exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | 09aa461995d6511bf61b8e8181e11f70 | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.util.Arrays;
import java.io.Writer;
import java.io.IOException;
import java.util.InputMismatchException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Nipuna Samarasekara
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
FastPrinter out = new FastPrinter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, FastScanner in, FastPrinter out) {
int t = in.nextInt();
boolean[] isPrime = MathUtils.genPrimesBoolean(1000007);
while (t-- > 0) {
int n = in.nextInt(), e = in.nextInt();
int[] a = in.readIntArray(n);
int[] onesl = new int[n];
int[] onesr = new int[n];
for (int i = 0; i < n; i++) {
if (a[i] == 1) {
onesl[i] = 1;
if (i - e >= 0) {
onesl[i] += onesl[i - e];
}
}
}
for (int i = n - 1; i >= 0; i--) {
if (a[i] == 1) {
onesr[i] = 1;
if (i + e < n) {
onesr[i] += onesr[i + e];
}
}
}
long ans = 0;
for (int i = 0; i < n; i++) {
if (isPrime[a[i]]) {
long left = 0;
long right = 0;
if (i - e >= 0) {
left = onesl[i - e];
}
if (i + e < n) {
right = onesr[i + e];
}
ans += (left + 1) * (right + 1) - 1;
}
}
out.println(ans);
}
}
}
static class MathUtils {
public static boolean[] genPrimesBoolean(int n) {
boolean[] isPrime = new boolean[n];
Arrays.fill(isPrime, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i * i < n; i++) {
if (!isPrime[i]) {
continue;
}
for (int j = i * i; j < n; j += i) {
isPrime[j] = false;
}
}
return isPrime;
}
}
static class FastPrinter extends PrintWriter {
public FastPrinter(OutputStream out) {
super(out);
}
public FastPrinter(Writer out) {
super(out);
}
}
static class FastScanner extends BufferedReader {
public FastScanner(InputStream is) {
super(new InputStreamReader(is));
}
public int read() {
try {
int ret = super.read();
// if (isEOF && ret < 0) {
// throw new InputMismatchException();
// }
// isEOF = ret == -1;
return ret;
} catch (IOException e) {
throw new InputMismatchException();
}
}
static boolean isWhiteSpace(int c) {
return c >= 0 && c <= 32;
}
public int nextInt() {
int c = read();
while (isWhiteSpace(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int ret = 0;
while (c >= 0 && !isWhiteSpace(c)) {
if (c < '0' || c > '9') {
throw new NumberFormatException("digit expected " + (char) c + " found");
}
ret = ret * 10 + c - '0';
c = read();
}
return ret * sgn;
}
public String readLine() {
try {
return super.readLine();
} catch (IOException e) {
return null;
}
}
public int[] readIntArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++) {
ret[i] = nextInt();
}
return ret;
}
}
}
| Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | a6eb027d75bbdd08151f9bcf5ffa00c0 | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
/**
* @author Naitik
*
*/
public class Main
{
static FastReader sc=new FastReader();
static long dp[][][];
//static int v[][];
// static int mod=998244353;;
static int mod=1000000007;
static int max;
static int bit[];
// static int seg[];
//static long fact[];
// static long A[];
// static TreeMap<Integer,Integer> map;
//static StringBuffer sb=new StringBuffer("");
static HashMap<Integer,Integer> map;
static PrintWriter out=new PrintWriter(System.out);
static TreeSet<Long> set=new TreeSet<Long>();
public static void main(String[] args)
{
// StringBuffer sb=new StringBuffer("");
int ttt=1;
ttt =i();
boolean prime[] = new boolean[2000000+1];
for(int i=0;i<=2000000;i++)
prime[i] = true;
for(int p = 2; p*p <=2e6; p++)
{
// If prime[p] is not changed, then it is a prime
if(prime[p] == true)
{
// Update all multiples of p
for(int i = p*p; i <= 2e6; i += p)
prime[i] = false;
}
}
outer :while (ttt-- > 0)
{
int n=i();
int e=i();
int A[]=input(n);
ArrayList<Integer> l=new ArrayList<Integer>();
ArrayList<Integer> a=new ArrayList<Integer>();
ArrayList<Integer> b=new ArrayList<Integer>();
long ans=0;
for(int i=1;i<=e;i++) {
l.clear();
a.clear();
b.clear();
for(int j=i;j<=n;j+=e) {
l.add(A[j-1]);
}
// System.out.println(l);
int c=0;
for(int j=0;j<l.size();j++) {
int y=l.get(j);
if(y!=1) {
if(prime[y])
a.add(c);
c=0;
}
else {
c++;
}
}
c=0;
for(int j=l.size()-1;j>=0;j--) {
int y=l.get(j);
if(y!=1) {
if(prime[y])
b.add(c);
c=0;
}
else {
c++;
}
}
Collections.reverse(b);
//System.out.println(a.size()+" "+b.size());
for(int j=0;j<a.size();j++) {
long t=b.get(j);
long t1=a.get(j);
ans+=t1*(t+1);
ans+=t;
}
}
System.out.println(ans);
}
//System.out.println(sb.toString());
out.close();
//CHECK FOR N=1 //CHECK FOR M=0
//CHECK FOR N=1 //CHECK FOR M=0
//CHECK FOR N=1
}
static class Pair implements Comparable<Pair>
{
int x;
int y;
int z;
Pair(int x,int y){
this.x=x;
this.y=y;
// this.z=z;
}
@Override
public int compareTo(Pair o) {
if(this.x>o.x)
return -1;
else if(this.x<o.x)
return 1;
else {
if(this.y>o.y)
return 1;
else if(this.y<o.y)
return -1;
else
return 0;
}
}
// public int hashCode()
// {
// final int temp = 14;
// int ans = 1;
// ans =x*31+y*13;
// return ans;
// }
// @Override
// public boolean equals(Object o)
// {
// if (this == o) {
// return true;
// }
// if (o == null) {
// return false;
// }
// if (this.getClass() != o.getClass()) {
// return false;
// }
// Pair other = (Pair)o;
// if (this.x != other.x || this.y!=other.y) {
// return false;
// }
// return true;
// }
//
/* FOR TREE MAP PAIR USE */
// public int compareTo(Pair o) {
// if (x > o.x) {
// return 1;
// }
// if (x < o.x) {
// return -1;
// }
// if (y > o.y) {
// return 1;
// }
// if (y < o.y) {
// return -1;
// }
// return 0;
// }
}
//static int find(int A[],int a) {
// if(A[a]<0)
// return a;
// return A[a]=find(A, A[a]);
//}
static int find(int A[],int a) {
if(A[a]==a)
return a;
return find(A, A[a]);
}
//FENWICK TREE
static void update(int i, int x){
for(; i < bit.length; i += (i&-i))
bit[i] += x;
}
static int sum(int i){
int ans = 0;
for(; i > 0; i -= (i&-i))
ans += bit[i];
return ans;
}
//END
static void add(int v) {
if(!map.containsKey(v)) {
map.put(v, 1);
}
else {
map.put(v, map.get(v)+1);
}
}
static void remove(int v) {
if(map.containsKey(v)) {
map.put(v, map.get(v)-1);
if(map.get(v)==0)
map.remove(v);
}
}
public static int upper(int A[],int k,int si,int ei)
{
int l=si;
int u=ei;
int ans=-1;
while(l<=u) {
int mid=(l+u)/2;
if(A[mid]<=k) {
ans=mid;
l=mid+1;
}
else {
u=mid-1;
}
}
return ans;
}
public static int lower(int A[],int k,int si,int ei)
{
int l=si;
int u=ei;
int ans=-1;
while(l<=u) {
int mid=(l+u)/2;
if(A[mid]<=k) {
l=mid+1;
}
else {
ans=mid;
u=mid-1;
}
}
return ans;
}
static int[] copy(int A[]) {
int B[]=new int[A.length];
for(int i=0;i<A.length;i++) {
B[i]=A[i];
}
return B;
}
static long[] copy(long A[]) {
long B[]=new long[A.length];
for(int i=0;i<A.length;i++) {
B[i]=A[i];
}
return B;
}
static int[] input(int n) {
int A[]=new int[n];
for(int i=0;i<n;i++) {
A[i]=sc.nextInt();
}
return A;
}
static long[] inputL(int n) {
long A[]=new long[n];
for(int i=0;i<n;i++) {
A[i]=sc.nextLong();
}
return A;
}
static String[] inputS(int n) {
String A[]=new String[n];
for(int i=0;i<n;i++) {
A[i]=sc.next();
}
return A;
}
static long sum(int A[]) {
long sum=0;
for(int i : A) {
sum+=i;
}
return sum;
}
static long sum(long A[]) {
long sum=0;
for(long i : A) {
sum+=i;
}
return sum;
}
static void reverse(long A[]) {
int n=A.length;
long B[]=new long[n];
for(int i=0;i<n;i++) {
B[i]=A[n-i-1];
}
for(int i=0;i<n;i++)
A[i]=B[i];
}
static void reverse(int A[]) {
int n=A.length;
int B[]=new int[n];
for(int i=0;i<n;i++) {
B[i]=A[n-i-1];
}
for(int i=0;i<n;i++)
A[i]=B[i];
}
static void input(int A[],int B[]) {
for(int i=0;i<A.length;i++) {
A[i]=sc.nextInt();
B[i]=sc.nextInt();
}
}
static int[][] input(int n,int m){
int A[][]=new int[n][m];
for(int i=0;i<n;i++) {
for(int j=0;j<m;j++) {
A[i][j]=i();
}
}
return A;
}
static char[][] charinput(int n,int m){
char A[][]=new char[n][m];
for(int i=0;i<n;i++) {
String s=s();
for(int j=0;j<m;j++) {
A[i][j]=s.charAt(j);
}
}
return A;
}
static int nextPowerOf2(int n)
{
n--;
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
n++;
return n;
}
static int highestPowerof2(int x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x ^ (x >> 1);
}
static long highestPowerof2(long x)
{
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x ^ (x >> 1);
}
static int max(int A[]) {
int max=Integer.MIN_VALUE;
for(int i=0;i<A.length;i++) {
max=Math.max(max, A[i]);
}
return max;
}
static int min(int A[]) {
int min=Integer.MAX_VALUE;
for(int i=0;i<A.length;i++) {
min=Math.min(min, A[i]);
}
return min;
}
static long max(long A[]) {
long max=Long.MIN_VALUE;
for(int i=0;i<A.length;i++) {
max=Math.max(max, A[i]);
}
return max;
}
static long min(long A[]) {
long min=Long.MAX_VALUE;
for(int i=0;i<A.length;i++) {
min=Math.min(min, A[i]);
}
return min;
}
static long [] prefix(long A[]) {
long p[]=new long[A.length];
p[0]=A[0];
for(int i=1;i<A.length;i++)
p[i]=p[i-1]+A[i];
return p;
}
static long [] prefix(int A[]) {
long p[]=new long[A.length];
p[0]=A[0];
for(int i=1;i<A.length;i++)
p[i]=p[i-1]+A[i];
return p;
}
static long [] suffix(long A[]) {
long p[]=new long[A.length];
p[A.length-1]=A[A.length-1];
for(int i=A.length-2;i>=0;i--)
p[i]=p[i+1]+A[i];
return p;
}
static long [] suffix(int A[]) {
long p[]=new long[A.length];
p[A.length-1]=A[A.length-1];
for(int i=A.length-2;i>=0;i--)
p[i]=p[i+1]+A[i];
return p;
}
static void fill(int dp[]) {
Arrays.fill(dp, -1);
}
static void fill(int dp[][]) {
for(int i=0;i<dp.length;i++)
Arrays.fill(dp[i], -1);
}
static void fill(int dp[][][]) {
for(int i=0;i<dp.length;i++) {
for(int j=0;j<dp[0].length;j++) {
Arrays.fill(dp[i][j],-1);
}
}
}
static void fill(int dp[][][][]) {
for(int i=0;i<dp.length;i++) {
for(int j=0;j<dp[0].length;j++) {
for(int k=0;k<dp[0][0].length;k++) {
Arrays.fill(dp[i][j][k],-1);
}
}
}
}
static void fill(long dp[]) {
Arrays.fill(dp, -1);
}
static void fill(long dp[][]) {
for(int i=0;i<dp.length;i++)
Arrays.fill(dp[i], -1);
}
static void fill(long dp[][][]) {
for(int i=0;i<dp.length;i++) {
for(int j=0;j<dp[0].length;j++) {
Arrays.fill(dp[i][j],-1);
}
}
}
static void fill(long dp[][][][]) {
for(int i=0;i<dp.length;i++) {
for(int j=0;j<dp[0].length;j++) {
for(int k=0;k<dp[0][0].length;k++) {
Arrays.fill(dp[i][j][k],-1);
}
}
}
}
static int min(int a,int b) {
return Math.min(a, b);
}
static int min(int a,int b,int c) {
return Math.min(a, Math.min(b, c));
}
static int min(int a,int b,int c,int d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static int max(int a,int b) {
return Math.max(a, b);
}
static int max(int a,int b,int c) {
return Math.max(a, Math.max(b, c));
}
static int max(int a,int b,int c,int d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static long min(long a,long b) {
return Math.min(a, b);
}
static long min(long a,long b,long c) {
return Math.min(a, Math.min(b, c));
}
static long min(long a,long b,long c,long d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static long max(long a,long b) {
return Math.max(a, b);
}
static long max(long a,long b,long c) {
return Math.max(a, Math.max(b, c));
}
static long max(long a,long b,long c,long d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static long power(long x, long y, long p)
{
if(y==0)
return 1;
if(x==0)
return 0;
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long power(long x, long y)
{
if(y==0)
return 1;
if(x==0)
return 0;
long res = 1;
while (y > 0) {
if (y % 2 == 1)
res = (res * x);
y = y >> 1;
x = (x * x);
}
return res;
}
static void print(int A[]) {
for(int i : A) {
System.out.print(i+" ");
}
System.out.println();
}
static void print(long A[]) {
for(long i : A) {
System.out.print(i+" ");
}
System.out.println();
}
static long mod(long x) {
return ((x%mod + mod)%mod);
}
static String reverse(String s) {
StringBuffer p=new StringBuffer(s);
p.reverse();
return p.toString();
}
static int i() {
return sc.nextInt();
}
static String s() {
return sc.next();
}
static long l() {
return sc.nextLong();
}
static void sort(int[] A){
int n = A.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
int tmp = A[i];
int randomPos = i + rnd.nextInt(n-i);
A[i] = A[randomPos];
A[randomPos] = tmp;
}
Arrays.sort(A);
}
static void sort(long[] A){
int n = A.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
long tmp = A[i];
int randomPos = i + rnd.nextInt(n-i);
A[i] = A[randomPos];
A[randomPos] = tmp;
}
Arrays.sort(A);
}
static String sort(String s) {
Character ch[]=new Character[s.length()];
for(int i=0;i<s.length();i++) {
ch[i]=s.charAt(i);
}
Arrays.sort(ch);
StringBuffer st=new StringBuffer("");
for(int i=0;i<s.length();i++) {
st.append(ch[i]);
}
return st.toString();
}
static HashMap<Integer,Integer> hash(int A[]){
HashMap<Integer,Integer> map=new HashMap<Integer, Integer>();
for(int i : A) {
if(map.containsKey(i)) {
map.put(i, map.get(i)+1);
}
else {
map.put(i, 1);
}
}
return map;
}
static HashMap<Long,Integer> hash(long A[]){
HashMap<Long,Integer> map=new HashMap<Long, Integer>();
for(long i : A) {
if(map.containsKey(i)) {
map.put(i, map.get(i)+1);
}
else {
map.put(i, 1);
}
}
return map;
}
static TreeMap<Integer,Integer> tree(int A[]){
TreeMap<Integer,Integer> map=new TreeMap<Integer, Integer>();
for(int i : A) {
if(map.containsKey(i)) {
map.put(i, map.get(i)+1);
}
else {
map.put(i, 1);
}
}
return map;
}
static TreeMap<Long,Integer> tree(long A[]){
TreeMap<Long,Integer> map=new TreeMap<Long, Integer>();
for(long i : A) {
if(map.containsKey(i)) {
map.put(i, map.get(i)+1);
}
else {
map.put(i, 1);
}
}
return map;
}
static boolean prime(int n)
{
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq=Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static boolean prime(long n)
{
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq=Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
}
| Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | c6ee6780fc3a07bbb758b99cd7ba1f8c | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st;
static PrintWriter pr = new PrintWriter(System.out);
static String readLine() throws IOException {
return br.readLine();
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(readLine());
return st.nextToken();
}
static int readInt() throws IOException {
return Integer.parseInt(next());
}
static long readLong() throws IOException {
return Long.parseLong(next());
}
static double readDouble() throws IOException {
return Double.parseDouble(next());
}
static char readChar() throws IOException {
return next().charAt(0);
}
static class Pair implements Comparable<Pair> {
int f, s;
Pair(int f, int s) {
this.f = f; this.s = s;
}
public int compareTo(Pair other) {
if (this.f != other.f) return this.f - other.f;
return this.s - other.s;
}
}
final static int A = 1000000;
static boolean prime[] = new boolean[A + 1];
static void solve() throws IOException {
int n = readInt(), e = readInt(), a[] = new int[n + 1];
for (int i = 1; i <= n; ++i) a[i] = readInt();
long ans = 0, dp1[] = new long[n + 1], dp2[] = new long[n + 1];
for (int start = 1; start <= n; ++start) {
int end = 0;
for (int i = start; i <= n; i += e) {
if (a[i] == 1 && i - e >= 1) dp1[i] = dp1[i - e] + 1;
else if (a[i] == 1) dp1[i] = 1;
else dp1[i] = 0;
end = i;
}
for (int i = end; i >= start; i -= e) {
if (a[i] == 1 && i + e <= n) dp2[i] = dp2[i + e] + 1;
else if (a[i] == 1) dp2[i] = 1;
else dp2[i] = 0;
}
for (int i = start; i <= end; i += e) {
if (!prime[a[i]]) continue;
long mul1 = 1;
if (i - e >= 1) mul1 = dp1[i - e] + 1;
long mul2 = 1;
if (i + e <= n) mul2 = dp2[i + e] + 1;
ans += mul1*mul2 - 1;
}
if (start%e == 0) break;
}
pr.println(ans);
}
public static void main(String[] args) throws IOException {
//solve();
Arrays.fill(prime, true);
prime[0] = prime[1] = false;
for (int i = 2; i <= A; ++i) {
if (!prime[i]) continue;
for (int j = 2*i; j <= A; j += i) prime[j] = false;
}
for (int t = readInt(); t > 0; --t) solve();
pr.close();
}
}
| Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | 389755b2a1a69ecb6fd622e1c08a93f3 | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.util.*;
import java.io.*;
public class Complex_Market_Analysis {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void shuffle(int[] a) {
Random r = new Random();
for (int i = 0; i <= a.length - 2; i++) {
int j = i + r.nextInt(a.length - i);
swap(a, i, j);
}
Arrays.sort(a);
}
public static void swap(int[] a, int i, int j) {
int temp = a[i];
a[i] = a[j];
a[j] = temp;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader t = new FastReader();
PrintWriter o = new PrintWriter(System.out);
int test = t.nextInt();
while (test-- > 0) {
int n = t.nextInt();
int k = t.nextInt();
int[] a = new int[n];
long ans = 0;
for (int i = 0; i < n; ++i)
a[i] = t.nextInt();
for (int i = 0; i < n; ++i) {
if (isPrime(a[i])) {
long left = 1, right = 1;
int l = i - k, r = i + k;
while (l >= 0 && a[l] == 1) {
++left;
l -= k;
}
while (r < n && a[r] == 1) {
++right;
r += k;
}
ans += left * right - 1;
}
}
o.println(ans);
}
o.flush();
o.close();
}
private static boolean isPrime(int n) {
if (n <= 1)
return false;
else if (n == 2)
return true;
else if (n % 2 == 0)
return false;
for (int i = 3; i <= Math.sqrt(n); i += 2)
if (n % i == 0)
return false;
return true;
}
} | Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | 73903d9e96aa8709e437417836ec959d | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.io.*;import java.util.*;import java.math.*;import static java.lang.Math.*;import static java.
util.Map.*;import static java.util.Arrays.*;import static java.util.Collections.*;
import static java.lang.System.*;
public class Main
{
public void tq()throws Exception
{
st=new StringTokenizer(bq.readLine());
int tq=i();
sb=new StringBuilder(2000000);
boolean s[]=si(1000000);
o:
while(tq-->0)
{
int n=i();
int e=i();
int ar[]=ari(n);
long c=0l;
int p[]=new int[n];
for(int x=0;x<e;x++)
{
int o=0;
int en=-1;
for(int y=x;y<n;y+=e)
{
en=y;
if(ar[y]==1)
{
o++;
p[y]=o;
}
else
{
if(!s[ar[y]])
{
o++;
p[y]=o;
}
o=0;
}
}
o=0;
for(int y=en;y>=0;y-=e)
{
if(ar[y]==1)o++;
else
{
if(!s[ar[y]])
{
o++;
c+=1l*p[y]*o-1;
}
o=0;
}
}
}
sl(c);
}
p(sb);
}
void f(){out.flush();}
int di[][]={{-1,0},{1,0},{0,-1},{0,1}};
int de[][]={{-1,0},{1,0},{0,-1},{0,1},{-1,-1},{1,1},{-1,1},{1,-1}};
long mod=1000000007l;int max=Integer.MAX_VALUE,min=Integer.MIN_VALUE;long maxl=Long.MAX_VALUE, minl=Long.
MIN_VALUE;BufferedReader bq=new BufferedReader(new InputStreamReader(in));StringTokenizer st;
StringBuilder sb;public static void main(String[] a)throws Exception{new Main().tq();}int[] so(int ar[])
{Integer r[]=new Integer[ar.length];for(int x=0;x<ar.length;x++)r[x]=ar[x];sort(r);for(int x=0;x<ar.length;
x++)ar[x]=r[x];return ar;}long[] so(long ar[]){Long r[]=new Long[ar.length];for(int x=0;x<ar.length;x++)
r[x]=ar[x];sort(r);for(int x=0;x<ar.length;x++)ar[x]=r[x];return ar;}
char[] so(char ar[]) {Character
r[]=new Character[ar.length];for(int x=0;x<ar.length;x++)r[x]=ar[x];sort(r);for(int x=0;x<ar.length;x++)
ar[x]=r[x];return ar;}void s(String s){sb.append(s);}void s(int s){sb.append(s);}void s(long s){sb.
append(s);}void s(char s){sb.append(s);}void s(double s){sb.append(s);}void ss(){sb.append(' ');}void sl
(String s){sb.append(s);sb.append("\n");}void sl(int s){sb.append(s);sb.append("\n");}void sl(long s){sb
.append(s);sb.append("\n");}void sl(char s) {sb.append(s);sb.append("\n");}void sl(double s){sb.append(s)
;sb.append("\n");}void sl(){sb.append("\n");}int l(int v){return 31-Integer.numberOfLeadingZeros(v);}
long l(long v){return 63-Long.numberOfLeadingZeros(v);}int sq(int a){return (int)sqrt(a);}long sq(long a)
{return (long)sqrt(a);}long gcd(long a,long b){while(b>0l){long c=a%b;a=b;b=c;}return a;}int gcd(int a,int b)
{while(b>0){int c=a%b;a=b;b=c;}return a;}boolean pa(String s,int i,int j){while(i<j)if(s.charAt(i++)!=
s.charAt(j--))return false;return true;}boolean[] si(int n) {boolean bo[]=new boolean[n+1];bo[0]=true;bo[1]
=true;for(int x=4;x<=n;x+=2)bo[x]=true;for(int x=3;x*x<=n;x+=2){if(!bo[x]){int vv=(x<<1);for(int y=x*x;y<=n;
y+=vv)bo[y]=true;}}return bo;}long mul(long a,long b,long m) {long r=1l;a%=m;while(b>0){if((b&1)==1)
r=(r*a)%m;b>>=1;a=(a*a)%m;}return r;}int i()throws IOException{if(!st.hasMoreTokens())st=new
StringTokenizer(bq.readLine());return Integer.parseInt(st.nextToken());}long l()throws IOException
{if(!st.hasMoreTokens())st=new StringTokenizer(bq.readLine());return Long.parseLong(st.nextToken());}String
s()throws IOException {if (!st.hasMoreTokens())st=new StringTokenizer(bq.readLine());return st.nextToken();}
double d()throws IOException{if(!st.hasMoreTokens())st=new StringTokenizer(bq.readLine());return Double.
parseDouble(st.nextToken());}void p(Object p){out.print(p);}void p(String p){out.print(p);}void p(int p)
{out.print(p);}void p(double p){out.print(p);}void p(long p){out.print(p);}void p(char p){out.print(p);}void
p(boolean p){out.print(p);}void pl(Object p){out.println(p);}void pl(String p){out.println(p);}void pl(int p)
{out.println(p);}void pl(char p){out.println(p);}void pl(double p){out.println(p);}void pl(long p){out.
println(p);}void pl(boolean p)
{out.println(p);}void pl(){out.println();}void s(int a[]){for(int e:a)
{sb.append(e);sb.append(' ');}sb.append("\n");}
void s(long a[])
{for(long e:a){sb.append(e);sb.append(' ')
;}sb.append("\n");}void s(int ar[][]){for(int a[]:ar){for(int e:a){sb.append(e);sb.append(' ');}sb.append
("\n");}}
void s(char a[])
{for(char e:a){sb.append(e);sb.append(' ');}sb.append("\n");}void s(char ar[][])
{for(char a[]:ar){for(char e:a){sb.append(e);sb.append(' ');}sb.append("\n");}}int[] ari(int n)throws
IOException {int ar[]=new int[n];if(!st.hasMoreTokens())st=new StringTokenizer(bq.readLine());for(int x=0;
x<n;x++)ar[x]=Integer.parseInt(st.nextToken());return ar;}int[][] ari(int n,int m)throws
IOException {int ar[][]=new int[n][m];for(int x=0;x<n;x++){if (!st.hasMoreTokens())st=new StringTokenizer
(bq.readLine());for(int y=0;y<m;y++)ar[x][y]=Integer.parseInt(st.nextToken());}return ar;}long[] arl
(int n)throws IOException {long ar[]=new long[n];if(!st.hasMoreTokens()) st=new StringTokenizer(bq.readLine())
;for(int x=0;x<n;x++)ar[x]=Long.parseLong(st.nextToken());return ar;}long[][] arl(int n,int m)throws
IOException {long ar[][]=new long[n][m];for(int x=0;x<n;x++) {if(!st.hasMoreTokens()) st=new
StringTokenizer(bq.readLine());for(int y=0;y<m;y++)ar[x][y]=Long.parseLong(st.nextToken());}return ar;}
String[] ars(int n)throws IOException {String ar[] =new String[n];if(!st.hasMoreTokens())st=new
StringTokenizer(bq.readLine());for(int x=0;x<n;x++)ar[x]=st.nextToken();return ar;}double[] ard
(int n)throws IOException {double ar[] =new double[n];if(!st.hasMoreTokens())st=new StringTokenizer
(bq.readLine());for(int x=0;x<n;x++)ar[x]=Double.parseDouble(st.nextToken());return ar;}double[][] ard
(int n,int m)throws IOException{double ar[][]=new double[n][m];for(int x=0;x<n;x++) {if(!st.hasMoreTokens())
st=new StringTokenizer(bq.readLine());for(int y=0;y<m;y++) ar[x][y]=Double.parseDouble(st.nextToken());}
return ar;}char[] arc(int n)throws IOException{char ar[]=new char[n];if(!st.hasMoreTokens())st=new
StringTokenizer(bq.readLine());for(int x=0;x<n;x++)ar[x]=st.nextToken().charAt(0);return ar;}char[][]
arc(int n,int m)throws IOException {char ar[][]=new char[n][m];for(int x=0;x<n;x++){String s=bq.readLine();
for(int y=0;y<m;y++)ar[x][y]=s.charAt(y);}return ar;}void p(int ar[])
{StringBuilder sb=new StringBuilder
(2*ar.length);for(int a:ar){sb.append(a);sb.append(' ');}out.println(sb);}void p(int ar[][])
{StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);for(int a[]:ar){for(int aa:a){sb.append(aa);
sb.append(' ');}sb.append("\n");}p(sb);}void p(long ar[]){StringBuilder sb=new StringBuilder
(2*ar.length);for(long a:ar){ sb.append(a);sb.append(' ');}out.println(sb);}
void p(long ar[][])
{StringBuilder sb=new StringBuilder(2*ar.length*ar[0].length);for(long a[]:ar){for(long aa:a){sb.append(aa);
sb.append(' ');}sb.append("\n");}p(sb);}void p(String ar[]){int c=0;for(String s:ar)c+=s.length()+1;
StringBuilder sb=new StringBuilder(c);for(String a:ar){sb.append(a);sb.append(' ');}out.println(sb);}
void p(double ar[])
{StringBuilder sb=new StringBuilder(2*ar.length);for(double a:ar){sb.append(a);
sb.append(' ');}out.println(sb);}void p
(double ar[][]){StringBuilder sb=new StringBuilder(2*
ar.length*ar[0].length);for(double a[]:ar){for(double aa:a){sb.append(aa);sb.append(' ');}sb.append("\n")
;}p(sb);}void p(char ar[])
{StringBuilder sb=new StringBuilder(2*ar.length);for(char aa:ar){sb.append(aa);
sb.append(' ');}out.println(sb);}void p(char ar[][]){StringBuilder sb=new StringBuilder(2*ar.length*ar[0]
.length);for(char a[]:ar){for(char aa:a){sb.append(aa);sb.append(' ');}sb.append("\n");}p(sb);}void pl
(int... ar){for(int e:ar)p(e+" ");pl();}void pl(long... ar){for(long e:ar)p(e+" ");pl();}
} | Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | 6b704c2aee09fde937c0dad9ab20df93 | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class C {
FastScanner in;
PrintWriter out;
boolean systemIO = true;
public static void quickSort(int[] a, int from, int to) {
if (to - from <= 1) {
return;
}
int i = from;
int j = to - 1;
int x = a[from + (new Random()).nextInt(to - from)];
while (i <= j) {
while (a[i] < x) {
i++;
}
while (a[j] > x) {
j--;
}
if (i <= j) {
int t = a[i];
a[i] = a[j];
a[j] = t;
i++;
j--;
}
}
quickSort(a, from, j + 1);
quickSort(a, j + 1, to);
}
public long gcd(long x, long y) {
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd(y, x % y);
}
public boolean prime(long x) {
for (int i = 2; i * i <= x; i++) {
if (x % i == 0) {
return false;
}
}
return true;
}
public long pow(long x, long p) {
if (p == 0) {
return 1;
}
long t = pow(x, p / 2);
t *= t;
t %= mod;
if (p % 2 == 1) {
t *= x;
t %= mod;
}
return t;
}
public class Pair implements Comparable<Pair> {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
@Override
public int compareTo(Pair o) {
if (x > o.x) {
return 1;
}
if (x < o.x) {
return -1;
}
if (y > o.y) {
return 1;
}
if (y < o.y) {
return -1;
}
return 0;
}
}
public class Fenvik2D {
long[][] t;
int n, m;
public Fenvik2D(int n, int m) {
t = new long[n][m];
this.n = n;
this.m = m;
}
public int sum(int x1, int y1, int x2, int y2) {
return sum(x2, y2) - sum(x1 - 1, y2) - sum(x2, y1 - 1) + sum(x1 - 1, y1 - 1);
}
public int sum(int x, int y) {
int result = 0;
for (int i = x; i >= 0; i = (i & (i + 1)) - 1) {
for (int j = y; j >= 0; j = (j & (j + 1)) - 1) {
result += t[i][j];
}
}
return result;
}
public void add(int x, int y, int delta) {
for (int i = x; i < n; i = (i | (i + 1))) {
for (int j = y; j < m; j = (j | (j + 1))) {
t[i][j] += delta;
}
}
}
}
public int[] prefF(int[] a) {
int[] p = new int[a.length];
for (int i = 1; i < p.length; i++) {
int j = p[i - 1];
while (j > 0) {
if (a[j] == a[i]) {
break;
}
if (j == 0) {
break;
}
j = p[j - 1];
}
if (a[i] == a[j]) {
p[i] = j + 1;
}
}
return p;
}
public class Tree {
long[] sum;
long[] min;
int[] alive;
int pow;
long inf = Long.MAX_VALUE / 2;
public Tree(long[] a, long[] b) {
pow = 1;
while (pow < a.length) {
pow *= 2;
}
sum = new long[2 * pow];
min = new long[2 * pow];
for (int i = 0; i < min.length; i++) {
min[i] = inf;
}
alive = new int[2 * pow];
for (int i = 0; i < b.length; i++) {
sum[pow + i] = a[i];
min[pow + i] = a[i] + b[i];
alive[pow + i] = 1;
}
for (int i = pow - 1; i > 0; i--) {
merge(i);
}
}
public void merge(int v) {
sum[v] = sum[2 * v] + sum[2 * v + 1];
min[v] = inf;
if (min[2 * v] < min[v]) {
min[v] = min[2 * v];
}
if (min[2 * v + 1] + sum[2 * v] < min[v]) {
min[v] = min[2 * v + 1] + sum[2 * v];
}
alive[v] = alive[2 * v] + alive[2 * v + 1];
}
public void add(long a, long b, int c) {
add(1, 0, pow, a, b, c - 1);
}
private void add(int v, int l, int r, long a, long b, int c) {
if (v >= pow) {
sum[v] = a;
min[v] = a + b;
alive[v] = 1;
return;
}
int m = (l + r) / 2;
if (c < m) {
add(2 * v, l, m, a, b, c);
} else {
add(2 * v + 1, m, r, a, b, c);
}
merge(v);
}
public int update(long x) {
return update(1, 0, pow, x);
}
private int update(int v, int l, int r, long x) {
if (v >= pow) {
if (x > min[v]) {
sum[v] = 0;
min[v] = inf;
alive[v] = 0;
return 1;
}
if (alive[v] == 1 && x >= sum[v]) {
return 1;
}
return 0;
}
int m = (l + r) / 2;
if (sum[2 * v] > x) {
int ans = update(2 * v, l, m, x);
merge(v);
return ans;
}
int ans = alive[2 * v] + update(2 * v + 1, m, r, x - sum[2 * v]);
if (x > min[2 * v]) {
update(2 * v, l, m, x);
}
merge(v);
return ans;
}
}
public class MyStack {
int[] st;
int sz;
public MyStack(int max) {
st = new int[max];
sz = 0;
}
public int size() {
return sz;
}
public boolean isEmpty() {
return sz == 0;
}
public int peek() {
return st[sz - 1];
}
public int pop() {
return st[--sz];
}
public void add(int x) {
st[sz++] = x;
}
public void clear() {
sz = 0;
}
}
public long[][] mult(long[][] a, long[][] b) {
long[][] c = new long[a.length][b[0].length];
for (int i = 0; i < c.length; i++) {
for (int j = 0; j < c[0].length; j++) {
for (int k = 0; k < b.length; k++) {
c[i][j] += a[i][k] * b[k][j];
c[i][j] %= mod;
}
}
}
return c;
}
int mod = 998244353;
public long[][] pow(long p, long[][] m) {
if (p == 0) {
long[][] matrix = new long[m.length][m.length];
for (int i = 0; i < matrix.length; i++) {
matrix[i][i] = 1;
}
return matrix;
}
if (p % 2 == 1) {
return mult(m, pow(p - 1, m));
}
long[][] cur = pow(p / 2, m);
return mult(cur, cur);
}
public void add(HashMap<Integer, Integer> map, int x) {
if (map.containsKey(x)) {
map.put(x, map.get(x) + 1);
} else {
map.put(x, 1);
}
}
public class Point implements Comparable<Point> {
long x;
long y;
int n;
public Point(long x, long y, int n) {
this.x = x;
this.y = y;
this.n = n;
}
public void norm() {
long gcd = gcd(Math.abs(x), Math.abs(y));
x /= gcd;
y /= gcd;
}
public int quater() {
if (x > 0 && y >= 0) {
return 0;
}
if (x <= 0 && y > 0) {
return 1;
}
if (x < 0) {
return 2;
}
return 3;
}
public long mod2() {
return x * x + y * y;
}
@Override
public int compareTo(Point o) {
if (quater() != o.quater()) {
return quater() - o.quater();
}
int s = sign(cp(o, this));
if (s != 0) {
return s;
}
return sign(mod2() - o.mod2());
}
}
public long cp(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
public int sign(long x) {
if (x > 0) {
return 1;
}
if (x < 0) {
return -1;
}
return 0;
}
public class Vector {
double x;
double y;
public Vector(double x, double y) {
this.x = x;
this.y = y;
}
public double norm() {
return Math.sqrt(norm2());
}
public double norm2() {
return x * x + y * y;
}
public String toString() {
return x + " " + y;
}
public Vector negative() {
return new Vector(-x, -y);
}
public Vector add(Vector v) {
return new Vector(x + v.x, y + v.y);
}
public Vector subtract(Vector v) {
return new Vector(x - v.x, y - v.y);
}
}
public double dp(Vector a, Vector b) {
return a.x * b.x + a.y * b.y;
}
public double cp(Vector a, Vector b) {
return a.x * b.y - a.y * b.x;
}
public class Polygon {
Vector[] v;
double s;
public Polygon(Vector[] v) {
this.v = v;
s = Math.abs(s());
}
public double s() {
double ans = 0;
for (int i = 1; i < v.length - 1; i++) {
Vector a = v[i].subtract(v[0]);
Vector b = v[i + 1].subtract(v[0]);
ans += cp(a, b);
}
return ans / 2;
}
public boolean intersect(Vector o, double r) {
for (int i = 0; i < v.length; i++) {
if (intersectSeg(v[i], v[(i + 1) % v.length], o, r)) {
return true;
}
}
boolean inside = false;
for (int i = 0; i < v.length; i++) {
inside ^= intersectRay(v[i], v[(i + 1) % v.length], o);
}
if (inside) {
System.err.println(o + " " + s);
return true;
}
return false;
}
}
public double sq(double x) {
return x * x;
}
public boolean intersectSeg(Vector a, Vector b, Vector o, double r) {
Vector ao = o.subtract(a);
Vector bo = o.subtract(b);
if (ao.norm2() <= r * r * (1 + eps) || bo.norm2() <= r * r * (1 + eps)) {
return true;
}
Vector ab = b.subtract(a);
if (sq(Math.abs(cp(ao, bo))) > ab.norm2() * r * r * (1 + eps)) {
