader sc=new FastReader(); static long dp[][][]; //static int v[][]; // static int mod=998244353;; static int mod=1000000007; static int max; static int bit[]; // static int seg[]; //static long fact[]; // static long A[]; // static TreeMap<Integer,Integer> map; //static StringBuffer sb=new StringBuffer(""); static HashMap<Integer,Integer> map; static PrintWriter out=new PrintWriter(System.out); static TreeSet<Long> set=new TreeSet<Long>(); public static void main(String[] args) { // StringBuffer sb=new StringBuffer(""); int ttt=1; ttt =i(); boolean prime[] = new boolean[2000000+1]; for(int i=0;i<=2000000;i++) prime[i] = true; for(int p = 2; p*p <=2e6; p++) { // If prime[p] is not changed, then it is a prime if(prime[p] == true) { // Update all multiples of p for(int i = p*p; i <= 2e6; i += p) prime[i] = false; } } outer :while (ttt-- > 0) { int n=i(); int e=i(); int A[]=input(n); ArrayList<Integer> l=new ArrayList<Integer>(); ArrayList<Integer> a=new ArrayList<Integer>(); ArrayList<Integer> b=new ArrayList<Integer>(); long ans=0; for(int i=1;i<=e;i++) { l.clear(); a.clear(); b.clear(); for(int j=i;j<=n;j+=e) { l.add(A[j-1]); } // System.out.println(l); int c=0; for(int j=0;j<l.size();j++) { int y=l.get(j); if(y!=1) { if(prime[y]) a.add(c); c=0; } else { c++; } } c=0; for(int j=l.size()-1;j>=0;j--) { int y=l.get(j); if(y!=1) { if(prime[y]) b.add(c); c=0; } else { c++; } } Collections.reverse(b); //System.out.println(a.size()+" "+b.size()); for(int j=0;j<a.size();j++) { long t=b.get(j); long t1=a.get(j); ans+=t1*(t+1); ans+=t; } } System.out.println(ans); } //System.out.println(sb.toString()); out.close(); //CHECK FOR N=1 //CHECK FOR M=0 //CHECK FOR N=1 //CHECK FOR M=0 //CHECK FOR N=1 } static class Pair implements Comparable<Pair> { int x; int y; int z; Pair(int x,int y){ this.x=x; this.y=y; // this.z=z; } @Override public int compareTo(Pair o) { if(this.x>o.x) return -1; else if(this.x<o.x) return 1; else { if(this.y>o.y) return 1; else if(this.y<o.y) return -1; else return 0; } } // public int hashCode() // { // final int temp = 14; // int ans = 1; // ans =x*31+y*13; // return ans; // } // @Override // public boolean equals(Object o) // { // if (this == o) { // return true; // } // if (o == null) { // return false; // } // if (this.getClass() != o.getClass()) { // return false; // } // Pair other = (Pair)o; // if (this.x != other.x || this.y!=other.y) { // return false; // } // return true; // } // /* FOR TREE MAP PAIR USE */ // public int compareTo(Pair o) { // if (x > o.x) { // return 1; // } // if (x < o.x) { // return -1; // } // if (y > o.y) { // return 1; // } // if (y < o.y) { // return -1; // } // return 0; // } } //static int find(int A[],int a) { // if(A[a]<0) // return a; // return A[a]=find(A, A[a]); //} static int find(int A[],int a) { if(A[a]==a) return a; return find(A, A[a]); } //FENWICK TREE static void update(int i, int x){ for(; i < bit.length; i += (i&-i)) bit[i] += x; } static int sum(int i){ int ans = 0; for(; i > 0; i -= (i&-i)) ans += bit[i]; return ans; } //END static void add(int v) { if(!map.containsKey(v)) { map.put(v, 1); } else { map.put(v, map.get(v)+1); } } static void remove(int v) { if(map.containsKey(v)) { map.put(v, map.get(v)-1); if(map.get(v)==0) map.remove(v); } } public static int upper(int A[],int k,int si,int ei) { int l=si; int u=ei; int ans=-1; while(l<=u) { int mid=(l+u)/2; if(A[mid]<=k) { ans=mid; l=mid+1; } else { u=mid-1; } } return ans; } public static int lower(int A[],int k,int si,int ei) { int l=si; int u=ei; int ans=-1; while(l<=u) { int mid=(l+u)/2; if(A[mid]<=k) { l=mid+1; } else { ans=mid; u=mid-1; } } return ans; } static int[] copy(int A[]) { int B[]=new int[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static long[] copy(long A[]) { long B[]=new long[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static int[] input(int n) { int A[]=new int[n]; for(int i=0;i<n;i++) { A[i]=sc.nextInt(); } return A; } static long[] inputL(int n) { long A[]=new long[n]; for(int i=0;i<n;i++) { A[i]=sc.nextLong(); } return A; } static String[] inputS(int n) { String A[]=new String[n]; for(int i=0;i<n;i++) { A[i]=sc.next(); } return A; } static long sum(int A[]) { long sum=0; for(int i : A) { sum+=i; } return sum; } static long sum(long A[]) { long sum=0; for(long i : A) { sum+=i; } return sum; } static void reverse(long A[]) { int n=A.length; long B[]=new long[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static void reverse(int A[]) { int n=A.length; int B[]=new int[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static void input(int A[],int B[]) { for(int i=0;i<A.length;i++) { A[i]=sc.nextInt(); B[i]=sc.nextInt(); } } static int[][] input(int n,int m){ int A[][]=new int[n][m]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { A[i][j]=i(); } } return A; } static char[][] charinput(int n,int m){ char A[][]=new char[n][m]; for(int i=0;i<n;i++) { String s=s(); for(int j=0;j<m;j++) { A[i][j]=s.charAt(j); } } return A; } static int nextPowerOf2(int n) { n--; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; n++; return n; } static int highestPowerof2(int x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } static long highestPowerof2(long x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } static int max(int A[]) { int max=Integer.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static int min(int A[]) { int min=Integer.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long max(long A[]) { long max=Long.