return false;
}
if (dp(ao, ab) < -eps || dp(bo, ab) > eps) {
return false;
}
return true;
}
public boolean intersectRay(Vector a, Vector b, Vector o) {
if (a.y == b.y) {
return false;
}
if (o.y == Math.max(a.y, b.y) && o.x < Math.min(a.x, b.x)) {
return true;
}
if (o.y == Math.min(a.y, b.y)) {
return false;
}
if ((o.y - a.y) * (o.y - b.y) < 0) {
if (a.y < b.y) {
if (cp(b.subtract(a), o.subtract(a)) > 0) {
return true;
}
} else {
if (cp(b.subtract(a), o.subtract(a)) < 0) {
return true;
}
}
}
return false;
}
double eps = 0;
Random random = new Random(566);
public class SegmentTreeSet {
int pow;
long[] sum;
long[] max;
long[] min;
long[] delta;
boolean[] flag;
public SegmentTreeSet(long[] a) {
pow = 1;
while (pow < a.length) {
pow *= 2;
}
flag = new boolean[2 * pow];
sum = new long[2 * pow];
max = new long[2 * pow];
min = new long[2 * pow];
delta = new long[2 * pow];
for (int i = 0; i < a.length; i++) {
sum[pow + i] = a[i];
max[pow + i] = a[i];
min[pow + i] = a[i];
}
for (int i = pow - 1; i > 0; i--) {
sum[i] = sum[2 * i] + sum[2 * i + 1];
max[i] = max[2 * i];
min[i] = min[2 * i + 1];
}
}
public int get(int v, int tl, int tr, int l, int r) {
push(v, tl, tr);
if (l >= tr || r <= tl) {
return 0;
}
if (l <= tl && r >= tr) {
if (money >= sum[v]) {
money -= sum[v];
return tr - tl;
}
if (money < min[v]) {
return 0;
}
}
int tm = (tl + tr) / 2;
return get(2 * v, tl, tm, l, r) + get(2 * v + 1, tm, tr, l, r);
}
public void set(int v, int tl, int tr, int l, int r, long x) {
push(v, tl, tr);
if (l >= tr || r <= tl) {
return;
}
if (l <= tl && r >= tr) {
if (x >= max[v]) {
delta[v] = x;
flag[v] = true;
push(v, tl, tr);
} else if (v < pow) {
int tm = (tl + tr) / 2;
push(2 * v + 1, tm, tr);
if (x >= max[2 * v + 1]) {
delta[2 * v + 1] = x;
flag[2 * v + 1] = true;
push(2 * v + 1, tm, tr);
set(2 * v, tl, tm, l, r, x);
} else {
push(2 * v, tl, tm);
set(2 * v + 1, tm, tr, l, r, x);
}
sum[v] = (sum[2 * v] + sum[2 * v + 1]);
max[v] = max[2 * v];
min[v] = min[2 * v + 1];
}
return;
}
int tm = (tl + tr) / 2;
set(2 * v, tl, tm, l, r, x);
set(2 * v + 1, tm, tr, l, r, x);
sum[v] = (sum[2 * v] + sum[2 * v + 1]);
max[v] = max[2 * v];
min[v] = min[2 * v + 1];
}
public void push(int v, int tl, int tr) {
if (flag[v]) {
if (v < pow) {
flag[2 * v] = true;
flag[2 * v + 1] = true;
delta[2 * v] = delta[v];
delta[2 * v + 1] = delta[v];
}
flag[v] = false;
sum[v] = delta[v] * (tr - tl);
max[v] = delta[v];
min[v] = delta[v];
}
}
public int f(int a, int b) {
return a + b;
}
}
long money = 0;
public long[] diofant(long a, long b) {
long[] ans = new long[2];
if (b == 0) {
ans[0] = 1;
ans[1] = 0;
return ans;
}
long div = a / b;
long mod = a % b;
long[] get = diofant(b, mod);
ans[0] = get[1];
ans[1] = get[0] - (get[1] * div);
return ans;
}
public class Arr implements Comparable<Arr> {
int[] a;
public Arr(int[] a) {
this.a = a;
}
@Override
public int compareTo(Arr o) {
for (int i = 0; i < comp.length; i++) {
if (a[comp[i]] != o.a[comp[i]]) {
return a[comp[i]] - o.a[comp[i]];
}
}
return 0;
}
}
int[] comp;
public void dfs(int v) {
boolean flag = false;
if (!used[v]) {
used[v] = true;
flag = true;
ans.add(v);
}
for (int x = 0; x < sz; x++) {
if (!used[x] && g[v][x]) {
used[x] = flag;
dfs(x);
}
}
}
public int components() {
int c = 0;
for (int i = 0; i < sz; i++) {
if (!used[i]) {
dfs(i);
c++;
}
}
return c;
}
int max = 500;
boolean[][] g = new boolean[2 * max][2 * max];
boolean[] used = new boolean[2 * max];
int[][] value = new int[max][max];
int sz = -1;
ArrayList<Integer> ans = new ArrayList<>();
public void solve() {
boolean[] prime = new boolean[1000001];
for (int i = 2; i < prime.length; i++) {
prime[i] = true;
}
for (int i = 2; i * i < prime.length; i++) {
if (prime[i]) {
for (int j = i * i; j < prime.length; j += i) {
prime[j] = false;
}
}
}
for (int qwerty = in.nextInt(); qwerty > 0; qwerty--) {
int n = in.nextInt();
int[] a = new int[n];
int e = in.nextInt();
for (int i = 0; i < a.length; i++) {
a[i] = in.nextInt();
}
long ans = 0;
for (int i0 = 0; i0 < e; i0++) {
int prevones = 0;
int curones = 0;
boolean wasprime = false;
for (int i = i0; i < a.length; i += e) {
if (a[i] == 1) {
curones++;
if (wasprime) {
ans += prevones + 1;
}
} else if (prime[a[i]]) {
prevones = curones;
wasprime = true;
curones = 0;
ans += prevones;
} else {
wasprime = false;
prevones = curones = 0;
}
}
}
out.println(ans);
}
}
public void run() {
try {
if (systemIO) {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
} else {
in = new FastScanner(new File("input.txt"));
out = new PrintWriter(new File("output.txt"));
}
solve();
out.close();
} catch (IOException e) {
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
// AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
public static void main(String[] arg) {
long time = System.currentTimeMillis();
new C().run();
System.err.println(System.currentTimeMillis() - time);
}
} | Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | 82fee8addde81b58c1b1138eff7b5aed | train_110.jsonl | 1638110100 | While performing complex market analysis William encountered the following problem:For a given array $$$a$$$ of size $$$n$$$ and a natural number $$$e$$$, calculate the number of pairs of natural numbers $$$(i, k)$$$ which satisfy the following conditions: $$$1 \le i, k$$$ $$$i + e \cdot k \le n$$$. Product $$$a_i \cdot a_{i + e} \cdot a_{i + 2 \cdot e} \cdot \ldots \cdot a_{i + k \cdot e} $$$ is a prime number. A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
final int N = (int) (1e6 + 100);
boolean[] isPrime = new boolean[N];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i < N; i++) {
if (isPrime[i]) {
for (int j = i + i; j < N; j += i) {
isPrime[j] = false;
}
}
}
int numTests = in.nextInt();
for (int test = 0; test < numTests; test++) {
int n = in.nextInt();
int e = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
long ans = 0;
for (int s = 0; s < n && s < e; s++) {
List<Integer> b = new ArrayList<>();
for (int i = s; i < n; i += e) {
b.add(a[i]);
}
int[] l = new int[b.size()];
int[] r = new int[b.size()];
for (int i = 0; i < b.size(); i++) {
if (i > 0) {
l[i] = l[i - 1];
}
if (b.get(i) == 1) {
l[i] += 1;
} else {
l[i] = 0;
}
}
for (int i = b.size() - 1; i >= 0; i--) {
if (i + 1 < b.size()) {
r[i] = r[i + 1];
}
if (b.get(i) == 1) {
r[i] += 1;
} else {
r[i] = 0;
}
}
for (int i = 0; i < b.size(); i++) {
if (isPrime[b.get(i)]) {
long L = i > 0 ? l[i - 1] : 0;
long R = i + 1 < b.size() ? r[i + 1] : 0;
ans += (L + 1) * (R + 1) - 1;
}
}
}
out.println(ans);
}
}
}
static class FastScanner {
private BufferedReader in;
private StringTokenizer st;
public FastScanner(InputStream stream) {
try {
in = new BufferedReader(new InputStreamReader(stream, "UTF-8"));
} catch (Exception e) {
throw new AssertionError();
}
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
String rl = in.readLine();
if (rl == null) {
return null;
}
st = new StringTokenizer(rl);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| Java | ["6\n7 3\n10 2 1 3 1 19 3\n3 2\n1 13 1\n9 3\n2 4 2 1 1 1 1 4 2\n3 1\n1 1 1\n4 1\n1 2 1 1\n2 2\n1 2"] | 2 seconds | ["2\n0\n4\n0\n5\n0"] | NoteIn the first example test case two pairs satisfy the conditions: $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{5} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 19$$$ which is a prime number. In the second example test case there are no pairs that satisfy the conditions.In the third example test case four pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{4} \cdot a_{7} = 2$$$ which is a prime number. $$$i = 3, k = 1$$$, for which the product is: $$$a_{3} \cdot a_{6} = 2$$$ which is a prime number. $$$i = 6, k = 1$$$, for which the product is: $$$a_{6} \cdot a_{9} = 2$$$ which is a prime number. In the fourth example test case there are no pairs that satisfy the conditions.In the fifth example test case five pairs satisfy the conditions: $$$i = 1, k = 1$$$, for which the product is: $$$a_{1} \cdot a_{2} = 2$$$ which is a prime number. $$$i = 1, k = 2$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 1, k = 3$$$, for which the product is: $$$a_{1} \cdot a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. $$$i = 2, k = 1$$$, for which the product is: $$$a_{2} \cdot a_{3} = 2$$$ which is a prime number. $$$i = 2, k = 2$$$, for which the product is: $$$a_{2} \cdot a_{3} \cdot a_{4} = 2$$$ which is a prime number. In the sixth example test case there are no pairs that satisfy the conditions. | Java 8 | standard input | [
"binary search",
"dp",
"implementation",
"number theory",
"schedules",
"two pointers"
] | 32130f939336bb6f2deb4dfa5402867d | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10\,000$$$). Description of the test cases follows. The first line of each test case contains two integers $$$n$$$ and $$$e$$$ $$$(1 \le e \le n \le 2 \cdot 10^5)$$$, the number of items in the array and number $$$e$$$, respectively. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i \le 10^6)$$$, the contents of the array. It is guaranteed that the sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,400 | For each test case output the answer in the following format: Output one line containing the number of pairs of numbers $$$(i, k)$$$ which satisfy the conditions. | standard output | |
PASSED | d6ad7c7cac003bcccd3cd79432a5df67 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.File;import java.io.FileInputStream;import java.io.FileNotFoundException;
import java.io.IOException;import java.io.InputStream;import java.io.PrintWriter;
import java.lang.annotation.Retention;import java.lang.annotation.RetentionPolicy;
import java.lang.reflect.Array;import java.lang.reflect.Field;import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;import java.security.AccessControlException;import java.util.*;
import java.util.Arrays;import java.util.Collection;import java.util.Comparator;
import java.util.List;import java.util.Map;import java.util.Objects;import java.util.TreeMap;
import java.util.function.Function;import java.util.stream.Collectors;import java.util.stream.IntStream;
import java.util.stream.LongStream;import java.util.stream.Stream;public class _A {
static public void main(final String[] args) throws IOException{A._main(args);}
static class A extends Solver{public A(){}@Override public void solve()throws IOException
{int n=sc.nextInt();sc.nextLine();long[]a=Arrays.stream(sc.nextLine().trim().split("\\s+")).filter($s2
->!$s2.isEmpty()).mapToLong(Long::parseLong).toArray();Comparator<long[]>cmp=(x,
y)->x[0]!=y[0]?Long.compare(x[0],y[0]):Long.compare(x[1],y[1]);TreeMap<Integer,TreeSet<long[]>>
map=new TreeMap<>();List<long[]>listi=Datas.listi(a);for(long[]v:listi){int k=0;while(v[0]
%2==0){k++;v[0]/=2;}if(!map.containsKey(k)){map.put(k,new TreeSet<>(cmp));}map.get(k).add(v);
}long res=Arrays.stream(a).sum();for(int k:map.keySet()){long[]probe=map.get(k).pollLast();
long max=probe[0]*(1<<k);long sum=0;for(Map.Entry<Integer,TreeSet<long[]>>entry:
map.entrySet()){if(!entry.getValue().isEmpty()){sum+=entry.getValue().stream().mapToLong(v
->v[0]).sum();max*=(1L<<entry.getKey()*entry.getValue().size());}}sum+=max;if(res
<sum){res=sum;}map.get(k).add(probe);}pw.println(res);}static public void _main(String[]
args)throws IOException{new A().run();}}static class Datas{final static String SPACE
=" ";public static TreeMap<Integer,Integer>mapc(final int[]a){return IntStream.range(0,
a.length).collect(()->new TreeMap<Integer,Integer>(),(res,i)->{res.put(a[i],res.getOrDefault(a[i],
0)+1);},Map::putAll);}public static TreeMap<Long,Integer>mapc(final long[]a){return
IntStream.range(0,a.length).collect(()->new TreeMap<Long,Integer>(),(res,i)->{res.put(a[i],
res.getOrDefault(a[i],0)+1);},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final
T[]a,Comparator<T>cmp){return IntStream.range(0,a.length).collect(cmp!=null?()->
new TreeMap<T,Integer>(cmp):()->new TreeMap<T,Integer>(),(res,i)->{res.put(a[i],
res.getOrDefault(a[i],0)+1);},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final
T[]a){return mapc(a,null);}public static TreeMap<Integer,Integer>mapc(final IntStream
a){return a.collect(()->new TreeMap<Integer,Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,
0)+1);},Map::putAll);}public static TreeMap<Long,Integer>mapc(final LongStream a)
{return a.collect(()->new TreeMap<Long,Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,
0)+1);},Map::putAll);}public static<T>TreeMap<T,Integer>mapc(final Stream<T>a,Comparator<T>
cmp){return a.collect(cmp!=null?()->new TreeMap<T,Integer>(cmp):()->new TreeMap<T,
Integer>(),(res,v)->{res.put(v,res.getOrDefault(v,0)+1);},Map::putAll);}public static
<T>TreeMap<T,Integer>mapc(final Stream<T>a){return mapc(a,null);}public static<T>
TreeMap<T,Integer>mapc(final Collection<T>a,Comparator<T>cmp){return mapc(a.stream(),
cmp);}public static<T>TreeMap<T,Integer>mapc(final Collection<T>a){return mapc(a.stream());
}public static TreeMap<Integer,List<Integer>>mapi(final int[]a){return IntStream.range(0,
a.length).collect(()->new TreeMap<Integer,List<Integer>>(),(res,i)->{if(!res.containsKey(a[i]))
{res.put(a[i],Stream.of(i).collect(Collectors.toList()));}else{res.get(a[i]).add(i);
}},Map::putAll);}public static TreeMap<Long,List<Integer>>mapi(final long[]a){return
IntStream.range(0,a.length).collect(()->new TreeMap<Long,List<Integer>>(),(res,i)
->{if(!res.containsKey(a[i])){res.put(a[i],Stream.of(i).collect(Collectors.toList()));
}else{res.get(a[i]).add(i);}},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final T[]a,Comparator<T>cmp){return IntStream.range(0,a.length).collect(cmp
!=null?()->new TreeMap<T,List<Integer>>(cmp):()->new TreeMap<T,List<Integer>>(),
(res,i)->{if(!res.containsKey(a[i])){res.put(a[i],Stream.of(i).collect(Collectors.toList()));
}else{res.get(a[i]).add(i);}},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final T[]a){return mapi(a,null);}public static TreeMap<Integer,List<Integer>>
mapi(final IntStream a){int[]i=new int[]{0};return a.collect(()->new TreeMap<Integer,
List<Integer>>(),(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static TreeMap<Long,List<Integer>>
mapi(final LongStream a){int[]i=new int[]{0};return a.collect(()->new TreeMap<Long,
List<Integer>>(),(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final Stream<T>a,Comparator<T>cmp){int[]i=new int[]{0};return a.collect(cmp
!=null?()->new TreeMap<T,List<Integer>>(cmp):()->new TreeMap<T,List<Integer>>(),
(res,v)->{if(!res.containsKey(v)){res.put(v,Stream.of(i[0]).collect(Collectors.toList()));
}else{res.get(v).add(i[0]);}i[0]++;},Map::putAll);}public static<T>TreeMap<T,List<Integer>>
mapi(final Stream<T>a){return mapi(a,null);}public static<T>TreeMap<T,List<Integer>>
mapi(final Collection<T>a,Comparator<T>cmp){return mapi(a.stream(),cmp);}public
static<T>TreeMap<T,List<Integer>>mapi(final Collection<T>a){return mapi(a.stream());
}public static List<int[]>listi(final int[]a){return IntStream.range(0,a.length).mapToObj(i
->new int[]{a[i],i}).collect(Collectors.toList());}public static List<long[]>listi(final
long[]a){return IntStream.range(0,a.length).mapToObj(i->new long[]{a[i],i}).collect(Collectors.toList());
}public static<T>List<Pair<T,Integer>>listi(final T[]a){return IntStream.range(0,
a.length).mapToObj(i->new Pair<T,Integer>(a[i],i)).collect(Collectors.toList());
}public static List<int[]>listi(final IntStream a){int[]i=new int[]{0};return a.mapToObj(v
->new int[]{v,i[0]++}).collect(Collectors.toList());}public static List<long[]>listi(final
LongStream a){int[]i=new int[]{0};return a.mapToObj(v->new long[]{v,i[0]++}).collect(Collectors.toList());
}public static<T>List<Pair<T,Integer>>listi(final Stream<T>a){int[]i=new int[]{0};
return a.map(v->new Pair<T,Integer>(v,i[0]++)).collect(Collectors.toList());}public
static<T>List<Pair<T,Integer>>listi(final Collection<T>a){int[]i=new int[]{0};return
a.stream().map(v->new Pair<T,Integer>(v,i[0]++)).collect(Collectors.toList());}public
static String join(final int[]a){return Arrays.stream(a).mapToObj(Integer::toString).collect(Collectors.joining(SPACE));
}public static String join(final long[]a){return Arrays.stream(a).mapToObj(Long::toString).collect(Collectors.joining(SPACE));
}public static<T>String join(final T[]a){return Arrays.stream(a).map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final T[]a,final Function<T,String>toString){return
Arrays.stream(a).map(v->toString.apply(v)).collect(Collectors.joining(SPACE));}public
static<T>String join(final Collection<T>a){return a.stream().map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Collection<T>a,final Function<T,String>toString)
{return a.stream().map(v->toString.apply(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Stream<T>a){return a.map(v->Objects.toString(v)).collect(Collectors.joining(SPACE));
}public static<T>String join(final Stream<T>a,final Function<T,String>toString){
return a.map(v->toString.apply(v)).collect(Collectors.joining(SPACE));}public static
<T>String join(final IntStream a){return a.mapToObj(Integer::toString).collect(Collectors.joining(SPACE));
}public static<T>String join(final LongStream a){return a.mapToObj(Long::toString).collect(Collectors.joining(SPACE));
}public static List<Integer>list(final int[]a){return Arrays.stream(a).mapToObj(Integer::valueOf).collect(Collectors.toList());
}public static List<Integer>list(final IntStream a){return a.mapToObj(Integer::valueOf).collect(Collectors.toList());
}public static List<Long>list(final long[]a){return Arrays.stream(a).mapToObj(Long::valueOf).collect(Collectors.toList());
}public static List<Long>list(final LongStream a){return a.mapToObj(Long::valueOf).collect(Collectors.toList());
}public static<T>List<T>list(final Stream<T>a){return a.collect(Collectors.toList());
}public static<T>List<T>list(final Collection<T>a){return a.stream().collect(Collectors.toList());
}public static<T>List<T>list(final T[]a){return Arrays.stream(a).collect(Collectors.toList());
}public static String yesNo(final boolean res){return res?"YES":"NO";}public static
String dump(Object obj){String res="";if(obj!=null){Class cl=obj.getClass();String
cls=cl.getName();if(cls.startsWith("[")){res+="[";for(int i=0;;i++){try{Object o
=Array.get(obj,i);String s=dump(o);if(i>0){res+=", ";}res+=s;}catch(ArrayIndexOutOfBoundsException
ex){break;}}res+="]";}else if(Collection.class.isAssignableFrom(cl)){@SuppressWarnings("unchecked")final
Object s=((Collection)obj).stream().map(v->dump(v)).collect(Collectors.joining(", ",
"[","]"));res+=s.toString();}else if(Map.class.isAssignableFrom(cl)){@SuppressWarnings("unchecked")final
Object s=((Map)obj).entrySet().stream().map(v->dump(v)).collect(Collectors.joining(", ",
"{","}"));res+=s.toString();}else if(Character.class.isInstance(obj)|| Integer.class.isInstance(obj)
|| Long.class.isInstance(obj)|| Float.class.isInstance(obj)|| Double.class.isInstance(obj)|| String.class.isInstance(obj)
){res+=Objects.toString(obj);}else if(Map.Entry.class.isInstance(obj)){res+=dump(((Map.Entry)obj).getKey())
+"="+dump(((Map.Entry)obj).getValue());}else if(Stream.class.isInstance(obj)){@SuppressWarnings("unchecked")
final Object s=((Stream)obj).map(v->dump(v)).collect(Collectors.joining(", ","[",
"]"));res+=s.toString();}else{res+=Stream.concat(Arrays.stream(obj.getClass().getFields()).map(v
->{String name=v.getName();String val;try{Object o=v.get(obj);if(o!=null && v.isAnnotationPresent(Dump.class))
{Dump an=v.getAnnotation(Dump.class);Class ocl=o.getClass();val="{";for(String fn:an.fields())
{try{Field f=ocl.getField(fn);val+=fn+"="+dump(f.get(o))+", ";}catch(NoSuchFieldException
nsfex){try{@SuppressWarnings("unchecked")final Method m=ocl.getMethod(fn);val+=fn+"="+dump(m.invoke(o))
+", ";}catch(NoSuchMethodException | IllegalArgumentException | InvocationTargetException
nsmex){}}}if(val.endsWith(", ")){val=val.substring(0,val.length()-2);}val+="}";}
else{val=dump(o);}}catch(IllegalAccessException ex){val="N/A";}return name+"="+val;
}),Arrays.stream(obj.getClass().getMethods()).filter(m->m.isAnnotationPresent(Getter.class)).map(m
->{String name=m.getName();String val;try{Object o=m.invoke(obj);if(o!=null && m.isAnnotationPresent(Dump.class))
{Dump an=m.getAnnotation(Dump.class);Class ocl=o.getClass();val="{";for(String fn:an.fields())
{try{Field f=ocl.getField(fn);val+=fn+"="+dump(f.get(o))+", ";}catch(NoSuchFieldException
nsfex){try{@SuppressWarnings("unchecked")final Method m1=ocl.getMethod(fn);val+=fn+"="+dump(m1.invoke(o))
+", ";}catch(NoSuchMethodException | IllegalArgumentException | InvocationTargetException
nsmex){}}}if(val.endsWith(", ")){val=val.substring(0,val.length()-2);}val+="}";}else
{val=dump(o);}}catch(IllegalAccessException | InvocationTargetException ex){val=
"N/A";}return name+"="+val;})).collect(Collectors.joining(", ","{"+obj.getClass().getName()
+": ","}"));}}if(res.length()==0){res="<null>";}return res;}}@Retention(RetentionPolicy.RUNTIME)
public @interface Dump{String[]fields();}@Retention(RetentionPolicy.RUNTIME)public @interface Getter{}static class
Pair<K,V>{private K k;private V v;public Pair(final K t,final V u){this.k=t;this.v
=u;}public K getKey(){return k;}public V getValue(){return v;}public void setKey(K
t){k=t;}public void setValue(V t){v=t;}}static class MyScanner{private StringBuilder
cache=new StringBuilder();int cache_pos=0;private int first_linebreak=-1;private
int second_linebreak=-1;private StringBuilder sb=new StringBuilder();private InputStream
is=null;public MyScanner(final InputStream is){this.is=is;}public String charToString(final
int c){return String.format("'%s'",c=='\n'?"\\n":(c=='\r'?"\\r":String.valueOf((char)c)));
}public int get(){int res=-1;if(cache_pos<cache.length()){res=cache.charAt(cache_pos);
cache_pos++;if(cache_pos==cache.length()){cache.delete(0,cache_pos);cache_pos=0;
}}else{try{res=is.read();}catch(IOException ex){throw new RuntimeException(ex);}
}return res;}private void unget(final int c){if(cache_pos==0){cache.insert(0,(char)c);
}else{cache_pos--;}}public String nextLine(){sb.delete(0,sb.length());int c;boolean
done=false;boolean end=false;while((c=get())!=-1){if(check_linebreak(c)){done=true;
if(c==first_linebreak){if(!end){end=true;}else{cache.append((char)c);break;}}else
if(second_linebreak!=-1 && c==second_linebreak){break;}}if(end && c!=first_linebreak
&& c!=second_linebreak){cache.append((char)c);break;}if(!done){sb.append((char)c);
}}return!done && sb.length()==0?null:sb.toString();}private boolean check_linebreak(int
c){if(c=='\n'|| c=='\r'){if(first_linebreak==-1){first_linebreak=c;}else if(c!=first_linebreak
&& second_linebreak==-1){second_linebreak=c;}return true;}return false;}public int
nextInt(){return Integer.parseInt(next());}public long nextLong(){return Long.parseLong(next());
}public boolean hasNext(){boolean res=false;int c;while((c=get())!=-1){if(!check_linebreak(c)
&& c!=' '&& c!='\t'){res=true;unget(c);break;}}return res;}public String next(){
sb.delete(0,sb.length());boolean started=false;int c;while((c=get())!=-1){if(check_linebreak(c)
|| c==' '|| c=='\t'){if(started){unget(c);break;}}else{started=true;sb.append((char)c);
}}return sb.toString();}public int nextChar(){return get();}public boolean eof()
{int c=get();boolean res=false;if(c!=-1){unget(c);}else{res=true;}return res;}public
double nextDouble(){return Double.parseDouble(next());}}static abstract class Solver
{protected String nameIn=null;protected String nameOut=null;protected boolean singleTest
=false;protected MyScanner sc=null;protected PrintWriter pw=null;private int current_test
=0;private int count_tests=0;protected int currentTest(){return current_test;}protected
int countTests(){return count_tests;}private void process()throws IOException{if(!singleTest)
{count_tests=sc.nextInt();sc.nextLine();for(current_test=1;current_test<=count_tests;
current_test++){solve();pw.flush();}}else{count_tests=1;current_test=1;solve();}
}abstract protected void solve()throws IOException;public void run()throws IOException
{boolean done=false;try{if(nameIn!=null){if(new File(nameIn).exists()){try(FileInputStream
fis=new FileInputStream(nameIn);PrintWriter pw0=select_output();){select_output();
done=true;sc=new MyScanner(fis);pw=pw0;process();}}else{throw new RuntimeException("File "
+new File(nameIn).getAbsolutePath()+" does not exist!");}}}catch(IOException | AccessControlException
ex){}if(!done){try(PrintWriter pw0=select_output();){sc=new MyScanner(System.in);
pw=pw0;process();}}}private PrintWriter select_output()throws FileNotFoundException
{if(nameOut!=null){return new PrintWriter(nameOut);}return new PrintWriter(System.out);
}}static abstract class Tester{static public int getRandomInt(final int min,final
int max){return(min+(int)Math.floor(Math.random()*(max-min+1)));}static public long
getRandomLong(final long min,final long max){return(min+(long)Math.floor(Math.random()
*(max-min+1)));}static public double getRandomDouble(final double min,final double
maxExclusive){return(min+Math.random()*(maxExclusive-min));}abstract protected void
testOutput(final List<String>output_data);abstract protected void generateInput();
abstract protected String inputDataToString();private boolean break_tester=false;
protected void beforeTesting(){}protected void breakTester(){break_tester=true;}
public boolean broken(){return break_tester;}}}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | da128b5a7d5def6a212c2706024212f2 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.*;
import java.util.*;
import java.lang.*;
public class main {
public static void main(String[] args) {
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
try{
FastReader sc = new FastReader();
StringBuilder str = new StringBuilder("");
int num = sc.nextInt();
while(num--> 0){
int n=sc.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
int count=0;
for(int i=0;i<n;i++){
while(arr[i]%2==0){
arr[i]/=2;
count++;
}
}
Arrays.sort(arr);
long sum=0;
for(int i=0;i<count;i++){
arr[n-1]*=2;
}
for(long s:arr){
sum+=s;
}
System.out.println(sum);
}
System.out.println(str);
} catch (Exception e){
return;
}
}
public static long gcd(long a,long b){
if (b == 0)
return a;
return gcd(b, a % b);
}
public static long lcm(long a, long b)
{
return (a / gcd(a, b));
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 58bcb416aef2d199d28d3d4c799c20eb | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.lang.*;
import java.math.*;
import java.io.*;
public class snackDown3
{
public static class FastReader {
BufferedReader b;
StringTokenizer s;
public FastReader() {
b=new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(s==null ||!s.hasMoreElements()) {
try {
s=new StringTokenizer(b.readLine());
}
catch(IOException e) {
e.printStackTrace();
}
}
return s.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str="";
try {
str=b.readLine();
}
catch(IOException e) {
e.printStackTrace();
}
return str;
}
boolean hasNext() {
if (s != null && s.hasMoreTokens()) {
return true;
}
String tmp;
try {
b.mark(1000);
tmp = b.readLine();
if (tmp == null) {
return false;
}
b.reset();
} catch (IOException e) {
return false;
}
return true;
}
}
public static class pair{
char a;
int b;
public pair(char a,int b) {
this.a=a;
this.b=b;
}
}
public static class pair2{
int a;
int b;
public pair2(int a,int b) {
this.a=a;
this.b=b;
}
public int compareTo(pair2 b) {
return this.b-b.b;
}
}
public static void main (String[] args) throws Exception
{
// your code goes here
// int a[][][]=new int[3][3][3];
FastReader sc=new FastReader();
BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
// OutputStream log = new BufferedOutputStream ( System.out );
int t=sc.nextInt();
while(t--!=0) {
int n=sc.nextInt();
long a[]=new long[n];
long b[]=new long[n];
for(int i=0;i<n;i++) {
a[i]=sc.nextLong();
}
int i=0;
long ans=-1;
for(int k=0;k<a.length;k++) {
for(int j=0;j<a.length;j++) {
b[j]=a[j];
}
i=0;
while(i<b.length) {
if(i!=k && b[i]%2==0 && b[i]!=0) {
while(b[i]%2==0) {
b[k]*=2;
b[i]/=2;
}
}
i++;
}
long sum=0;
for(int j=0;j<a.length;j++) {
sum+=b[j];
}
ans=Math.max(ans, sum);
}
log.write(ans+"\n");
log.flush();
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | f3310bf06a266882fcf7bbcefc6bbe01 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static long mod = (int)1e9+7;
// static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main (String[] args) throws java.lang.Exception
{
FastReader sc =new FastReader();
int t=sc.nextInt();
// int t=1;
while(t-->0)
{
int n = sc.nextInt();
long arr[] = sc.readArrayLong(n);
long ans = 0;
for(int i=0;i<n;i++)
{
long sum = 0;
for(int j=0;j<n;j++)
{
if(i == j)
{
continue;
}
while(arr[j]%2==0)
{
arr[j] /= 2L;
arr[i] *= 2L;
if(arr[j] == 1)
{
break;
}
}
}
for(long x:arr)
{
sum += x;
}
ans = Math.max(ans , sum);
}
System.out.println(ans);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
float nextFloat()
{
return Float.parseFloat(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readArrayLong(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
}
public static int[] radixSort2(int[] a)
{
int n = a.length;
int[] c0 = new int[0x101];
int[] c1 = new int[0x101];
int[] c2 = new int[0x101];
int[] c3 = new int[0x101];
for(int v : a) {
c0[(v&0xff)+1]++;
c1[(v>>>8&0xff)+1]++;
c2[(v>>>16&0xff)+1]++;
c3[(v>>>24^0x80)+1]++;
}
for(int i = 0;i < 0xff;i++) {
c0[i+1] += c0[i];
c1[i+1] += c1[i];
c2[i+1] += c2[i];
c3[i+1] += c3[i];
}
int[] t = new int[n];
for(int v : a)t[c0[v&0xff]++] = v;
for(int v : t)a[c1[v>>>8&0xff]++] = v;
for(int v : a)t[c2[v>>>16&0xff]++] = v;
for(int v : t)a[c3[v>>>24^0x80]++] = v;
return a;
}
static void reverse_sorted(int[] arr)
{
ArrayList<Integer> list = new ArrayList<>();
for(int i=0;i<arr.length;i++)
{
list.add(arr[i]);
}
Collections.sort(list , Collections.reverseOrder());
for(int i=0;i<arr.length;i++)
{
arr[i] = list.get(i);
}
}
static int LowerBound(int a[], int x) { // x is the target value or key
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
static int UpperBound(ArrayList<Integer> list, int x) {// x is the key or target value
int l=-1,r=list.size();
while(l+1<r) {
int m=(l+r)>>>1;
if(list.get(m)<=x) l=m;
else r=m;
}
return l+1;
}
public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm)
{
// Create a list from elements of HashMap
List<Map.Entry<Integer, Integer> > list =
new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() {
public int compare(Map.Entry<Integer, Integer> o1,
Map.Entry<Integer, Integer> o2)
{
return (o1.getValue()).compareTo(o2.getValue());
}
});
// put data from sorted list to hashmap
HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>();
for (Map.Entry<Integer, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
static class Queue_Pair implements Comparable<Queue_Pair> {
int first , second;
public Queue_Pair(int first, int second) {
this.first=first;
this.second=second;
}
public int compareTo(Queue_Pair o) {
return Integer.compare(o.first, first);
}
}
static void leftRotate(int arr[], int d, int n)
{
for (int i = 0; i < d; i++)
leftRotatebyOne(arr, n);
}
static void leftRotatebyOne(int arr[], int n)
{
int i, temp;
temp = arr[0];
for (i = 0; i < n - 1; i++)
arr[i] = arr[i + 1];
arr[n-1] = temp;
}
static boolean isPalindrome(String str)
{
// Pointers pointing to the beginning
// and the end of the string
int i = 0, j = str.length() - 1;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
static boolean palindrome_array(char arr[], int n)
{
// Initialise flag to zero.
int flag = 0;
// Loop till array size n/2.
for (int i = 0; i <= n / 2 && n != 0; i++) {
// Check if first and last element are different
// Then set flag to 1.
if (arr[i] != arr[n - i - 1]) {
flag = 1;
break;
}
}
// If flag is set then print Not Palindrome
// else print Palindrome.