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static long min(long A[]) { long min=Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long [] prefix(long A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] prefix(int A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] suffix(long A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static long [] suffix(int A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static void fill(int dp[]) { Arrays.fill(dp, -1); } static void fill(int dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(int dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(int dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static void fill(long dp[]) { Arrays.fill(dp, -1); } static void fill(long dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(long dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(long dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static int min(int a,int b) { return Math.min(a, b); } static int min(int a,int b,int c) { return Math.min(a, Math.min(b, c)); } static int min(int a,int b,int c,int d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static int max(int a,int b) { return Math.max(a, b); } static int max(int a,int b,int c) { return Math.max(a, Math.max(b, c)); } static int max(int a,int b,int c,int d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long min(long a,long b) { return Math.min(a, b); } static long min(long a,long b,long c) { return Math.min(a, Math.min(b, c)); } static long min(long a,long b,long c,long d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static long max(long a,long b) { return Math.max(a, b); } static long max(long a,long b,long c) { return Math.max(a, Math.max(b, c)); } static long max(long a,long b,long c,long d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long power(long x, long y, long p) { if(y==0) return 1; if(x==0) return 0; long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long power(long x, long y) { if(y==0) return 1; if(x==0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y = y >> 1; x = (x * x); } return res; } static void print(int A[]) { for(int i : A) { System.out.print(i+" "); } System.out.println(); } static void print(long A[]) { for(long i : A) { System.out.print(i+" "); } System.out.println(); } static long mod(long x) { return ((x%mod + mod)%mod); } static String reverse(String s) { StringBuffer p=new StringBuffer(s); p.reverse(); return p.toString(); } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static void sort(int[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ int tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static void sort(long[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ long tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static String sort(String s) { Character ch[]=new Character[s.length()]; for(int i=0;i<s.length();i++) { ch[i]=s.charAt(i); } Arrays.sort(ch); StringBuffer st=new StringBuffer(""); for(int i=0;i<s.length();i++) { st.append(ch[i]); } return st.toString(); } static HashMap<Integer,Integer> hash(int A[]){ HashMap<Integer,Integer> map=new HashMap<Integer, Integer>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static HashMap<Long,Integer> hash(long A[]){ HashMap<Long,Integer> map=new HashMap<Long, Integer>(); for(long i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static TreeMap<Integer,Integer> tree(int A[]){ TreeMap<Integer,Integer> map=new TreeMap<Integer, Integer>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static TreeMap<Long,Integer> tree(long A[]){ TreeMap<Long,Integer> map=new TreeMap<Long, Integer>(); for(long i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
63aa2978e8a5bdb00412fa68ed79f49a
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; public class A { //--------------------------INPUT READER---------------------------------// static class fs { public BufferedReader br; StringTokenizer st = new StringTokenizer(""); public fs() { this(System.in); } public fs(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String ns() { return next(); } int[] na(long nn) { int n = (int) nn; int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } long[] nal(long nn) { int n = (int) nn; long[] l = new long[n]; for(int i = 0; i < n; i++) l[i] = nl(); return l; } } //-----------------------------------------------------------------------// //---------------------------PRINTER-------------------------------------// static class Printer { static PrintWriter w; public Printer() {this(System.out);} public Printer(OutputStream os) { w = new PrintWriter(os); } public void p(int i) {w.println(i);} public void p(long l) {w.println(l);} public void p(double d) {w.println(d);} public void p(String s) { w.println(s);} public void pr(int i) {w.print(i);} public void pr(long l) {w.print(l);} public void pr(double d) {w.print(d);} public void pr(String s) { w.print(s);} public void pl() {w.println();} public void close() {w.close();} } //-----------------------------------------------------------------------// //--------------------------VARIABLES------------------------------------// static fs sc = new fs(); static OutputStream outputStream = System.out; static Printer w = new Printer(outputStream); static long lma = Long.MAX_VALUE, lmi = Long.MIN_VALUE; static long ima = Integer.MAX_VALUE, imi = Integer.MIN_VALUE; static long mod = 1000000007; //-----------------------------------------------------------------------// //--------------------------ADMIN_MODE-----------------------------------// private static void ADMIN_MODE() throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { w = new Printer(new FileOutputStream("output.txt")); sc = new fs(new FileInputStream("input.txt")); } } //-----------------------------------------------------------------------// static int[] primes; static boolean[] isComposite; //----------------------------START--------------------------------------// public static void main(String[] args) throws IOException { ADMIN_MODE(); primes = sieve(1000009); int t = sc.ni();while(t-->0) solve(); w.close(); } static void solve() throws IOException { int n = sc.ni(), e = sc.ni(); int[] arr = sc.na(n); int[] pre = new int[n], suff = new int[n]; for(int i = 0; i < n; i++) { if(arr[i]==1) { pre[i] = (i-e>=0?pre[i-e]:0)+1; } } for(int i = n-1; i > 0; i--) { if(arr[i]==1) { suff[i] = (i+e<n?suff[i+e]:0)+1; } } long sum = 0; for(int i = 0; i < n; i++) { /*if(arr[i]==1) { long r = i+e<n?suff[i+e]:0; sum+=r; }*/ if(!isComposite[arr[i]] && arr[i] != 1) { int l = i-e>=0?pre[i-e]:0; int r = i+e<n?suff[i+e]:0; sum+=l; sum+=r; sum+=((long)l*r); } } w.p(sum); } public static int[] sieve(int limit) { if (limit <= 2) return new int[0]; //Upper bound of the number of prime numbers up to our limit -> https://en.wikipedia.org/wiki/Prime-counting_function#Inequalities final int numPrimes = (int) (1.25506 * limit / Math.log((double) limit)); int[] primes = new int[numPrimes]; int index = 0; boolean[] isComposite = new boolean[limit]; final int sqrtLimit = (int) Math.sqrt(limit); for (int i = 2; i <= sqrtLimit; i++) { if (!isComposite[i]) { primes[index++] = i; for (int j = i * i; j < limit; j += i) isComposite[j] = true; } } for (int i = sqrtLimit + 1; i < limit; i++) if (!isComposite[i]) primes[index++] = i; A.isComposite = isComposite; return Arrays.copyOf(primes, index); } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