if (flag == 1)
return false;
else
return true;
}
static boolean allElementsEqual(int[] arr,int n)
{
int z=0;
for(int i=0;i<n-1;i++)
{
if(arr[i]==arr[i+1])
{
z++;
}
}
if(z==n-1)
{
return true;
}
else
{
return false;
}
}
static boolean allElementsDistinct(int[] arr,int n)
{
int z=0;
for(int i=0;i<n-1;i++)
{
if(arr[i]!=arr[i+1])
{
z++;
}
}
if(z==n-1)
{
return true;
}
else
{
return false;
}
}
public static void reverse(int[] array)
{
// Length of the array
int n = array.length;
// Swaping the first half elements with last half
// elements
for (int i = 0; i < n / 2; i++) {
// Storing the first half elements temporarily
int temp = array[i];
// Assigning the first half to the last half
array[i] = array[n - i - 1];
// Assigning the last half to the first half
array[n - i - 1] = temp;
}
}
public static void reverse_Long(long[] array)
{
// Length of the array
int n = array.length;
// Swaping the first half elements with last half
// elements
for (int i = 0; i < n / 2; i++) {
// Storing the first half elements temporarily
long temp = array[i];
// Assigning the first half to the last half
array[i] = array[n - i - 1];
// Assigning the last half to the first half
array[n - i - 1] = temp;
}
}
static boolean isSorted(int[] a)
{
for (int i = 0; i < a.length - 1; i++)
{
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
static boolean isReverseSorted(int[] a)
{
for (int i = 0; i < a.length - 1; i++)
{
if (a[i] < a[i + 1]) {
return false;
}
}
return true;
}
static int[] rearrangeEvenAndOdd(int arr[], int n)
{
ArrayList<Integer> list = new ArrayList<>();
for(int i=0;i<n;i++)
{
if(arr[i]%2==0)
{
list.add(arr[i]);
}
}
for(int i=0;i<n;i++)
{
if(arr[i]%2!=0)
{
list.add(arr[i]);
}
}
int len = list.size();
int[] array = list.stream().mapToInt(i->i).toArray();
return array;
}
static long[] rearrangeEvenAndOddLong(long arr[], int n)
{
ArrayList<Long> list = new ArrayList<>();
for(int i=0;i<n;i++)
{
if(arr[i]%2==0)
{
list.add(arr[i]);
}
}
for(int i=0;i<n;i++)
{
if(arr[i]%2!=0)
{
list.add(arr[i]);
}
}
int len = list.size();
long[] array = list.stream().mapToLong(i->i).toArray();
return array;
}
static boolean isPrime(long n)
{
// Check if number is less than
// equal to 1
if (n <= 1)
return false;
// Check if number is 2
else if (n == 2)
return true;
// Check if n is a multiple of 2
else if (n % 2 == 0)
return false;
// If not, then just check the odds
for (long i = 3; i <= Math.sqrt(n); i += 2)
{
if (n % i == 0)
return false;
}
return true;
}
static long getSum(long n)
{
long sum = 0;
while (n != 0)
{
sum = sum + n % 10;
n = n/10;
}
return sum;
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static long gcdLong(long a, long b)
{
if (b == 0)
return a;
return gcdLong(b, a % b);
}
static void swap(int i, int j)
{
int temp = i;
i = j;
j = temp;
}
static int countDigit(int n)
{
return (int)Math.floor(Math.log10(n) + 1);
}
}
class Pair
{
int first;
int second;
Pair(int first , int second)
{
this.first = first;
this.second = second;
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a2dd3ae9a0df6e63e6e9d4d879e92989 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
// System.out.println(sc.nextByte());
PrintWriter pw=new PrintWriter(System.out);
divideandmult(sc,pw);
pw.close();
}
private static void divideandmult(Scanner scanner,PrintWriter printWriter){
int testcase=scanner.nextInt();
for(int i=0;i<testcase;i++){
int size=scanner.nextInt();
long[] ar=new long[size];
for(int j=0;j<size;j++){
long z=scanner.nextLong();
ar[j]=z;
if(z%2!=0);
}
long max=0;
long sum=0;
long power=0;
for(int j=0;j<size;j++){
long a =ar[j];
while (a%2==0){
power+=1;
a=a/2;
}
max=Math.max(max,a);
sum+=a;
}
sum-=max;
long num= (long) (max*Math.pow(2,power));
System.out.println(num+sum);
}
}} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 886bc6b7b9c8b4fa222dd0c7835e325f | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class DivideAndMultiply {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for(int test=1;test<=t;test++)
{
int n=sc.nextInt();
long[] ar=new long[n];
for(int i=0;i<n;i++)
{
ar[i]=sc.nextInt();
}
int c=0;
for(int i=0;i<n;i++)
{
if(ar[i]%2==0)
{
while(ar[i]%2!=1)
{
ar[i]=ar[i]/2;
c++;
}
}
}
Arrays.sort(ar);
for(int k=1;k<=c;k++)
{
ar[n-1]=ar[n-1]*2;
}
long sum=0;
for(int i=0;i<n;i++)
{
sum=sum+ar[i];
}
System.out.println(sum);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | b31b85ffb0c543d769334019e5326936 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.math.*;
//import java.io.*;
public class Experiment {
static Scanner in=new Scanner(System.in);
// static BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
public static void sort(int ar[],int l,int r) {
if(l<r) {
int m=l+(r-l)/2;
sort(ar,l,m);
sort(ar,m+1,r);
merge(ar,l,m,r);
}
}
public static void merge(int ar[],int l,int m,int r) {
int n1=m-l+1;int n2=r-m;
int L[]=new int[n1];
int R[]=new int[n2];
for(int i=0;i<n1;i++)
L[i]=ar[l+i];
for(int i=0;i<n2;i++)
R[i]=ar[m+i+1];
int i=0;int j=0;int k=l;
while(i<n1 && j<n2) {
if(L[i]<=R[j]) {
ar[k++]=L[i++];
}else {
ar[k++]=R[j++];
}
}
while(i<n1)
ar[k++]=L[i++];
while(j<n2)
ar[k++]=R[j++];
}
public static int[] sort(int ar[]) {
sort(ar,0,ar.length-1);
//Array.sort uses O(n^2) in its worst case ,so better use merge sort
return ar;
}
public static void func(int ar[],int maxeven,int maxodd) {
long p=1;int n=ar.length;int k=0;
for(int i=0;i<n;i++) {
while(ar[i]%2==0) {
p*=2;k=1;
ar[i]=ar[i]/2;
}
}
sort(ar);
long sum=0;
for(int i=0;i<n-1;i++)
sum+=ar[i];
if(k==0) {
sum+=ar[n-1];
System.out.println(sum);return;}
System.out.println(ar[n-1]*p+ sum);
}
public static void main(String[] args) {
int t=in.nextInt();
while(t!=0) {
//long x=in.nextLong();
int n=in.nextInt();
int ar[]=new int[n];
int maxeven=Integer.MIN_VALUE;int j=0;
int maxodd=Integer.MIN_VALUE;
for(int i=0;i<n;i++) {
ar[i]=in.nextInt();
if((ar[i]%2==0) && ar[i]>maxeven) {
maxeven=ar[i];
}
if((ar[i]%2!=0) && ar[i]>maxodd) {
maxodd=ar[i];
}
}
func(ar,maxeven,maxodd);
t--;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 0beb858ed5d2e3e513d2dc435d4323a6 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import javax.swing.*;
import javax.swing.plaf.basic.BasicLookAndFeel;
import java.util.Arrays;
import java.util.Scanner;
public class first {
public static long[] a = new long[20];
public static long[] num = new long[20];
public static long Pow(long a,long b)
{
long ans = 1;
for(int i = 1; i <= b; i++)ans*=a;
return ans;
}
public static void main(String[] args)
{
Scanner read = new Scanner(System.in);
int t = read.nextInt();
while(t > 0)
{
int n = read.nextInt();
for(int i = 1; i <= n; i++)
{
a[i] = read.nextLong();
long now = a[i];
while(now%2==0)
{
now /= 2;
num[i]++;
}
}
long minn = 0;
int pos = 0;
for(int i = 1; i <= n; i++)
{
if(a[i] / Pow(2,num[i]) > minn)
{
pos = i;
minn = a[i]/Pow(2,num[i]);
}
}
minn = 0;
for(int i = 1; i <= n; i++)
if(i!=pos)minn += num[i];
long ans = 0;
for(int i = 1; i <= n; i++)
{
if(i==pos)ans += Pow(2,minn)*a[i];
else
ans += a[i]/Pow(2,num[i]);
a[i] = 0;
num[i] = 0;
}
System.out.println(ans);
t--;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ed3200b0b79e00a8a3f87beb81310c02 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | // हर हर महादेव
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.BigInteger;
import java.text.DecimalFormat;
public final class Solution {
static int inf = Integer.MAX_VALUE;
static long mod = 1000000000 + 7;
static void ne(Scanner sc, BufferedWriter op) throws Exception {
int n=sc.nextInt();
long[] arr= new long[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextLong();
}
int k=0;
for(int i=0;i<n;i++){
while(arr[i]%2==0){
arr[i]/=2;
k++;
}
}
sort(arr);
arr[n-1]=arr[n-1]*(long)Math.pow(2,k);
long sum=0;
for(int i=0;i<n;i++){
sum+=arr[i];
}
op.write(sum+"\n");
}
static long gcd(long a, long b){
if(a==0L) return b;
return gcd(b%a,a);
}
public static void main(String[] args) throws Exception {
BufferedWriter op = new BufferedWriter(new OutputStreamWriter(System.out));
// Reader sc = new Reader();
Scanner sc= new Scanner(System.in);
int t = sc.nextInt();
while (t-->0){ ne(sc, op); }
// ne(sc,op);
op.flush();
}
static void print(Object o) {
System.out.println(String.valueOf(o));
}
static int[] toIntArr(String s){
int[] val= new int[s.length()];
for(int i=0;i<s.length();i++){
val[i]=s.charAt(i)-'a';
}
return val;
}
static void sort(int[] arr){
ArrayList<Integer> list= new ArrayList<>();
for(int i=0;i<arr.length;i++){
list.add(arr[i]);
}
Collections.sort(list);
for(int i=0;i<arr.length;i++){
arr[i]=list.get(i);
}
}
static void sort(long[] arr){
ArrayList<Long> list= new ArrayList<>();
for(int i=0;i<arr.length;i++){
list.add(arr[i]);
}
Collections.sort(list);
for(int i=0;i<arr.length;i++){
arr[i]=list.get(i);
}
}
}
// return -1 to put no ahed in array
class pair {
long xx;
int yy;
pair(long xx, int yy ) {
this.xx = xx;
this.yy = yy;
}
}
class sortY implements Comparator<pair> {
public int compare(pair p1, pair p2) {
if (p1.yy > p2.yy) {
return 1;
} else if (p1.yy == p2.yy) {
if (p1.xx > p2.xx) {
return 1;
} else if (p1.xx < p2.xx) {
return -1;
}
return 0;
}
return -1;
}
}
class sortX implements Comparator<pair> {
public int compare(pair p1, pair p2) {
if (p1.xx > p2.xx) {
return 1;
} else if (p1.xx == p2.xx) {
if (p1.yy > p2.yy) {
return 1;
} else if (p1.yy < p2.yy) {
return -1;
}
return 0;
}
return -1;
}
}
class debug {
static void print1d(long[] arr) {
System.out.println();
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
}
static void print1d(int[] arr) {
System.out.println();
for (int i = 0; i < arr.length; i++) {
System.out.println(i+" = "+arr[i]);
}
}
static void print1d(boolean[] arr) {
System.out.println();
for (int i = 0; i < arr.length; i++) {
System.out.println(i + "= " + arr[i]);
}
}
static void print2d(int[][] arr) {
System.out.println();
int n = arr.length;
int n2 = arr[0].length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n2; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
}
static void print2d(long[][] arr) {
System.out.println();
int n = arr.length;
int n2 = arr[0].length;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n2; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
}
static void printPair(ArrayList<pair> list) {
if(list.size()==0){
System.out.println("empty list");
return;
}
System.out.println();
for(int i=0;i<list.size();i++){
System.out.println(list.get(i).xx+"-"+list.get(i).yy);
}
}
}
class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
} else {
continue;
}
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a41f74f2a23cd11fcafd555fa85294e0 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | /* JAIKARA SHERAWAALI DA BOLO SACHE DARBAR KI JAI
HAR HAR MAHADEV JAI BHOLENAATH
Rohit Kumar
NIT JAMSHEDPUR
*/
import java.util.*;
import java.io.*;
public class Main
{
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st==null||!st.hasMoreTokens()){
try{
st=new StringTokenizer(br.readLine());
}
catch(IOException e){
e.printStackTrace();
}
}
return st.nextToken();}
long nextLong(){ return Long.parseLong(next());}
int nextInt(){ return Integer.parseInt(next());}
}
static <t>void print(t o){
System.out.println(o);
}
static boolean islapindrome(String s){
int fhalf[]=new int[26];
int shalf[]=new int[26];
int i=0,j=s.length()-1;
while(i<j){
fhalf[s.charAt(i)-'a']++;
shalf[s.charAt(j)-'a']++;
i++;
j--;
}
for(int k=0;k<26;k++){
if(fhalf[k]!=shalf[k])return false;
}
return true;
}
static int mod=(int)1e9+7;
public static void main (String args[]) throws IOException{
try{
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt"))); }
catch (Exception e) {
System.err.println("Error");
}
FastReader sc=new FastReader();
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
long arr[]=new long[n];
long cop[]=new long[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextLong();
cop[i]=arr[i];
}
long ans=0;
if(n==1)
{
System.out.println(arr[0]);
continue;
}
int p=0;
for(int i=0;i<arr.length;i++)
{
if(arr[i]%2==0)
{
while(arr[i]%2==0)
{
p++;
arr[i]/=2;
}
}
}
Arrays.sort(arr);
// System.out.print(p+" ");
// System.out.println();
arr[arr.length-1]=(long)Math.pow(2,p)*arr[arr.length-1];
long ans1=0;
for(int i=0;i<n;i++)
{
ans1+=arr[i];
}
System.out.println(ans1);
}
}
void sieveOfEratosthenes(int n)
{
boolean prime[] = new boolean[n+1];
for(int i=0;i<=n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
for(int i = 2; i <= n; i++)
{
if(prime[i] == true)
System.out.print(i + " ");
}
}
static long gcd(long a,long b)
{
if(b==0) return a;
return gcd(b,a%b);
}
static boolean isprime(int n)
{
if(n<=1)
return false;
if(n<=3)
return true;
if(n%2==0||n%3==0)
return false;
for(int i=5;i*i<=n;i=i+6)
{
if(n%i==0||n%(i+2)==0)
return false;
}
return true;
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 557c36ca2396b6d379333243e2f9ef8a | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.*;
public class DivideAndMultiply {
static InputReader reader = new InputReader(System.in);
public static void main(String[] args) {
int t = reader.nextInt();
for (int i = 0; i < t; i++) {
int n = reader.nextInt();
int[] number = new int[n];
int count = 0;
for (int j = 0; j < n; j++) {
int temp = reader.nextInt();
while (temp % 2 == 0) {
temp /= 2;
count++;
}
number[j] = temp;
}
Arrays.sort(number);
long res = (long) (number[number.length - 1] * Math.pow(2, count));
for (int j = 0; j < number.length - 1; j++) {
res += number[j];
}
System.out.println(res);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str;
try {
str = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 030d688d186a31b3d614489e3bc70837 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.*;
public class DivideAndMultiply {
static InputReader reader = new InputReader(System.in);
public static void main(String[] args) {
int t = reader.nextInt();
for (int i = 0; i < t; i++) {
int n = reader.nextInt();
int[] number = new int[n];
int count = 0;
for (int j = 0; j < n; j++) {
int temp = reader.nextInt();
while (temp % 2 == 0) {
temp /= 2;
count++;
}
number[j] = temp;
}
Arrays.sort(number);
long res = 0;
for (int j = 0; j < number.length - 1; j++) {
res += number[j];
}
res += number[number.length - 1] * Math.pow(2, count);
System.out.println(res);
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str;
try {
str = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a3980921a2aa175bd1e690e652373a2d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
/**
* @author atulanand
*/
public class Solution {
static class Result {
public long solve(int[] arr) {
int pow = 0;
for (int k = 0; k < arr.length; k++) {
while (arr[k] % 2 == 0) {
arr[k] /= 2;
pow++;
}
}
Arrays.sort(arr);
long res = (long) (arr[arr.length - 1] * Math.pow(2, pow));
for (int i = 0; i + 1 < arr.length; i++) {
res += arr[i];
}
return res;
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = inputInt(br);
Result result = new Result();
StringBuilder sb = new StringBuilder();
while (t-- > 0) {
int[] spec = inputIntArray(br);
sb.append(result.solve(inputIntArray(br))).append("\n");
}
System.out.println(sb);
}
public static char[] inputCharArrayW(BufferedReader br) throws IOException {
String[] spec = inputString(br).split(" ");
char[] arr = new char[spec.length - 1];
for (int i = 1; i < spec.length; i++)
arr[i - 1] = spec[i].toCharArray()[0];
return arr;
}
public static char[][] inputCharGrid(BufferedReader br, int rows) throws IOException {
char[][] grid = new char[rows][];
for (int i = 0; i < grid.length; i++) {
grid[i] = inputString(br).toCharArray();
}
return grid;
}
public static int[][] inputIntGrid(BufferedReader br, int rows) throws IOException {
int[][] grid = new int[rows][];
for (int i = 0; i < grid.length; i++) {
grid[i] = inputIntArrayW(br);
}
return grid;
}
public static char[] inputCharArray(BufferedReader br) throws IOException {
return inputString(br).toCharArray();
}
public static String inputString(BufferedReader br) throws IOException {
return br.readLine().trim();
}
public static int inputInt(BufferedReader br) throws IOException {
return Integer.parseInt(inputString(br));
}
public static long inputLong(BufferedReader br) throws IOException {
return Long.parseLong(inputString(br));
}
public static int[] inputIntArray(BufferedReader br) throws IOException {
String[] spec = inputString(br).split(" ");
int[] arr = new int[spec.length];
for (int i = 0; i < spec.length; i++)
arr[i] = Integer.parseInt(spec[i]);
return arr;
}
public static int[] inputIntArrayW(BufferedReader br) throws IOException {
String[] spec = inputString(br).split(" ");
int[] arr = new int[spec.length - 1];
for (int i = 1; i < spec.length; i++)
arr[i - 1] = Integer.parseInt(spec[i]) - 1;
return arr;
}
public static long[] inputLongArray(BufferedReader br) throws IOException {
String[] spec = inputString(br).split(" ");
long[] arr = new long[spec.length];
for (int i = 0; i < spec.length; i++)
arr[i] = Long.parseLong(spec[i]);
return arr;
}
private String stringify(char[] chs) {
StringBuilder sb = new StringBuilder();
for (char ch : chs) {
sb.append(ch);
}
return sb.toString();
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | d2a38e663b85387790fc423267c5000a | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
private static boolean arr[] = sieve(1000001);
private static ArrayList<Long> primes = new ArrayList<>();
private static int freq[] = new int[200005];
private static int mod = (int) (1e9 + 7);
private static final int IMAX = 2147483647;
private static final int IMIN = -2147483648;
private static final long LMAX = 9223372036854775807L;
private static final long LMIN = -9223372036854775808L;
private static FastScanner c;
private static PrintWriter pw;
// **********************************Code Begins From
// Here***************************************
// DecimalFormat df = new DecimalFormat("#.000000000000");
// map.put(key,map.getOrDefault(key,0)+1);
public static void solve() {
int n = c.i();
long a[] = c.longArray(n), k = 0, sum = 0;
for (int i = 0; i < n; i++)
while (a[i] % 2 == 0) {
a[i] /= 2;
k++;
}
sort(a);
while (k > 0) {
a[n - 1] *= 2;
k--;
}
for (long e : a)
sum += (long) e;
pn(sum);
}
public static void main(String[] args) throws FileNotFoundException {
// Scanner sc = new Scanner(System.in);
c = new FastScanner();
pw = new PrintWriter(System.out);
int tc = 1;
tc = c.i();
long start = System.currentTimeMillis();
for (int t = 0; t < tc; t++) {
// p("Case #" + (t + 1) + ": ");
solve();
}
long end = System.currentTimeMillis();
if (System.getProperty("os.name").equals("Mac OS X")) {
pn("The Program takes " + (end - start) + "ms");
}
// for (long i = 0; i < arr.length; i++) {
// if (arr[(int) i]) {
// primes.add(i);
// }
// }
pw.close();
}
// ArrayList<Integer> al = new ArrayList<>();
// Set<Integer> set = new TreeSet<>();
// Pair<Integer, Integer> pair;
// Map<Integer, Integer> map = new HashMap<>();
// for(Map.Entry<Integer,Integer> e:map.entrySet())pn(e.getKey()+"
// "+e.getValue());
// LinkedList<Integer> ll = new LinkedList<>();
// math util
private static int cei(double d) {
return (int) Math.ceil(d);
}
private static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
private static int abs(int a, int b) {
return (int) Math.abs(a - b);
}
private static int abs(int a) {
return (int) Math.abs(a);
}
private static long abs(long a) {
return (long) Math.abs(a);
}
private static long abs(long a, long b) {
return (long) Math.abs(a - b);
}
private static int max(int a, int b) {
if (a > b) {
return a;
} else {
return b;
}
}
private static int min(int a, int b) {
if (a > b) {
return b;
} else {
return a;
}
}
private static long max(long a, long b) {
if (a > b) {
return a;
} else {
return b;
}
}
private static long min(long a, long b) {
if (a > b) {
return b;
} else {
return a;
}
}
private static int pow(int base, int exp) {
int result = 1;
while (exp != 0) {
if ((exp & 1) == 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
// array util
private static void sortList(ArrayList<Integer> al) {
Collections.sort(al);
}
private static void sort(int[] a) {
Arrays.parallelSort(a);
}
private static void sort(long[] a) {
Arrays.parallelSort(a);
}
private static int[] copy(int[] a) {
int[] ans = new int[a.length];
for (int i = 0; i < a.length; ++i)
ans[i] = a[i];
return ans;
}
private static char[] copy(char[] a) {
char[] ans = new char[a.length];
for (int i = 0; i < a.length; ++i)
ans[i] = a[i];
return ans;
}
private static long[] copy(long[] a) {
long[] ans = new long[a.length];
for (int i = 0; i < a.length; ++i)
ans[i] = a[i];
return ans;
}
// output
private static void pn(Object o) {
pw.println(o);
}
private static void p(Object o) {
pw.print(o);
}
private static void pry() {
pn("Yes");
}
private static void pY() {
pn("YES");
}
private static void prn() {
pn("No");
}
private static void pN() {
pn("NO");
}
private static void flush() {
pw.flush();
}
private static void watch(int[] a) {
for (int e : a)
p(e + " ");
pn("");
}
private static void watchList(ArrayList<Integer> al) {
for (int e : al)
p(e + " ");
pn("");
}
private static Set<Integer> putSet(int[] a) {
Set<Integer> set = new TreeSet<>();
for (int e : a)
set.add(e);
return set;
}
private static boolean[] sieve(int n) {
boolean[] isPrime = new boolean[n + 1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
return isPrime;
}
private static class Pair<U, V> implements Comparable<Pair<U, V>> {
public final U first;
public V second;
public <U, V> Pair<U, V> makePair(U first, V second) {
return new Pair<U, V>(first, second);
}
public Pair(U first, V second) {
this.first = first;
this.second = second;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Pair pair = (Pair) o;
return !(first != null ? !first.equals(pair.first) : pair.first != null)
&& !(second != null ? !second.equals(pair.second) : pair.second != null);
}
@Override
public int hashCode() {
int result = first != null ? first.hashCode() : 0;
result = 31 * result + (second != null ? second.hashCode() : 0);
return result;
}
public Pair<V, U> swap() {
return makePair(second, first);
}
@Override
public String toString() {
return "(" + first + "," + second + ")";
}
@SuppressWarnings({ "unchecked" })
public int compareTo(Pair<U, V> o) {
int value = ((Comparable<U>) first).compareTo(o.first);
if (value != 0) {
return value;
}
return ((Comparable<V>) second).compareTo(o.second);
}
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() throws FileNotFoundException {
if (System.getProperty("os.name").equals("Mac OS X")) {
// Input is a file
br = new BufferedReader(new FileReader("input.txt"));
// PrintWriter class prints formatted representations
// of objects to a text-output stream.
PrintStream pw = new PrintStream(new FileOutputStream("output.txt"));
System.setOut(pw);
} else {
// Input is System.in
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int i() {
return Integer.parseInt(next());
}
int[] intArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++)
ret[i] = i();
return ret;
}
long l() {
return Long.parseLong(next());
}
long[] longArray(int n) {
long[] ret = new long[n];
for (int i = 0; i < n; i++)
ret[i] = l();
return ret;
}
double d() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | e093f5545de066b53b9a5bb0db9a5cee | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
private static boolean arr[] = sieve(1000001);
private static ArrayList<Long> primes = new ArrayList<>();
private static int freq[] = new int[200005];
private static int mod = (int) (1e9 + 7);
private static final int IMAX = 2147483647;
private static final int IMIN = -2147483648;
private static final long LMAX = 9223372036854775807L;
private static final long LMIN = -9223372036854775808L;
private static FastScanner c;
private static PrintWriter pw;
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() throws FileNotFoundException {
if (System.getProperty("os.name").equals("Mac OS X")) {
// Input is a file
br = new BufferedReader(new FileReader("input.txt"));
// PrintWriter class prints formatted representations
// of objects to a text-output stream.
PrintStream pw = new PrintStream(new FileOutputStream("output.txt"));
System.setOut(pw);
} else {
// Input is System.in
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int i() {
return Integer.parseInt(next());
}
int[] intArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++)
ret[i] = i();
return ret;
}
long l() {
return Long.parseLong(next());
}
long[] longArray(int n) {
long[] ret = new long[n];
for (int i = 0; i < n; i++)
ret[i] = l();
return ret;
}
double d() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// **********************************Code Begins From
// Here***************************************
// DecimalFormat df = new DecimalFormat("#.000000000000");
// map.put(key,map.getOrDefault(key,0)+1);
public static void solve() {
int n = c.i();
long a[] = c.longArray(n), ans = 0;
for (int i = 0; i < n; i++) {
long b[] = copy(a), sum = 0;
for (int j = 0; j < n; j++) {
if (i == j)
continue;
while ((b[j] & 1) == 0) {
b[i] <<= 1;
b[j] >>= 1;
}
}
for (long e : b)
sum += e;
// pn(Arrays.toString(b) + " " + sum);
ans = max(ans, sum);
}
pn(ans);
}
public static void main(String[] args) throws FileNotFoundException {
// Scanner sc = new Scanner(System.in);
c = new FastScanner();
pw = new PrintWriter(System.out);
int tc = 1;
tc = c.i();
long start = System.currentTimeMillis();
for (int t = 0; t < tc; t++) {
// p("Case #" + (t + 1) + ": ");
solve();
}
long end = System.currentTimeMillis();
if (System.getProperty("os.name").equals("Mac OS X")) {
pn("The Program takes " + (end - start) + "ms");
}
// for (long i = 0; i < arr.length; i++) {
// if (arr[(int) i]) {
// primes.add(i);
// }
// }
pw.close();
}
// ArrayList<Integer> al = new ArrayList<>();
// Set<Integer> set = new TreeSet<>();
// Pair<Integer, Integer> pair;
// Map<Integer, Integer> map = new HashMap<>();
// for(Map.Entry<Integer,Integer> e:map.entrySet())pn(e.getKey()+"
// "+e.getValue());
// LinkedList<Integer> ll = new LinkedList<>();
// math util
private static int cei(double d) {
return (int) Math.ceil(d);
}
private static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
private static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
private static int abs(int a, int b) {
return (int) Math.abs(a - b);
}
private static int abs(int a) {
return (int) Math.abs(a);
}
private static long abs(long a) {
return (long) Math.abs(a);
}
private static long abs(long a, long b) {
return (long) Math.abs(a - b);
}
private static int max(int a, int b) {
if (a > b) {
return a;
} else {
return b;
}
}
private static int min(int a, int b) {
if (a > b) {
return b;
} else {
return a;
}
}
private static long max(long a, long b) {
if (a > b) {
return a;
} else {
return b;
}
}
private static long min(long a, long b) {
if (a > b) {
return b;
} else {
return a;
}
}
private static int pow(int base, int exp) {
int result = 1;
while (exp != 0) {
if ((exp & 1) == 1)
result *= base;
exp >>= 1;
base *= base;
}
return result;
}
// array util
private static void sortList(ArrayList<Integer> al) {
Collections.sort(al);
}
private static void sort(int[] a) {
Arrays.parallelSort(a);
}
private static void sort(long[] a) {
Arrays.parallelSort(a);
}
private static int[] copy(int[] a) {
int[] ans = new int[a.length];
for (int i = 0; i < a.length; ++i)
ans[i] = a[i];
return ans;
}
private static long[] copy(long[] a) {
long[] ans = new long[a.length];
for (int i = 0; i < a.length; ++i)
ans[i] = a[i];
return ans;
}
// output
private static void pn(Object o) {
pw.println(o);
}
private static void p(Object o) {
pw.print(o);
}
private static void pry() {
pn("Yes");
}
private static void pY() {
pn("YES");
}
private static void prn() {
pn("No");
}
private static void pN() {
pn("NO");
}
private static void flush() {
pw.flush();
}
private static void watch(int[] a) {
for (int e : a)
p(e + " ");
pn("");
}
private static void watchList(ArrayList<Integer> al) {
for (int e : al)
p(e + " ");
pn("");
}
private static Set<Integer> putSet(int[] a) {
Set<Integer> set = new TreeSet<>();
for (int e : a)
set.add(e);
return set;
}
private static boolean[] sieve(int n) {
boolean[] isPrime = new boolean[n + 1];
Arrays.fill(isPrime, true);
isPrime[0] = false;
isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
return isPrime;
}
private static class Pair<U, V> implements Comparable<Pair<U, V>> {
public final U first;
public V second;
public <U, V> Pair<U, V> makePair(U first, V second) {
return new Pair<U, V>(first, second);
}
public Pair(U first, V second) {
this.first = first;
this.second = second;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Pair pair = (Pair) o;
return !(first != null ? !first.equals(pair.first) : pair.first != null)
&& !(second != null ? !second.equals(pair.second) : pair.second != null);
}
@Override
public int hashCode() {
int result = first != null ? first.hashCode() : 0;
result = 31 * result + (second != null ? second.hashCode() : 0);
return result;
}
public Pair<V, U> swap() {
return makePair(second, first);
}
@Override
public String toString() {
return "(" + first + "," + second + ")";
}
@SuppressWarnings({ "unchecked" })
public int compareTo(Pair<U, V> o) {
int value = ((Comparable<U>) first).compareTo(o.first);
if (value != 0) {
return value;
}
return ((Comparable<V>) second).compareTo(o.second);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | c7f7be27a3af59f4339f71941e3bd497 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
public class DivideMultiply {
public static void main(String[] args) {
int t = nextInt();
StringBuilder res = new StringBuilder();
while (t-- > 0) {
int n = nextInt();
long max = 0;
long total = 0, multi2 = 0;
for (int i = 0; i < n; i++) {
int num = nextInt();
while ((num & 1) == 0) {
num >>= 1;
multi2++;
}
if (num > max) {
total += max;
max = num;
} else {
total += num;
}
}
total += max << multi2;
res.append(total).append("\n");
}
System.out.print(res);
}
static InputStream is = System.in;
static byte[] inbuf = new byte[1 << 20];
static int lenbuf = 0, ptrbuf = 0;
static int readByte() {
if (lenbuf == -1)
throw new InputMismatchException();
if (ptrbuf >= lenbuf) {
ptrbuf = 0;
try {
lenbuf = is.read(inbuf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (lenbuf <= 0)
return -1;
}
return inbuf[ptrbuf++];
}
static boolean isSpaceChar(int c) {
return !(c >= 32 && c <= 126);
}
static int skip() {
int b;
while ((b = readByte()) != -1 && isSpaceChar(b)) ;
return b;
}
static double nextDouble() {
return Double.parseDouble(next());
}
static char nextChar() {
return (char) skip();
}
static String next() {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!(isSpaceChar(b))) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
static String nextLine() throws IOException {
int b = skip();
StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b) && b != '\n') { // when next, ()
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
static char[] nextCharArray(int n) {
char[] buf = new char[n];
int b = skip(), p = 0;
while (p < n && !(isSpaceChar(b))) {
buf[p++] = (char) b;
b = readByte();
}
return n == p ? buf : Arrays.copyOf(buf, p);
}
static int nextInt() {
int num = 0, b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
static long nextLong() {
long num = 0;
int b;
boolean minus = false;
while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ;
if (b == '-') {
minus = true;
b = readByte();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = readByte();
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 3d8cea85b1e3c2126d6001495e17d68f | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Main {
// -- static variables --- //
static FastReader sc = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
static int mod = (int) 1000000007;
public static void main(String[] args) throws Exception {
int t=sc.nextInt();
while(t-->0)
Main.go();
// out.println();
out.flush();
}
// >>>>>>>>>>>>>>>>>>> Code Starts <<<<<<<<<<<<<<<<<<<< //
static class pair{
int x;int y;
pair(int x,int y){
this.x=x;
this.y=y;
}
}
// static int ask(int l ,int r) {
// System.out.println("? "+l+" "+r);
// int x=sc.nextInt();
// return x;
// }
static void go() throws Exception {
int n=sc.nextInt();
long a[]=sc.longArray(n);
if(n==1) {
out.println(a[0]);
return;
}
long max=Long.MIN_VALUE;
for(int i=0;i<n;i++) {
long sum=0;
long m=a[i];
for(int j=0;j<n;j++) {
if(i!=j) {
long temp=a[j];
while(temp%2==0) {
temp/=2;
m*=2;
}
sum+=temp;
}
}
sum+=m;
max=Math.max(max,sum);
}
out.println(max);
}
static long lcm(long a,long b) {
return a*b/gcd(a,b);
}
// >>>>>>>>>>> Code Ends <<<<<<<<< //
// --For Rounding--//
static double round(double value, int places) {
if (places < 0)
throw new IllegalArgumentException();
BigDecimal bd = new BigDecimal(Double.toString(value));
bd = bd.setScale(places, RoundingMode.HALF_UP);
return bd.doubleValue();
}
// ----Greatest Common Divisor-----//
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// --- permutations and Combinations ---//
static long fact[];
static long invfact[];
static long ncr(int n, int k) {
if (k < 0 || k > n) {
return 0;
}
long x = fact[n];
long y = fact[k];
long yy = fact[n - k];
long ans = (x / y);
ans = (ans / yy);
return ans;
}
// ---sieve---//
static int prime[] = new int[1000006];
// static void sieve() {
// Arrays.fill(prime, 1);
// prime[0] = 0;
// prime[1] = 0;
// for (int i = 2; i * i <= 1000005; i++) {
// if (prime[i] == 1)
// for (int j = i * i; j <= 1000005; j += i) {
// prime[j] = 0;
// }
// }
// }
// ---- Manual sort ------//
static void sort(long[] a) {
ArrayList<Long> aa = new ArrayList<>();
for (long i : a) {
aa.add(i);
}
Collections.sort(aa);
for (int i = 0; i < a.length; i++)
a[i] = aa.get(i);
}
static void sort(int[] a) {
ArrayList<Integer> aa = new ArrayList<>();
for (int i : a) {
aa.add(i);
}
Collections.sort(aa);
for (int i = 0; i < a.length; i++)
a[i] = aa.get(i);
}
// --- Fast exponentiation ---//
static long pow(long x, long y) {
long res = 1l;
while (y != 0) {
if (y % 2 == 1) {
res = (x * res);
}
y /= 2;
x = (x * x);
}
return res;
}
// >>>>>>>>>>>>>>> Fast IO <<<<<<<<<<<<<< //
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] intArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextInt();
return a;
}
long[] longArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = sc.nextLong();
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 4aa37b29b0628be91b51801bbb8057c1 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class A1592 {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t > 0) {
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
System.out.println(solve(arr, n));
t--;
}
}
private static long solve(int[] arr, int n) {
long max = 0;
for (int i = 0; i < n; i++) {
long temp = arr[i];
long sum = 0;
for (int j = 0; j < n; j++)
{
if (j == i)
continue;
int temp1 = arr[j];
if (arr[j] % 2 == 0) {
while (temp1 % 2 == 0) {
temp *= 2;
temp1 /= 2;
}
}
sum += temp1;
}
sum += temp;
if (sum > max)
max = sum;
}
return max;
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 23818e2e30196088872fd93ed963606e | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Arrays;
import java.util.Scanner;
/**
*
* @author eslam
*/
public class DivideAndMultiply {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int t = input.nextInt();
for (int i = 0; i < t; i++) {
int n = input.nextInt();
long a[] = new long[n];
long sum = 0;
for (int j = 0; j < n; j++) {
a[j] = input.nextInt();
}
Arrays.sort(a);
int p2 = n - 1;
while (p2 >= 0) {
long ma = 0;
long b []= new long[n];
for (int j = 0; j < n; j++) {
b[j] = a[j];
}
int p1 = 0;
while (p1 < n) {
if (p1 == p2) {
p1++;
continue;
}
if (b[p1] % 2 == 1) {
p1++;
continue;
}
b[p1] /= 2;
b[p2] *= 2;
}
p2--;
for (int j = 0; j < n; j++) {
ma += b[j];
}
sum = Math.max(sum, ma);
}
System.out.println(sum);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | addb6a9caf25ce4bfd5201eead4fd66b | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Akash Deep Vishwakarma | LinkedIn : https://www.linkedin.com/in/vishdeep01/
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
ADivideAndMultiply solver = new ADivideAndMultiply();
solver.solve(1, in, out);
out.close();
}
static class ADivideAndMultiply {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int t = in.readInt();
while (t-- > 0) {
int n = in.readInt();
long[] a = in.readLongArray(n);
long temp = 1;
for (int i = 0; i < n; i++) {
while (a[i] % 2 == 0) {
a[i] /= 2;
temp *= 2;
}
}
Arrays.sort(a);
a[a.length - 1] *= temp;
long sum = 0;
for (long i : a)
sum += i;
out.printLine(sum);
}
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public long[] readLongArray(int size) {
long[] array = new long[size];
for (int i = 0; i < size; i++) {
array[i] = readLong();
}
return array;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public interface SpaceCharFilter {
boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 98005d44b7bf9438895ca3301e194f7e | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
public class DivideAndMultiply {
static long t = 0;
public static void main(String[] args) throws IOException
{
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
StringTokenizer st = new StringTokenizer(r.readLine());
int T = Integer.parseInt(st.nextToken());
for (int i = 0; i < T; i++)
{
st = new StringTokenizer(r.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(r.readLine());
ArrayList<Long> nums = new ArrayList<Long>();
long[] sums = new long[n];
for (int j = 0; j < n; j++)
nums.add(Long.parseLong(st.nextToken()));
Collections.sort(nums);
ArrayList<Long> tempNums = new ArrayList<Long>();
for (long j : nums)
tempNums.add(j);
for (int j = 0; j < n; j++)
{
t = nums.remove(j);
for (int x = 0; x < nums.size(); x++)
nums.set(x, divideTwo(nums.get(x)));
nums.add(t);
long sum = 0;
for (long x : nums)
sum += x;
sums[j] = sum;
nums.removeAll(nums);
for (long x : tempNums)
nums.add(x);
}
long max = Long.MIN_VALUE;
for (long j : sums)
{
if (j > max)
max = j;
}
pw.println(max);
}
pw.close();
r.close();
}
static long divideTwo(long n)
{
while (n % 2 == 0)
{
n /= 2l;
t *= 2l;
}
return n;
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ebf6854c66415f09dde7c8315bdaff85 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
/***** ---> :) Vijender Srivastava (: <--- *****/
import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static FastReader sc =new FastReader();
static PrintWriter out=new PrintWriter(System.out);
static int mod=10000007;
/* start */
public static void main(String [] args)
{
int t = i();
while(t-->0)
{
int n = i();
long a[] = inputL(n);
long ans = 1;
for(int i=0;i<n;i++)
{
while(a[i]%2==0) {
ans *= 2;
a[i]/=2;
}
}
Arrays.sort(a);
a[n-1]*=ans;
pl(sum(a));
}
out.close();
}
/* end */
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static void p(Object o)
{
out.print(o);
}
static void pl(Object o)
{
out.println(o);
}
static int i() {
return sc.nextInt();
}
static String s() {
return sc.next();
}
static long l() {
return sc.nextLong();
}
static char[] inputC()
{
String s = sc.nextLine();
return s.toCharArray();
}
static int[] input(int n) {
int A[]=new int[n];
for(int i=0;i<n;i++) {
A[i]=sc.nextInt();
}
return A;
}
static long[] inputL(int n) {
long A[]=new long[n];
for(int i=0;i<n;i++) {
A[i]=sc.nextLong();
}
return A;
}
static long[] putL(long a[]) {
long A[]=new long[a.length];
for(int i=0;i<a.length;i++) {
A[i]=a[i];
}
return A;
}
static String[] inputS(int n) {
String A[]=new String[n];
for(int i=0;i<n;i++) {
A[i]=sc.next();
}
return A;
}
static int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
static String reverse(String s) {
StringBuffer p=new StringBuffer(s);
p.reverse();
return p.toString();
}
static int min(int a,int b) {
return Math.min(a, b);
}
static int min(int a,int b,int c) {
return Math.min(a, Math.min(b, c));
}
static int min(int a,int b,int c,int d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static int max(int a,int b) {
return Math.max(a, b);
}
static int max(int a,int b,int c) {
return Math.max(a, Math.max(b, c));
}
static int max(int a,int b,int c,int d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static long min(long a,long b) {
return Math.min(a, b);
}
static long min(long a,long b,long c) {
return Math.min(a, Math.min(b, c));
}
static long min(long a,long b,long c,long d) {
return Math.min(a, Math.min(b, Math.min(c, d)));
}
static long max(long a,long b) {
return Math.max(a, b);
}
static long max(long a,long b,long c) {
return Math.max(a, Math.max(b, c));
}
static long max(long a,long b,long c,long d) {
return Math.max(a, Math.max(b, Math.max(c, d)));
}
static long sum(int A[]) {
long sum=0;
for(int i : A) {
sum+=i;
}
return sum;
}
static long sum(long A[]) {
long sum=0;
for(long i : A) {
sum+=i;
}
return sum;
}
static void print(int A[]) {
for(int i : A) {
System.out.print(i+" ");
}
System.out.println();
}
static void print(long A[]) {
for(long i : A) {
System.out.print(i+" ");
}
System.out.println();
}
static long mod(long x) {
return ((x%mod + mod)%mod);
}
static long power(long x, long y)
{
if(y==0)
return 1;
if(x==0)
return 0;
long res = 1;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) ;
y = y >> 1;
x = (x * x);
}
return res;
}
static boolean prime(int n)
{
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq=Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static boolean prime(long n)
{
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
double sq=Math.sqrt(n);
for (int i = 5; i <= sq; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
//pair class
private static class Pair implements Comparable<Pair> {
int first, second;
public Pair(int f, int s) {
first = f;
second = s;
}
@Override
public int compareTo(Pair p) {
if (first > p.first)
return 1;
else if (first < p.first)
return -1;
else {
if (second > p.second)
return 1;
else if (second < p.second)
return -1;
else
return 0;
}
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 120eeb5fa7e44e7468b4d7886d876258 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class A{
public static void main(String[] args){
FastReader sc = new FastReader();
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int a[]=sc.fastArray(n);
int cnt=0;
for(int i=0;i<n;i++) {
while((a[i]&1)==0) {
a[i]/=2;
cnt++;
}
}
sort(a);
long res=(long)Math.pow(2,cnt);
res*=a[n-1];
for(int i=0;i<n-1;i++)
res+=a[i];
System.out.println(res);
}
}
static class pair {
int x;int y;
pair(int x,int y){
this.x=x;
this.y=y;
}
}
static void sort(int a[]) {
ArrayList<Integer> aa= new ArrayList<>();
for(int i:a)aa.add(i);
Collections.sort(aa);
int j=0;
for(int i:aa)a[j++]=i;
}
static ArrayList<Integer> primeFac(int n){
ArrayList<Integer>ans = new ArrayList<Integer>();
int lp[]=new int [n+1];
Arrays.fill(lp, 0); //0-prime
for(int i=2;i<=n;i++) {
if(lp[i]==0) {
for(int j=i;j<=n;j+=i) {
if(lp[j]==0) lp[j]=i;
}
}
}
int fac=n;
while(fac>1) {
ans.add(lp[fac]);
fac=fac/lp[fac];
}
print(ans);
return ans;
}
static ArrayList<Long> prime_in_given_range(long l,long r){
ArrayList<Long> ans= new ArrayList<>();
int n=(int)Math.sqrt(r)+1;
int prime[]=sieve_of_Eratosthenes(n);
long res[]=new long [(int)(r-l)+1];
for(int i=0;i<=r-l;i++) {
res[i]=i+l;
}
for(int i=0;i<prime.length;i++) {
if(prime[i]==1) {
System.out.println(2);
for(int j=Math.max((int)i*i, (int)(l+i-1)/i*i);j<=r;j+=i) {
res[j-(int)l]=0;
}
}
}
for(long i:res) if(i!=0)ans.add(i);
return ans;
}
static int [] sieve_of_Eratosthenes(int n) {
int prime[]=new int [n];
Arrays.fill(prime, 1); // 1-prime | 0-not prime
prime[0]=prime[1]=0;
for(int i=2;i<n;i++) {
if(prime[i]==1) {
for(int j=i*i;j<n;j+=i) {
prime[j]=0;
}
}
}
return prime;
}
static long binpow(long a,long b) {
long res=1;
if(b==0)return a;
if(a==0)return 1;
while(b>0) {
if((b&1)==1) {
res*=a;
}
a*=a;
b>>=1;
}
return res;
}
static void print(int a[]) {
System.out.println(a.length);
for(int i:a) {
System.out.print(i+" ");
}
System.out.println();
}
static void print(long a[]) {
System.out.println(a.length);
for(long i:a) {
System.out.print(i+" ");
}
System.out.println();
}
static void print(ArrayList<Integer> a) {
System.out.println(a.size());
for(long i:a) {
System.out.print(i+" ");
}
System.out.println();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
int [] fastArray(int n) {
int a[]=new int [n];
for(int i=0;i<n;i++) {
a[i]=nextInt();
}
return a;
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 2bb30d5f28d3b71f02345cdc5bf74e7f | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | //import java.io.IOException;
import java.util.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.InputMismatchException;
import java.util.List;
public class DividandMultipl {
static InputReader inputReader=new InputReader(System.in);
static void solve()
{
int n=inputReader.nextInt();
long arr[]=new long[n];
for (int i=0;i<n;i++)
{
arr[i]=inputReader.nextLong();
}
long p2=1;
for (int i=0;i<n;i++)
{
while (arr[i]%2==0)
{
p2=p2*2;
arr[i]=arr[i]/2;
}
}
Arrays.sort(arr);
long sum=0;
for (int i=0;i<n-1;i++)
{
sum+=arr[i];
}
sum+=arr[n-1]*p2;
out.println(sum);
}
static PrintWriter out=new PrintWriter((System.out));
public static void main(String args[])throws IOException
{
int t=inputReader.nextInt();
while(t-->0)
{
solve();
}
out.close();
}
static void sortDec(int arr[])
{
int len=arr.length;
List<Integer>list=new ArrayList<>();
for(int ele:arr)
{
list.add(ele);
}
Collections.sort(list,Collections.reverseOrder());
for(int i=0;i<len;i++) {
arr[i] = list.get(i);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c))
c = snext();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 82b330257c7d460725a35b9e6f074a2a | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.lang.reflect.Array;
import java.math.BigInteger;
import java.util.*;
public class Main {
static class Pair {
int l,r,x;
public Pair(int l,int r,int x) {
this.l=l;
this.r=r;
this.x=x;
}
}
static int mod=1000000007;
public static void main(String[] args) throws IOException
{
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC
{
public static void solve(int testNumber, InputReader in, OutputWriter out)
{
int t=in.readInt();
while(t-->0)
{
int n=in.readInt();
long arr[]=in.nextLongArray(n);
long sum=0;
long tp=1;
for(int i=0;i<n;i++)
{
while(arr[i]%2==0)
{
arr[i]/=2;
tp*=2;
}
}
CP.sort(arr);
arr[n-1]=arr[n-1]*tp;
for(int i=0;i<n;i++)
{
sum+=arr[i];
}
out.printLine(sum);
}
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int arraySize) {
int[] array = new int[arraySize];
for (int i = 0; i < arraySize; i++) {
array[i] = readInt();
}
return array;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isNewLine(int c) {
return c == '\n';
}
public String nextLine() {
int c = read();
StringBuilder result = new StringBuilder();
do {
result.appendCodePoint(c);
c = read();
} while (!isNewLine(c));
return result.toString();
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sign = 1;
if (c == '-') {
sign = -1;
c = read();
}
long result = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
result *= 10;
result += c & 15;
c = read();
} while (!isSpaceChar(c));
return result * sign;
}
public long[] nextLongArray(int arraySize) {
long array[] = new long[arraySize];
for (int i = 0; i < arraySize; i++) {
array[i] = nextLong();
}
return array;
}
public double nextDouble() {
double ret = 0, div = 1;
byte c = (byte) read();
while (c <= ' ') {
c = (byte) read();
}
boolean neg = (c == '-');
if (neg) {
c = (byte) read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = (byte) read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = (byte) read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class CP {
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; (long) i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
static String addChar(String s, int n, String ch) {
String res =s+String.join("", Collections.nCopies(n, ch));
return res;
}
static int ifnotPrime(int[] prime, int x) {
return (prime[x / 64] & (1 << ((x >> 1) & 31)));
}
static void makeComposite(int[] prime, int x) {
prime[x / 64] |= (1 << ((x >> 1) & 31));
}
static ArrayList<Integer> bitWiseSieve(int n) {
ArrayList<Integer> al = new ArrayList<>();
int prime[] = new int[n / 64 + 1];
for (int i = 3; i * i <= n; i += 2) {
if (ifnotPrime(prime, i) == 0)
for (int j = i * i, k = i << 1;
j < n; j += k)
makeComposite(prime, j);
}
al.add(2);
for (int i = 3; i <= n; i += 2)
if (ifnotPrime(prime, i) == 0)
al.add(i);
return al;
}
public static long[] sort(long arr[]){
List<Long> list = new ArrayList<>();
for(long n : arr){list.add(n);}
Collections.sort(list);
for(int i=0;i<arr.length;i++){
arr[i] = list.get(i);
}
return arr;
}
static ArrayList<Integer> sieve(long size) {
ArrayList<Integer> pr = new ArrayList<Integer>();
boolean prime[] = new boolean[(int) size];
for (int i = 2; i < prime.length; i++) prime[i] = true;
for (int i = 2; i * i < prime.length; i++) {
if (prime[i]) {
for (int j = i * i; j < prime.length; j += i) {
prime[j] = false;
}
}
}
for (int i = 2; i < prime.length; i++) if (prime[i]) pr.add(i);
return pr;
}
static ArrayList<Integer> segmented_sieve(int l, int r, ArrayList<Integer> primes) {
ArrayList<Integer> al=new ArrayList<>();
if (l == 1) ++l;
int max = r - l + 1;
int arr[] = new int[max];
for (int p : primes) {
if (p * p <= r) {
int i = (l / p) * p;
if (i < l) i += p;
for (; i <= r; i += p) {
if (i != p) {
arr[i - l] = 1;
}
}
}
}
for (int i = 0; i < max; ++i) {
if (arr[i] == 0) {
al.add(l+i);
}
}
return al;
}
static boolean isfPrime(long n, int iteration) {
if (n == 0 || n == 1)
return false;
if (n == 2)
return true;
if (n % 2 == 0)
return false;
Random rand = new Random();
for (int i = 0; i < iteration; i++) {
long r = Math.abs(rand.nextLong());
long a = r % (n - 1) + 1;
if (modPow(a, n - 1, n) != 1)
return false;
}
return true;
}
static long modPow(long a, long b, long c) {
long res = 1;
for (int i = 0; i < b; i++) {
res *= a;
res %= c;
}
return res % c;
}
private static long binPower(long a, long l, long mod) {
long res = 0;
while (l > 0) {
if ((l & 1) == 1) {
res = mulmod(res, a, mod);
;
l >>= 1;
}
a = mulmod(a, a, mod);
}
return res;
}
private static long mulmod(long a, long b, long c) {
long x = 0, y = a % c;
while (b > 0) {
if (b % 2 == 1) {
x = (x + y) % c;
}
y = (y * 2L) % c;
b /= 2;
}
return x % c;
}
static long binary_Expo(long a, long b) {
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res *= a;
--b;
}
a *= a;
b /= 2;
}
return res;
}
static long Modular_Expo(long a, long b) {
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res = (res * a) % 1000000007 ;
--b;
}
a = (a * a) % 1000000007;
b /= 2;
}
return res%1000000007;
}
static int i_gcd(int a, int b) {
while (true) {
if (b == 0)
return a;
int c = a;
a = b;
b = c % b;
}
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long ceil_div(long a, long b) {
return (a + b - 1) / b;
}
static int getIthBitFromInt(int bits, int i) {
return (bits >> (i - 1)) & 1;
}
private static TreeMap<Long, Long> primeFactorize(long n) {
TreeMap<Long, Long> pf = new TreeMap<>(Collections.reverseOrder());
long cnt = 0;
long total = 1;
for (long i = 2; (long) i * i <= n; ++i) {
if (n % i == 0) {
cnt = 0;
while (n % i == 0) {
++cnt;
n /= i;
}
pf.put(cnt, i);
//total*=(cnt+1);
}
}
if (n > 1) {
pf.put(1L, n);
//total*=2;
}
return pf;
}
static long upper_Bound(long a[], long x) {
long l = -1, r = a.length;
while (l + 1 < r) {
long m = (l + r) >>> 1;
if (a[(int) m] <= x)
l = m;
else
r = m;
}
return l + 1;
}
static int lower_Bound(ArrayList<Long> a, long x) {
int l = 0, r = a.size()-1,ans=-1,mid=0;
while(l<=r)
{
mid=(l+r)>>1;
if(a.get(mid)<=x)
{
ans=mid;
l=mid+1;
}
else
{
r=mid-1;
}
}
return ans;
}
static int lower_Bound(int a[],int x) {
int l = -1, r = a.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (a[(int) m] >= x)
r = m;
else
l = m;
}
return r;
}
static int upperBound(int a[], int x) {// x is the key or target value
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static int bsh(int a[],int t) {
int ans =-1;
int i = 0, j = a.length - 1;
while (i <= j) {
int mid = i + (j - i) / 2;
if (a[mid] > t) {
ans = mid;
//System.out.print("uppr "+a[ans]);
j=mid-1;
}
else{
//System.out.print("less "+a[mid]);
i=mid+1;
}
}
return ans;
}
static int bsl(int a[],int t) {
int ans =-1;
int i = 0, j = a.length-1;
while (i <= j) {
int mid = i + (j - i) / 2;
if (a[mid] == t) {
ans = mid;
break;
} else if (a[mid] > t) {
j = mid - 1;
} else {
ans=mid;
i = mid + 1;
}
}
return ans;
}
static int upper_Bound(ArrayList<Long> a, long x) //closest to the right
{
int l = 0, r = a.size()-1,ans=-1,mid=0;
while(l<=r)
{
mid=(l+r)>>1;
if(a.get(mid)>=x)
{
ans=mid;
r=mid-1;
}
else
{
l=mid+1;
}
}
return ans;
}
static boolean isSquarefactor(int x, int factor, int target) {
int s = (int) Math.round(Math.sqrt(x));
return factor * s * s == target;
}
static boolean isSquare(int x) {
int s = (int) Math.round(Math.sqrt(x));
return x * x == s;
}
static void sort(int a[]) // heap sort
{
PriorityQueue<Integer> q = new PriorityQueue<>();
for (int i = 0; i < a.length; i++)
q.add(a[i]);
for (int i = 0; i < a.length; i++)
a[i] = q.poll();
}
static void shuffle(int[] in) {
for (int i = 0; i < in.length; i++) {
int idx = (int) (Math.random() * in.length);
fast_swap(in, idx, i);
}
}
static boolean isPalindrome(String s)
{
StringBuilder sb=new StringBuilder(s);
sb.reverse();
if(s.equals(sb.toString()))
{
return true;
}
return false;
}
static int[] computeLps(String pat) {
int len = 0, i = 1, m = pat.length();
int lps[] = new int[m];
lps[0] = 0;
while (i < m) {
if (pat.charAt(i) == pat.charAt(len)) {
++len;
lps[i] = len;
++i;
} else {
if (len != 0) {
len = lps[len - 1];
} else {
lps[i] = len;
++i;
}
}
}
return lps;
}
static void kmp(String s, String pat,int[] prf,int[] st) {
int n = s.length(), m = pat.length();
int lps[] = computeLps(pat);
int i = 0, j = 0;
while (i < n) {
if (s.charAt(i) == pat.charAt(j)) {
i++;
j++;
if (j == m) {
++prf[(i-j)+m];
++st[(i-j)+1];
j=lps[j - 1];
}
} else {
if (j != 0) {
j = lps[j - 1];
} else {
i++;
}
}
}
}
static void reverse_ruffle_sort(int a[]) {
shuffle(a);
Arrays.sort(a);
for (int l = 0, r = a.length - 1; l < r; ++l, --r)
fast_swap(a, l, r);
}
static void ruffle_sort(int a[]) {
shuffle(a);
Arrays.sort(a);
}
static int getMax(int arr[], int n) {
int mx = arr[0];
for (int i = 1; i < n; i++)
if (arr[i] > mx)
mx = arr[i];
return mx;
}
static ArrayList<Long> primeFactors(long n) {
ArrayList<Long> al = new ArrayList<>();
al.add(1L);
while (n % 2 == 0) {
if(!al.contains(2L))
{
al.add(2L);
}
n /= 2L;
}
for (int i = 3; (long) i * i <= n; i += 2) {
while ((n % i == 0)) {
if(!al.contains((long)i))
{
al.add((long) i);
}
n /= i;
}
}
if (n > 2) {
if(!al.contains(n))
{
al.add(n);
}
}
return al;
}
static int[] z_function(String s) {
int n = s.length(), z[] = new int[n];
for (int i = 1, l = 0, r = 0; i < n; ++i) {
if (i <= r)
z[i] = Math.min(z[i - l], r - i + 1);
while (i + z[i] < n && s.charAt(z[i]) == s.charAt(i + z[i]))
++z[i];
if (i + z[i] - 1 > r) {
l = i;
r = i + z[i] - 1;
}
}
return z;
}
static void swap(int a[], int idx1, int idx2) {
a[idx1] += a[idx2];
a[idx2] = a[idx1] - a[idx2];
a[idx1] -= a[idx2];
}
static void fast_swap(int[] a, int idx1, int idx2) {
if (a[idx1] == a[idx2])
return;
a[idx1] ^= a[idx2];
a[idx2] ^= a[idx1];
a[idx1] ^= a[idx2];
}
public static void fast_sort(long[] array) {
ArrayList<Long> copy = new ArrayList<>();
for (long i : array)
copy.add(i);
Collections.sort(copy);
for (int i = 0; i < array.length; i++)
array[i] = copy.get(i);
}
static int divCount(int n) {
boolean hash[] = new boolean[n + 1];
Arrays.fill(hash, true);
for (int p = 2; p * p < n; p++)
if (hash[p] == true)
for (int i = p * 2; i < n; i += p)
hash[i] = false;
int total = 1;
for (int p = 2; p <= n; p++) {
if (hash[p]) {
int count = 0;
if (n % p == 0) {
while (n % p == 0) {
n = n / p;
count++;
}
total = total * (count + 1);
}
}
}
return total;
}
static long binomialCoeff(long n,long k)
{
long res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k)
k = n - k;
// Calculate value of
// [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
for (int i = 0; i < k; ++i) {
res = (res*(n - i));
res /= (i + 1);
}
return res;
}
static long c(long fact[],long n,long k)
{
if(k>n) return 0;
long res=fact[(int)n];
res= (int) ((res * Modular_Expo(fact[(int)k], mod - 2))%mod);
res= (int) ((res * Modular_Expo(fact[(int)n - (int)k], mod - 2))%mod);
return res%mod;
}
public static ArrayList<Long> getFactors(long x) {
ArrayList<Long> facts=new ArrayList<>();
for(long i=2;i*i<=x;++i)
{
if(x%i==0)
{
facts.add(i);
if(i!=x/i)
{
facts.add(x/i);
}
}
}
return facts;
}
public static HashMap<Integer, Integer> sortMap(HashMap<Integer, Integer> map) {
List<Map.Entry<Integer,Integer>> list=new LinkedList<>(map.entrySet());
Collections.sort(list,(o1,o2)->o2.getValue()-o1.getValue());
HashMap<Integer,Integer> temp=new LinkedHashMap<>();
for(Map.Entry<Integer,Integer> i:list)
{
temp.put(i.getKey(),i.getValue());
}
return temp;
}
public static long lcm(long l,long l2) {
long val=CP.gcd(l,l2);
return (l*l2)/val;
}
}
static void py() {
System.out.println("YES");
}
static void pn() {
System.out.println("NO");
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(int[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}
public void printLine(int[] array) {
print(array);
writer.println();
}
public void close() {
writer.close();
}
public void printLine(long i) {
writer.println(i);
}
public void printLine(int i) {
writer.println(i);
}
public void printLine(char c)
{
writer.println(c);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | d72f645397d91d7d2311e778f893c70c | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.MathContext;
import java.util.*;
/*AUTHOR - ELDIIAR DZHUNUSOV */
public class a {
static int mod= 1000000007 ;
static final FastReader in = new FastReader();
static final PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
long t = in.nextInt();
for (long i = 1; i <= t; i++) {
new Solver();
}
out.flush();
out.close();
}
static class Solver{
Solver(){
int n = in.nextInt();
long[] v1 = new long[n];
long[] v2 = new long[n];
for (int i = 0; i < n; i++) {
v1[i] = in.nextInt();
v2[i] = v1[i];
}
long maxSum = 0;
for (int i = 0; i < n; i++) {
long localMax = 0;
long[] arr = Arrays.copyOf(v1,v1.length);
for (int j = 0; j < n; j++) {
if(i==j){
continue;
}
while(arr[j]>1 && arr[j]%2==0){
arr[j]/=2;
arr[i]*=2;
}
}
for (int j = 0; j < n; j++) {
localMax+=arr[j];
}
maxSum = Math.max(localMax,maxSum);
}
out.println(maxSum);
}
}
// Collections.sort(arrayList);
// sort 1d
// sort(arr, 0, arr.length - 1);
// Sort 2d by the first index
// Arrays.sort(arr, Comparator.comparingDouble(o -> o[0]));
public static long lBinSearch(long l, long r, long... numbers){
//Assuming that we know that the elements exists there for sure, but we want to find the most optimal one
//After some point all numbers will be considered as "Good"
//We need to find most left "Good" number
while(l<r){
long m = l + (r-l)/2;
if(checkerForBinarySearch(numbers[0],numbers[1],numbers[2],m)){
r = m;
}else{
l = m+1;
}
}
return l;
}
// public static long rBinSearch(int l, int r, int... numbers){
// //Assuming that we know that the elements exists there for sure, but we want to find the most optimal one
// //After some point all numbers will be considered as "Bad"
// //We need to find most Right "Good" number
// while(l<r){
// int m = l + (r-l+1)/2;
// if(checkerForBinarySearch(numbers)){
// l = m;
// }else{
// r = m-1;
// }
// }
// return l;
// }
public static boolean checkerForBinarySearch(long... nums){
// out.println(Arrays.toString(nums));
double a = nums[0];
double b = nums[1];
double c = nums[2];
double d = nums[3];
BigDecimal num1 = BigDecimal.valueOf((a*2 + b*3 + c*4 +d*5));
BigDecimal num2 = BigDecimal.valueOf(a+ b + c + d);
num1 = num1.divide(num2, MathContext.DECIMAL128);
// System.out.println(num1);
return num1.compareTo(BigDecimal.valueOf(3.5))>=0;
// out.println(div1 + " " + nums[3]);
//
// return Double.compare(((a*2 + b*3 + c*4 +d*5)/ (a+ b + c + d)),3.5)>=0;
}
public static void swap(int[] arr, int i, int j){
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
static boolean isPrime(long n) {
if(n==1)return false ;
for(long i = 2L; i*i <= n ;i++){ if(n% i ==0){return false; } }
return true ;
}
static boolean isPrime(int n) {
if(n==1)return false ;
for(int i = 2; i*i <= n ;i++){ if(n% i ==0){return false ; } }
return true ;
}
public static int gcd(int a, int b )
{
if(b==0)return a ;else return gcd(b,a%b) ;
}
public static long gcd(long a, long b )
{
if(b==0)return a ;else return gcd(b,a%b) ;
}
static boolean isPower(int n, int p){
if(p==0) return n==1;
return (Double.compare(Math.pow(n,1.0/p),(int)Math.pow(n,1.0/p))==0);
}
static boolean isPower(long n, long p){
if(p==0L) return n==1L;
return (Double.compare(Math.pow(n,1.0/p),(long)Math.pow(n,1.0/p))==0);
}
public static long nCr(int n,int k) {
long ans=1L;
k=k>n-k?n-k:k;
int j=1;
for(;j<=k;j++,n--)
{
if(n%j==0)
{
ans*=n/j;
}else if(ans%j==0)
{
ans=ans/j*n;
}else
{
ans=(ans*n)/j;
}
}
return ans;
}
public static ArrayList<Integer> allFactors(int n) {
ArrayList<Integer> list = new ArrayList<>() ;
for(int i = 1; i*i <= n ;i++)
{
if( n % i == 0)
{
if(i*i == n)list.add(i) ;
else{ list.add(i) ;list.add(n/i) ; }
}
}
return list ;
}
public static ArrayList<Long> allFactors(long n) {
ArrayList<Long> list = new ArrayList<>() ;
for(long i = 1L; i*i <= n ;i++)
{
if( n % i == 0)
{
if(i*i == n) list.add(i) ;
else{ list.add(i) ; list.add(n/i) ; }
}
}
return list ;
}
public static void reverseArray(int[] arr){
int i = 0;
int j = arr.length-1;
while(i<j){
swap(arr,i,j);
i++;
j--;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 58273046d96a162b3eed9e14fbab383d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | // HOPE
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////// //////////
/////// //////////
/////// RRRRRRRRRRRRR YY YY AA NN NN //////////
/////// RR RR YY YY AA AA NN NN NN //////////
/////// RR RR YY YY AA AA NN NN NN //////////
/////// RRRRRRRRRR YY YY AAAAAAAAAAAA NN NN NN //////////
/////// RR RR YY AAAAAAAAAAAAAA NN NN NN //////////
/////// RR RR YY AA AA NN NNNN //////////
/////// RR RR YY AA AA NN NN //////////
/////// RR RR_____________________________________________________________________________ //////////
//////// //////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------------------------------------------------
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Codeforces1 {
static PrintWriter out = new PrintWriter(System.out);
static final int mod=1_000_000_007;
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n){
int[] a = new int[n];
for(int i=0;i<n;i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n){
long[] a = new long[n];
for(int i=0;i<n;i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//Try seeing general case
public static void main(String[] args) {
FastReader s = new FastReader();
int t = s.nextInt();
while(t-->0)
{
int n = s.nextInt();
int[] a = s.readIntArray(n);
out.println(find(n, a));
}
out.close();
}
public static long find(int n, int[] a)
{
if (n == 1)
return a[0];
int count = 0;
for(int i=0;i<n;i++)
{
while((a[i]&1)==0)
{
count++;
a[i] /= 2;
}
}
sort(a);
long sum = 0;
for(int i=0;i<n-1;i++)
{
sum += a[i];
}
sum += a[n-1]*Math.pow(2, count);
return sum;
}
/////////////////////////////////////////////////THE END///////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
public static int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
public static long gcd(long x,long y)
{
return y==0L?x:gcd(y,x%y);
}
public static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static long pow(long a,long b)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1)
tmp*=a;
a*=a;
b>>=1;
}
return (tmp*a);
}
public static long modPow(long a,long b,long mod)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1L)
tmp*=a;
a*=a;
a%=mod;
tmp%=mod;
b>>=1;
}
return (tmp*a)%mod;
}
static long mul(long a, long b) {
return a*b%mod;
}
static long fact(int n) {
long ans=1;
for (int i=2; i<=n; i++) ans=mul(ans, i);
return ans;
}
static long fastPow(long base, long exp) {
if (exp==0) return 1;
long half=fastPow(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static void debug(int ...a)
{
for(int x: a)
out.print(x+" ");
out.println();
}
static void debug(long ...a)
{
for(long x: a)
out.print(x+" ");
out.println();
}
static void debugMatrix(int[][] a)
{
for(int[] x:a)
out.println(Arrays.toString(x));
}
static void debugMatrix(long[][] a)
{
for(long[] x:a)
out.println(Arrays.toString(x));
}
static void reverseArray(int[] a) {
int n = a.length;
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void reverseArray(long[] a) {
int n = a.length;
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void sort(int[] a)
{
ArrayList<Integer> ls = new ArrayList<>();
for(int x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static void sort(long[] a)
{
ArrayList<Long> ls = new ArrayList<>();
for(long x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static class Pair{
int x, y;
Pair(int x, int y)
{
this.x = x;
this.y = y;
}
@Override
public String toString() {
return "Pair{" +
"x=" + x +
", y=" + y +
'}';
}
}
static class MyCmp implements Comparator<Pair>
{
public int compare(Pair p1, Pair p2)
{
return p1.x-p2.x;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ef64567a5770ae374ea8c5c9a185156c | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.*;
import java.util.*;
public class cp
{
public static void main(String[] args) throws IOException
{
//Your Solve
// Reader s = new Reader();
FastReader s = new FastReader();
// Scanner s = new Scanner(System.in);
int t = s.nextInt();
for(int p = 0;p < t;p++) {
int n = s.nextInt();
int arr[] = new int[n];
long ans = 0;
for(int i = 0;i < n;i++) {
arr[i] = s.nextInt();
}
// Arrays.sort(arr);
int power2 = 0;
// for(int i = n-1;i >= 0;i--) {
// if(arr[i] % 2 == 1) {
// int temp = arr[n-1];
// arr[n-1] = arr[i];
// arr[i] = temp;
// break;
// }
// }
for(int i = 0;i < n;i++) {
while(arr[i] % 2== 0) {
arr[i] /= 2;
power2++;
}
}
Arrays.sort(arr);
for(int i = 0;i < n-1;i++) {
ans += arr[i];
}
ans += Math.pow(2, power2)*arr[n-1];
System.out.println(ans);
}
}
static long binomialCoeff(long n, long k)
{
long res = 1;
// Since C(n, k) = C(n, n-k)
if (k > n - k)
k = n - k;
// Calculate value of
// [n * (n-1) *---* (n-k+1)] / [k * (k-1) *----* 1]
for (int i = 0; i < k; ++i) {
res *= (n - i);
res /= (i + 1);
}
return res;
}
public static boolean palindrome(Vector<Integer> v) {
int start = 0;int end = v.size()-1;
while(start<end) {
if(v.get(start) != v.get(end)) {
return false;
}
start++;
end--;
}
return true;
}
static void shuffleArray(int[] ar)
{
// If running on Java 6 or older, use `new Random()` on RHS here
Random rnd = new Random();
for (int i = ar.length - 1; i > 0; i--)
{
int index = rnd.nextInt(i + 1);
// Simple swap
int a = ar[index];
ar[index] = ar[i];
ar[i] = a;
}
}
/* Iterative Function to calculate (x^y) in O(log y) */
static long power(long x, long y, long p)
{
long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
if (x == 0)
return 0; // In case x is divisible by p;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
static long getPairsCount(int n, long sum,long arr[])
{
HashMap<Long, Integer> hm = new HashMap<>();
// Store counts of all elements in map hm
for (int i = 0; i < n; i++) {
// initializing value to 0, if key not found
if (!hm.containsKey(arr[i]))
hm.put(arr[i], 0);
hm.put(arr[i], hm.get(arr[i]) + 1);
}
long twice_count = 0;
// iterate through each element and increment the
// count (Notice that every pair is counted twice)
for (int i = 0; i < n; i++) {
if (hm.get(sum - arr[i]) != null)
twice_count += hm.get(sum - arr[i]);
// if (arr[i], arr[i]) pair satisfies the
// condition, then we need to ensure that the
// count is decreased by one such that the
// (arr[i], arr[i]) pair is not considered
if (sum - arr[i] == arr[i])
twice_count--;
}
// return the half of twice_count
return twice_count / 2;
}
public static HashMap<Integer, Integer>
sortByValue(HashMap<Integer, Integer> hm)
{
// Create a list from elements of HashMap
List<Map.Entry<Integer, Integer> > list
= new LinkedList<Map.Entry<Integer, Integer> >(
hm.entrySet());
// Sort the list using lambda expression
Collections.sort(
list,
(i1,
i2) -> i1.getValue().compareTo(i2.getValue()));
// put data from sorted list to hashmap
HashMap<Integer, Integer> temp
= new LinkedHashMap<Integer, Integer>();
for (Map.Entry<Integer, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
public static String palin(String str) {
StringBuilder ans = new StringBuilder();
for(int i = str.length()-1;i >= 0 ;i--) {
ans.append(str.charAt(i));
}
return ans.toString();
}
public static String palin(StringBuilder str) {
StringBuilder ans = new StringBuilder();
for(int i = str.length()-1;i >= 0 ;i--) {
ans.append(str.charAt(i));
}
return ans.toString();
}
public static int getInt(char ch) {
int ans = 0;
if(ch >= '0' && ch <= '9') {
ans = ch-'0';
}else if(ch >= 'A' && ch <= 'Z') {
ans = ch-'A' + 10;
}else if(ch >= 'a' && ch <= 'z') {
ans = ch-'a' + 36;
}else if(ch == '-') {
ans = 62;
}else {
ans = 63;
}
return ans;
}
public static int getZeroes(int base64) {
int count = 0;
int iters = 0;
while(iters != 6) {
if(base64%2 == 0) {
count++;
}
base64 /= 2;
iters++;
}
return count;
}
static int lower_bound(long array[], long key,long start,long end)
{
// Initialize starting index and
// ending index
long low = start, high = end;
long mid;
// Till high does not crosses low
while (low < high) {
// Find the index of the middle element
mid = low + (high - low) / 2;
// If key is less than or equal
// to array[mid], then find in
// left subarray
if (key <= array[(int)mid]) {
high = mid;
}
// If key is greater than array[mid],
// then find in right subarray
else {
low = mid + 1;
}
}
// If key is greater than last element which is
// array[n-1] then lower bound
// does not exists in the array
if (low < end && array[(int)low] < key) {
low++;
}
// Returning the lower_bound index
return (int)low;
}
static int upper_bound(long array[], long key,long start,long end)
{
// Initialize starting index and
// ending index
long low = start, high = end;
long mid;
// Till high does not crosses low
while (low < high) {
// Find the index of the middle element
mid = low + (high - low) / 2;
// If key is less than or equal
// to array[mid], then find in
// left subarray
if (key >= array[(int)mid]) {
low = mid+1;
}
// If key is greater than array[mid],
// then find in right subarray
else {
high = mid;
}
}
// If key is greater than last element which is
// array[n-1] then lower bound
// does not exists in the array
if (low < end && array[(int)low] <= key) {
low++;
}
// Returning the lower_bound index
return (int)low;
}
public static long search1(long x,long k) {
long start = 1,end = k;
long mid = start + (end-start)/2;
while(start < end) {
mid = start + (end-start)/2;
if(x>mid*(mid+1)/2) {
start = mid+1;
}else {
end = mid;
}
}
if(start<end && mid*(mid+1)/2 <= x) {
start++;
}
return start;
}
public static long search2(long x,long k) {
long start = 1,end = k;
long mid = start + (end-start)/2;
while(start < end) {
mid = start + (end-start)/2;
if(x>mid*(2*k-mid-1)/2) {
start = mid+1;
}else {
end = mid;
}
}
if(start<end && mid*(2*k-mid-1)/2 <= x) {
start++;
}
return start;
}
public static int countGreater(int arr[], int k,int l, int r)
{
int leftGreater = r+1;
int R = r;
while (l<=r) {
int m = l + (r - l) / 2;
if (arr[m] >= k) {
leftGreater = m;
r = m - 1;
}
else {
l = m + 1;
}
}
return (R-leftGreater+1);
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 32a0d89f812c844a619410f04545cbf0 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.*;
import java.util.stream.Collectors;
public class coding {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while(st == null || !st.hasMoreElements()) {
try {
String str = br.readLine();
if(str == null)
throw new InputMismatchException();
st = new StringTokenizer(str);
} catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch(IOException e) {
e.printStackTrace();
}
if(str == null)
throw new InputMismatchException();
return str;
}
}
public static <K, V> K getKey(Map<K, V> map, V value)
{
for (Map.Entry<K, V> entry: map.entrySet())
{
if (value.equals(entry.getValue())) {
return entry.getKey();
}
}
return null;
}
public static void main(String args[] ) throws Exception {
FastReader sc = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int arr[]=new int[n];
int brr[]=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
long sum=0,sum1=0;
for(int i=0;i<n;i++)
{
while(arr[i]%2==0)
{
sum++;
arr[i]=arr[i]/2;
}
}
Arrays.sort(arr);
for(int i=0;i<n-1;i++)
{
sum1=sum1+arr[i];
}
sum1=sum1 + arr[n-1]*(long)Math.pow(2, sum);
System.out.println(sum1);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 55c50f4e5b9477127e9b1496c87f0246 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
public class CP {
static final int MOD = (int) (1e9) + 7;// ((a + b) % MOD + MOD) % MOD
public static double roundOff(double num, int precision) {
double round = Math.round(num * Math.pow(10, precision));
return round / (Math.pow(10, precision));
}
public static void main(String[] args) throws IOException {
FastReader sc = new FastReader();
int t = sc.Int();
for (; t > 0; t--) {
int n = sc.Int();
long arr[] = new long[n];
long c = 1;
for (int i = 0; i < n; i++) {
arr[i] = sc.Long();
for (; arr[i] % 2 == 0;) {
c *= 2;
arr[i] /= 2;
}
}
Arrays.sort(arr);
arr[n - 1] *= c;
long ans = 0;
for (long v : arr) {
ans += v;
}
System.out.println(ans);
}
sc.close();
}
}
class FastReader {
private BufferedReader br;
private StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
for (; st == null || !st.hasMoreTokens();) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public String nextLine() throws IOException {
return br.readLine();
}
public int Int() throws IOException {
return Integer.parseInt(next());
}
public long Long() throws IOException {
return Long.parseLong(next());
}
public double Double() throws IOException {
return Double.parseDouble(next());
}
public float Float() throws IOException {
return Float.parseFloat(next());
}
public char Char() throws IOException {
return next().charAt(0);
}
public void close() throws IOException {
br.close();
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 2c5b7df08a786250c7c3389c81da56da | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int testCases = scan.nextInt();
while (testCases-- != 0) {
int n = scan.nextInt();
if (n == 1) {
System.out.println(scan.nextInt());
} else {
int largestOdd = 0;
int sum = 0;
int power = 0;
while (n-- != 0) {
int num = scan.nextInt();
while (num % 2 == 0) {
power++;
num /= 2;
}
if (num > largestOdd) {
sum += largestOdd;
largestOdd = num;
} else {
sum += num;
}
}
System.out.println(sum + largestOdd * (long) Math.pow(2, power));
}
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 834bf2e879ff9f330078fd8931ba636d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int testCases = scan.nextInt();
while (testCases-- != 0) {
int n = scan.nextInt();
if (n == 1) {
System.out.println(scan.nextInt());
} else {
int largestOdd = 0;
int sum = 0;
int power = 0;
while (n-- != 0) {
int num = scan.nextInt();
while (num % 2 == 0) {
power++;
num /= 2;
}
if (num > largestOdd) {
sum += largestOdd;
largestOdd = num;
} else {
sum += num;
}
}
System.out.println(sum + largestOdd * (long) Math.pow(2, power));
}
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 84cc1cfdfe8b09d9019c76ba37a688b3 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
// problem A
public class divideAndMultiply {
public static void main(String[] args) {
int t = r.nextInt();
for (int i = 0; i < t; i++) {
new Solve();
}
pw.close();
}
static class Solve {
Solve() {
int n = r.nextInt();
int[] a = new int[n];
int ans = 0, x = 0, mx = 0;
for (int i = 0; i < n; i++) {
a[i] = r.nextInt();
while (a[i] % 2 == 0) {
x++;
a[i] /= 2;
}
mx = Math.max(a[i], mx);
ans += a[i];
}
ans -= mx;
pw.println(ans + mx * (long) Math.pow(2, x));
}
public static int[] copy(int[] arr) {
int[] arr2 = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
arr2[i] = arr[i];
}
return arr2;
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
static InputReader r = new InputReader(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 45a0e3bd16218875b809afd923430fbc | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import javax.sql.rowset.BaseRowSet;
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codeforces
{
static int seive[]=new int[1000+1];
static void Seive()
{
for(int j=1;j<seive.length;j++)
seive[j]=j;
int color=1;
for(int j=2;j<seive.length;j=j+2)
seive[j]=1;
color=2;
for(int j=3;j<seive.length;j++)
{
if(seive[j]==j)
{
for(int z=2*j;z<seive.length;z+=j)
{
if(seive[z]==z)
seive[z]=color;
}
color++;
}
}
}
static long gcd(long a,long b)
{
if(a==0)
return b;
return gcd(b%a,a);
}
static long sum1(long b[],int n,int arr[])
{
long sum=0;
for(int j=0;j<n;j++)
sum+=(Math.abs(arr[j]-b[j]));
sum=2*sum;
return sum;
}
static long sum(long even[],long odd[],int n)
{
long s=0;
for(int j=0;j<even.length;j++)
s+=even[j];
for(int j=0;j<odd.length;j++)
s+=odd[j];
return s;
}
public static void main(String[] args) throws java.lang.Exception {
/* your code goes here */
BufferedReader buf = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(buf.readLine());
StringBuilder sb = new StringBuilder();
for (int i = 0; i < t; i++) {
int n=Integer.parseInt(buf.readLine());
long arr[]=new long[n];
String st2[]=(buf.readLine()).split(" ");
long m=1;
for(int j=0;j<n;j++) {
arr[j] = Long.parseLong(st2[j]);
while(arr[j]%2==0)
{
arr[j]/=2;
m*=2;
}
}
Arrays.sort(arr);
long sum=0;
for(int j=0;j<n-1;j++)
sum+=arr[j];
arr[n-1]=m*arr[n-1];
sum+=arr[n-1];
sb.append(sum+"\n");
}
System.out.println(sb);
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | e4f9d49753e64df10664de141a1a05c2 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
import java.lang.*;
public class a {
// static int mod = 998244353;
static int mod = 1000000007;
public static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main(String[] args) throws Exception {
Reader scn = new Reader();
PrintWriter pw = new PrintWriter(System.out);
int t = scn.nextInt();
outer : while(t-->0){
int n = scn.nextInt();
long[] arr = new long[n];
for(int i=0; i<n; i++){
arr[i] = scn.nextLong();
}
long pow = 1L;
for(int i=0; i<n; i++){
while(arr[i] % 2 == 0){
arr[i] /= 2;
pow *= 2L;
}
}
sort(arr);
long ans = 0L;
for(int i=0; i<n-1; i++){
ans += arr[i];
}
ans += (arr[n-1] * pow);
pw.println(ans);
}
pw.close();
}
public static class Pair{
int x;
int y;
Pair(int x, int y){
this.x = x;
this.y = y;
}
}
private static void sort(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
private static void sort(long[] arr) {
List<Long> list = new ArrayList<>();
for(int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
// private static void sort(Pair[] arr) {
// List<Pair> list = new ArrayList<>();
// for(int i=0; i<arr.length; i++){
// list.add(arr[i]);
// }
// Collections.sort(list); // collections.sort uses nlogn in backend
// for (int i = 0; i < arr.length; i++){
// arr[i] = list.get(i);
// }
// }
private static void reverseSort(int[] arr){
List<Integer> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list, Collections.reverseOrder()); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
private static void reverseSort(long[] arr){
List<Long> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list, Collections.reverseOrder()); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
private static void reverseSort(ArrayList<Integer> list){
Collections.sort(list, Collections.reverseOrder());
}
private static int lowerBound(int[] arr, int x){
int n = arr.length, si = 0, ei = n - 1;
while(si <= ei){
int mid = si + (ei - si)/2;
if(arr[mid] == x){
if(mid-1 >= 0 && arr[mid-1] == arr[mid]){
ei = mid-1;
}else{
return mid;
}
}else if(arr[mid] > x){
ei = mid - 1;
}else{
si = mid+1;
}
}
return si;
}
private static int upperBound(int[] arr, int x){
int n = arr.length, si = 0, ei = n - 1;
while(si <= ei){
int mid = si + (ei - si)/2;
if(arr[mid] == x){
if(mid+1 < n && arr[mid+1] == arr[mid]){
si = mid+1;
}else{
return mid + 1;
}
}else if(arr[mid] > x){
ei = mid - 1;
}else{
si = mid+1;
}
}
return si;
}
private static int upperBound(ArrayList<Integer> list, int x){
int n = list.size(), si = 0, ei = n - 1;
while(si <= ei){
int mid = si + (ei - si)/2;
if(list.get(mid) == x){
if(mid+1 < n && list.get(mid+1) == list.get(mid)){
si = mid+1;
}else{
return mid + 1;
}
}else if(list.get(mid) > x){
ei = mid - 1;
}else{
si = mid+1;
}
}
return si;
}
// (x^y)%p in O(logy)
private static long power(long x, long y){
long res = 1;
x = x % mod;
while(y > 0){
if ((y & 1) == 1){
res = (res * x) % mod;
}
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
public static boolean nextPermutation(int[] arr) {
if(arr == null || arr.length <= 1){
return false;
}
int last = arr.length-2;
while(last >= 0){
if(arr[last] < arr[last+1]){
break;
}
last--;
}
if (last < 0){
return false;
}
if(last >= 0){
int nextGreater = arr.length-1;
for(int i=arr.length-1; i>last; i--){
if(arr[i] > arr[last]){
nextGreater = i;
break;
}
}
swap(arr, last, nextGreater);
}
reverse(arr, last+1, arr.length-1);
return true;
}
private static void swap(int[] arr, int i, int j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
private static void reverse(int[] arr, int i, int j){
while(i < j){
swap(arr, i++, j--);
}
}
private static String reverseStr(String s){
StringBuilder sb = new StringBuilder(s);
return sb.reverse().toString();
}
// TC- O(logmax(a,b))
private static int gcd(int a, int b) {
if(a == 0){
return b;
}
return gcd(b%a, a);
}
private static long gcd(long a, long b) {
if(a == 0L){
return b;
}
return gcd(b%a, a);
}
private static long lcm(long a, long b) {
return a / gcd(a, b) * b;
}
// TC- O(logmax(a,b))
private static int lcm(int a, int b) {
return a / gcd(a, b) * b;
}
private static long inv(long x){
return power(x, mod - 2);
}
private static long summation(long n){
return (n * (n + 1L)) >> 1;
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 7cde6b23266b01e907bc9dba9c668c47 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class A {
static int ans=0;
public static void main(String[] args) {
FastScanner fs=new FastScanner();
int t=fs.nextInt();
while(t-->0)
{
int n,nE=0;
n=fs.nextInt();
int[] arr=fs.readArray(n);
long sum=0L,ans=Long.MIN_VALUE;
for(int i=0;i<n;i++)
{
while(arr[i]%2==0)
{
nE++;
arr[i]=arr[i]/2;
}
}
sort(arr);
ans=arr[n-1]*(long)Math.pow(2,nE);
for(int i=0;i<n-1;i++)
sum+=arr[i];
ans+=sum;
System.out.println(ans);
}
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
void shuffleArray(long[] arr){
int n = arr.length;
Random rnd = new Random();
for(int i=0; i<n; ++i){
long tmp = arr[i];
int randomPos = i + rnd.nextInt(n-i);
arr[i] = arr[randomPos];
arr[randomPos] = tmp;
}
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | f7cc99aed6454601895b9f0ec4a54689 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class Solution{
public static void main(String[] args)
{
Scanner sc= new Scanner(System.in);
int T=sc.nextInt();
for(int t=0;t<T;t++)
{
int n=sc.nextInt();
int[] arr= new int[n];
for(int i=0;i<n;i++)
arr[i]=sc.nextInt();
int[] pow= new int[n];
int[] rem= new int[n];
int powSum=0;
int remSum=0;
for(int i=0;i<n;i++)
{
int[] temp= getPowAndRem(arr[i]);
//System.out.println(temp[0]+", "+temp[1]);
pow[i]=temp[0];
powSum+=pow[i];
rem[i]=temp[1];
remSum+=rem[i];
}
long maxm=0;
for(int i=0;i<n;i++)
{
long cur=(long)arr[i]*(long)(Math.pow(2,powSum-pow[i]))+(long)(remSum-rem[i]);
maxm=Math.max(maxm,cur);
}
System.out.println(maxm);
}
}
public static int[] getPowAndRem(int num)
{
int[] ans= new int[2];
int n=1;
int count=0;
while(num>1&&num%2==0)
{
num/=2;
count++;
}
ans[0]=count;
ans[1]=num;
return ans;
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | b43afdd7ba7f5d2805f0099cf99f4252 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner sc=new Scanner(System.in);
// BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=1;
t=sc.nextInt();
//int t=Integer.parseInt(br.readLine());
while(--t>=0){
int n=sc.nextInt();
long a[]=new long[n];
for(int i=0;i<n;i++)a[i]=sc.nextLong();
Arrays.sort(a);
long sum=0;
int x=-1;
for(int i=0;i<n-1;i++){
while(a[i]%2==0){
a[i]=a[i]/2l;
a[n-1]=a[n-1]*2l;
}
sum=sum+a[i];
}
sum=sum+a[n-1];
long max=0;
for(int i=0;i<n-1;i++){
if(a[i]%2!=0&&a[i]>=max){
x=i;
max=a[i];
}
}
// long sum1=0;
if(x>=0&&x<(n-1)){
while(a[n-1]%2==0){
a[x]=a[x]*2l;
a[n-1]=a[n-1]/2l;
}
}
long sum1=0;
for(int i=0;i<n;i++){
sum1=sum1+a[i];
}
System.out.println(Math.max(sum1,sum));
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 719cb9b901f70d6af816396428d7d6d2 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class SolutionA extends Thread {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static final FastReader scanner = new FastReader();
private static final PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
new Thread(null, new SolutionA(), "Main", 1 << 28).start();
}
public void run() {
int t = scanner.nextInt();
for (int i = 0; i < t; i++) {
solve();
}
out.close();
}
private static void solve() {
int n = scanner.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = scanner.nextInt();
}
int amountMult = 0;
for (int i = 0; i < n; i++) {
while (a[i] % 2 == 0) {
a[i] /= 2;
amountMult++;
}
}
Arrays.sort(a);
for (int i = 0; i < amountMult; i++) {
a[n-1] *= 2;
}
long sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
}
out.println(sum);
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 36ef818ad8a88021e434893d9de90481 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | // Online Java Compiler
// Use this editor to write, compile and run your Java code online
import java.util.*;
public class HelloWorld {
static Scanner scan = new Scanner(System.in);
public static void main(String[] args) {
int t = scan.nextInt();
for(int i =0;i<t;i++){
solve();
}
}
public static void solve(){
int n = scan.nextInt();
int[] arr = new int[n];
Set<Integer> set = new HashSet<>();
int max =Integer.MIN_VALUE;
for(int i =0;i<n;i++){
arr[i]=scan.nextInt();
max = Math.max(max,arr[i]);
set.add(arr[i]);
}
if(n==1){
System.out.println(arr[0]);
}
else{
int m =0;
long s=0;
for(int i =0;i<n;i++){
while(arr[i] % 2 ==0){
arr[i] = arr[i]/2;
m++;
}
}
Arrays.sort(arr);
for(int i =0;i<n-1;i++){
s+=arr[i];
}
s = s+ (long)(Math.pow(2,m)) * arr[n-1];
System.out.println(s);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 26659ca8034f454238e74bf6860c3dd0 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import javax.sql.rowset.spi.SyncResolver;
import java.io.ObjectInputStream.GetField;
import java.lang.*;
/* Name of the class has to be "Main" only if the class is public. */
public class codeforces
{
public static int pow(int n) {
int out=0;
while(n%2==0){
n/=2;
out++;
}
return out;
}
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int[] arr=new int[n];
int oddmax=-1;
int evenmax=-2;
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
if(arr[i]%2==0){
if(evenmax<arr[i]){
evenmax=arr[i];
}
}else{
if(oddmax<arr[i]){
oddmax=arr[i];
}
}
}
int sum=0;
int outsum=0;
int[] lowestform=new int[n];
for(int i=0;i<n;i++){
int power=pow(arr[i]);
//System.out.println("power "+power);
sum+=power;
lowestform[i]=arr[i]/(int)Math.pow(2, power);
outsum+=lowestform[i];
}
Arrays.sort(lowestform);
long out=lowestform[n-1]*(long)Math.pow(2, sum)+(outsum-lowestform[n-1]);
System.out.println(out);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 2a35ba6c3be4846e40728dac6ab7491e | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class solution {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
int i=0;
long count=0;long res=0;
for(i=0;i<n;i++)
{ while(arr[i]%2==0)
{count++;
arr[i]=arr[i]/2;
}
}
Arrays.sort(arr);
for(int k=0;k<n-1;k++)
{
res=res+arr[k];
}
res+= arr[n-1]*(long)Math.pow(2,count) ;
System.out.println(res);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 957fad7b0561a4f65fae64241e1fae18 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | // ceil using integer division: ceil(x/y) = (x+y-1)/y
import java.util.*;
import java.lang.*;
import java.io.*;
public class Solution {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int t = Reader.nextInt();
while(t-->0){
int n = Reader.nextInt();
long[] arr = new long[n];
long count = 1;
for(int i = 0;i<n;i++){
arr[i] = Reader.nextLong();
while(arr[i]%2==0){
count*=2;
arr[i]/=2;
}
}
Arrays.parallelSort(arr);
long sum = 0;
for(int i = 0;i<n-1;i++){
sum += arr[i];
}
sum += arr[n-1]*count;
System.out.println(sum);
}
}
public static int powOf2JustSmallerThanN(int n) {
n |= n >> 1;
n |= n >> 2;
n |= n >> 4;
n |= n >> 8;
n |= n >> 16;
return n ^ (n >> 1);
}
public static int mergeSortAndCount(int[] arr, int l, int r) {
int count = 0;
if (l < r) {
int m = (l + r) / 2;
count += mergeSortAndCount(arr, l, m);
count += mergeSortAndCount(arr, m + 1, r);
count += mergeAndCount(arr, l, m, r);
}
return count;
}
public static int mergeAndCount(int[] arr, int l, int m, int r) {
int[] left = Arrays.copyOfRange(arr, l, m + 1);
int[] right = Arrays.copyOfRange(arr, m + 1, r + 1);
int i = 0, j = 0, k = l, swaps = 0;
while (i < left.length && j < right.length) {
if (left[i] <= right[j])
arr[k++] = left[i++];
else {
arr[k++] = right[j++];
swaps += (m + 1) - (l + i);
}
}
while (i < left.length)
arr[k++] = left[i++];
while (j < right.length)
arr[k++] = right[j++];
return swaps;
}
public static void reverseArray(int[] arr,int start, int end) {
int temp;
while (start < end) {
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
public static long gcd(long a, long b){
if(a==0){
return b;
}
return gcd(b%a,a);
}
public static long lcm(long a, long b){
if(a>b) return a/gcd(b,a) * b;
return b/gcd(a,b) * a;
}
public static long largeExponentMod(long x,long y,long mod){
// computing (x^y) % mod
x%=mod;
long ans = 1;
while(y>0){
if((y&1)==1){
ans = (ans*x)%mod;
}
x = (x*x)%mod;
y = y >> 1;
}
return ans;
}
public static boolean[] numOfPrimesInRange(long L, long R){
boolean[] isPrime = new boolean[(int) (R-L+1)];
Arrays.fill(isPrime,true);
long lim = (long) Math.sqrt(R);
for (long i = 2; i <= lim; i++){
for (long j = Math.max(i * i, (L + i - 1) / i * i); j <= R; j += i){
isPrime[(int) (j - L)] = false;
}
}
if (L == 1) isPrime[0] = false;
return isPrime;
}
public static ArrayList<Long> primeFactors(long n){
ArrayList<Long> factorization = new ArrayList<>();
while(n%2==0){
factorization.add(2L);
n/=2;
}
while(n%3==0){
factorization.add(3L);
n/=3;
}
while(n%5==0){
factorization.add(5L);
n/=5;
}
int[] increments = {4, 2, 4, 2, 4, 6, 2, 6};
int i = 0;
for (long d = 7; d * d <= n; d += increments[i++]) {
while (n % d == 0) {
factorization.add(d);
n /= d;
}
if (i == 8)
i = 0;
}
if (n > 1)
factorization.add(n);
return factorization;
}
}
class DSU {
int[] size, parent;
int n;
public DSU(int n){
this.n = n;
size = new int[n];
parent = new int[n];
for(int i = 0;i<n;i++){
parent[i] = i;
size[i] = 1;
}
}
public int find(int u){
if(parent[u]==u){
return u;
}
return parent[u] = find(parent[u]);
}
public void merge(int u, int v){
u = find(u);
v = find(v);
if(u!=v){
if(size[u]>size[v]){
parent[v] = u;
size[u] += size[v];
}
else{
parent[u] = v;
size[v] += size[u];
}
}
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
/** call this method to initialize reader for InputStream */
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input) );
tokenizer = new StringTokenizer("");
}
/** get next word */
static String next() throws IOException {
while ( ! tokenizer.hasMoreTokens() ) {
//TODO add check for eof if necessary
tokenizer = new StringTokenizer(
reader.readLine() );
}
return tokenizer.nextToken();
}
static String nextLine() throws IOException {
return reader.readLine();
}
static int nextInt() throws IOException {
return Integer.parseInt( next() );
}
static long nextLong() throws IOException{
return Long.parseLong(next() );
}
static double nextDouble() throws IOException {
return Double.parseDouble( next() );
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 667abab61814d0ed69697de722d00996 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0){
int n = sc.nextInt();
long[] arr = new long[n];
int count = 0;
for(int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
for(int i = 0; i < n; i++){
while(arr[i] % 2 == 0){
arr[i] /= 2;
count++;
}
}
Arrays.sort(arr);
long ans = 0;
for(int i = 0; i < n - 1; i++){
ans += arr[i];
}
ans += arr[n - 1] * Math.pow(2, count);
System.out.println(ans);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ac21e2c71c44ba1908ed5dc8bf50c41d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t-->0){
int n = scn.nextInt();
long[] arr = new long[n];
for(int i = 0; i<n; i++){
arr[i] = scn.nextLong();
}
long temp = 1;
for (int i = 0; i < n; i++) {
while(arr[i] %2 == 0){
temp*= 2;
arr[i] /= 2;
}
}
Arrays.sort(arr);
arr[n - 1] *= temp;
long ans = 0;
for (long i : arr) {
ans = ans + i;
}
System.out.println(ans);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 818b4df2254100eaf1506374accd0874 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.*;
public class DivideAndMultiply{
public static void main(String args[])throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int testCases = Integer.parseInt(br.readLine());
StringBuilder result = new StringBuilder();
StringTokenizer str;
while(testCases-- > 0){
int n = Integer.parseInt(br.readLine());
str = new StringTokenizer(br.readLine());
int nums[] = new int[n];
long count = 0;
for(int i = 0; i < n; i++){
nums[i] = Integer.parseInt(str.nextToken());
while(nums[i] % 2 == 0){
nums[i] /= 2;
count++;
}
}
Arrays.sort(nums);
long sum = 0;
for(int i = 0; i < n - 1; i++){
sum += nums[i];
}
sum += (nums[n - 1] * Math.pow(2, count));
result.append(sum + "\n");
}
System.out.println(result);
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a613d20608e55ef13012512aa96be9d5 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Scanner;
public class Trial2 {
public static boolean check(long a) {
if((a==2)||(a==4)||(a==8)||(a==16)){
return false;
}
return true;
}
public static int find(long a){
int d = 1;
while(a%2 == 0){
d = d*2;
a = a/2;
}
return d;
}
public static long sea(long a){
while (a%2 == 0) {
a = a/2;
}
return a;
}
public static void main(String[] args) {
// B ka 66
// W ka 87
// G ka 71
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
for (int z = 0; z < t; z++) {
int n = sc.nextInt();
long[] arr = new long[n];
arr[0] = sc.nextInt();
long max_n = arr[0];
int max_ind = 0;
for(int i =1; i<n; i++){
arr[i] = sc.nextInt();
if(check(arr[i])){
if((check(max_n))&&(sea(arr[i])>sea(max_n))){
max_n = arr[i];
max_ind = i;
}
else if(!(check(max_n))){
max_n = arr[i];
max_ind = i;
}
}
}
long sum = 0;
for(int i =0; i<n; i++){
if(i != max_ind){
int m = find(arr[i]);
arr[i] = arr[i]/m;
arr[max_ind] = arr[max_ind]*m;
sum = sum + arr[i];
}
}
sum = sum + arr[max_ind];
System.out.println(sum);
}
sc.close();
}
}
// String fin = "";
// for (int i = 0; i < size; i++) {
// char c = (char) arr[i];
// fin = fin + c;
// }
// System.out.println(fin);
// 1,4,9,16,25,36,49,64,81
// 8,27, | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | e63e89908be2b1eff5028735b148371d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | //package com.codeforces.Practise;
import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class DivideAndMultiply {
//Don't Confuse
//Experience is the name of the game
// You won't fail until you stop trying.......
// you can solve one problem by many approaches. when you stuck you are going to learn something new okk
// Everything is easy. you feel its hard because of you don't know, and you not understand it very well.
//// How to Improve Your problem-solving skill ??( By practise ). ***simple
/// ==>> Solve problems slightly above of your level (to know some logic and how to approach cp problems)
// Otherwise You will stay as it is okk. Learn from other code as well.
/////////////////////////////////////////////////////////////////////////
/// How to Solve Problem in CP ? (you need to come up with brainstorm) ( if you feel problem is hard then your approach is wrong )
// ==>> Step01 :- Understanding problem statement clearly. Then Only Move Forward (Because Everything is mentioned in problem statement).
// Step02 :- Think a lot about Solution. if you are confident that your solution might be correct Then only Move Forward
// Step03 :- First think of brute force then move to optimal approach
// Step04 :- Finally Code ( there is no any sense to code. if you not follow about steps okk)
///////////////////////////////////////////////////////////////////////////
public static void main(String[] args)throws IOException {
Reader scan=new Reader();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int t=scan.nextInt();
while (t-->0) {
int n=scan.nextInt();
long[] arr=new long[n];
for (int i = 0; i < n; i++) {
arr[i]=scan.nextLong();
}
long k=0;
for (int i = 0; i < n; i++) {
while (arr[i]%2==0){
arr[i]=arr[i]/2;
k++;
}
}
Arrays.sort(arr);
long ans= (long) Math.pow(2,k);
arr[n-1]=ans*arr[n-1];
long sum=0;
for (int i = 0; i < n; i++) {
sum+=arr[i];
}
bw.write(sum+"");
bw.newLine();
bw.flush();
}
}
//FAST READER
static class Reader {
public int BS = 1<<16;
public char NC = (char)0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public Reader() {
in = new BufferedInputStream(System.in, BS);
}
public Reader(String s) throws FileNotFoundException {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
public char nextChar(){
while(bId==size) {
try {
size = in.read(buf);
}catch(Exception e) {
return NC;
}
if(size==-1)return NC;
bId=0;
}
return (char)buf[bId++];
}
public int nextInt() {
return (int)nextLong();
}
public long nextLong() {
num=1;
boolean neg = false;
if(c==NC)c=nextChar();
for(;(c<'0' || c>'9'); c = nextChar()) {
if(c=='-')neg=true;
}
long res = 0;
for(; c>='0' && c <='9'; c=nextChar()) {
res = (res<<3)+(res<<1)+c-'0';
num*=10;
}
return neg?-res:res;
}
public double nextDouble() {
double cur = nextLong();
return c!='.' ? cur:cur+(cur < 0 ? -1*nextLong()/num : nextLong()/num);
}
public String next() {
StringBuilder res = new StringBuilder();
while(c<=32)c=nextChar();
while(c>32) {
res.append(c);
c=nextChar();
}
return res.toString();
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | c4c86b4af1e2798599370e677a695a25 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
public class solution {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
int i=0;
long count=0;long res=0;
for(i=0;i<n;i++)
{ while(arr[i]%2==0)
{count++;
arr[i]=arr[i]/2;
}
}
Arrays.sort(arr);
for(int k=0;k<n-1;k++)
{
res=res+arr[k];
}
res+= arr[n-1]*(long)Math.pow(2,count) ;
System.out.println(res);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | bf8b79f921f5b37b893dfe7f032b8376 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.System.out;
import java.util.*;
import java.io.*;
import java.math.*;
import java.util.Arrays;
import java.util.Collections;
public class divide_and_multiply
{
public static void main(String args[]) throws IOException
{
// long start = System.currentTimeMillis();
int u = 0;
BufferedReader br = new BufferedReader( new InputStreamReader(System.in));
// System.out.println("Enter t");
int t = Integer.parseInt(br.readLine());
do
{
// System.out.println("Enter n");
int n = Integer.parseInt(br.readLine());
long[] input = Arrays.stream(br.readLine().split("\\s+")).mapToLong(Long::parseLong).toArray();
//sort_longarray(input);
//long a = input[n-1];
int p =0;
for(int i=0;i<n;i++)
{
long b = input[i];
while(b%2 ==0)
{
b = b/2;
p++;
}
input[i] =b ;
}
sort_longarray(input);
input[n-1] = input[n-1]*(long)Math.pow(2,p);
long sum = 0;
for(int i=0;i<n;i++)
{
sum += input[i];
}
System.out.println(sum);
u++;
}
while(u<t);
// long end = System.currentTimeMillis();
// System.out.println("time taken is "+ (end - start) + "ms");
}
public static void sort_longarray(long[] input)
{
ArrayList<Long> a = new ArrayList<Long>();
for(int i = 0;i<input.length;i++)
{
a.add(input[i]);
}
Collections.sort(a);
for(int i=0;i<a.size();i++)
{
input[i] = a.get(i);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 30454e436eafe6f714e6676347c08753 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | // Online Java Compiler
// Use this editor to write, compile and run your Java code online
import java.util.*;
import java.io.*;
public class HelloWorld {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++) arr[i]=sc.nextInt();
int k=0;
for(int i=0;i<arr.length;i++){
long val=arr[i];
if(val%2==0){
while(val%2==0){
val=val/2;
arr[i]=val;
k++;
}
}
}
//35184372088846
Arrays.sort(arr);
//System.out.print(arr[14]);
while(k!=0){
arr[n-1]*=2;
//System.out.print(arr[14]+" ");
k--;
}
long sum=0;
for(int i=0;i<arr.length;i++){
//System.out.print(arr[i]+ " ");
sum+=arr[i];
}
System.out.println(sum);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a00c52400393f3b3c795d9795a5bedd7 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Divide_and_Multiply {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
int testCases = Integer.parseInt(reader.readLine());
for (int i = 0; i < testCases; i++) {
int n = Integer.parseInt(reader.readLine());
String[] line = reader.readLine().split(" ");
int[] array = new int[n];
int[] divide2 = new int[n];
int[] countArr = new int[n];
int total = 0;
for (int j = 0; j < n; j++) {
int count = 0;
array[j] = Integer.parseInt(line[j]);
int num = array[j];
while (num % 2 == 0) {
num = num / 2;
count++;
}
divide2[j] = num;
countArr[j] = count;
}
int max = divide2[0];
int maxIndex = 0;
for (int j = 0; j < n; j++) {
if (max < divide2[j]) {
max = divide2[j];
maxIndex = j;
}
}
for (int j = 0; j < n; j++) {
total += countArr[j];
}
long bigNum = max * (long) Math.pow(2, total);
for (int j = 0; j < n; j++) {
if (j != maxIndex) {
bigNum += divide2[j];
}
}
System.out.println(bigNum);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 062dc23bb87e320f68cde1036f928e5d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.text.DecimalFormat;
import java.util.*;
public class Codeforces {
static int mod= 1000000007;
public static void main(String[] args) throws Exception {
PrintWriter out=new PrintWriter(System.out);
FastScanner fs=new FastScanner();
int t=fs.nextInt();
outer:while(t-->0) {
int n=fs.nextInt();
long arr[]=fs.lreadArray(n);
if(n==1) {
out.println(arr[0]);
continue ;
}
long p=0;
for(int i=0;i<n;i++) {
while(arr[i]%2==0) {
arr[i]/=2;
p++;
}
}
Arrays.sort(arr);
long mul=1;
while(p-->0) {
mul*=2;
}
arr[n-1]*= mul;
long sum=0;
for(int i=0;i<n;i++) sum+=arr[i];
out.println(sum);
}
out.close();
}
static long pow(long a,long b) {
if(b<=0) return 1;
long res=1;
while(b!=0) {
if((b&1)!=0) {
res*=a;
res%=mod;
}
a*=a;
a%=mod;
b=b>>1;
}
return res;
}
static int gcd(int a,int b) {
if(b==0) return a;
return gcd(b,a%b);
}
static long nck(int n,int k) {
if(k>n) return 0;
long res=1;
res*=fact(n);
res%=mod;
res*=modInv(fact(k));
res%=mod;
res*=modInv(fact(n-k));
res%=mod;
return res;
}
static long fact(long n) {
// return fact[(int)n];
long res=1;
for(int i=2;i<=n;i++) {
res*=i;
res%=mod;
}
return res;
}
static long modInv(long n) {
return pow(n,mod-2);
}
static void sort(int[] a) {
//suffle
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n);
int temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
//then sort
Arrays.sort(a);
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long[] lreadArray(int n) {
long a[]=new long[n];
for(int i=0;i<n;i++) a[i]=nextLong();
return a;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 03379ea28a1191b8debdd2adc69b20c0 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.Arrays;
import java.util.StringTokenizer;
public class Codeforces1609A {
private static InputReader in = new InputReader(System.in);
private static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
BigInteger[] arr = new BigInteger[n];
for (int i = 0; i < n; i++) {
arr[i] = BigInteger.valueOf(in.nextInt());
}
int cnt = 0;
for (int i = 0; i < n; i++) {
while (arr[i].mod(BigInteger.TWO).equals(BigInteger.ZERO)) {
arr[i] = arr[i].divide(BigInteger.TWO);
cnt++;
}
}
Arrays.sort(arr);
for (int i = 0; i < cnt; i++) {
arr[n-1] = arr[n-1].multiply(BigInteger.TWO);
}
BigInteger res = BigInteger.ZERO;
for (int i = 0; i < n; i++) {
res = res.add(arr[i]);
}
out.println(res);
}
out.flush();
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 770a617a78dcf17425e74cfbd73d7bab | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Arrays;
import java.util.Scanner;
public class devidee {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int[] arr= new int[n];
for(int i=0; i<n; i++){
arr[i] = sc.nextInt();
}
int count=0;
for(int i=0; i<n; i++){
while(arr[i]%2==0&&arr[i]>1){
arr[i]/=2;
count++;
}
}
Arrays.sort(arr);
long sum =0;
for(int i=0; i<n-1; i++)
sum+=arr[i];
sum = (long) (sum + arr[n-1]*Math.pow(2,count));
System.out.println(sum);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 503c6a26c2a3438be999098773bc6232 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.lang.*;
import java.io.*;
public class A {
public static void main(String[] args) throws java.lang.Exception {
try {
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int arr[]=new int[n];
long p=1,sum=0;
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
while(arr[i]%2==0)
{
p*=2;
arr[i]/=2;
}
}
Arrays.sort(arr);
long q=arr[n-1]*p;
for(int i=0;i<n-1;i++)
{
sum+=arr[i];
}
sum+=q;
System.out.println(sum);
}
} catch (Exception e) {
} finally {
return;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 0509155a4627cba70804837b49913f22 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
static long mod = (int)1e9+7;
static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out));
public static void main (String[] args) throws java.lang.Exception
{
FastReader sc =new FastReader();
int t=sc.nextInt();
// int t=1;
while(t-->0)
{
int n=sc.nextInt();
int a[]=sc.readArray(n);
long count=1;
long sum=0;
for(int i=0;i<n;i++)
{
while(a[i]%2==0)
{
a[i]/=2;
count*=2;
}
}
radixSort2(a);
for(int i=0;i<n-1;i++)
{
sum+=a[i];
// out.print(a[i]+" ");
}
// out.println(count);
sum+=a[n-1]*count;
out.println(sum);
}
out.flush();
}
static int divisible(int n)
{
int count=0;
while(n%2==0)
{
count++;
n/=2;
}
return count;
}
static int findfrequencies(int a[],int n)
{
int count=0;
for(int i=0;i<a.length;i++)
{
if(a[i]==n)
{
count++;
}
}
return count;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
float nextFloat()
{
return Float.parseFloat(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readArrayLong(int n) {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
}
public static int[] radixSort2(int[] a)
{
int n = a.length;
int[] c0 = new int[0x101];
int[] c1 = new int[0x101];
int[] c2 = new int[0x101];
int[] c3 = new int[0x101];
for(int v : a) {
c0[(v&0xff)+1]++;
c1[(v>>>8&0xff)+1]++;
c2[(v>>>16&0xff)+1]++;
c3[(v>>>24^0x80)+1]++;
}
for(int i = 0;i < 0xff;i++) {
c0[i+1] += c0[i];
c1[i+1] += c1[i];
c2[i+1] += c2[i];
c3[i+1] += c3[i];
}
int[] t = new int[n];
for(int v : a)t[c0[v&0xff]++] = v;
for(int v : t)a[c1[v>>>8&0xff]++] = v;
for(int v : a)t[c2[v>>>16&0xff]++] = v;
for(int v : t)a[c3[v>>>24^0x80]++] = v;
return a;
}
static int[] EvenOddArragement(int a[])
{
ArrayList<Integer> list=new ArrayList<>();
for(int i=0;i<a.length;i++)
{
if(a[i]%2==0)
{
list.add(a[i]);
}
}
for(int i=0;i<a.length;i++)
{
if(a[i]%2!=0)
{
list.add(a[i]);
}
}
for(int i=0;i<a.length;i++)
{
a[i]=list.get(i);
}
return a;
}
static int gcd(int a, int b) {
while (b != 0) {
int t = a;
a = b;
b = t % b;
}
return a;
}
static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm)
{
// Create a list from elements of HashMap
List<Map.Entry<Integer, Integer> > list =
new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() {
public int compare(Map.Entry<Integer, Integer> o1,
Map.Entry<Integer, Integer> o2)
{
return (o1.getValue()).compareTo(o2.getValue());
}
});
// put data from sorted list to hashmap
HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>();
for (Map.Entry<Integer, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
static int DigitSum(int n)
{
int r=0,sum=0;
while(n>=0)
{
r=n%10;
sum=sum+r;
n=n/10;
}
return sum;
}
static boolean checkPerfectSquare(int number)
{
double sqrt=Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
static boolean isPowerOfTwo(int n)
{
if(n==0)
return false;
return (int)(Math.ceil((Math.log(n) / Math.log(2)))) == (int)(Math.floor(((Math.log(n) / Math.log(2)))));
}
static boolean isPrime2(int n)
{
if (n <= 1)
{
return false;
}
if (n == 2)
{
return true;
}
if (n % 2 == 0)
{
return false;
}
for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2)
{
if (n % i == 0)
{
return false;
}
}
return true;
}
static class P implements Comparable<P> {
int i, j;
public P(int i, int j) {
this.i=i;
this.j=j;
}
public int compareTo(P o) {
return Integer.compare(i, o.i);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 3e30611aefd0ab23bc2c00e6ca9971f7 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | //package com.company;
import java.io.*;
import java.util.*;
public class Main {
static long mod =(long)(1e9+7);
public static void main(String[] args)
throws IOException {
FastScanner reader = new FastScanner();
int t = reader.nextInt();
while(t-- > 0){
int n = reader.nextInt();
int[] arr = new int[n];
for(int i=0;i<n;i++) arr[i] = reader.nextInt();
long sum = 0;
long evenMul = 1;
for(int i=0;i<n;i++) {
while(arr[i] % 2 == 0){
evenMul *= 2;
arr[i] /=2;
}
}
Arrays.sort(arr);
for(int i=0;i<n-1;i++) sum += arr[i];
sum += arr[n-1] * evenMul;
System.out.println(sum);
}
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
}else{
ptr = 0;
try {
buflen = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
public boolean hasNext() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext()) throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while(true){
if ('0' <= b && b <= '9') {
n *= 10;
n += b - '0';
}else if(b == -1 || !isPrintableChar(b)){
return minus ? -n : n;
}else{
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() { return Double.parseDouble(next());}
}
static class UnionFind {
private int[] par;
private int[] rank;
public UnionFind(int n) {
par = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {
par[i] = i;
rank[i] = 0;
}
}