0498e50da2369f79d5aa654a593daa6c
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import static java.lang.Math.abs; import static java.lang.Math.max; import static java.lang.System.*; import static java.util.Arrays.sort; import static java.util.Collections.replaceAll; import static java.util.Collections.reverseOrder; public class C { public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE") == null; // public static final boolean LOCAL = System.getProperty("LOCAL")!=null; public static final String ANSI_RED = "\u001B[31m"; public static final String ANSI_RESET = "\u001B[0m"; static final int M = (int) 1e9 + 7; static final long MM = (long) M * M; static final int MAX = Integer.MAX_VALUE; static final int MIN = Integer.MIN_VALUE; static final int SIZE = (int) 1e9 * 2; static ArrayList<Integer> primes = new ArrayList<>(); //static Scanner sc = new Scanner(System.in); static FastReader sc = new FastReader(); static long startTime; static long endTime; static boolean[] prime; static int[] visited; static ArrayList<ArrayList<Integer>> graph; static ArrayList<Integer> dfs; static boolean isCyclic = false; public static int swap(int... args) { return args[0]; } public static void main(String[] args) throws IOException { do { startTime = currentTimeMillis(); //setOut(new PrintStream("output")); //setIn(new FileInputStream("input")); prime(1000000); int T = sc.nextInt();while (T-- != 0) { solve(); } endTime = currentTimeMillis(); long duration = endTime - startTime; //out.println(duration); if (false) { out.println(max(3, 2)); Integer[] ARRAY = new Integer[2]; ArrayList<Integer> LIST = new ArrayList<>(); LIST.add(2); // sort(LIST, reverseOrder()); LIST.sort(reverseOrder()); sort(ARRAY, reverseOrder()); out.println(LIST + " " + Arrays.toString(ARRAY)); } } while (LOCAL); } public static void solve(){ ///////////////////////////////////////////////////////////////////// int n =sc.nextInt(),e=sc.nextInt(); int [] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i]=sc.nextInt(); } int limit = 0; long ans = 0; while (limit<e) { ArrayList<Integer> list = new ArrayList<>(); boolean isPrime = false; long left = 0,right = 0; for (int i = limit; i < n; i+=e) { list.add(arr[i]); } list.add(0); // list.add(4); // list.add(12); for (Integer integer : list) { if (integer == 1) { if (isPrime) { right++; } else { left++; } } else if (prime[integer]) { if (isPrime) { ans += (left + 1) * right + left; left = right; right = 0; } else { isPrime = true; } } else { if(isPrime) ans += (left + 1) * right + left; left = 0; right = 0; isPrime = false; } } limit++; } out.println(ans); /////////////////////////////////////////////////////////////////////// } static void dfs(int src) { visited[src] = 1; for (Integer integer : graph.get(src)) { if (visited[integer] != 1) { dfs(integer); } } dfs.add(src); } static void detectCycle(int src) { visited[src] = 2; for (Integer integer : graph.get(src)) { if (visited[integer] == 0) { detectCycle(integer); } else if (visited[integer] == 2) { isCyclic = true; return; } } visited[src] = 1; } static <Array, Target> int count(Array[] array, Target target) { int cn = 0; for (Array value : array) { if (value.equals(target)) cn++; } return cn; } static int count(String string, char target) { int cn = 0; for (int i = 0; i < string.length(); i++) { if (string.charAt(i) == target) cn++; } return cn; } static <Array> void revArray(Array[] arr) { int n = arr.length; for (int i = 0; i < n / 2; i++) { Array temp = arr[i]; arr[i] = arr[n - i - 1]; arr[n - i - 1] = temp; } } static <Array> void printArray(Array[] arr) { int n = arr.length; for (Array array : arr) out.print(array + " "); out.println(); } static void yes() { out.println("YES"); } static void no() { out.println("NO"); } public static boolean isPal(String s) { StringBuilder stringBuilder = new StringBuilder(s); return s.equals(stringBuilder.reverse().toString()); } public static int lowerBound(Integer[] array, int length, int value) { int low = -1; int hi = length; while (low + 1 < hi) { int mid = (low + hi) / 2; if (array[mid] <= value) { low = mid; } else { hi = mid; } } return low; } public static int upperBound(Integer[] array, int length, int value) { int low = -1; int hi = length; while (low + 1 < hi) { int mid = (low + hi) >> 1; if (array[mid] >= value) { hi = mid; } else low = mid; } return hi; } public static int binarySearch(Integer[] arr, int length, int value) { int low = 0; int hi = length - 1; int ans = -1; while (low <= hi) { int mid = (low + hi) >> 1; if (arr[mid] > value) { hi = mid - 1; } else if (arr[mid] < value) { low = mid + 1; } else { ans = mid; break; } } return ans; } public static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } public static long lcm(long a, long b) { return a / gcd(a, b) * b; } public static int countDivs(int n) { int cn = 0; int sqr = (int) Math.sqrt(n); for (int i = 1; i <= sqr; ++i) { if (n % i == 0) { ++cn; } } cn *= 2; if (sqr * sqr == n) cn--; return cn; } static void prime(int x) { //sieve algorithm. nlog(log(n)). prime = new boolean[(x + 1)]; Arrays.fill(prime, true); prime[0] = prime[1] = false; for (int i = 2; i * i <= x; i++) if (prime[i]) for (int j = i * i; j <= x; j += i) prime[j] = false; } static boolean isEven(long x) { return x % 2 == 0; } static boolean isPrime(long x) { boolean flag = true; int sqr = (int) Math.sqrt(x); if (x < 2) return false; for (int i = 2; i <= sqr; i++) { if (x % i == 0) { flag = false; break; } } return flag; } static long factorial(long x) { long total = 1; for (int i = 2; i <= x; i++) total = (total * i) % M; return total; } static long power(long x, long n) { if (n == 0) { return 1; } long pow = power(x, n / 2L); if ((n & 1) == 1) { return (x * (pow) * (pow)); } return (pow * pow); } private static <T> String ts(T t) { if (t == null) { return "null"; } try { return ts((Iterable) t); } catch (ClassCastException e) { if (t instanceof int[]) { String s = Arrays.toString((int[]) t); return "{" + s.substring(1, s.length() - 1) + "}"; } else if (t instanceof long[]) { String s = Arrays.toString((long[]) t); return "{" + s.substring(1, s.length() - 1) + "}"; } else if (t instanceof char[]) { String s = Arrays.toString((char[]) t); return "{" + s.substring(1, s.length() - 1) + "}"; } else if (t instanceof double[]) { String s = Arrays.toString((double[]) t); return "{" + s.substring(1, s.length() - 1) + "}"; } else if (t instanceof boolean[]) { String s = Arrays.toString((boolean[]) t); return "{" + s.substring(1, s.length() - 1) + "}"; } try { return ts((Object[]) t); } catch (ClassCastException e1) { return t.toString(); } } } private static <T> String ts(T[] arr) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for (T t : arr) { if (!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}"); return ret.toString(); } private static <T> String ts(Iterable<T> iter) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for (T t : iter) { if (!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}"); return ret.toString(); } public static void dbg(Object... o) { if (LOCAL) { System.err.print("Line #" + Thread.currentThread().getStackTrace()[2].getLineNumber() + ": ["); for (int i = 0; i < o.length; i++) { if (i != 0) { System.err.print(", "); } System.err.print(ts(o[i])); } System.err.println("]"); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class Pair implements Comparable<Pair> { private final int key; private final int value; public Pair(int key, int value) { this.key = key; this.value = value; } public int second() { return value; } @Override public int compareTo(Pair o) { return -Integer.compare(key, o.key); } @Override public String toString() { return "Pair{" + "x=" + key + ", y=" + value + '}'; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
4cbdae9e52c7e2f328209c02a547dc44
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.io.*; ////*************************************************************************** /* public class E_Gardener_and_Tree implements Runnable{ public static void main(String[] args) throws Exception { new Thread(null, new E_Gardener_and_Tree(), "E_Gardener_and_Tree", 1<<28).start(); } public void run(){ WRITE YOUR CODE HERE!!!! JUST WRITE EVERYTHING HERE WHICH YOU WRITE IN MAIN!!! } } */ /////************************************************************************** public class C_Complex_Market_Analysis{ public static void main(String[] args) { FastScanner s= new FastScanner(); //PrintWriter out=new PrintWriter(System.out); //end of program //out.println(answer); //out.close(); StringBuilder res = new StringBuilder(); long size=(long)Math.pow(10,6)+5; boolean prime[]= new boolean[(int)size]; prime[1]=true; for(int i=2;i<size;i++){ if(prime[i]==true){ continue; } long j=2; while((i*j)<size){ prime[(int)(i*j)]=true; j++; } } int t=s.nextInt(); int p=0; while(p<t){ int n=s.nextInt(); int e=s.nextInt(); long array[]= new long[n+1]; for(int i=1;i<=n;i++){ array[i]=s.nextLong(); } long ones[]=new long[n+1]; long dp[]= new long[n+1]; for(int i=n;i>=1;i--){ if(array[i]==1){ int yo=i+e; ones[i]=1; if((yo)<=n){ long num=array[yo]; if(num==1){ dp[i]=dp[yo]; ones[i]+=ones[yo]; } else if(prime[(int)num]==false){ dp[i]=(1+dp[yo]); } } } else if(prime[(int)array[i]]==false){ int yo=i+e; if(yo<=n){ dp[i]=ones[yo]; } } } long ans=0; for(int i=1;i<=n;i++){ ans+=dp[i]; } res.append(ans+" \n"); p++; } System.out.println(res); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e6a6e7c6a0ff319051efe77d8fa12087
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.Scanner; public class C { static boolean[] prime = new boolean[1000001]; static int getOneLength(int[] arr, int pos) { if (pos < 0 || pos >= arr.length) { return 0; } return arr[pos]; } static boolean isOk(int n, int pos) { return pos >= 0 && pos < n; } static int getRightNonOne(int[] arr, int pos) { if (pos < 0 || pos >= arr.length) { return -1; } return arr[pos]; } static long solve(int e, int[] arr) { int n = arr.length; int[] oneLength = new int[n]; int[] rightNonOne = new int[n]; for (int i = n - 1; i >= 0; i--) { if (arr[i] == 1) { oneLength[i] = 1 + getOneLength(oneLength, i + e); rightNonOne[i] = getRightNonOne(rightNonOne, i + e); } else { rightNonOne[i] = i; } } long count = 0; for (int i = 0; i < n; i++) { if (arr[i] == 1) { if (rightNonOne[i] == -1) { continue; } if (!prime[arr[rightNonOne[i]]]) { continue; } count += 1; int firstNonOnePos = rightNonOne[i]; if (!isOk(n, firstNonOnePos + e)) { continue; } if (arr[firstNonOnePos + e] != 1) { continue; } count += oneLength[firstNonOnePos + e]; } else { if (!prime[arr[i]]) { continue; } count += getOneLength(oneLength, i + e); } } return count; } public static void main(String[] args) { for (int i = 2; i < prime.length; i++) { prime[i] = true; } for (int i = 2; i < prime.length; ++i) { if (prime[i]) { if ((long) i * i < prime.length) { for (int j = i * i; j < prime.length; j += i) { prime[j] = false; } } } } Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int i = 0; i < t; i++) { int n = sc.nextInt(); int e = sc.nextInt(); int[] arr = new int[n]; for (int j = 0; j < n; j++) { arr[j] = sc.nextInt(); } System.out.println(solve(e, arr)); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
6b8e19ed6f263e406b7e6d27c8672401