public int par(int x) { return par[x]; }
public int find(int x) {
if (par[x] == x) {
return x;
} else {
return par[x] = find(par[x]);
}
}
public boolean isSame(int x, int y) { return find(x)==find(y); }
public boolean union(int x, int y) {
x = find(x);
y = find(y);
if (x == y) {
return false;
}
if (rank[x] < rank[y]) {
par[x] = y;
} else {
par[y] = x;
if (rank[x] == rank[y]) {
rank[x]++;
}
}
return true;
}
}
static long getSum(int x2, int y2, int x1, int y1,long[][] A){
return A[x2][y2] - A[x1][y2] - A[x2][y1] + A[x1][y1];
}
// cumulative sum
// for(int i=1; i<=n; i++){
// for(int j=1; j<=m; j++){
// sum[i][j] = reader.nextLong();
// sum[i][j] += sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1];
// }
// }
static long fastPowMod(long x, long n, long mod) {
if(n == 0) return 1;
x %= mod;
long half = fastPowMod(x, n / 2, mod);
long res = half * half % mod;
if(n % 2 != 0) {
return res * x % mod;
}
return res;
}
public static int[][] nextIntMatrix(int height, int width,FastScanner reader) throws IOException {
int[][] mat = new int[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++) {
mat[h][w] = reader.nextInt();
}
return mat;
}
static class Score{
int total;
int id;
public Score(int id) {
this.total = 0;
this.id = id;
}
}
static int dfs(int start, ArrayList<ArrayList<Integer> > adj,boolean[] vis){
int cnt = 1;
vis[start] = true;
for(int i=0;i<adj.get(start).size();i++){
int next = adj.get(start).get(i);
if(vis[next] == false){
cnt += dfs(next,adj,vis);
}
}
return cnt;
}
static void swap(int[] nums, int i ,int j){
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
// 1 2 4 9
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 703dcee3f2cb19b0bc61e23896d06ad1 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int T = Integer.parseInt(br.readLine());
for(int t = 0; t < T; t++)
{
int n = Integer.parseInt(br.readLine());
long[] arr = new long[n];
String[] line = br.readLine().split(" ");
int p = 0;
for(int i = 0; i < n; i++)
{
arr[i] = Integer.parseInt(line[i]);
while(arr[i]%2 == 0)
{
arr[i] /= 2;
++p;
}
}
Arrays.sort(arr);
while(p > 0)
{
arr[n-1] *= 2;
p--;
}
long s = 0;
for(int i = 0; i < n; i++)
s += arr[i];
System.out.println(s);
}
br.close();
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | f03f18f2dae554abd322affb8ceb5abe | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.Locale;
import java.util.StringTokenizer;
import java.util.stream.IntStream;
public class E {
private void solve() {
int t = readInt();
for(int q = 0; q < t; q++) {
int n = readInt();
long[] arr = new long[n];
long count = 0;
for(int i = 0; i < n; i++) {
arr[i] = readLong();
}
for(int i = 0; i < n; i++) {
while(arr[i] % 2 == 0 && arr[i] != 0) {
count++;
arr[i] = arr[i]/2;
}
}
int max = 0;
for(int i = 0; i < n; i++) {
if(arr[i] > arr[max]) max = i;
}
arr[max] = arr[max] * binpow(2, count);
long sum = 0;
for (int i = 0; i < n; i++) {
sum+=arr[i];
}
out.println(sum);
}
}
//////////////////////////////////////////////////////////////////
long sqrtLong(long x) {
long root = (long) Math.sqrt(x);
while (root * root > x) --root;
while ((root + 1) * (root + 1) <= x) ++root;
return root;
}
int gcd(int a, int b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
int lcm(int a, int b) {
return a / gcd(a, b) * b;
}
int phi(int n) {
int result = n;
for (int i = 2; i * i <= n; ++i)
if (n % i == 0) {
while (n % i == 0)
n /= i;
result -= result / i;
}
if (n > 1)
result -= result / n;
return result;
}
int factmod(int n, int p) {
int res = 1;
while (n > 1) {
res = (res * ((n / p) % 2 == 1 ? p - 1 : 1)) % p;
for (int i = 2; i <= n % p; ++i)
res = (res * i) % p;
n /= p;
}
return res % p;
}
long binpow(long a, long n) {
long res = 1;
while (n != 0) {
if ((n & 1) != 0)
res *= a;
a *= a;
n >>= 1;
}
return res;
}
String solPyatnashki() {
int a[] = new int[16];
for (int i = 0; i < 16; ++i)
a[i] = readInt();
int inv = 0;
for (int i = 0; i < 16; ++i)
if (a[i] != 0)
for (int j = 0; j < i; ++j)
if (a[j] > a[i])
++inv;
for (int i = 0; i < 16; ++i)
if (a[i] == 0)
inv += 1 + i / 4;
return ((inv & 1) != 0 ? "No Solution" : "Solution Exists");
}
private static int binarySearch(int[] sortedArray, int valueToFind, int low, int high) {
int index = -1;
while (low <= high) {
int mid = (low + high) / 2;
if (sortedArray[mid] < valueToFind) {
low = mid + 1;
} else if (sortedArray[mid] > valueToFind) {
high = mid - 1;
} else if (sortedArray[mid] == valueToFind) {
index = mid;
break;
}
}
return index;
}
boolean isPrime(int number) {
return IntStream.rangeClosed(2, (int)sqrtLong(number) + 1).noneMatch(i -> number % i == 0) || number == 2;
}
//////////////////////////////////////////////////////////////////
private boolean yesNo(boolean yes) {
return yesNo(yes, "YES", "NO");
}
private boolean yesNo(boolean yes, String yesString, String noString) {
out.println(yes ? yesString : noString);
return yes;
}
//////////////////////////////////////////////////////////////////
private long readLong() {
return Long.parseLong(readString());
}
private int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; ++i) a[i] = readInt();
return a;
}
private int readInt() {
return Integer.parseInt(readString());
}
private String readString() {
while (!tok.hasMoreTokens()) {
String nextLine = readLine();
if (null == nextLine) return null;
tok = new StringTokenizer(nextLine);
}
return tok.nextToken();
}
private String readLine() {
try {
return in.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
//////////////////////////////////////////////////////////////////
private BufferedReader in;
private StringTokenizer tok;
private PrintWriter out;
private void initFileIO(String inputFileName, String outputFileName) throws FileNotFoundException {
in = new BufferedReader(new FileReader(inputFileName));
out = new PrintWriter(outputFileName);
}
private void initConsoleIO() throws IOException {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
private void initIO() throws IOException {
Locale.setDefault(Locale.US);
String fileName = "";
if (!fileName.isEmpty()) {
initFileIO(fileName + ".in", fileName + ".out");
} else {
if (new File("input.txt").exists()) {
initFileIO("input.txt", "output.txt");
} else {
initConsoleIO();
}
}
tok = new StringTokenizer("");
}
//////////////////////////////////////////////////////////////////
private void run() {
try {
long timeStart = System.currentTimeMillis();
initIO();
solve();
out.close();
long timeEnd = System.currentTimeMillis();
System.err.println("Time(ms) = " + (timeEnd - timeStart));
} catch (Exception e) {
e.printStackTrace();
throw new RuntimeException(e);
}
}
public static void main(String[] args) {
new E().run();
}
///////////////////////////////////////////////////////////////////
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | caab1d0949d51e4d939205654f441ab8 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.time.Duration;
import java.time.Instant;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.StringTokenizer;
import java.util.TreeSet;
@SuppressWarnings("unused")
public class A {
static boolean DEBUG = false;
public static void main(String[] args) throws IOException {
Instant start = Instant.now();
if (args.length == 2) {
System.setIn(new FileInputStream(new File("D:\\program\\javaCPEclipse\\CodeForces\\src\\input.txt")));
// System.setOut(new PrintStream(new File("output.txt")));
System.setErr(new PrintStream(new File("D:\\program\\javaCPEclipse\\CodeForces\\src\\error.txt")));
DEBUG = true;
}
Reader fs = new Reader();
PrintWriter pw = new PrintWriter(System.out);
int t = fs.nextInt();
while (t-- > 0) {
int n = fs.nextInt();
int a[] = fs.readArray(n);
Arrays.sort(a);
int b[] = Arrays.copyOfRange(a, 0, n);
int maxx = Integer.MIN_VALUE;
int cnt = 0;
for (int i = 0; i < n; i++) {
while (a[i] != 0) {
if (a[i] % 2 == 0) {
cnt++;
a[i] >>= 1;
continue;
}
break;
}
}
long ans = 0;
Arrays.sort(a);
for(int i = 0 ; i < n - 1 ; i++) {
ans += a[i];
}
ans += a[n-1]*Math.pow(2, cnt);
pw.println(ans);
}
Instant end = Instant.now();
if (DEBUG) {
pw.println(Duration.between(start, end));
}
pw.close();
}
public static void print(long a, long b, long c, PrintWriter pw) {
pw.println(a + " " + b + " " + c);
return;
}
static class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
int[][] read2Array(int n, int m) {
int a[][] = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = nextInt();
}
}
return a;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | fb3fa4bf52038efc1689c7299da7b304 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.lang.Math.ceil;
import static java.util.Arrays.sort;
public class C {
public static void main(String[] args) throws IOException {
int t = ri();
while (t-- > 0) {
int n = ri();
long a[] = rla(n);
long ans = 0;
for (int j = 0; j < n; j++) {
long sum = 0;
long cnt = 0;
for (int i = 0 ; i < n ; i++){
if (i == j) continue;
long temp = a[i];
while (temp%2 == 0){
cnt++;
temp/=2;
}
sum+=temp;
}
sum+= (long) Math.pow(2,cnt)*a[j];
ans =Math.max(ans,sum);
}
prln(ans);
}
close();
}
static boolean check(int[] a, int low, int high, int val) {
while (low <= high) {
if (a[low] != a[high] && a[low] != val && a[high] != val) {
return false;
}
if (a[low] == val) {
low++;
}
if (a[high] == val) {
high--;
}
if (a[high] == a[low]) {
high--;
low++;
}
}
return true;
}
static BufferedReader __i = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __o = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __r = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final long LMAX = 9223372036854775807L;
// math util
static int minof(int a, int b, int c) {
return min(a, min(b, c));
}
static int minof(int... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return min(x[0], x[1]);
if (x.length == 3) return min(x[0], min(x[1], x[2]));
int min = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i];
return min;
}
static long minof(long a, long b, long c) {
return min(a, min(b, c));
}
static long minof(long... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return min(x[0], x[1]);
if (x.length == 3) return min(x[0], min(x[1], x[2]));
long min = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i];
return min;
}
static int maxof(int a, int b, int c) {
return max(a, max(b, c));
}
static int maxof(int... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return max(x[0], x[1]);
if (x.length == 3) return max(x[0], max(x[1], x[2]));
int max = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i];
return max;
}
static long maxof(long a, long b, long c) {
return max(a, max(b, c));
}
static long maxof(long... x) {
if (x.length == 1) return x[0];
if (x.length == 2) return max(x[0], x[1]);
if (x.length == 3) return max(x[0], max(x[1], x[2]));
long max = x[0];
for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i];
return max;
}
static int powi(int a, int b) {
if (a == 0) return 0;
int ans = 1;
while (b > 0) {
if ((b & 1) > 0) ans *= a;
a *= a;
b >>= 1;
}
return ans;
}
static long powl(long a, int b) {
if (a == 0) return 0;
long ans = 1;
while (b > 0) {
if ((b & 1) > 0) ans *= a;
a *= a;
b >>= 1;
}
return ans;
}
static int fli(double d) {
return (int) d;
}
static int cei(double d) {
return (int) ceil(d);
}
static long fll(double d) {
return (long) d;
}
static long cel(double d) {
return (long) ceil(d);
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
static long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
static int[] exgcd(int a, int b) {
if (b == 0) return new int[]{1, 0};
int[] y = exgcd(b, a % b);
return new int[]{y[1], y[0] - y[1] * (a / b)};
}
static long[] exgcd(long a, long b) {
if (b == 0) return new long[]{1, 0};
long[] y = exgcd(b, a % b);
return new long[]{y[1], y[0] - y[1] * (a / b)};
}
static int randInt(int min, int max) {
return __r.nextInt(max - min + 1) + min;
}
static long mix(long x) {
x += 0x9e3779b97f4a7c15L;
x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L;
x = (x ^ (x >> 27)) * 0x94d049bb133111ebL;
return x ^ (x >> 31);
}
// array util
static void reverse(int[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
int swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(long[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
long swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(double[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
double swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void reverse(char[] a) {
for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {
char swap = a[i];
a[i] = a[n - i - 1];
a[n - i - 1] = swap;
}
}
static void shuffle(int[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
int swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void shuffle(long[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
long swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void shuffle(double[] a) {
int n = a.length - 1;
for (int i = 0; i < n; ++i) {
int ind = randInt(i, n);
double swap = a[i];
a[i] = a[ind];
a[ind] = swap;
}
}
static void rsort(int[] a) {
shuffle(a);
sort(a);
}
static void rsort(long[] a) {
shuffle(a);
sort(a);
}
static void rsort(double[] a) {
shuffle(a);
sort(a);
}
static int[] copy(int[] a) {
int[] ans = new int[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static long[] copy(long[] a) {
long[] ans = new long[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static double[] copy(double[] a) {
double[] ans = new double[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static char[] copy(char[] a) {
char[] ans = new char[a.length];
for (int i = 0; i < a.length; ++i) ans[i] = a[i];
return ans;
}
static void resetBoolean(boolean[] vis, int n) {
for (int i = 0; i < n; i++) {
vis[i] = false;
}
}
static void setMinusOne(int[][] matrix) {
int row = matrix.length;
int col = matrix[0].length;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
matrix[i][j] = -1;
}
}
}
// input
static void r() throws IOException {
input = new StringTokenizer(rline());
}
static int ri() throws IOException {
return Integer.parseInt(rline().split(" ")[0]);
}
static long rl() throws IOException {
return Long.parseLong(rline());
}
static double rd() throws IOException {
return Double.parseDouble(rline());
}
static int[] ria(int n) throws IOException {
int[] a = new int[n];
r();
for (int i = 0; i < n; ++i) a[i] = ni();
return a;
}
static void ria(int[] a) throws IOException {
int n = a.length;
r();
for (int i = 0; i < n; ++i) a[i] = ni();
}
static int[] riam1(int n) throws IOException {
int[] a = new int[n];
r();
for (int i = 0; i < n; ++i) a[i] = ni() - 1;
return a;
}
static void riam1(int[] a) throws IOException {
int n = a.length;
r();
for (int i = 0; i < n; ++i) a[i] = ni() - 1;
}
static long[] rla(int n) throws IOException {
long[] a = new long[n];
r();
for (int i = 0; i < n; ++i) a[i] = nl();
return a;
}
static void rla(long[] a) throws IOException {
int n = a.length;
r();
for (int i = 0; i < n; ++i) a[i] = nl();
}
static double[] rda(int n) throws IOException {
double[] a = new double[n];
r();
for (int i = 0; i < n; ++i) a[i] = nd();
return a;
}
static void rda(double[] a) throws IOException {
int n = a.length;
r();
for (int i = 0; i < n; ++i) a[i] = nd();
}
static char[] rcha() throws IOException {
return rline().toCharArray();
}
static void rcha(char[] a) throws IOException {
int n = a.length, i = 0;
for (char c : rline().toCharArray()) a[i++] = c;
}
static String rline() throws IOException {
return __i.readLine();
}
static String n() {
return input.nextToken();
}
static int rni() throws IOException {
r();
return ni();
}
static int ni() {
return Integer.parseInt(n());
}
static long rnl() throws IOException {
r();
return nl();
}
static long nl() {
return Long.parseLong(n());
}
static double rnd() throws IOException {
r();
return nd();
}
static double nd() {
return Double.parseDouble(n());
}
// output
static void pr(int i) {
__o.print(i);
}
static void prln(int i) {
__o.println(i);
}
static void pr(long l) {
__o.print(l);
}
static void prln(long l) {
__o.println(l);
}
static void pr(double d) {
__o.print(d);
}
static void prln(double d) {
__o.println(d);
}
static void pr(char c) {
__o.print(c);
}
static void prln(char c) {
__o.println(c);
}
static void pr(char[] s) {
__o.print(new String(s));
}
static void prln(char[] s) {
__o.println(new String(s));
}
static void pr(String s) {
__o.print(s);
}
static void prln(String s) {
__o.println(s);
}
static void pr(Object o) {
__o.print(o);
}
static void prln(Object o) {
__o.println(o);
}
static void prln() {
__o.println();
}
static void pryes() {
prln("yes");
}
static void pry() {
prln("Yes");
}
static void prY() {
prln("YES");
}
static void prno() {
prln("no");
}
static void prn() {
prln("No");
}
static void prN() {
prln("NO");
}
static boolean pryesno(boolean b) {
prln(b ? "yes" : "no");
return b;
}
;
static boolean pryn(boolean b) {
prln(b ? "Yes" : "No");
return b;
}
static boolean prYN(boolean b) {
prln(b ? "YES" : "NO");
return b;
}
static void prln(int... a) {
for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i) ;
if (a.length > 0) prln(a[a.length - 1]);
else prln();
}
static void prln(long... a) {
for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i) ;
if (a.length > 0) prln(a[a.length - 1]);
else prln();
}
static void prln(double... a) {
for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i) ;
if (a.length > 0) prln(a[a.length - 1]);
else prln();
}
static <T> void prln(Collection<T> c) {
int n = c.size() - 1;
Iterator<T> iter = c.iterator();
for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i) ;
if (n >= 0) prln(iter.next());
else prln();
}
static void h() {
prln("hlfd");
flush();
}
static void flush() {
__o.flush();
}
static void close() {
__o.close();
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 607321ec10a5953c391a8f49acb4f26a | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
public class A {
public void prayGod() throws IOException {
int t = nextInt();
while (t-- > 0) {
int n = nextInt();
long[] a = nextLongArray(n);
sort(a);
long ret = 0;
for (int i = 0; i < n; i++) {
long[] curr = new long[n];
for (int j = 0; j < n; j++) {
curr[j] = a[j];
}
long ans = 0;
for (int j = 0; j < n; j++) {
if (j == i)
continue;
while (curr[j] % 2 == 0) {
curr[j] /= 2;
curr[i] *= 2;
}
}
for (int j = 0; j < n; j++) {
ans += curr[j];
}
ret = Math.max(ret, ans);
}
out.println(ret);
}
}
public long gcd(long x, long y) {
if (y == 0)
return x;
return gcd(y, x % y);
}
public void printVerdict(boolean verdict) {
if (verdict)
out.println(VERDICT_YES);
else
out.println(VERDICT_NO);
}
static final String VERDICT_YES = "Yes";
static final String VERDICT_NO = "No";
static final boolean RUN_TIMING = true;
static final boolean AUTOFLUSH = false;
static final boolean FILE_INPUT = false;
static final boolean FILE_OUTPUT = false;
static int iinf = 0x3f3f3f3f;
static long inf = (long) 1e18 + 10;
static long mod = (long) 1e9 + 7;
static char[] inputBuffer = new char[1 << 20];
static PushbackReader in = new PushbackReader(new BufferedReader(new InputStreamReader(System.in)), 1 << 20);
static PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)), AUTOFLUSH);
// int data-type
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = nextInt();
return arr;
}
public void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void printArray(int[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println();
}
// long data-type
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
return arr;
}
public static void printArray(long[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println();
}
public void sort(long[] a) {
shuffle(a);
Arrays.sort(a);
}
// double data-type
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public double[] nextDoubleArray(int n) throws IOException {
double[] arr = new double[n];
for (int i = 0; i < n; i++)
arr[i] = nextDouble();
return arr;
}
public static void printArray(double[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println();
}
// Generic type
public <T> void sort(T[] a) {
shuffle(a);
Arrays.sort(a);
}
public static <T> void printArray(T[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println();
}
public String next() throws IOException {
int len = 0;
int c;
do {
c = in.read();
} while (Character.isWhitespace(c) && c != -1);
if (c == -1) {
throw new NoSuchElementException("Reached EOF");
}
do {
inputBuffer[len] = (char) c;
len++;
c = in.read();
} while (!Character.isWhitespace(c) && c != -1);
while (c != '\n' && Character.isWhitespace(c) && c != -1) {
c = in.read();
}
if (c != -1 && c != '\n') {
in.unread(c);
}
return new String(inputBuffer, 0, len);
}
public String nextLine() throws IOException {
int len = 0;
int c;
while ((c = in.read()) != '\n' && c != -1) {
if (c == '\r') {
continue;
}
inputBuffer[len] = (char) c;
len++;
}
return new String(inputBuffer, 0, len);
}
public boolean hasNext() throws IOException {
String line = nextLine();
if (line.isEmpty()) {
return false;
}
in.unread('\n');
in.unread(line.toCharArray());
return true;
}
public void shuffle(int[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int j = (int) (Math.random() * (n - i));
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
public void shuffle(long[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int j = (int) (Math.random() * (n - i));
long temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
public void shuffle(Object[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int j = (int) (Math.random() * (n - i));
Object temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
public static void main(String[] args) throws IOException {
if (FILE_INPUT)
in = new PushbackReader(new BufferedReader(new FileReader(new File("output.txt"))), 1 << 20);
if (FILE_OUTPUT)
out = new PrintWriter(new FileWriter(new File("output.txt")));
long time = 0;
time -= System.nanoTime();
new A().prayGod();
time += System.nanoTime();
if (RUN_TIMING)
System.err.printf("%.3f ms%n", time / 1000000.0);
out.flush();
in.close();
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 57d325bc5f94a2b74aca122e99523e73 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.math.*;
import java.util.*;
import java.io.*;
public class main
{
static Map<String,Integer> map=new HashMap<>();
static int[] parent;
static int[] size;
public static void main(String[] args)
{
InputReader in = new InputReader(System.in);
PrintWriter pw = new PrintWriter(System.out);
// FileReader fr=new FileReader("/sagar.txt");
// InputStreamReader isr=new InputStreamReader(fr);
// BufferedReader isr=new BufferedReader(fr);
// FileWriter fw=new FileWriter("ProblemA1_ans.txt");
// BufferedWriter bw=new BufferedWriter(fw);
final int mod=1000000007;
// int test_case =Integer.parseInt(isr.read());
int test_case=in.nextInt();
// int test_case=1;
StringBuilder sb=new StringBuilder();
// long mod=998244353;
long[] fact=new long[100001];
fact[0]=1;
fact[1]=1;
fact[2]=1;
for(int i=3;i<fact.length;i++)
{
fact[i]=((fact[i-1])%mod*(i%mod))%mod;
//System.out.println(fact[i]);
}
for(int t1=0;t1<test_case;t1++)
{
int n=in.nextInt();
long[] a=in.nextlongArray(n);
long[] b=a.clone();
long[] count=new long[n];
Arrays.sort(a);
long sum=0;
long total=0;
for(int i=0;i<n;i++)
{
while(a[i]%2==0)
{
a[i]/=2;
count[i]++;
total++;
}
sum+=a[i];
}
long max=0;
// System.out.println(sum+" "+total);
for(int i=0;i<n;i++)
{
if(total!=0)
{
// sum-=a[i];
long temp=a[i];
for(int j=0;j<total;j++)
{
a[i]*=2;
}
// sum+=a[i]*total;
max=Math.max(max,sum+a[i]-temp);
// System.out.println(i+" "+max);
}else{
max=Math.max(max,sum);
}
}
System.out.println(max);
// int c=0;
// for(int i=0;i<n;i++)
// {
// if(a[i]%2==0)
// {
// c++;
// }
// }
// boolean f=(c==n);
// for(int i=0;i<n-1;i++)
// {
// while(a[i]%2==0)
// {
// a[i]=a[i]/2;
// a[n-1]*=2;
// }
// }
// long sum=0;
// for(int i=0;i<n;i++)
// {
// sum+=a[i];
// }
// if(!f)
// {
// long temp=0;
// for(int i=n-1;i>=0;i--)
// {
// if(b[i]%2!=0)
// {
// temp=b[i];
// b[i]=0;
// break;
// }
// }
// for(int i=0;i<n;i++)
// {
// while(b[i]!=0&&b[i]%2==0)
// {
// b[i]=b[i]/2;
// temp*=2;
// }
// }
// long sum1=temp;
// // System.out.println(sum1);
// for(int i=0;i<n;i++)
// {
// sum1+=b[i];
// }
// sum=Math.max(sum1,sum);
// }
}
pw.flush();
pw.close();
}
static void solve(int[] a,List<Integer> ls,int n,boolean[] f,int ans,int c,int r,int k)
{
if(k==n)
{
ls.add(ans);
max=Math.max(ans,max);
return ;
}
for(int i=0;i<n;i++)
{
if(f[i])
{
continue;
}
f[i]=true;
for(int j=0;j<n;j++)
{
if(f[j])
{
continue;
}
int ans1=(GCD(a[i],a[j])*r);
ans+=ans1;
f[j]=true;
solve(a,ls,n,f,ans,0,r+1,k+2);
ans-=ans1;
f[j]=false;
}
f[i]=false;
}
}
static int lower(long[] ages, long target) {
if (ages == null || ages.length == 0) {
return 0;
}
int l = 0;
int r = ages.length - 1;
if (target <= ages[0]) {
return 0;
}
if (target > ages[r]) {
return -1;
}
while (l < r) {
int m = l + (r - l ) / 2 ;
if (ages[m] >= target) {
r = m;
}else {
l = m + 1;
}
}
return r;
}
static int upper(long[] ages, long target) {
if (ages == null || ages.length == 0) {
return 0;
}
int l = 0;
int r = ages.length - 1;
if (target < ages[0]) {
return -1;
}
if (target >= ages[r]) {
return r;
}
while (l < r - 1) {
int m = l + (r - l ) / 2 ;
if (ages[m] <= target) {
l = m;
}else {
r = m - 1;
}
}
return ages[r] <= target ? r : l;
}
static int LowerBound(long a[], long x) { // x is the target value or key
int l=0,r=a.length;
while(l<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m+1;
}
if(l<a.length&&a[l]<x)
{
l++;
}
return l;
}
static int UpperBound(long a[], long x) {// x is the key or target value
int l=0,r=a.length;
while(l<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m+1;
else r=m;
}
if(l<a.length&&a[l]<=x)
{
l++;
}
return l;
}
static int max=0;
static void ProblemA2(boolean f,int c,int min,char key,Map<Character,List<Character>> map,char target,char temp,A2 a2,Set<Character> set)
{
// System.out.println(temp);
if(map.containsKey(key))
{
set.add(key);
for(Character value:map.get(key))
{
c++;
if(set.contains(value))
{
return;
}
// System.out.println(value+" "+target);
if(value==target)
{
f=f||true;
min=Math.min(c,min);
// System.out.println(f+" "+min);
a2.f=f||a2.f;
a2.min=Math.min(min,a2.min);
}else if(value==temp){
f=f||false;
a2.f=f||a2.f;
a2.min=Math.min(min,a2.min);
break;
}else{
ProblemA2(f,c,min,value,map,target,temp,a2,set);
// return a2;
}
// set.remove(value);
c--;
}
set.remove(key);
}
// System.out.println(a2.f+" "+a2.min);
}
static class A2{
boolean f;
int min=0;
A2(boolean f,int min)
{
this.f=f;
this.min=min;
}
}
static boolean backtrack(int i,int j,int[][] a,int[][] gol,int n,Set<String> set,int parentx,int parenty)
{
System.out.println(i+" "+j);
if(Arrays.equals(a,gol))
{
return true;
}
boolean f=false;
int[] dx={-1,0,0,1};
int[] dy={0,-1,1,0};
set.add(i+"root"+j);
for(int k=0;k<dx.length;k++)
{
if((i+dx[k])>=0&&(i+dx[k])<n&&(j+dy[k])>=0&&(j+dy[k])<n)
{
if(i+dx[k]==parentx&&j+dy[k]==parenty||set.contains((i+dx[k])+"root"+(j+dy[k])))
{
continue;
}
// System.out.println((i+dx[k])+" "+(j+dy[k]));
int temp=a[i][j];
a[i][j]=a[i+dx[k]][j+dy[k]];
a[i+dx[k]][j+dy[k]]=temp;
f=backtrack(i+dx[k],j+dy[k],a,gol,n,set,i,j);
if(f)
{
System.out.println(temp+" "+a[i][j]);
return f;
}
temp=a[i][j];
a[i][j]=a[i+dx[k]][j+dy[k]];
a[i+dx[k]][j+dy[k]]=temp;
}
}
// visited[i][j]=false;
return f;
}
static int find_parent(int p)
{
if(p==parent[p])
{
return p;
}
return parent[p]=find_parent(parent[p]);
}
static void set_union(int x,int y)
{
if(size[x]<size[y])
{
swap(x,y);
}
parent[y]=x;
size[x]+=size[y];
}
static boolean bipartite(int i,List<List<Integer>> ls,boolean[] visited,int[] color, int x)
{
color[i]=x;
visited[i]=true;
for(int x1:ls.get(i))
{
// System.out.println(visited[x1]+" "+color[x1]==x);
if(visited[x1]&&color[x1]==x)
{
return false;
}
if(!visited[x1])
{
return bipartite(x1,ls,visited,color,(x==-1?1:-1));
}
}
return true;
}
static boolean isDirectedCycle(List<Integer> stack,boolean[] visited,List<List<Integer>> ls)
{
int i=stack.get(stack.size()-1);
visited[i]=true;
for(int x:ls.get(i))
{
stack.add(x);
if(!visited[x]&&isDirectedCycle(stack,visited,ls))
{
return true;
}
if(stack.contains(x))
{
return true;
}
stack.remove(stack.size()-1);
}
return false;
}
static boolean isCyclic(int i,List<List<Integer>> ls,boolean[] visited,int parent)
{
visited[i]=true;
for(int x:ls.get(i))
{
if(x!=parent){
if(visited[x])
{
return true;
}
if(!visited[x]&&isCyclic(x,ls,visited,i))
{
return true;
}
}
}
return false;
}
static void dfs(List<List<Integer>> ls,boolean[] f,List<Integer> stack)
{
int x=stack.remove(stack.size()-1);
System.out.print(x+"->");
f[x]=true;
for(int x1:ls.get(x))
{
if(!f[x1])
{
stack.add(x1);
dfs(ls,f,stack);
}
}
}
static int factorial(int n,int mod)
{
long res = 1;
for (int i=2; i<=n; i++)
res=((res%mod)*(i%mod))%mod;
return (int)res;
}
static int length(long l)
{
int c=0;
while(l>0)
{
c++;
l/=2;
}
return c;
}
static int CeilIndex(int A[], int l, int r, int key)
{
while (r - l > 1) {
int m = l + (r - l) / 2;
if (A[m] <= key)
r = m;
else
l = m;
}
return r;
}
static int LongestIncreasingSubsequenceLength(int A[], int size)
{
// Add boundary case, when array size is one
int[] tailTable = new int[size];
int len; // always points empty slot
tailTable[0] = A[0];
len = 1;
for (int i = 1; i < size; i++) {
if (A[i] > tailTable[0])
tailTable[0] = A[i];
else if (A[i] <= tailTable[len - 1])
tailTable[len++] = A[i];
else
tailTable[CeilIndex(tailTable, -1, len - 1, A[i])] = A[i];
}
return len;
}
static int[] next(int arr[], int n) {
Stack<Integer> S = new Stack<>();
int[] next=new int[n];
for (int i = n-1; i >= 0; i--) {
while (!S.empty() && arr[S.peek()] <= arr[i]) {
S.pop();
}
if (S.empty()) {
next[i]=-1;
}
else
{
next[i]=S.peek();
}
S.push(i);
}
return next;
}
static int[] back(int arr[], int n) {
Stack<Integer> S = new Stack<>();
int[] back=new int[n];
for (int i = 0; i < n; i++) {
while (!S.empty() && arr[S.peek()] < arr[i]) {
S.pop();
}
if (S.empty()) {
back[i]=-1;
}
else
{
back[i]=S.peek();
}
S.push(i);
}
return back;
}
static class InputReader
{
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int snext()
{
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars)
{
curChar = 0;
try
{
snumChars = stream.read(buf);
}
catch (IOException e)
{
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = snext();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n)
{
int a[] = new int[n];
for (int i = 0; i < n; i++)
{
a[i] = nextInt();
}
return a;
}
public long[] nextlongArray(int n)
{
long a[] = new long[n];
for (int i = 0; i < n; i++)
{
a[i] = nextLong();
}
return a;
}
public String readString()
{
int c = snext();
while (isSpaceChar(c))
{
c = snext();
}
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine()
{
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c)
{
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
}
public static long mod = 1000000007;
public static int d;
public static int p;
public static int q;
public static int[] suffle(int[] a,Random gen)
{
int n = a.length;
for(int i=0;i<n;i++)
{
int ind = gen.nextInt(n-i)+i;
int temp = a[ind];
a[ind] = a[i];
a[i] = temp;
}
return a;
}
public static void swap(int a, int b){
int temp = a;
a = b;
b = temp;
}
public static HashSet<Integer> primeFactorization(int n)
{
HashSet<Integer> a =new HashSet<Integer>();
for(int i=2;i*i<=n;i++)
{
while(n%i==0)
{
a.add(i);
n/=i;
}
}
if(n!=1)
a.add(n);
return a;
}
public static void sieve(boolean[] isPrime,int n)
{
for(int i=1;i<n;i++)
isPrime[i] = true;
isPrime[0] = false;
isPrime[1] = false;
for(int i=2;i*i<n;i++)
{
if(isPrime[i] == true)
{
for(int j=(2*i);j<n;j+=i)
isPrime[j] = false;
}
}
}
public static int GCD(int a,int b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static long GCD(long a,long b)
{
if(b==0)
return a;
else
return GCD(b,a%b);
}
public static void extendedEuclid(int A,int B)
{
if(B==0)
{
d = A;
p = 1 ;
q = 0;
}
else
{
extendedEuclid(B, A%B);
int temp = p;
p = q;
q = temp - (A/B)*q;
}
}
public static long LCM(long a,long b)
{
return (a*b)/GCD(a,b);
}
public static int LCM(int a,int b)
{
return (a*b)/GCD(a,b);
}
public static int binaryExponentiation(int x,int n)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
int binarySearch(int arr[], int l, int r, int x)
{
if (r >= l) {
int mid = l + (r - l) / 2;
if (arr[mid] == x)
return mid;
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
return binarySearch(arr, mid + 1, r, x);
}
return -1;
}
public static long binaryExponentiation(long x,long n)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=result * x;
x=x*x;
n=n/2;
}
return result;
}
public static int modularExponentiation(int x,int n,int M)
{
int result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static long modularExponentiation(long x,long n,long M)
{
long result=1;
while(n>0)
{
if(n % 2 ==1)
result=(result * x)%M;
x=(x*x)%M;
n=n/2;
}
return result;
}
public static int modInverse(int A,int M)
{
return modularExponentiation(A,M-2,M);
}
public static long modInverse(long A,long M)
{
return modularExponentiation(A,M-2,M);
}
public static boolean isPrime(int n)
{
if (n <= 1) return false;
if (n <= 3) return true;
if (n%2 == 0 || n%3 == 0)
return false;
for (int i=5; i*i<=n; i=i+6)
{
if (n%i == 0 || n%(i+2) == 0)
return false;
}
return true;
}
static class Pair
{
int x;
int y;
}
static class pair implements Comparable<pair>
{
Integer x, y;
pair(int x,int y)
{
this.x=x;
this.y=y;
}
public int compareTo(pair o) {
int result = x.compareTo(o.x);
if(result==0)
result = y.compareTo(o.y);
return result;
}
public String toString()
{
return x+" "+y;
}
public boolean equals(Object o)
{
if (o instanceof pair)
{
pair p = (pair)o;
return (Math.abs(p.x-x)==0 && Math.abs(p.y-y)==0);
}
return false;
}
public int hashCode()
{
return new Long(x).hashCode()*31 + new Long(y).hashCode();
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | cae869b18fc4dfe087e7c08d5d8b1c7b | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class Solution
{
static PrintWriter out = new PrintWriter((System.out));
static Kioken sc = new Kioken();
public static void main(String[] args)
{
int t = 1;
t = sc.nextInt();
while (t-- > 0)
{
solve();
}
out.close();
}
public static void solve()
{
int n = sc.nextInt();
int[] arr = new int[n];
List<Integer> odd = new ArrayList<>();
List<Integer> even = new ArrayList<>();
long[] power = new long[n];
int cnt = 0;
for(int i = 0 ; i < n; i++){
arr[i] = sc.nextInt();
if(arr[i]%2 == 0){
int val = arr[i];
while(val%2 == 0){
val = val/2;
cnt++;
}
power[i] = val;
}else{
power[i] = arr[i];
}
}
long sum = 0L;
for(long i: power){
sum += i;
}
// out.println(Arrays.toString(power) + " " + cnt);
long ans = Integer.MIN_VALUE;
for(int i =0; i < n; i++){
if(arr[i]%2 == 0){
long sum1 = sum - power[i];
long val = arr[i];
long left_cnt = (long)Math.pow(2, cnt)/(long)(val/power[i]);
sum1 += (val*left_cnt);
// out.println(" ans " + sum1 + " " + left_cnt);
ans = Math.max(ans, sum1);
}else{
long val = arr[i];
val = val*(long)Math.pow(2, cnt);
long sum1 = sum - power[i] + val;
ans = Math.max(ans, sum1);
}
}
out.println(ans);
// Collections.sort(odd);
// Collections.sort(even);
// long sum1 = 0L;
// if(odd.size() > 0){
// long val = odd.get(odd.size() - 1);
// long sum = 0L;
// for(int i: even){
// while(i%2 == 0){
// i = i/2;
// val = val*2;
// }
// sum += i;
// }
// for(int i = 0; i < odd.size() - 1; i++){
// sum += odd.get(i);
// }
// sum1 = sum + val;
// // out.println(sum + val);
// }
// long sum2 = 0L;
// if(even.size() > 0){
// long val = even.get(even.size() - 1);
// long sum = 0L;
// for(int i = 0; i < even.size()-1; i++){
// int e = even.get(i);
// while(e%2 == 0){
// val = val*2;
// e = e/2;
// }
// sum += e;
// }
// // adding odd
// for(int x: odd){
// sum += x;
// }
// // out.println(val + sum);
// sum2 = sum + val;
// }
// out.println(Math.max(sum1, sum2));
}
public static long leftShift(long a){
return (long)Math.pow(2, a);
}
public static int lower_bound(ArrayList<Integer> ar, int k)
{
int s = 0, e = ar.size();
while (s != e)
{
int mid = s + e >> 1;
if (ar.get(mid) <= k)
{
s = mid + 1;
}
else
{
e = mid;
}
}
return Math.abs(s) - 1;
}
public static int upper_bound(ArrayList<Integer> ar, int k)
{
int s = 0;
int e = ar.size();
while (s != e)
{
int mid = s + e >> 1;
if (ar.get(mid) < k)
{
s = mid + 1;
}
else
{
e = mid;
}
}
if (s == ar.size())
{
return -1;
}
return s;
}
static class Kioken
{
// FileInputStream br = new FileInputStream("input.txt");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
public String next()
{
while (!st.hasMoreTokens())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (Exception e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
public int nextInt()
{
return Integer.parseInt(next());
}
public long nextLong()
{
return Long.parseLong(next());
}
public double nextDouble()
{
return Double.parseDouble(next());
}
public String nextLine()
{
try
{
return br.readLine();