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void solve() { int n = in.nextInt(); int e = in.nextInt(); int[] a = array(n); long count = 0; for (int i = 0; i < n; i++) { if (prime[a[i]]) { // System.out.println(a[i]); long onLeft = 1; int j = i - e;; while (j >= 0 && a[j] == 1) { onLeft++; j -= e; } long onRight = 1; j = i + e; while (j < n && a[j] == 1) { onRight++; j += e; } // System.out.println(onLef) count += onLeft - 1 + onRight - 1 + (onLeft - 1) * (onRight - 1); } } out.append(count + "\n"); } public static void main (String[] args) throws java.lang.Exception { // your code goes here for (int i = 0; i < prime.length; i++) { prime[i] = true; } prime[0] = false; prime[1] = false; for (int i = 2; i * i < prime.length; i++) { if (prime[i]) { for (int j = i * i ; j < prime.length; j += i) { prime[j] = false; } } } // for (int i = 0 ; i <= 100; i++) { // if (prime[i]) // System.out.println(i); // } int t = in.nextInt(); while (t-- != 0) { solve(); } System.out.print(out); } public static <T> void print(T s) { System.out.print(s); } public static <T> void println(T s) { System.out.println(s); } public static void print(int s) { System.out.print(s); } public static void println(int s) { System.out.println(s); } public static void print(int[] a) { int k = 0; for (int i : a) { print(k++ +":" + i + " "); } println(""); } public static int[] array(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } return a; } public static int[] array1(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) { a[i] = in.nextInt(); } return a; } static boolean prime[] = new boolean[1000001]; static FastReader in = new FastReader(); static StringBuffer out = new StringBuffer(); static final int MAX = Integer.MAX_VALUE; static final int MIN = Integer.MIN_VALUE; static int mod = 1000000007; } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
fa9c01cc5169b285c9e2b56584d702e8
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.beans.DesignMode; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.concurrent.LinkedBlockingDeque; import java.util.concurrent.CompletableFuture.AsynchronousCompletionTask; import org.xml.sax.ErrorHandler; import java.io.PrintStream; import java.io.PrintWriter; import java.io.DataInputStream; public class Solution { //TEMPLATE ------------------------------------------------------------------------------------- public static boolean Local(){ try{ return System.getenv("LOCAL_SYS")!=null; }catch(Exception e){ return false; } } public static boolean LOCAL; static class FastScanner { BufferedReader br; StringTokenizer st ; FastScanner(){ br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); } FastScanner(String file) { try{ br = new BufferedReader(new InputStreamReader(new FileInputStream(file))); st = new StringTokenizer(""); }catch(FileNotFoundException e) { // TODO Auto-generated catch block System.out.println("file not found"); e.printStackTrace(); } } String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String readLine() throws IOException{ return br.readLine(); } } static class Pair<T,X> { T first; X second; Pair(T first,X second){ this.first = first; this.second = second; } @Override public int hashCode(){ return Objects.hash(first,second); } @Override public boolean equals(Object obj){ return obj.hashCode() == this.hashCode(); } } static PrintStream debug = null; static long mod = (long)(Math.pow(10,9) + 7); //TEMPLATE -------------------------------------------------------------------------------------END// public static void main(String[] args) throws Exception { FastScanner s = new FastScanner(); LOCAL = Local(); //PrintWriter pw = new PrintWriter(System.out); if(LOCAL){ s = new FastScanner("src/input.txt"); PrintStream o = new PrintStream("src/sampleout.txt"); debug = new PrintStream("src/debug.txt"); System.setOut(o); // pw = new PrintWriter(o); } long mod = 1000000007; int tcr = s.nextInt(); StringBuilder sb = new StringBuilder(); List<Integer> sieve = sieve(); Set<Integer> prime = new HashSet<>(sieve); for(int tc=0;tc<tcr;tc++){ int n = s.nextInt(); int e = s.nextInt(); int arr[] = new int[n]; for(int i=0;i<n;i++){ arr[i] = s.nextInt(); } boolean done[] = new boolean[n]; long ans = 0l; for(int i=0;i<n;i++){ if(done[i]){continue;} if(prime.contains(arr[i])){ int k = 0; int index = i; index+=e; int prev = 0; int next = 0; while(index < n){ if(arr[index] == 1){next++;k++;done[index]=true;index+=e;} else{break;} } index = i - e; while(index >= 0){ if(arr[index] == 1){prev++;k++;done[index]=true;index-=e;} else{break;} } // dbg(debug,i+" "+next+" "+prev); if(k >= 1){ ans = ans + (prev*1l*next); ans = ans + next + prev; } } } sb.append(ans+"\n"); } print(sb.toString()); } public static boolean check(char arr[],int index){ if(index - 2 >=0 && ((arr[index-2]=='a') && (arr[index-1]=='b') && (arr[index]=='c'))){ return true; } if((index - 1 >= 0) && (index + 1 < arr.length) && (arr[index-1]=='a') && (arr[index]=='b') && (arr[index+1]=='c')){ return true; } if((index + 2 < arr.length) && (arr[index]=='a') && (arr[index+1]=='b') && (arr[index+2] == 'c')){ return true; } return false; } public static List<int[]> print_prime_factors(int n){ List<int[]> list = new ArrayList<>(); for(int i=2;i<=(int)(Math.sqrt(n));i++){ if(n % i == 0){ int cnt = 0; while( (n % i) == 0){ n = n/i; cnt++; } list.add(new int[]{i,cnt}); } } if(n!=1){ list.add(new int[]{n,1}); } return list; } public static List<int[]> prime_factors(int n,List<Integer> sieve){ List<int[]> list = new ArrayList<>(); int index = 0; while(n > 1 && sieve.get(index) <= Math.sqrt(n)){ int curr = sieve.get(index); int cnt = 0; while((n % curr) == 0){ n = n/curr; cnt++; } if(cnt >= 1){ list.add(new int[]{curr,cnt}); } index++; } if(n > 1){ list.add(new int[]{n,1}); } return list; } public static boolean inRange(int r1,int r2,int val){ return ((val >= r1) && (val <= r2)); } static int len(long num){ return Long.toString(num).length(); } static long mulmod(long a, long b,long mod) { long ans = 0l; while(b > 0){ long curr = (b & 1l); if(curr == 1l){ ans = ((ans % mod) + a) % mod; } a = (a + a) % mod; b = b >> 1; } return ans; } public static void dbg(PrintStream ps,Object... o) throws Exception{ if(ps == null){ return; } Debug.dbg(ps,o); } public static long modpow(long num,long pow,long mod){ long val = num; long ans = 1l; while(pow > 0l){ long bit = pow & 1l; if(bit == 1){ ans = (ans * (val%mod))%mod; } val = (val * val) % mod; pow = pow >> 1; } return ans; } public static char get(int n){ return (char)('a' + n); } public static long[] sort(long arr[]){ List<Long> list = new ArrayList<>(); for(long n : arr){list.add(n);} Collections.sort(list); for(int i=0;i<arr.length;i++){ arr[i] = list.get(i); } return arr; } public static int[] sort(int arr[]){ List<Integer> list = new ArrayList<>(); for(int n : arr){list.add(n);} Collections.sort(list); for(int i=0;i<arr.length;i++){ arr[i] = list.get(i); } return arr; } // return the (index + 1) // where index is the pos of just smaller element // i.e count of elemets strictly less than num public static int justSmaller(long arr[],long num){ // System.out.println(num+"@"); int st = 0; int e = arr.length - 1; int ans = -1; while(st <= e){ int mid = (st + e)/2; if(arr[mid] >= num){ e = mid - 1; }else{ ans = mid; st = mid + 1; } } return ans + 1; } public static int justSmaller(int arr[],int num){ // System.out.println(num+"@"); int st = 0; int e = arr.length - 1; int ans = -1; while(st <= e){ int mid = (st + e)/2; if(arr[mid] >= num){ e = mid - 1; }else{ ans = mid; st = mid + 1; } } return ans + 1; } //return (index of just greater element) //count of elements smaller than or equal to num public static int justGreater(long arr[],long num){ int st = 0; int e = arr.length - 1; int ans = arr.length; while(st <= e){ int mid = (st + e)/2; if(arr[mid] <= num){ st = mid + 1; }else{ ans = mid; e = mid - 1; } } return ans; } public static int justGreater(int arr[],int num){ int st = 0; int e = arr.length - 1; int ans = arr.length; while(st <= e){ int mid = (st + e)/2; if(arr[mid] <= num){ st = mid + 1; }else{ ans = mid; e = mid - 1; } } return ans; } public static void println(Object obj){ System.out.println(obj.toString()); } public static void print(Object obj){ System.out.print(obj.toString()); } public static int gcd(int a,int b){ if(b == 0){return a;} return gcd(b,a%b); } public static long gcd(long a,long b){ if(b == 0l){ return a; } return gcd(b,a%b); } public static int find(int parent[],int v){ if(parent[v] == v){ return v; } return parent[v] = find(parent, parent[v]); } public static List<Integer> sieve(){ List<Integer> prime = new ArrayList<>(); int arr[] = new int[1000001]; Arrays.fill(arr,1); arr[1] = 0; arr[2] = 1; for(int i=2;i<1000001;i++){ if(arr[i] == 1){ prime.add(i); for(long j = (i*1l*i);j<1000001;j+=i){ arr[(int)j] = 0; } } } return prime; } static boolean isPower(long n,long a){ long log = (long)(Math.log(n)/Math.log(a)); long power = (long)Math.pow(a,log); if(power == n){return true;} return false; } private static int mergeAndCount(int[] arr, int l,int m, int r) { // Left subarray int[] left = Arrays.copyOfRange(arr, l, m + 1); // Right subarray int[] right = Arrays.copyOfRange(arr, m + 1, r + 1); int i = 0, j = 0, k = l, swaps = 0; while (i < left.length && j < right.length) { if (left[i] <= right[j]) arr[k++] = left[i++]; else { arr[k++] = right[j++]; swaps += (m + 1) - (l + i); } } while (i < left.length) arr[k++] = left[i++]; while (j < right.length) arr[k++] = right[j++]; return swaps; } // Merge sort function private static int mergeSortAndCount(int[] arr, int l,int r) { // Keeps track of the inversion count at a // particular node of the recursion tree int count = 0; if (l < r) { int m = (l + r) / 2; // Total inversion count = left subarray count // + right subarray count + merge count // Left subarray count count += mergeSortAndCount(arr, l, m); // Right subarray count count += mergeSortAndCount(arr, m + 1, r); // Merge count count += mergeAndCount(arr, l, m, r); } return count; } static class Debug{ //change to System.getProperty("ONLINE_JUDGE")==null; for CodeForces public static final boolean LOCAL = System.getProperty("ONLINE_JUDGE")==null; private static <T> String ts(T t) { if(t==null) { return "null"; } try { return ts((Iterable) t); }catch(ClassCastException e) { if(t instanceof int[]) { String s = Arrays.toString((int[]) t); return "{"+s.substring(1, s.length()-1)+"}\n"; }else if(t instanceof long[]) { String s = Arrays.toString((long[]) t); return "{"+s.substring(1, s.length()-1)+"}\n"; }else if(t instanceof char[]) { String s = Arrays.toString((char[]) t); return "{"+s.substring(1, s.length()-1)+"}\n"; }else if(t instanceof double[]) { String s = Arrays.toString((double[]) t); return "{"+s.substring(1, s.length()-1)+"}\n"; }else if(t instanceof boolean[]) { String s = Arrays.toString((boolean[]) t); return "{"+s.substring(1, s.length()-1)+"}\n"; } try { return ts((Object[]) t); }catch(ClassCastException e1) { return t.toString(); } } } private static <T> String ts(T[] arr) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for(T t: arr) { if(!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}"); return ret.toString(); } private static <T> String ts(Iterable<T> iter) { StringBuilder ret = new StringBuilder(); ret.append("{"); boolean first = true; for(T t: iter) { if(!first) { ret.append(", "); } first = false; ret.append(ts(t)); } ret.append("}\n"); return ret.toString(); } public static void dbg(PrintStream ps,Object... o) throws Exception { if(LOCAL) { System.setErr(ps); System.err.print("Line #"+Thread.currentThread().getStackTrace()[2].getLineNumber()+": [\n"); for(int i = 0; i<o.length; i++) { if(i!=0) { System.err.print(", "); } System.err.print(ts(o[i])); } System.err.println("]"); } } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
e421b3556660226c3b5d01bfee5fe94c