}
catch (Exception e)
{
e.printStackTrace();
}
return null;
}
public boolean hasNext()
{
String next = null;
try
{
next = br.readLine();
}
catch (Exception e)
{
}
if (next == null || next.length() == 0)
{
return false;
}
st = new StringTokenizer(next);
return true;
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 38c73a47da1f59b065807b22fe64ae03 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class Solution{
public static int log2(int N){
int result = (int)(Math.log(N) / Math.log(2));
return result;
}
public static void main(String[] args){
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for(int i=0;i<t;i++){
int n=in.nextInt();
int[] arr=new int[n];
int index=0;
int max=0;
int count=0;
for(int j=0;j<n;j++){
int a=in.nextInt();
while(a%2==0){
a=a/2;
count+=1;
}
arr[j]=a;
if(a>=max){
max=a;
index=j;
}
}
long sum=0;
for(int k=0;k<n;k++){
if(k==index){
sum+=arr[k]*Math.pow(2,count);
}
else{
sum+=arr[k];
}
}
System.out.println(sum);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 5b790056798bf0becc3a6a6320ada807 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
public class ProblemA {
public static void main(String[] args) throws IOException
{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(f.readLine());
int t = Integer.parseInt(st.nextToken());
for(int i = 0; i < t; i++)
{
st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(f.readLine());
int[] vals = new int[n];
for(int j = 0; j < n; j++)
{
vals[j] = Integer.parseInt(st.nextToken());
}
Arrays.sort(vals);
int count = 0;
for(int j = 0; j < n; j++)
{
int x = vals[j];
while(x%2==0)
{
x/=2;
count++;
}
}
long sum = 0;
for(int k = 0; k < n; k++)
{
int add = 0;
int x = vals[k];
while(x%2==0)
{
x/=2;
add++;
}
long max = (long) (vals[k]*Math.pow(2, count-add));
for(int j = 0; j < n; j++)
{
if(j==k)
continue;
int total = 0;
int y = vals[j];
while(y%2==0)
{
y/=2;
total++;
}
if(vals[j]%2==0)
{
max+=(long)(vals[j]/(Math.pow(2, total)));
}
else
{
max+=vals[j];
}
}
sum = Math.max(max, sum);
}
System.out.println(sum);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 933c355f2333a936df54fe8e8f419bcd | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
/*
بسم الله الرحمن الرحيم
/$$$$$ /$$$$$$ /$$ /$$ /$$$$$$
|__ $$ /$$__ $$ |$$ |$$ /$$__ $$
| $$| $$ \ $$| $$|$$| $$ \ $$
| $$| $$$$$$$$| $$ / $$/| $$$$$$$$
/ $$ | $$| $$__ $$ \ $$ $$/ | $$__ $$
| $$ | $$| $$ | $$ \ $$$/ | $$ | $$
| $$$$$$/| $$ | $$ \ $/ | $$ | $$
\______/ |__/ |__/ \_/ |__/ |__/
/$$$$$$$ /$$$$$$$ /$$$$$$ /$$$$$$ /$$$$$$$ /$$$$$$ /$$ /$$ /$$ /$$ /$$$$$$$$ /$$$$$$$
| $$__ $$| $$__ $$ /$$__ $$ /$$__ $$| $$__ $$ /$$__ $$| $$$ /$$$| $$$ /$$$| $$_____/| $$__ $$
| $$ \ $$| $$ \ $$| $$ \ $$| $$ \__/| $$ \ $$| $$ \ $$| $$$$ /$$$$| $$$$ /$$$$| $$ | $$ \ $$
| $$$$$$$/| $$$$$$$/| $$ | $$| $$ /$$$$| $$$$$$$/| $$$$$$$$| $$ $$/$$ $$| $$ $$/$$ $$| $$$$$ | $$$$$$$/
| $$____/ | $$__ $$| $$ | $$| $$|_ $$| $$__ $$| $$__ $$| $$ $$$| $$| $$ $$$| $$| $$__/ | $$__ $$
| $$ | $$ \ $$| $$ | $$| $$ \ $$| $$ \ $$| $$ | $$| $$\ $ | $$| $$\ $ | $$| $$ | $$ \ $$
| $$ | $$ | $$| $$$$$$/| $$$$$$/| $$ | $$| $$ | $$| $$ \/ | $$| $$ \/ | $$| $$$$$$$$| $$ | $$
|__/ |__/ |__/ \______/ \______/ |__/ |__/|__/ |__/|__/ |__/|__/ |__/|________/|__/ |__/
*/
import java.util.*;
import java.lang.*;
import java.io.*;
public class Deltix281121A {
public static void main(String[] args) throws java.lang.Exception {
// your code goes here
//try {
// Scanner sc=new Scanner(System.in);
FastReader sc = new FastReader();
int t = sc.nextInt();
while (t-- > 0) {
int n=sc.nextInt();
long[] arr=new long[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextLong();
}
Arrays.sort(arr);
long ans=Long.MIN_VALUE;
for(int i=0;i<n;i++){
long csum=0l;
long val1=arr[i];
for(int j=0;j<n;j++){
long val=arr[j];
if(j!=i){
while(arr[j]%2==0){
arr[j]=arr[j]/2;
arr[i]=arr[i]*2;
}
csum+=arr[j];
}
arr[j]=val;
}
csum+=arr[i];
ans=Math.max(ans,csum);
arr[i]=val1;
}
System.out.println(ans);
/*continue;
boolean odd=false;
int oi=n;
long sum=0l;
int ei=n;
boolean even=false;
for(int i=n-1;i>=0;i--){
if(arr[i]%2==1 && !odd){
odd=true;
oi=i;
}
else{
if(arr[i]%2==0 && !even){
even=true;
ei=i;
}
}
sum+=Long.valueOf(arr[i]);
}
if(!even){
System.out.println(sum);
continue;
}
if(odd){
for(int i=0;i<n;i++){
if(i!=oi){
long val=arr[i];
while(val%2==0){
val=val/2;
arr[oi]*=2;
}
arr[i]=val;
}
}
sum=0l;
for(int i=0;i<n;i++){
sum+=Long.valueOf(arr[i]);
}
System.out.println(sum);
}
else{
sum=0l;
//System.out.println(ei);
for(int i=0;i<n;i++){
if(i!=ei){
long val=arr[i];
while(val%2==0){
val=val/2;
arr[ei]*=2;
}
arr[i]=val;
}
}
sum=0l;
for(int i=0;i<n;i++){
sum+=Long.valueOf(arr[i]);
}
System.out.println(sum);
}
/*long[] arr=new long[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextLong();
}*/
}
/*} catch (Exception e) {
return;
}*/
}
public static int lowerbound(int[] ar,int k)
{
int s=0;
int e=ar.length;
while (s !=e)
{
int mid = s+e>>1;
if (ar[mid] <k)
{
s=mid+1;
}
else
{
e=mid;
}
}
if(s==ar.length)
{
return -1;
}
return s;
}
public static class pair {
int ff;
int ss;
pair(int ff, int ss) {
this.ff = ff;
this.ss = ss;
}
}
static int BS(int[] arr, int l, int r, int element) {
int low = l;
int high = r;
while (high - low > 1) {
int mid = low + (high - low) / 2;
if (arr[mid] < element) {
low = mid + 1;
} else {
high = mid;
}
}
if (arr[low] == element) {
return low;
} else if (arr[high] == element) {
return high;
}
return -1;
}
static int lower_bound(int[] arr, int l, int r, int element) {
int low = l;
int high = r;
while (high - low > 1) {
int mid = low + (high - low) / 2;
if (arr[mid] < element) {
low = mid + 1;
} else {
high = mid;
}
}
if (arr[low] >= element) {
return low;
} else if (arr[high] >= element) {
return high;
}
return -1;
}
static int upper_bound(int[] arr, int l, int r, int element) {
int low = l;
int high = r;
while (high - low > 1) {
int mid = low + (high - low) / 2;
if (arr[mid] <= element) {
low = mid + 1;
} else {
high = mid;
}
}
if (arr[low] > element) {
return low;
} else if (arr[high] > element) {
return high;
}
return -1;
}
public static int upperbound(long[] arr, int k) {
int s = 0;
int e = arr.length;
while (s != e) {
int mid = s + e >> 1;
if (arr[mid] <= k) {
s = mid + 1;
} else {
e = mid;
}
}
if (s == arr.length) {
return -1;
}
return s;
}
public static long pow(long x,long y,long mod){
if(x==0)return 0l;
if(y==0)return 1l;
//(x^y)%mod
if(y%2l==1l){
return ((x%mod)*(pow(x,y-1l,mod)%mod))%mod;
}
return pow(((x%mod)*(x%mod))%mod,y/2l,mod);
}
public static long gcd_long(long a, long b) {
// a/b,a-> dividant b-> divisor
if (b == 0)
return a;
return gcd_long(b, a % b);
}
public static int gcd_int(int a, int b) {
// a/b,a-> dividant b-> divisor
if (b == 0)
return a;
return gcd_int(b, a % b);
}
public static int lcm(int a, int b) {
int gcd = gcd_int(a, b);
return (a * b) / gcd;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble(){
return Double.valueOf(Integer.parseInt(next()));
}
String nextLine() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return s;
}
Long nextLong() {
return Long.parseLong(next());
}
}
public static boolean contains(String main, String Substring) {
boolean flag=false;
if(main==null && main.trim().equals("")) {
return flag;
}
if(Substring==null) {
return flag;
}
char fullstring[]=main.toCharArray();
char sub[]=Substring.toCharArray();
int counter=0;
if(sub.length==0) {
flag=true;
return flag;
}
for(int i=0;i<fullstring.length;i++) {
if(fullstring[i]==sub[counter]) {
counter++;
} else {
counter=0;
}
if(counter==sub.length) {
flag=true;
return flag;
}
}
return flag;
}
}
/*
* public static boolean lie(int n,int m,int k){ if(n==1 && m==1 && k==0){
* return true; } if(n<1 || m<1 || k<0){ return false; } boolean
* tc=lie(n-1,m,k-m); boolean lc=lie(n,m-1,k-n); if(tc || lc){ return true; }
* return false; }
*/
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | bc3933422c1227c40f0ff4b1031957ab | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Stack;
public class Main {
static long MOD = 998244353l;
int re = 0;
public static void main(String[] args) throws Exception {
// FileInputStream fis = new FileInputStream(new
// File("/Users/goudezhao/Downloads/A-2/tester/input_0.txt"));
var sc = new FastScanner();
// var sc = new FastScanner(fis);
// var pw = new FastPrintStream("/Users/goudezhao/Downloads/A-2/tester/0.out");
var pw = new FastPrintStream();
solve(sc, pw);
sc.close();
pw.flush();
pw.close();
}
public static void solve(FastScanner sc, FastPrintStream pw) {
int t = sc.nextInt();
for (int i = 0; i < t; i++) {
int n = sc.nextInt();
long a[] = new long[n];
Arrays.setAll(a, j -> sc.nextLong());
Arrays.sort(a);
if (n == 1) {
pw.println(a[0]);
continue;
}
long sum = 0;
int count = 0;
for (int j = 0; j < n; j++) {
while (a[j] % 2 == 0) {
a[j] /= 2;
count++;
}
}
Arrays.sort(a);
for (int j=0;j<count;j++) {
a[n-1]*=2;
}
for (int j = 0; j < n; j++) {
sum += a[j];
}
pw.println(sum);
}
}
public static long anothertoTen(long ano, int another) {
long ten = 0;
long now = 1;
long temp = ano;
while (temp > 0) {
long i = temp % 10;
ten += now * i;
now *= another;
temp /= 10;
}
return ten;
}
public static long tentoAnother(long ten, int another) {
Stack<Long> stack = new Stack<Long>();
while (ten > 0) {
stack.add(ten % another);
ten /= another;
}
long re = 0;
while (!stack.isEmpty()) {
long pop = stack.pop();
re = re * 10 + pop;
}
return re;
}
// 2C5 = 5*4/(2*1)
public static long XCY(long x, long y) {
long temp = 1;
for (int i = 0; i < x; i++) {
temp = (temp * (y - i)) % MOD;
}
long tempx = 1;
for (int i = 2; i <= x; i++) {
tempx = (tempx * i) % MOD;
}
tempx = modpow(tempx, (long) MOD - 2);
temp = (temp * tempx) % MOD;
return temp;
}
static long modpow(long N, Long K) {
return BigInteger.valueOf(N).modPow(BigInteger.valueOf(K), BigInteger.valueOf(MOD)).longValue();
}
static long modpow(long N, Long K, long mod) {
return BigInteger.valueOf(N).modPow(BigInteger.valueOf(K), BigInteger.valueOf(mod)).longValue();
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
if (a < b) {
return gcd(b, a);
}
return gcd(b, a % b);
}
public static int gcd(int a, int b) {
if (b == 0) {
return a;
}
if (a < b) {
return gcd(b, a);
}
return gcd(b, a % b);
}
}
class Range {
long start = 0;
long end = 0;
}
class Point implements Comparable {
int x;
int y;
public int compareTo(Object p) {
Point t = (Point) p;
if (this.x < t.x) {
return -1;
}
if (this.x > t.x) {
return 1;
}
return t.y - this.y;
}
}
class PointY implements Comparable {
int index;
long a;
long b;
public int compareTo(Object p) {
PointY t = (PointY) p;
if (this.a > t.a) {
return -1;
}
if (this.a < t.a) {
return 1;
}
return 0;
}
}
class FastPrintStream implements AutoCloseable {
private static final int BUF_SIZE = 1 << 15;
private final byte[] buf = new byte[BUF_SIZE];
private int ptr = 0;
private final java.lang.reflect.Field strField;
private final java.nio.charset.CharsetEncoder encoder;
private java.io.OutputStream out;
public FastPrintStream(java.io.OutputStream out) {
this.out = out;
java.lang.reflect.Field f;
try {
f = java.lang.String.class.getDeclaredField("value");
f.setAccessible(true);
} catch (NoSuchFieldException | SecurityException e) {
f = null;
}
this.strField = f;
this.encoder = java.nio.charset.StandardCharsets.US_ASCII.newEncoder();
}
public FastPrintStream(java.io.File file) throws java.io.IOException {
this(new java.io.FileOutputStream(file));
}
public FastPrintStream(java.lang.String filename) throws java.io.IOException {
this(new java.io.File(filename));
}
public FastPrintStream() {
this(System.out);
try {
java.lang.reflect.Field f = java.io.PrintStream.class.getDeclaredField("autoFlush");
f.setAccessible(true);
f.set(System.out, false);
} catch (IllegalAccessException | IllegalArgumentException | NoSuchFieldException e) {
// ignore
}
}
public FastPrintStream println() {
if (ptr == BUF_SIZE)
internalFlush();
buf[ptr++] = (byte) '\n';
return this;
}
public FastPrintStream println(java.lang.Object o) {
return print(o).println();
}
public FastPrintStream println(java.lang.String s) {
return print(s).println();
}
public FastPrintStream println(char[] s) {
return print(s).println();
}
public FastPrintStream println(char c) {
return print(c).println();
}
public FastPrintStream println(int x) {
return print(x).println();
}
public FastPrintStream println(long x) {
return print(x).println();
}
public FastPrintStream println(double d, int precision) {
return print(d, precision).println();
}
private FastPrintStream print(byte[] bytes) {
int n = bytes.length;
if (ptr + n > BUF_SIZE) {
internalFlush();
try {
out.write(bytes);
} catch (java.io.IOException e) {
throw new RuntimeException();
}
} else {
System.arraycopy(bytes, 0, buf, ptr, n);
ptr += n;
}
return this;
}
public FastPrintStream print(java.lang.Object o) {
return print(o.toString());
}
public FastPrintStream print(java.lang.String s) {
if (strField == null) {
return print(s.getBytes());
} else {
try {
return print((byte[]) strField.get(s));
} catch (IllegalAccessException e) {
return print(s.getBytes());
}
}
}
public FastPrintStream print(char[] s) {
try {
return print(encoder.encode(java.nio.CharBuffer.wrap(s)).array());
} catch (java.nio.charset.CharacterCodingException e) {
byte[] bytes = new byte[s.length];
for (int i = 0; i < s.length; i++) {
bytes[i] = (byte) s[i];
}
return print(bytes);
}
}
public FastPrintStream print(char c) {
if (ptr == BUF_SIZE)
internalFlush();
buf[ptr++] = (byte) c;
return this;
}
public FastPrintStream print(int x) {
if (x == 0) {
if (ptr == BUF_SIZE)
internalFlush();
buf[ptr++] = '0';
return this;
}
int d = len(x);
if (ptr + d > BUF_SIZE)
internalFlush();
if (x < 0) {
buf[ptr++] = '-';
x = -x;
d--;
}
int j = ptr += d;
while (x > 0) {
buf[--j] = (byte) ('0' + (x % 10));
x /= 10;
}
return this;
}
public FastPrintStream print(long x) {
if (x == 0) {
if (ptr == BUF_SIZE)
internalFlush();
buf[ptr++] = '0';
return this;
}
int d = len(x);
if (ptr + d > BUF_SIZE)
internalFlush();
if (x < 0) {
buf[ptr++] = '-';
x = -x;
d--;
}
int j = ptr += d;
while (x > 0) {
buf[--j] = (byte) ('0' + (x % 10));
x /= 10;
}
return this;
}
public FastPrintStream print(double d, int precision) {
if (d < 0) {
print('-');
d = -d;
}
d += Math.pow(10, -d) / 2;
print((long) d).print('.');
d -= (long) d;
for (int i = 0; i < precision; i++) {
d *= 10;
print((int) d);
d -= (int) d;
}
return this;
}
private void internalFlush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (java.io.IOException e) {
throw new RuntimeException(e);
}
}
public void flush() {
try {
out.write(buf, 0, ptr);
out.flush();
ptr = 0;
} catch (java.io.IOException e) {
throw new RuntimeException(e);
}
}
public void close() {
try {
out.close();
} catch (java.io.IOException e) {
throw new RuntimeException(e);
}
}
private static int len(int x) {
int d = 1;
if (x >= 0) {
d = 0;
x = -x;
}
int p = -10;
for (int i = 1; i < 10; i++, p *= 10)
if (x > p)
return i + d;
return 10 + d;
}
private static int len(long x) {
int d = 1;
if (x >= 0) {
d = 0;
x = -x;
}
long p = -10;
for (int i = 1; i < 19; i++, p *= 10)
if (x > p)
return i + d;
return 19 + d;
}
}
class FastScanner implements AutoCloseable {
private final java.io.InputStream in;
private final byte[] buf = new byte[2048];
private int ptr = 0;
private int buflen = 0;
public FastScanner(java.io.InputStream in) {
this.in = in;
}
public FastScanner() {
this(System.in);
}
private boolean hasNextByte() {
if (ptr < buflen)
return true;
ptr = 0;
try {
buflen = in.read(buf);
} catch (java.io.IOException e) {
throw new RuntimeException(e);
}
return buflen > 0;
}
private int readByte() {
return hasNextByte() ? buf[ptr++] : -1;
}
public boolean hasNext() {
while (hasNextByte() && !(32 < buf[ptr] && buf[ptr] < 127))
ptr++;
return hasNextByte();
}
private StringBuilder nextSequence() {
if (!hasNext())
throw new java.util.NoSuchElementException();
StringBuilder sb = new StringBuilder();
for (int b = readByte(); 32 < b && b < 127; b = readByte()) {
sb.appendCodePoint(b);
}
return sb;
}
public String next() {
return nextSequence().toString();
}
public String next(int len) {
return new String(nextChars(len));
}
public char nextChar() {
if (!hasNextByte())
throw new java.util.NoSuchElementException();
return (char) readByte();
}
public char[] nextChars() {
StringBuilder sb = nextSequence();
int l = sb.length();
char[] dst = new char[l];
sb.getChars(0, l, dst, 0);
return dst;
}
public char[] nextChars(int len) {
if (!hasNext())
throw new java.util.NoSuchElementException();
char[] s = new char[len];
int i = 0;
int b = readByte();
while (32 < b && b < 127 && i < len) {
s[i++] = (char) b;
b = readByte();
}
if (i != len) {
throw new java.util.NoSuchElementException(
String.format("Next token has smaller length than expected.", len));
}
return s;
}
public long nextLong() {
if (!hasNext())
throw new java.util.NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b)
throw new NumberFormatException();
while (true) {
if ('0' <= b && b <= '9') {
n = n * 10 + b - '0';
} else if (b == -1 || !(32 < b && b < 127)) {
return minus ? -n : n;
} else
throw new NumberFormatException();
b = readByte();
}
}
public int nextInt() {
return Math.toIntExact(nextLong());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public void close() {
try {
in.close();
} catch (java.io.IOException e) {
throw new RuntimeException(e);
}
}
}
/**
* @verified https://atcoder.jp/contests/practice2/tasks/practice2_j
*/
class SegTree<S> {
final int MAX;
final int N;
final java.util.function.BinaryOperator<S> op;
final S E;
final S[] data;
@SuppressWarnings("unchecked")
public SegTree(int n, java.util.function.BinaryOperator<S> op, S e) {
this.MAX = n;
int k = 1;
while (k < n)
k <<= 1;
this.N = k;
this.E = e;
this.op = op;
this.data = (S[]) new Object[N << 1];
java.util.Arrays.fill(data, E);
}
public SegTree(S[] dat, java.util.function.BinaryOperator<S> op, S e) {
this(dat.length, op, e);
build(dat);
}
private void build(S[] dat) {
int l = dat.length;
System.arraycopy(dat, 0, data, N, l);
for (int i = N - 1; i > 0; i--) {
data[i] = op.apply(data[i << 1 | 0], data[i << 1 | 1]);
}
}
public void set(int p, S x) {
exclusiveRangeCheck(p);
data[p += N] = x;
p >>= 1;
while (p > 0) {
data[p] = op.apply(data[p << 1 | 0], data[p << 1 | 1]);
p >>= 1;
}
}
public S get(int p) {
exclusiveRangeCheck(p);
return data[p + N];
}
public S prod(int l, int r) {
if (l > r) {
throw new IllegalArgumentException(String.format("Invalid range: [%d, %d)", l, r));
}
inclusiveRangeCheck(l);
inclusiveRangeCheck(r);
S sumLeft = E;
S sumRight = E;
l += N;
r += N;
while (l < r) {
if ((l & 1) == 1)
sumLeft = op.apply(sumLeft, data[l++]);
if ((r & 1) == 1)
sumRight = op.apply(data[--r], sumRight);
l >>= 1;
r >>= 1;
}
return op.apply(sumLeft, sumRight);
}
public S allProd() {
return data[1];
}
public int maxRight(int l, java.util.function.Predicate<S> f) {
inclusiveRangeCheck(l);
if (!f.test(E)) {
throw new IllegalArgumentException("Identity element must satisfy the condition.");
}
if (l == MAX)
return MAX;
l += N;
S sum = E;
do {
l >>= Long.numberOfTrailingZeros(l);
if (!f.test(op.apply(sum, data[l]))) {
while (l < N) {
l = l << 1;
if (f.test(op.apply(sum, data[l]))) {
sum = op.apply(sum, data[l]);
l++;
}
}
return l - N;
}
sum = op.apply(sum, data[l]);
l++;
} while ((l & -l) != l);
return MAX;
}
public int minLeft(int r, java.util.function.Predicate<S> f) {
inclusiveRangeCheck(r);
if (!f.test(E)) {
throw new IllegalArgumentException("Identity element must satisfy the condition.");
}
if (r == 0)
return 0;
r += N;
S sum = E;
do {
r--;
while (r > 1 && (r & 1) == 1)
r >>= 1;
if (!f.test(op.apply(data[r], sum))) {
while (r < N) {
r = r << 1 | 1;
if (f.test(op.apply(data[r], sum))) {
sum = op.apply(data[r], sum);
r--;
}
}
return r + 1 - N;
}
sum = op.apply(data[r], sum);
} while ((r & -r) != r);
return 0;
}
private void exclusiveRangeCheck(int p) {
if (p < 0 || p >= MAX) {
throw new IndexOutOfBoundsException(
String.format("Index %d out of bounds for the range [%d, %d).", p, 0, MAX));
}
}
private void inclusiveRangeCheck(int p) {
if (p < 0 || p > MAX) {
throw new IndexOutOfBoundsException(
String.format("Index %d out of bounds for the range [%d, %d].", p, 0, MAX));
}
}
// **************** DEBUG **************** //
private int indent = 6;
public void setIndent(int newIndent) {
this.indent = newIndent;
}
@Override
public String toString() {
return toSimpleString();
}
public String toDetailedString() {
return toDetailedString(1, 0);
}
private String toDetailedString(int k, int sp) {
if (k >= N)
return indent(sp) + data[k];
String s = "";
s += toDetailedString(k << 1 | 1, sp + indent);
s += "\n";
s += indent(sp) + data[k];
s += "\n";
s += toDetailedString(k << 1 | 0, sp + indent);
return s;
}
private static String indent(int n) {
StringBuilder sb = new StringBuilder();
while (n-- > 0)
sb.append(' ');
return sb.toString();
}
public String toSimpleString() {
StringBuilder sb = new StringBuilder();
sb.append('[');
for (int i = 0; i < N; i++) {
sb.append(data[i + N]);
if (i < N - 1)
sb.append(',').append(' ');
}
sb.append(']');
return sb.toString();
}
}
class DSU {
private int n;
private int[] parentOrSize;
public DSU(int n) {
this.n = n;
this.parentOrSize = new int[n];
Arrays.fill(parentOrSize, -1);
}
int merge(int a, int b) {
if (!(0 <= a && a < n) || !(0 <= b && b < n)) {
return -1;
}
int x = leader(a);
int y = leader(b);
if (x == y)
return x;
if (-parentOrSize[x] < -parentOrSize[y]) {
int tmp = x;
x = y;
y = tmp;
}
parentOrSize[x] += parentOrSize[y];
parentOrSize[y] = x;
return x;
}
boolean same(int a, int b) {
if (!(0 <= a && a < n) || !(0 <= b && b < n)) {
return false;
}
return leader(a) == leader(b);
}
int leader(int a) {
if (parentOrSize[a] < 0) {
return a;
} else {
parentOrSize[a] = leader(parentOrSize[a]);
return parentOrSize[a];
}
}
int size(int a) {
if (!(0 <= a && a < n)) {
return -1;
}
return -parentOrSize[leader(a)];
}
ArrayList<ArrayList<Integer>> groups() {
int[] leaderBuf = new int[n];
int[] groupSize = new int[n];
for (int i = 0; i < n; i++) {
leaderBuf[i] = leader(i);
groupSize[leaderBuf[i]]++;
}
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
for (int i = 0; i < n; i++) {
result.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
result.get(leaderBuf[i]).add(i);
}
return result;
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | f1e8e6142055338697e9249b100fbfe2 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class AA{
public static void main(String[] args) throws Exception {
BufferedReader buffer = new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb = new StringBuilder();
int t = Integer.parseInt(buffer.readLine());
while (t-- > 0) {
int n = Integer.parseInt(buffer.readLine());
String [] inp = buffer.readLine().split(" ");
long [] arr = new long[n];
long sum = 0, pow = 1, max = 0;
for (int i = 0; i < n; i++) {
arr[i] = Integer.parseInt(inp[i]);
while (arr[i] % 2 == 0)
{
arr[i] /= 2;
pow *= 2;
}
max = Math.max(max, arr[i]);
}
for (int i = 0; i < n; i++) {
if (max == arr[i]) {
arr[i] *= pow;
max = -1;
}
sum += arr[i];
}
sb.append(sum+"\n");
}
System.out.println(sb);
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | fd2f45498f23b0b27d256029c215a943 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.io.*;
import java.math.BigInteger;
public class Main {
private static FS sc = new FS();
private static class FS {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
private static class extra {
static int[] intArr(int size) {
int[] a = new int[size];
for(int i = 0; i < size; i++) a[i] = sc.nextInt();
return a;
}
static long[] longArr(int size) {
Scanner scc = new Scanner(System.in);
long[] a = new long[size];
for(int i = 0; i < size; i++) a[i] = sc.nextLong();
return a;
}
static long intSum(int[] a) {
long sum = 0;
for(int i = 0; i < a.length; i++) {
sum += a[i];
}
return sum;
}
static long longSum(long[] a) {
long sum = 0;
for(int i = 0; i < a.length; i++) {
sum += a[i];
}
return sum;
}
static LinkedList[] graphD(int vertices, int edges) {
LinkedList<Integer>[] temp = new LinkedList[vertices+1];
for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>();
for(int i = 0; i < edges; i++) {
int x = sc.nextInt();
int y = sc.nextInt();
temp[x].add(y);
}
return temp;
}
static LinkedList[] graphUD(int vertices, int edges) {
LinkedList<Integer>[] temp = new LinkedList[vertices+1];
for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>();
for(int i = 0; i < edges; i++) {
int x = sc.nextInt();
int y = sc.nextInt();
temp[x].add(y);
temp[y].add(x);
}
return temp;
}
static void printG(LinkedList[] temp) {
for(LinkedList<Integer> aa:temp) System.out.println(aa);
}
static long cal(long val, long pow, long mod) {
if(pow == 0) return 1;
long res = cal(val, pow/2, mod);
long ret = (res*res)%mod;
if(pow%2 == 0) return ret;
return (val*ret)%mod;
}
static long gcd(long a, long b) { return b == 0 ? a:gcd(b, a%b); }
}
static int mod = 998244353;
static LinkedList<Integer>[] temp, idx;
static long inf = (long) Long.MAX_VALUE;
// static long inf = Long.MAX_VALUE;
static int max;
public static void main(String[] args) {
int t = sc.nextInt();
// int t = 1;
StringBuilder ret = new StringBuilder();
while(t-- > 0) {
int n = sc.nextInt();
long[] a = extra.longArr(n);
long max = 1;
for(int i = 0; i < n; i++) {
while(a[i]%2 == 0) {
a[i] /= 2;
max *= 2;
}
}
int idx = 0;
for(int i = 0; i < n; i++) {
if(a[i] > a[idx]) idx = i;
}
a[idx] *= max;
long sum = 0;
for(long aa:a) sum += aa;
ret.append(sum +"\n");
}
System.out.println(ret);
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 48b0227c2c1006156a1e6fd512a7a03a | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
/**
* @author Mubtasim Shahriar
*/
public class DeltixAutumn2021 {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader sc = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
int t = sc.nextInt();
// int t = 1;
while (t-- != 0) {
solver.solve(sc, out);
}
out.close();
}
static class Solver {
public void solve(InputReader sc, PrintWriter out) {
int n = sc.nextInt();
long[] arr = sc.nextLongArray(n);
sort(arr);
long[] lessarr = new long[n];
for(int i = 0; i < n; i++) {
long now = arr[i];
while(now%2==0) now /= 2;
lessarr[i] = now;
}
int maxid = 0;
for(int i = 1; i < n; i++) {
if(lessarr[i]>lessarr[maxid]) maxid = i;
}
for(int i = 0; i < n; i++) {
if(i==maxid) continue;
while(arr[i]%2==0) {
arr[i] /= 2;
arr[maxid] *= 2;
}
}
long sum = 0;
for(long l : arr) sum += l;
out.println(sum);
}
}
static void sort(int[] arr) {
ArrayList<Integer> al = new ArrayList();
for (int i : arr) al.add(i);
Collections.sort(al);
int idx = 0;
for (int i : al) arr[idx++] = i;
}
static void sort(long[] arr) {
ArrayList<Long> al = new ArrayList();
for (long i : arr) al.add(i);
Collections.sort(al);
int idx = 0;
for (long i : al) arr[idx++] = i;
}
static void sortDec(int[] arr) {
ArrayList<Integer> al = new ArrayList();
for (int i : arr) al.add(i);
Collections.sort(al, Collections.reverseOrder());
int idx = 0;
for (int i : al) arr[idx++] = i;
}
static void sortDec(long[] arr) {
ArrayList<Long> al = new ArrayList();
for (long i : arr) al.add(i);
Collections.sort(al, Collections.reverseOrder());
int idx = 0;
for (long i : al) arr[idx++] = i;
}
static class InputReader {
private boolean finished = false;
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int peek() {
if (numChars == -1) {
return -1;
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
return -1;
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c)) {
res.appendCodePoint(c);
}
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuilder buf = new StringBuilder();
int c = read();
while (c != '\n' && c != -1) {
if (c != '\r') {
buf.appendCodePoint(c);
}
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0) {
s = readLine0();
}
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines) {
return readLine();
} else {
return readLine0();
}
}
public BigInteger readBigInteger() {
try {
return new BigInteger(nextString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char nextCharacter() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
return (char) c;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E') {
return res * Math.pow(10, nextInt());
}
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public boolean isExhausted() {
int value;
while (isSpaceChar(value = peek()) && value != -1) {
read();
}
return value == -1;
}
public String next() {
return nextString();
}
public SpaceCharFilter getFilter() {
return filter;
}
public void setFilter(SpaceCharFilter filter) {
this.filter = filter;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
public int[] nextIntArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; ++i) array[i] = nextInt();
return array;
}
public int[] nextSortedIntArray(int n) {
int array[] = nextIntArray(n);
Arrays.sort(array);
return array;
}
public int[] nextSumIntArray(int n) {
int[] array = new int[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextLongArray(int n) {
long[] array = new long[n];
for (int i = 0; i < n; ++i) array[i] = nextLong();
return array;
}
public long[] nextSumLongArray(int n) {
long[] array = new long[n];
array[0] = nextInt();
for (int i = 1; i < n; ++i) array[i] = array[i - 1] + nextInt();
return array;
}
public long[] nextSortedLongArray(int n) {
long array[] = nextLongArray(n);
Arrays.sort(array);
return array;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | d4031edf12c7dda0b6406204f0efac8d | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.math.*;
import java.io.*;
import java.util.stream.Collectors;
import java.text.DecimalFormat;
public class A{
static FastScanner scan=new FastScanner();
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) throws Exception
{
int tt=1;
tt=scan.nextInt();
// scan=new FastScanner("clumsy.in");
//out=new PrintWriter("clumsy.out");
outer:while(tt-->0)
{
int n=scan.nextInt();
long arr[]=new long[n];
long res=0,max=0;
int id=-1;
for(int i=0;i<n;i++)
{
arr[i]=scan.nextLong();
if(arr[i]>max&&arr[i]%2!=0)
{
max=arr[i];
id=i;
}
}
Set<long[]>st=new HashSet<long[]>();
while(true){
int cnt=0;
max=0;
for(int i=0;i<n;i++)
{
if(arr[i]==1)
cnt++;
}
if(cnt==n-1)
break;
id=-1;
for(int i=0;i<n;i++)
{
if(arr[i]>max&&arr[i]%2!=0)
{
max=arr[i];
id=i;
}
}
if(id==-1)
{
for(int i=0;i<n;i++)
{
if(arr[i]>max)
{
max=arr[i];
id=i;
}
}
}
/*that:while(true)
{*/
// System.out.println(Arrays.toString(arr));
that:for(int i=0;i<n;i++)
{
if(i!=id&&arr[i]%2==0)
{
while(arr[i]%2==0)
{
arr[i]/=2;
arr[id]*=2;
}
// continue that;
}
}
//System.out.println(Arrays.toString(arr));
if(st.contains(arr))
break;
long nw=0;
for(int i=0;i<n;i++)nw+=arr[i];
res=Math.max(res,nw);
st.add(arr);
}
//}
long nw=0;
for(int i=0;i<n;i++)nw+=arr[i];
out.println(Math.max(res,nw));
}
out.close();
}
static class FastScanner
{
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public double[] nextDoubles(int N) {
double[] res = new double[N];
for (int i = 0; i < N; i++) {
res[i] = nextDouble();
}
return res;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
static class Pair implements Comparable<Pair>{
public long x, y,z;
public Pair(long x1, long y1,long z1) {
x=x1;
y=y1;
z=z1;
}
public Pair(long x1, long y1) {
x=x1;
y=y1;
}
@Override
public int hashCode() {
return (int)(x + 31 * y);
}
public String toString() {
return x + " " + y+" "+z;
}
@Override
public boolean equals(Object o){
if (o == this) return true;
if (o.getClass() != getClass()) return false;
Pair t = (Pair)o;
return t.x == x && t.y == y&&t.z==z;
}
public int compareTo(Pair o)
{
//if(o.x==x)
// return (int)(y-o.y);
return Long.compare(o.x,x);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 66460c87d0381e1a0756465df351b0f1 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
import java.util.concurrent.LinkedBlockingDeque;
import javax.security.auth.login.AccountExpiredException;
import javax.swing.text.Segment;
import java.io.*;
import java.math.*;
import java.sql.Array;
import java.sql.ResultSet;
import java.sql.SQLException;
public class Main {
private static class MyScanner {
private static final int BUF_SIZE = 2048;
BufferedReader br;
private MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
private boolean isSpace(char c) {
return c == '\n' || c == '\r' || c == ' ';
}
String next() {
try {
StringBuilder sb = new StringBuilder();
int r;
while ((r = br.read()) != -1 && isSpace((char)r));
if (r == -1) {
return null;
}
sb.append((char) r);
while ((r = br.read()) != -1 && !isSpace((char)r)) {
sb.append((char)r);
}
return sb.toString();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class Reader{
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long mod = (long)(1e9 + 7);
static void sort(long[] arr ) {
ArrayList<Long> al = new ArrayList<>();
for(long e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(int[] arr ) {
ArrayList<Integer> al = new ArrayList<>();
for(int e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(char[] arr) {
ArrayList<Character> al = new ArrayList<Character>();
for(char cc:arr) al.add(cc);
Collections.sort(al);
for(int i = 0 ;i<arr.length ;i++) arr[i] = al.get(i);
}
static void rvrs(int[] arr) {
int i =0 , j = arr.length-1;
while(i>=j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
static void rvrs(long[] arr) {
int i =0 , j = arr.length-1;
while(i>=j) {
long temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
static long mod_mul( long mod , long... a) {
long ans = a[0]%mod;
for(int i = 1 ; i<a.length ; i++) {
ans = (ans * (a[i]%mod))%mod;
}
return ans;
}
static long mod_sum(long mod , long... a) {
long ans = 0;
for(long e:a) {
ans = (ans + e)%mod;
}
return ans;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static boolean[] prime(int num) {
boolean[] bool = new boolean[num];
for (int i = 0; i< bool.length; i++) {
bool[i] = true;
}
for (int i = 2; i< Math.sqrt(num); i++) {
if(bool[i] == true) {
for(int j = (i*i); j<num; j = j+i) {
bool[j] = false;
}
}
}
if(num >= 0) {
bool[0] = false;
bool[1] = false;
}
return bool;
}
static long modInverse(long a, long m)
{
long g = gcd(a, m);
return power(a, m - 2, m);
}
static long lcm(long a , long b) {
return (a*b)/gcd(a, b);
}
static int lcm(int a , int b) {
return (int)((a*b)/gcd(a, b));
}
static long power(long x, long y, long m){
if (y == 0) return 1; long p = power(x, y / 2, m) % m; p = (int)((p * (long)p) % m);
if (y % 2 == 0) return p; else return (int)((x * (long)p) % m); }
static class Combinations{
private long[] z;
private long[] z1;
private long[] z2;
public Combinations(long N , long mod) {
z = new long[(int)N+1];
z1 = new long[(int)N+1];
z[0] = 1;
for(int i =1 ; i<=N ; i++) z[i] = (z[i-1]*i)%mod;
z2 = new long[(int)N+1];
z2[0] = z2[1] = 1;
for (int i = 2; i <= N; i++)
z2[i] = z2[(int)(mod % i)] * (mod - mod / i) % mod;
z1[0] = z1[1] = 1;
for (int i = 2; i <= N; i++)
z1[i] = (z2[i] * z1[i - 1]) % mod;
}
long fac(long n) {
return z[(int)n];
}
long invrsNum(long n) {
return z2[(int)n];
}
long invrsFac(long n) {
return invrsFac((int)n);
}
long ncr(long N, long R, long mod)
{ if(R<0 || R>N ) return 0;
long ans = ((z[(int)N] * z1[(int)R])
% mod * z1[(int)(N - R)])
% mod;
return ans;
}
}
static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
this.n = n;
makeSet();
}
void makeSet()
{
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
int find(int x)
{
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
void union(int x, int y)
{
int xRoot = find(x), yRoot = find(y);
if (xRoot == yRoot)
return;
if (rank[xRoot] < rank[yRoot])
parent[xRoot] = yRoot;
else if (rank[yRoot] < rank[xRoot])
parent[yRoot] = xRoot;
else
{
parent[yRoot] = xRoot;
rank[xRoot] = rank[xRoot] + 1;
}
}
}
static int max(int... a ) {
int max = a[0];
for(int e:a) max = Math.max(max, e);
return max;
}
static long max(long... a ) {
long max = a[0];
for(long e:a) max = Math.max(max, e);
return max;
}
static int min(int... a ) {
int min = a[0];
for(int e:a) min = Math.min(e, min);
return min;
}
static long min(long... a ) {
long min = a[0];
for(long e:a) min = Math.min(e, min);
return min;
}
static int[] KMP(String str) {
int n = str.length();
int[] kmp = new int[n];
for(int i = 1 ; i<n ; i++) {
int j = kmp[i-1];
while(j>0 && str.charAt(i) != str.charAt(j)) {
j = kmp[j-1];
}
if(str.charAt(i) == str.charAt(j)) j++;
kmp[i] = j;
}
return kmp;
}
/************************************************ Query **************************************************************************************/
/***************************************** Sparse Table ********************************************************/
static class SparseTable{
private long[][] st;
SparseTable(long[] arr){
int n = arr.length;
st = new long[n][25];
log = new int[n+2];
build_log(n+1);
build(arr);
}
private void build(long[] arr) {
int n = arr.length;
for(int i = n-1 ; i>=0 ; i--) {