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.*; import java.util.*; import java.util.concurrent.ThreadLocalRandom; public class Main { public static void main(String[] args) throws FileNotFoundException { ConsoleIO io = new ConsoleIO(new InputStreamReader(System.in), new PrintWriter(System.out)); // String fileName = "C-large-practice"; // ConsoleIO io = new ConsoleIO(new FileReader("D:\\Dropbox\\code\\practice\\jb\\src\\" + fileName + ".in"), new PrintWriter(new File("D:\\Dropbox\\code\\practice\\jb\\src\\" + fileName + ".out"))); new Main(io).solve(); // new Main(io).solveLocal(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } ConsoleIO opt; Main(ConsoleIO io, ConsoleIO opt) { this.io = io; this.opt = opt; } List<List<Integer>> gr = new ArrayList<>(); //long MOD = 1_000_000_007; class Point { public Point(long x, long y){ this.x = x; this.y = y; } public long x; public long y; public long prod(Point p){ return x*p.y - y*p.x; } } public void solve() { int t = io.ri(); boolean[] p = new boolean[1000001]; p[0] = p[1] = true; for(int i = 2;i < p.length;i++) { if (!p[i]) { for (int j = i + i; j < p.length; j += i) p[j] = true; } } for(int i = 0 ; i < t; i++) { int n = io.ri(); int e = io.ri(); int[] a = new int[n]; for(int j = 0;j<n;j++) { int v = io.ri(); a[j] = v; } int[] prev1 = new int[n]; for(int j = 0; j<n;j++) { if(a[j] == 1) { prev1[j] = 1; if(j>=e) prev1[j]+=prev1[j-e]; } } int[] prev2 = new int[n]; for(int j = n-1; j>=0;j--) { if(a[j] == 1) { prev2[j] = 1; if(j+e<n) prev2[j]+=prev2[j+e]; } } long res = 0; for(int j = 0; j < n; j++) { long q = 1, w = 1; if (!p[a[j]]) { if (j >= e) q = prev1[j - e] + 1; if (j + e < n) w = prev2[j + e] + 1; } if (q * w > 1) res += q * w - 1; } io.writeLine(Long.toString(res)); } } public boolean good(char[] s, int p){ char v = s[p]; if(v=='a' && p < s.length-2 && s[p+1] == 'b' && s[p+2] == 'c') { return true; } if(v=='b' && p < s.length-1 && p > 0 && s[p-1] == 'a' && s[p+1] == 'c') { return true; } if(v=='c' && p > 1 && s[p-2] == 'a' && s[p-1] == 'b') { return true; } return false; } public long choose4(long v){ if(v<4) return 0; return v * (v-1) * (v-2) * (v-3) / 24; } public long choose3(long v){ if(v<3) return 0; return v * (v-1) * (v-2) / 6; } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(Reader reader, PrintWriter writer){br = new BufferedReader(reader);out = writer;} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public void writeIntArray(int[] a, int k, String separator) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < k; i++) { if (i > 0) sb.append(separator); sb.append(a[i]); } this.writeLine(sb.toString()); } public void writeLongArray(long[] a, int k, String separator) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < k; i++) { if (i > 0) sb.append(separator); sb.append(a[i]); } this.writeLine(sb.toString()); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int ri() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public long readLong() { try { long r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public String readWord() { try { boolean start = false; StringBuilder sb = new StringBuilder(); while (true) { int c = br.read(); if (c!= ' ' && c!= '\r' && c!='\n' && c!='\t') { sb.append((char)c); start = true; } else if (start || c == -1) return sb.toString(); } } catch (Exception ex) { return ""; } } public char readSymbol() { try { while (true) { int c = br.read(); if (c != ' ' && c != '\r' && c != '\n' && c != '\t') { return (char) c; } } } catch (Exception ex) { return 0; } } //public char readChar(){try {return (char)br.read();}catch (Exception ex){ return 0; }} } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } class Triple { public Triple(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } class TripleLL { public TripleLL(long a, long b, long c) {this.a = a;this.b = b;this.c = c;} public long a; public long b; public long c; }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
04630a140c656c54c945d790f8c98e6b
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
//package codeforces.deltix_autumn; import java.io.*; import java.util.*; import static java.lang.Math.*; //Think through the entire logic before jump into coding! //If you are out of ideas, take a guess! It is better than doing nothing! //Read both C and D, it is possible that D is easier than C for you! //Be aware of integer overflow! //If you find an answer and want to return immediately, don't forget to flush before return! public class C { static InputReader in; static PrintWriter out; public static void main(String[] args) { //initReaderPrinter(true); initReaderPrinter(false); solve(in.nextInt()); //solve(1); } static boolean[] prime; static int N = 1000000; static void solve(int testCnt) { prime = generatePrimeStatus(N); for (int testNumber = 0; testNumber < testCnt; testNumber++) { int n = in.nextInt(), e = in.nextInt(); int[] a = in.nextIntArrayPrimitive(n); //boolean[] processed = new boolean[n]; long ans = 0; for(int i = 0; i < n; i++) { if(prime[a[i]]) { long l = 0, r = 0; for(int j = i - e; j >= 0; j -= e) { if(a[j] == 1) l++; else break; } for(int j = i + e; j < n; j += e) { if(a[j] == 1) r++; else break; } ans += (l * r + l + r); // if(l != 0 || r != 0) { // if(l == 0) l = 1; // if(r == 0) r = 1; // ans += l * r; // } } } out.println(ans); } out.close(); } static boolean[] generatePrimeStatus(int n) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); prime[1] = false; for(int p = 2; p * p <= n; p++) { if(prime[p]) { for(int i = p * p; i <= n; i += p) { prime[i] = false; } } } return prime; } static void initReaderPrinter(boolean test) { if (test) { try { in = new InputReader(new FileInputStream("src/input.in")); out = new PrintWriter(new FileOutputStream("src/output.out")); } catch (IOException e) { e.printStackTrace(); } } else { in = new InputReader(System.in); out = new PrintWriter(System.out); } } static class InputReader { BufferedReader br; StringTokenizer st; InputReader(InputStream stream) { try { br = new BufferedReader(new InputStreamReader(stream), 32768); } catch (Exception e) { e.printStackTrace(); } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } Integer[] nextIntArray(int n) { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } int[] nextIntArrayPrimitive(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } int[] nextIntArrayPrimitiveOneIndexed(int n) { int[] a = new int[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextInt(); return a; } Long[] nextLongArray(int n) { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long[] nextLongArrayPrimitive(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long[] nextLongArrayPrimitiveOneIndexed(int n) { long[] a = new long[n + 1]; for (int i = 1; i <= n; i++) a[i] = nextLong(); return a; } String[] nextStringArray(int n) { String[] g = new String[n]; for (int i = 0; i < n; i++) g[i] = next(); return g; } List<Integer>[] readGraphOneIndexed(int n, int m) { List<Integer>[] adj = new List[n + 1]; for (int i = 0; i <= n; i++) { adj[i] = new ArrayList<>(); } for (int i = 0; i < m; i++) { int u = nextInt(); int v = nextInt(); adj[u].add(v); adj[v].add(u); } return adj; } List<Integer>[] readGraphZeroIndexed(int n, int m) { List<Integer>[] adj = new List[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<>(); } for (int i = 0; i < m; i++) { int u = nextInt() - 1; int v = nextInt() - 1; adj[u].add(v); adj[v].add(u); } return adj; } /* A more efficient way of building a graph using int[] instead of ArrayList to store each node's neighboring nodes. 1-indexed. */ int[][] buildGraph(int nodeCnt, int edgeCnt) { int[] end1 = new int[edgeCnt], end2 = new int[edgeCnt]; int[] edgeCntForEachNode = new int[nodeCnt + 1], idxForEachNode = new int[nodeCnt + 1]; for (int i = 0; i < edgeCnt; i++) { int u = in.nextInt(), v = in.nextInt(); edgeCntForEachNode[u]++; edgeCntForEachNode[v]++; end1[i] = u; end2[i] = v; } int[][] adj = new int[nodeCnt + 1][]; for (int i = 1; i <= nodeCnt; i++) { adj[i] = new int[edgeCntForEachNode[i]]; } for (int i = 0; i < edgeCnt; i++) { adj[end1[i]][idxForEachNode[end1[i]]] = end2[i]; idxForEachNode[end1[i]]++; adj[end2[i]][idxForEachNode[end2[i]]] = end1[i]; idxForEachNode[end2[i]]++; } return adj; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
68c7870fdaae8ed6c38f507392e2eecc
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.InputMismatchException; import java.io.IOException; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); CSlozhniiAnalizRinka solver = new CSlozhniiAnalizRinka(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class CSlozhniiAnalizRinka { int N = 1000010; boolean[] prime = new boolean[N + 1]; public CSlozhniiAnalizRinka() { prime[0] = true; prime[1] = true; for (int i = 2; i * i < N; i++) { for (int h = i + i; h < N; h += i) { prime[h] = true; } } } long query(long[] cum, int l, int r) { if (l == 0) { return cum[r]; } else { return cum[r] - cum[l - 1]; } } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int m = in.nextInt(); long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } long[] cum = new long[n]; long ans = 0; for (int q = 0; q < m; q++) { List<Long> v = new ArrayList<>(); for (int i = q; i < n; i += m) { v.add(a[i]); } cum[0] = v.get(0); for (int i = 1; i < v.size(); i++) { cum[i] = cum[i - 1] + v.get(i); } for (int i = 0; i < v.size(); i++) { if (prime[v.get(i).intValue()]) { continue; } int l = 0; if (i != 0) { int j1 = 0; int j2 = i - 1; while (j1 < j2) { int mid = (j1 + j2) / 2; if (query(cum, mid, i - 1) == (i - 1 - mid + 1)) { j2 = mid; } else { j1 = mid + 1; } } l = j1; if (v.get(l) != 1) { l = i; } } int r = v.size() - 1; if (i != v.size() - 1) { int j1 = i + 1; int j2 = v.size() - 1; while (j1 < j2) { int mid = (j1 + j2 + 1) / 2; if (query(cum, i + 1, mid) == (mid - (i + 1) + 1)) { j1 = mid; } else { j2 = mid - 1; } } r = j1; if (v.get(r) != 1) { r = i; } } ans += (i - l + 1L) * (r - i + 1L) - 1; } } out.println(ans); } } static class InputReader { private static final int BUFFER_LENGTH = 1 << 10; private InputStream stream; private byte[] buf = new byte[BUFFER_LENGTH]; private int curChar; private int numChars; public InputReader(InputStream stream) { this.stream = stream; } private int nextC() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String next() { int c = nextC(); while (isSpaceChar(c)) { c = nextC(); } StringBuilder res = new StringBuilder(); do { res.append((char) c); c = nextC(); } while (!isSpaceChar(c)); return res.toString(); } public int nextInt() { int c = skipWhileSpace(); int sgn = 1; if (c == '-') { sgn = -1; c = nextC(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = nextC(); } while (!isSpaceChar(c)); return res * sgn; } public int skipWhileSpace() { int c = nextC(); while (isSpaceChar(c)) { c = nextC(); } return c; } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output
PASSED
97220ee573d54c6e04730aa2b01e021d
train_110.jsonl
1638110100
While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Scanner; import java.util.StringTokenizer; import java.util.TreeSet; public class C { static BufferedReader br; static StringTokenizer st; static PrintWriter pw; static String nextToken() { try { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } static int nextInt() { return Integer.parseInt(nextToken()); } public static void main(String[] args) { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); run(); pw.close(); } private static void run() { int t = nextInt(); TreeSet<Integer> set = new TreeSet<>(); boolean[] used = new boolean[(int) (1e6 + 10)]; for (int i = 2; i < used.length; i++) { if (!used[i]) { int k = i + i; while (k < used.length) { used[k] = true; k += i; } set.add(i); } } for (int i = 0; i < t; i++) { int n = nextInt(); int e = nextInt(); int[] a = new int[n]; int[] one = new int[e]; for (int j = 0; j < n; j++) { a[j] = nextInt(); if (a[j] == 1) { one[j % e]++; } } long ans = 0; for (int j = 0; j < n; j++) { if (a[j] == 1) { one[j % e]--; } else if (set.contains(a[j])) { int c = 1; while (j + c * e < n && a[j + c * e] == 1) { ans++; c++; } int cc = c; c = 1; while (j - c * e >= 0 && a[j - c * e] == 1) { ans += cc; c++; } } } pw.println(ans); } } }
Java
["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"]
2 seconds
["2\n0\n4\n0\n5\n0"]
NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions.
Java 8
standard input
[ "binary search", "dp", "implementation", "number theory", "schedules", "two pointers" ]
32130f939336bb6f2deb4dfa5402867d
Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,400
For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions.
standard output