for(int j = 0 ; j<25 ; j++) {
int r = i + (1<<j)-1;
if(r>=n) break;
if(j == 0 ) st[i][j] = arr[i];
else st[i][j] = Math.min(st[i][j-1] , st[ i + ( 1 << (j-1) ) ][ j-1 ] );
}
}
}
public long gcd(long a ,long b) {
if(a == 0) return b;
return gcd(b%a , a);
}
public long query(int l ,int r) {
int w = r-l+1;
int power = log[w];
return Math.min(st[l][power],st[r - (1<<power) + 1][power]);
}
private int[] log;
void build_log(int n) {
log[1] = 0;
for(int i = 2 ; i<=n ; i++) {
log[i] = 1 + log[i/2];
}
}
}
/******************************************************** Segement Tree *****************************************************/
/**
static class SegmentTree{
long[] tree;
long[] arr;
int n;
SegmentTree(long[] arr){
this.n = arr.length;
tree = new long[4*n+1];
this.arr = arr;
buildTree(0, n-1, 1);
}
void buildTree(int s ,int e ,int index ) {
if(s == e) {
tree[index] = arr[s];
return;
}
int mid = (s+e)/2;
buildTree( s, mid, 2*index);
buildTree( mid+1, e, 2*index+1);
tree[index] = Math.min(tree[2*index] , tree[2*index+1]);
}
long query(int si ,int ei) {
return query(0 ,n-1 , si ,ei , 1 );
}
private long query( int ss ,int se ,int qs , int qe,int index) {
if(ss>=qs && se<=qe) return tree[index];
if(qe<ss || se<qs) return (long)(1e17);
int mid = (ss + se)/2;
long left = query( ss , mid , qs ,qe , 2*index);
long right= query(mid + 1 , se , qs ,qe , 2*index+1);
return Math.min(left, right);
}
public void update(int index , int val) {
arr[index] = val;
for(long e:arr) System.out.print(e+" ");
update(index , 0 , n-1 , 1);
}
private void update(int id ,int si , int ei , int index) {
if(id < si || id>ei) return;
if(si == ei ) {
tree[index] = arr[id];
return;
}
if(si > ei) return;
int mid = (ei + si)/2;
update( id, si, mid , 2*index);
update( id , mid+1, ei , 2*index+1);
tree[index] = Math.min(tree[2*index] ,tree[2*index+1]);
}
}
*/
/* ***************************************************************************************************************************************************/
// static MyScanner sc = new MyScanner(); // only in case of less memory
static Reader sc = new Reader();
static StringBuilder sb = new StringBuilder();
public static void main(String args[]) throws IOException {
int tc = 1;
tc = sc.nextInt();
for(int i = 1 ; i<=tc ; i++) {
// sb.append("Case #" + i + ": " ); // During KickStart && HackerCup
TEST_CASE();
}
System.out.println(sb);
}
static void TEST_CASE() {
int n = sc.nextInt();
long[] arr = new long[n];
for(int i = 0 ; i<n ; i++)
arr[i] = sc.nextLong();
long mul = 1;
for(int i =0 ; i<n ; i++) {
while(arr[i]%2 == 0) {
arr[i] /= 2;
mul *=2;
}
}
sort(arr);
arr[n-1] *= mul;
long sum = 0;
for(long e:arr) sum += e;
sb.append(sum +"\n");
}
}
/*******************************************************************************************************************************************************/
/**
*/
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | b1b258f7c12ae034a64f1d9185c2eeab | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class DeltixA {
public static void main(String[] args) {
JS scan = new JS();
int t = scan.nextInt();
while(t-->0){
int n = scan.nextInt();
long[] arr = new long[n];
long sum = 0;
for(int i= 0;i<n;i++){
arr[i] = scan.nextInt();
sum+=arr[i];
}
Arrays.sort(arr);
int count = 0;
int maxG = n-1;
for(int i = 0; i<n;i++){
while(arr[i]%2==0){
count++;
arr[i]/=2;
}
}
Arrays.sort(arr);
arr[n-1] = (long) (arr[n-1]*Math.pow(2,count));
sum = 0;
for(int i =0;i<n;i++){
sum+=arr[i];
}
System.out.println(sum);
}
}
static class JS {
public int BS = 1 << 16;
public char NC = (char) 0;
byte[] buf = new byte[BS];
int bId = 0, size = 0;
char c = NC;
double num = 1;
BufferedInputStream in;
public JS() {
in = new BufferedInputStream(System.in, BS);
}
public JS(String s) throws FileNotFoundException {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
}
public char nextChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public long nextLong() {
num = 1;
boolean neg = false;
if (c == NC) c = nextChar();
for (; (c < '0' || c > '9'); c = nextChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = nextChar()) {
res = (res << 3) + (res << 1) + c - '0';
num *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / num;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = nextChar();
while (c > 32) {
res.append(c);
c = nextChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = nextChar();
while (c != '\n') {
res.append(c);
c = nextChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = nextChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 012c477a42510d44238e98b6355ad1fd | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class A1609 {
public static void main(String[] args) {
FastScanner sc = new FastScanner("in.txt");
PrintWriter out = new PrintWriter(System.out);
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
int k = 0;
long sum = 0;
long max = 0;
for (int i = 0; i < n; i++) {
while (a[i] % 2 == 0) {
a[i] /= 2;
k++;
}
sum += a[i];
max = Math.max(max, a[i]);
}
sum = sum - max + max * (long) Math.pow(2, k);
out.println(sum);
}
out.close();
}
static final Random random = new Random();
static void ruffleSort(int[] a) {
int n = a.length;
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
static class FastScanner {
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1)
return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC)
c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-')
neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32)
c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32)
c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 2b501480518171c7c267234223aa3662 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import static java.lang.Integer.parseInt;
import static java.lang.Long.parseLong;
import static java.lang.Math.max;
import static java.lang.System.exit;
import static java.util.Arrays.fill;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class cf {
static long mod = (long) (1e9 + 7);
static void solve() throws Exception {
int tests = scanInt();
// int tests = 1;
for (int test = 0; test < tests; test++) {
// int n = scanInt(), k = scanInt();
// String l = scanString();
// out.println();
// continue test;
int n = scanInt();
long []arr = arrL(n);
long count = 0;
long sum = 0;
long maximum = 0;
for(int i = 0; i < n; i++){
while(arr[i] > 0 && (arr[i] % 2 == 0)){
arr[i] = arr[i]/2;
count++;
}
maximum = Math.max(maximum, arr[i]);
sum += arr[i];
}
sum -= maximum;
long ans = sum + (long)Math.pow(2, count)*maximum;
out.println(ans);
}
}
static class pair {
long x, y;
pair(long ar, long ar2) {
x = ar;
y = ar2;
}
}
static class pairChar {
Character key;
int val;
pairChar(Character key, int val) {
this.key = key;
this.val = val;
}
}
static int[] arrI(int N) throws Exception {
int A[] = new int[N];
for (int i = 0; i < N; i++) {
A[i] = scanInt();
}
return A;
}
static long[] arrL(int N) throws Exception {
long A[] = new long[N];
for (int i = 0; i < A.length; i++)
A[i] = scanLong();
return A;
}
static void sort(long[] a) // check for long
{
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void sortReverse(long[] a) // check for long
{
ArrayList<Long> l = new ArrayList<>();
for (long i : a)
l.add(i);
Collections.sort(l);
int n = a.length;
for (int i = 0; i < n; i++)
a[n - i - 1] = l.get(i);
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static void sortReverse(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
int n = a.length;
for (int i = 0; i < n; i++)
a[n - i - 1] = l.get(i);
}
public static int gcd(int a, int b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static class DescendingComparator implements Comparator<Integer> {
public int compare(Integer a, Integer b) {
return b - a;
}
}
static class AscendingComparator implements Comparator<Integer> {
public int compare(Integer a, Integer b) {
return a - b;
}
}
static boolean isPalindrome(char X[]) {
int l = 0, r = X.length - 1;
while (l <= r) {
if (X[l] != X[r])
return false;
l++;
r--;
}
return true;
}
static long fact(long N) {
long num = 1L;
while (N >= 1) {
num = ((num % mod) * (N % mod)) % mod;
N--;
}
return num;
}
static long pow(long a, long b) {
long mod = 1000000007;
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0)
pow = (pow * x) % mod;
x = (x * x) % mod;
b /= 2;
}
return pow;
}
static long toggleBits(long x)// one's complement || Toggle bits
{
int n = (int) (Math.floor(Math.log(x) / Math.log(2))) + 1;
return ((1 << n) - 1) ^ x;
}
static int countBits(long a) {
return (int) (Math.log(a) / Math.log(2) + 1);
}
static boolean isPrime(long N) {
if (N <= 1)
return false;
if (N <= 3)
return true;
if (N % 2 == 0 || N % 3 == 0)
return false;
for (int i = 5; i * i <= N; i = i + 6)
if (N % i == 0 || N % (i + 2) == 0)
return false;
return true;
}
static long GCD(long a, long b) {
if (b == 0) {
return a;
} else
return GCD(b, a % b);
}
static HashMap<Integer, Integer> getHashMap(int A[]) {
HashMap<Integer, Integer> mp = new HashMap<>();
for (int a : A) {
int f = mp.getOrDefault(a, 0) + 1;
mp.put(a, f);
}
return mp;
}
public static Map<Character, Integer> mapSortByValue(Map<Character, Integer> hm) {
// Create a list from elements of HashMap
List<Map.Entry<Character, Integer>> list = new LinkedList<Map.Entry<Character, Integer>>(hm.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Character, Integer>>() {
public int compare(Map.Entry<Character, Integer> o1, Map.Entry<Character, Integer> o2) {
return o1.getValue() - o2.getValue();
}
});
// put data from sorted list to hashmap
Map<Character, Integer> temp = new LinkedHashMap<Character, Integer>();
for (Map.Entry<Character, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
public static Map<Character, Integer> mapSortByKey(Map<Character, Integer> hm) {
// Create a list from elements of HashMap
List<Map.Entry<Character, Integer>> list = new LinkedList<Map.Entry<Character, Integer>>(hm.entrySet());
// Sort the list
Collections.sort(list, new Comparator<Map.Entry<Character, Integer>>() {
public int compare(Map.Entry<Character, Integer> o1, Map.Entry<Character, Integer> o2) {
return o1.getKey() - o2.getKey();
}
});
// put data from sorted list to hashmap
Map<Character, Integer> temp = new LinkedHashMap<Character, Integer>();
for (Map.Entry<Character, Integer> aa : list) {
temp.put(aa.getKey(), aa.getValue());
}
return temp;
}
static int scanInt() throws IOException {
return parseInt(scanString());
}
static long scanLong() throws IOException {
return parseLong(scanString());
}
static String scanString() throws IOException {
while (tok == null || !tok.hasMoreTokens()) {
tok = new StringTokenizer(in.readLine());
}
return tok.nextToken();
}
static BufferedReader in;
static PrintWriter out;
static StringTokenizer tok;
public static void main(String[] args) {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
} catch (Throwable e) {
e.printStackTrace();
exit(1);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 9a71223a513a4db8d406cb27d40f2c69 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.InterruptedIOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.List;
import java.util.Scanner;
import javax.swing.plaf.synth.SynthOptionPaneUI;
public class Main {
private static long gcd(long a, long b)
{
while (b > 0)
{
long temp = b;
b = a % b; // % is remainder
a = temp;
}
return a;
}
private static long lcm(long a, long b)
{
return a * (b / gcd(a, b));
}
static long binpow(long a,long b) {
long M=1000000007;
long res=1;
while(b>0) {
if(b%2==1) {
res=(res*a)%M;
}
a=(a*a)%M;
b/=2;
}
return res;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc1=new Scanner(System.in);
int t=sc1.nextInt();
while(t-->0) {
int n=sc1.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++) {
arr[i]=sc1.nextLong();
}
int i=0;
long mul=1;
while(i<n) {
long v=arr[i];
while(v%2==0) {
v=v/2;
mul*=2;
}
arr[i]=v;
i++;
}
Arrays.sort(arr);
arr[n-1]*=mul;
long sum=0;
for(int j=0;j<n;j++) {
sum+=arr[j];
}
System.out.println(sum);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | f90446149adc5be5133a7995271fc3a9 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class Checking {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = (int) (1e9 + 100), iMin = (int) (-1e9 - 100);
private static final long lMax = (long) (1e18 + 100), lMin = (long) (-1e18 - 100);
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
int t = 1;
t = fs.nextInt();
while (t-- > 0) {
solve();
}
fw.out.close();
}
private static void solve() {
int n = fs.nextInt();
long[] arr = new long[(int)n];
for(int i = 0; i<n;i++){
arr[i] = fs.nextLong();
}
long mul = 0;
for(int i = 0; i<n; i++){
while (arr[i] %2 == 0){
mul++;
arr[i] = arr[i]/2;
}
}
Arrays.sort(arr);
long last = arr[n-1];
last = last * (long)Math.pow(2, mul);
long sum = 0;
for(int i = 0; i<n-1; i++){
sum+= arr[i];
}
sum+= last;
fw.out.println(sum);
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
// private static class Calc_nCr {
// private final long[] fact;
// private final long[] invfact;
// private final int p;
//
// Calc_nCr(int n, int prime) {
// fact = new long[n + 5];
// invfact = new long[n + 5];
// p = prime;
//
// fact[0] = 1;
// for (int i = 1; i <= n; i++) {
// fact[i] = (i * fact[i - 1]) ;
// }
//
// invfact[n] = pow(fact[n], p - 2);
// for (int i = n - 1; i >= 0; i--) {
// invfact[i] = (invfact[i + 1] * (i + 1)) ;
// }
// }
//
// private long nCr(int n, int r) {
// if (r > n || n < 0 || r < 0) return 0;
// return (((fact[n] * invfact[r]) % p) * invfact[n - r]) % p;
// }
// }
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) ;
}
a = (a * a) ;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static int noOfSetBits(long x) {
int cnt = 0;
while (x != 0) {
x = x & (x - 1);
cnt++;
}
return cnt;
}
private static boolean isPerfectSquare(long num) {
long sqrt = (long) Math.sqrt(num);
return ((sqrt * sqrt) == num);
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static void randomizeIntArr(int[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swapInIntArr(arr, i, j);
}
}
private static void randomizeLongArr(long[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swapInLongArr(arr, i, j);
}
}
private static void swapInIntArr(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
private static void swapInLongArr(long[] arr, int a, int b) {
long temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
private static int[] readIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static long[] readLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextLong();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static List<Long> readLongList(int n) {
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextLong());
return list;
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 62751c7cfd28a5a87b768ff9c3494374 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class DividedandMultiply {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int arr[]=new int[n];
long count=0,sum=0;
long mul=1;
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
while(arr[i]%2==0)
{
arr[i]=arr[i]/2;
count++;
}
}
Arrays.sort(arr);
long last=arr[n-1];
for(int i=0;i<n-1;i++)
{
sum=sum+arr[i];
}
long ans=((long)Math.pow(2,count)*last)+sum;
System.out.println(ans);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ed26016b6858798135b2272e6fab9918 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private FastWriter wr;
private Reader rd;
public final int MOD = 1000000007;
/************************************************** FAST INPUT IMPLEMENTATION *********************************************/
class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
public Reader(String path) throws FileNotFoundException {
br = new BufferedReader(
new InputStreamReader(new FileInputStream(path)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public int ni() throws IOException {
return rd.nextInt();
}
public long nl() throws IOException {
return rd.nextLong();
}
public void yOrn(boolean flag){
if(flag){
wr.println("YES");
}else {
wr.println("NO");
}
}
char nc() throws IOException {
return rd.next().charAt(0);
}
public String ns() throws IOException {
return rd.nextLine();
}
public Double nd() throws IOException {
return rd.nextDouble();
}
public int[] nai(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
public long[] nal(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
/************************************************** FAST OUTPUT IMPLEMENTATION *********************************************/
public static class FastWriter {
private static final int BUF_SIZE = 1 << 13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter() {
out = null;
}
public FastWriter(OutputStream os) {
this.out = os;
}
public FastWriter(String path) {
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b) {
buf[ptr++] = b;
if (ptr == BUF_SIZE) innerflush();
return this;
}
public FastWriter write(char c) {
return write((byte) c);
}
public FastWriter write(char[] s) {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
return this;
}
public FastWriter write(String s) {
s.chars().forEach(c -> {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x) {
if (x == Integer.MIN_VALUE) {
return write((long) x);
}
if (ptr + 12 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x) {
if (x == Long.MIN_VALUE) {
return write("" + x);
}
if (ptr + 21 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision) {
if (x < 0) {
write('-');
x = -x;
}
x += Math.pow(10, -precision) / 2;
// if(x < 0){ x = 0; }
write((long) x).write(".");
x -= (long) x;
for (int i = 0; i < precision; i++) {
x *= 10;
write((char) ('0' + (int) x));
x -= (int) x;
}
return this;
}
public FastWriter writeln(char c) {
return write(c).writeln();
}
public FastWriter writeln(int x) {
return write(x).writeln();
}
public FastWriter writeln(long x) {
return write(x).writeln();
}
public FastWriter writeln(double x, int precision) {
return write(x, precision).writeln();
}
public FastWriter write(int... xs) {
boolean first = true;
for (int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs) {
boolean first = true;
for (long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln() {
return write((byte) '\n');
}
public FastWriter writeln(int... xs) {
return write(xs).writeln();
}
public FastWriter writeln(long... xs) {
return write(xs).writeln();
}
public FastWriter writeln(char[] line) {
return write(line).writeln();
}
public FastWriter writeln(char[]... map) {
for (char[] line : map) write(line).writeln();
return this;
}
public FastWriter writeln(String s) {
return write(s).writeln();
}
private void innerflush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush() {
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) {
return write(b);
}
public FastWriter print(char c) {
return write(c);
}
public FastWriter print(char[] s) {
return write(s);
}
public FastWriter print(String s) {
return write(s);
}
public FastWriter print(int x) {
return write(x);
}
public FastWriter print(long x) {
return write(x);
}
public FastWriter print(double x, int precision) {
return write(x, precision);
}
public FastWriter println(char c) {
return writeln(c);
}
public FastWriter println(int x) {
return writeln(x);
}
public FastWriter println(long x) {
return writeln(x);
}
public FastWriter println(double x, int precision) {
return writeln(x, precision);
}
public FastWriter print(int... xs) {
return write(xs);
}
public FastWriter print(long... xs) {
return write(xs);
}
public FastWriter println(int... xs) {
return writeln(xs);
}
public FastWriter println(long... xs) {
return writeln(xs);
}
public FastWriter println(char[] line) {
return writeln(line);
}
public FastWriter println(char[]... map) {
return writeln(map);
}
public FastWriter println(String s) {
return writeln(s);
}
public FastWriter println() {
return writeln();
}
}
/********************************************************* USEFUL CODE **************************************************/
boolean[] SAPrimeGenerator(int n) {
// TC-N*LOG(LOG N)
//Create Prime Marking Array and fill it with true value
boolean[] primeMarker = new boolean[n + 1];
Arrays.fill(primeMarker, true);
primeMarker[0] = false;
primeMarker[1] = false;
for (int i = 2; i <= n; i++) {
if (primeMarker[i]) {
// we start from 2*i because i*1 must be prime
for (int j = 2 * i; j <= n; j += i) {
primeMarker[j] = false;
}
}
}
return primeMarker;
}
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
class Pair<F, S> {
private F first;
private S second;
Pair(F first, S second) {
this.first = first;
this.second = second;
}
public F getFirst() {
return first;
}
public S getSecond() {
return second;
}
@Override
public String toString() {
return "Pair{" +
"first=" + first +
", second=" + second +
'}';
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<F, S> pair = (Pair<F, S>) o;
return first == pair.first && second == pair.second;
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
}
class PairThree<F, S, X> {
private F first;
private S second;
private X third;
PairThree(F first, S second,X third) {
this.first = first;
this.second = second;
this.third=third;
}
public F getFirst() {
return first;
}
public void setFirst(F first) {
this.first = first;
}
public S getSecond() {
return second;
}
public void setSecond(S second) {
this.second = second;
}
public X getThird() {
return third;
}
public void setThird(X third) {
this.third = third;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
PairThree<?, ?, ?> pair = (PairThree<?, ?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second) && third.equals(pair.third);
}
@Override
public int hashCode() {
return Objects.hash(first, second, third);
}
}
public static void main(String[] args) throws IOException {
new Main().run();
}
public void run() throws IOException {
if (oj) {
rd = new Reader();
wr = new FastWriter(System.out);
} else {
File input = new File("input.txt");
File output = new File("output.txt");
if (input.exists() && output.exists()) {
rd = new Reader(input.getPath());
wr = new FastWriter(output.getPath());
} else {
rd = new Reader();
wr = new FastWriter(System.out);
oj = true;
}
}
long s = System.currentTimeMillis();
solve();
wr.flush();
tr(System.currentTimeMillis() - s + "ms");
}
/***************************************************************************************************************************
*********************************************************** MAIN CODE ******************************************************
****************************************************************************************************************************/
boolean[] sieve;
public void solve() throws IOException {
int t = 1;
t = ni();
while (t-- > 0) {
go();
}
}
/********************************************************* MAIN LOGIC HERE ****************************************************/
long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static int lower_bound(long array[], long key)
{
int low = 0, high = array.length;
int mid;
while (low < high) {
mid = low + (high - low) / 2;
if (key <= array[mid]) {
high = mid;
}
else {
low = mid + 1;
}
}
if (low < array.length && array[low] < key) {
low++;
}
return low;
}
public void go() throws IOException {
int n=ni();
int[] arr=nai(n);
int counter=0;
int max=Integer.MIN_VALUE;
int max_index=0;
for(int i=0;i<n;i++){
int temp=arr[i];
while (temp%2==0 && temp!=0){
counter++;
temp/=2;
}
arr[i]=temp;
if(max<temp){
max_index=i;
max=temp;
}
}
long ans=0;
for(int i=0;i<n;i++){
int temp=arr[i];
if(i==max_index){
ans+=(long)Math.pow(2,counter)*Math.max(temp,1);
}else {
ans+=temp;
}
}
wr.println(ans);
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | b2c1f9e1d93979bb0ea277e78b0be98e | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
// when can't think of anything -->>
// 1. In sorting questions try to think about all possibilities like sorting from start, end, middle.
// 2. Two pointers, brute force.
// 3. In graph query questions try to solve it reversely or try to process all the queries in a single parse.
// 4. If order does not matter then just sort the data if constraints allow. It'll never harm.
// 5. In greedy problems if you are just overwhelmed by the possibilities and stuck, try to code whatever you come up with.
// 6. Think like a robot, just consider all the possibilities not probabilities if you still can't solve.
// 7. Try to solve it from back or reversely.
public static void main(String[] args) throws Exception {
FastReader sc = new FastReader();
PrintWriter writer = new PrintWriter(System.out);
int t = sc.nextInt();
while(t-->0) {
int n = sc.nextInt();
int arr[] = new int[n];
for(int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
long ans = 0;
for(int i = 0; i < n; i++)ans = Math.max(ans, calc(arr,i));
writer.println(ans);
}
writer.flush();
writer.close();
}
private static long calc(int arr[], int j) {
long ans = arr[j];
int n = arr.length;
int arr2[] = Arrays.copyOf(arr, n);
for(int i = 0; i < n; i++) {
if(i==j)continue;
while(arr2[i]%2==0) {
ans*=2;
arr2[i]/=2;
}
}
for(int i = 0; i < n; i++) {
if(i==j)continue;
ans+=arr2[i];
}
return ans;
}
private static boolean isPrime(int c) {
for (int i = 2; i*i <= c; i++) {
if(c%i==0)return false;
}
return true;
}
private static int find(int a , int arr[]) {
if(arr[a] != a) return arr[a] = find(arr[a], arr);
return arr[a];
}
private static void union(int a, int b, int arr[]) {
int aa = find(a,arr);
int bb = find(b, arr);
arr[aa] = bb;
}
private static int gcd(int a, int b) {
if(a==0)return b;
return gcd(b%a, a);
}
public static int[] readIntArray(int size, FastReader s) {
int[] array = new int[size];
for (int i = 0; i < size; i++) {
array[i] = s.nextInt();
}
return array;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
class Pair implements Comparable<Pair>{
int a;
int b;
Pair(int a, int b){
this.a = a;
this.b = b;
}
@Override
public boolean equals(Object obj) {
if(this == obj) return true;
if(obj == null || obj.getClass()!= this.getClass()) return false;
Pair pair = (Pair) obj;
return (pair.a == this.a && pair.b == this.b);
}
@Override
public int hashCode()
{
return Objects.hash(a,b);
}
@Override
public int compareTo(Pair o) {
if(this.a == o.a) {
return Integer.compare(this.b, o.b);
}else {
return Integer.compare(this.a, o.a);
}
}
@Override
public String toString() {
return this.a + " " + this.b;
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | c08af4b49f987ecec0d23ebd0e57f42e | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.DataInputStream;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.util.*;
import java.util.function.Consumer;
import java.util.stream.Collectors;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.Math.pow;
import java.math.*;
public class DivideAndMultiply {
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static String YES = "YES";
private static String NO = "NO";
private static void solve() throws IOException{
//Your Code Goes Here;
long n = in.nextLong();
long[] arr = new long[(int) n];
long count = 0, maximum = 0, sum = 0;
for(int i = 0; i < n; i++){
arr[i] = in.nextLong();
while(arr[i] % 2 == 0){
count++;
arr[i] /= 2;
}
maximum = max(maximum, arr[i]);
sum += arr[i];
}
sum -= maximum;
long total = (long) (sum + maximum * pow(2, count));
System.out.println(total);
}
public static void main(String[] args) throws IOException, InterruptedException {
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int T = in.nextInt();
while(T --> 0){
solve();
}
out.flush();
in.close();
out.close();
}
static final Random random = new Random();
static final int mod = 1_000_000_007;
private static boolean check(long[] arr, long n){
long ch = arr[0];
for(int i = 0; i < n; i++){
if(ch != arr[i]){
return false;
}
}
return true;
}
//This function gives the max occuring of any element in an array;(HashMap version)
private static long maxFreqHashMap(long[] arr, long n){
Map<Long, Long> hp = new HashMap<Long, Long>();
for(int i = 0; i < n; i++) {
long key = arr[i];
if(hp.containsKey(key)) {
long freq = hp.get(key);
freq++;
hp.put(key, freq);
}
else {
hp.put(key, 1L);
}
}
long max_count = 0, res = 1, count = 0;
for(Map.Entry<Long, Long> val : hp.entrySet()) {
if (max_count < val.getValue()) {
res = Math.toIntExact(val.getKey());
max_count = Math.toIntExact(val.getValue());
count = max_count;
}
}
return count;
}
//This function gives the max occuring of any element in an array; this also known as the "MOORE's Algorithm"
private static long maxFreq(long []arr, long n) {
// using moore's voting algorithm
long res = 0;
long count = -1;
for(int i = 1; i < n; i++) {
if(arr[i] == arr[(int) res]) {
count++;
}
else {
count--;
}
if(count == 0) {
res = i;
count = 1;
}
}
return arr[(int) res];
/*
you've to add below code in the solve()
long freq = maxFreq(arr, n);
int count = 0;
for(int i = 0; i < n; i++){
if(arr[i] == freq){
count++;
}
}
*/
}
private static int LCSubStr(char[] X, char[] Y, int m, int n) {
int[][] LCStuff = new int[m + 1][n + 1];
int result = 0;
for (int i = 0; i <= m; i++){
for (int j = 0; j <= n; j++) {
if (i == 0 || j == 0) {
LCStuff[i][j] = 0;
}
else if (X[i - 1] == Y[j - 1]) {
LCStuff[i][j] = LCStuff[i - 1][j - 1] + 1;
result = Integer.max(result, LCStuff[i][j]);
}
else {
LCStuff[i][j] = 0;
}
}
}
return result;
}
private static long longCusBsearch(long[] arr, long n, long h){
long ans = h;
long l = 1;
long r = h;
while(l <= r){
long mid = (l + r) / 2;
long ok = 0;
for(long i = 0; i < n; i++){
if(i == n - 1) {
ok += mid;
}
else{
long x = arr[(int) (i + 1)] - arr[(int) i];
if(x >= mid) {
ok += mid;
}
else{
ok += x;
}
}
}
if(ok >= h){
ans = mid;
r = mid - 1;
}
else{
l = mid + 1;
}
}
return ans;
}
public static int intCusBsearch(int[] arr, int n, int h){
int ans = h, l = 1, r = h;
while(l <= r){
int mid = (l + r) / 2;
int ok = 0;
for(int i = 0; i < n; i++){
if(i == n - 1){
ok += mid;
}
else{
int x = arr[i + 1] - arr[i];
if(x >= mid){
ok += mid;
}
else{
ok += x;
}
}
}
if(ok >= h){
ans = mid;
r = mid - 1;
}
else{
l = mid + 1;
}
}
return ans;
}
/* Method to check if x is power of 2*/
private static boolean isPowerOfTwo (int x) {
/* First x in the below expression is
for the case when x is 0 */
return x!=0 && ((x&(x-1)) == 0);
}
//Taken From "Second Thread"
static void ruffleSort(int[] a){
int n = a.length;//shuffles, then sort;
for(int i=0; i<n; i++){
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i]; a[i] = temp;
}
sort(a);
}
private static void longRuffleSort(long[] a){
long n = a.length;
for(long i = 0;i<n;i++){
long oi = random.nextInt((int) n), temp = a[(int) oi];
a[(int) oi] = a[(int) i]; a[(int) i] = temp;
}
longSort(a);
}
private static int gcd(int a, int b){
if(a == 0 || b == 0){
return 0;
}
while(b != 0){
int temp;
temp = a % b;
a = b;
b = temp;
}
return a;
}
private static long gcd(long a, long b){
if(a == 0 || b == 0){
return 0;
}
while(b != 0){
long temp;
temp = a % b;
a = b;
b = temp;
}
return a;
}
private static int lowestCommonMultiple(int a, int b){
return (a / gcd(a, b) * b);
}
/*
The Below func: the for loop runs in sqrt times. The second if is used to if the
divisors are equal to print only one of them otherwise we're printing both;
*/
private static void pDivisors(int n){
for(int i=1;i<Math.sqrt(n);i++){
if(n % i == 0){
if(n / i == i){
System.out.println(i + " ");
}
else{
System.out.println(i + " " + (n / i) + " ");
}
}
}
}
private static void returnNothing(){return;}
private static int numOfdigitsinN(int a){return (int) (Math.floor(Math.log10(a)) + 1);}
//prime Num till N: it takes any number and prints all the prime till that
//num;
private static boolean isPrime(int n){
if(n <= 1) return false;
if(n <= 3) return true;
//This is checked so that we can skip middle five number in below loop:
if(n % 2 == 0 || n % 3 == 0) return false;
for(int i = 5; i * i <= n; i = i + 6){
if(n % i == 0 || n % (i + 2) == 0){
return false;
}
}
return true;
}
//below func is to print the isPrime func();
private static void printTheIsPrimeFunc(int n){
for(int i=2;i<=n;i++){
if(isPrime(i)) System.out.println(i + " ");
}
}
public static boolean primeFinder(int n){
int m = 0;
int flag = 0;
m = n / 2;
if(n == 0 ||n == 1){
return false;
}
else{
for(int i=2;i<=m;i++){
if(n % i == 0){
return false;
}
}
return true;
}
}
private static boolean evenOdd(int num){
//System.out.println((num & 1) == 0 ? "EVEN" : "ODD");
return (num & 1) == 0 ? true : false;
}
private static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
private static int log2(int n){
int result = (int) (Math.log(n) / Math.log(2));
return result;
}
private static long add(long a, long b){
return (a + b) % mod;
}
private static long lcm(long a, long b){
return (a / gcd((int) a, (int) b) * b);
}
private static void sort(int[] a){
ArrayList<Integer> l = new ArrayList<>();
for(int i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
private static void longSort(long[] a){
ArrayList<Long> l = new ArrayList<Long>();
for(long i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
public static int[][] prefixsum( int n , int m , int arr[][] ){
int prefixsum[][] = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1];
}
}
return prefixsum;
}
//call this method when you want to read an integer array;
private static int[] readArray(int len) throws IOException{
int[] a = new int[len];
for(int i=0;i<len;i++)a[i] = in.nextInt();
return a;
}
//call this method when you want to read an Long array;
private static long[] readLongArray(int len) throws IOException{
long[] a = new long[len];
for(int i=0;i<len;i++) a[i] = in.nextLong();
return a;
}
//call this method to print the integer array;
private static void printArray(int[] array){
for(int now : array) out.print(now);out.print(' ');out.close();
}
//call this method to print the long array;
private static void printLongArray(long[] array){
for(long now:array) out.print(now); out.print(' '); out.close();
}
/*Another way of Reading input...collected from a online blog
from here => https://codeforces.com/contest/1625/submission/144334744;*/
private static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {//Constructor;
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {//To take user input for String values;
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {//For taking the signs like plus or minus ...
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
/* A class representing a Mutable Multiset (Collectied From TechieDelight)*/
private static class Multiset<E> {
/* List to store distinct values */
private List<E> values;
/* List to store counts of distinct values */
private List<Integer> frequency;
private final String ERROR_MSG = "Count cannot be negative: ";
/* Constructor */
public Multiset() {
values = new ArrayList<>();
frequency = new ArrayList<>();
}
/**
* Adds an element to this multiset specified number of times
*
* @param `element` The element to be added
* @param `count` The number of times
* @return The previous count of the element
*/
public int add(E element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
int index = values.indexOf(element);
int prevCount = 0;
if (index != -1) {
prevCount = frequency.get(index);
frequency.set(index, prevCount + count);
}
else if (count != 0) {
values.add(element);
frequency.add(count);
}
return prevCount;
}
/**
* Adds specified element to this multiset
*
* @param `element` The element to be added
* @return true always
*/
public boolean add(E element) {
return add(element, 1) >= 0;
}
/**
* Adds all elements in the specified collection to this multiset
*
* @param `c` Collection containing elements to be added
* @return true if all elements are added to this multiset
*/
boolean addAll(Collection<? extends E> c) {
for (E element: c) {
add(element, 1);
}
return true;
}
/**
* Adds all elements in the specified array to this multiset
*
* @param `arr` An array containing elements to be added
*/
public void addAll(E... arr) {
for (E element: arr) {
add(element, 1);
}
}
/**
* Performs the given action for each element of the Iterable,
* including duplicates
*
* @param `action` The action to be performed for each element
*/
public void forEach(Consumer<? super E> action) {
List<E> all = new ArrayList<>();
for (int i = 0; i < values.size(); i++)
{
for (int j = 0; j < frequency.get(i); j++) {
all.add(values.get(i));
}
all.forEach(action);
}
}
/**
* Removes a single occurrence of the specified element from this multiset
*
* @param `element` The element to removed
* @return true if an occurrence was found and removed
*/
public boolean remove(Object element) {
return remove(element, 1) > 0;
}
/**
* Removes a specified number of occurrences of the specified element
* from this multiset
*
* @param `element` The element to removed
* @param `count` The number of occurrences to be removed
* @return The previous count
*/
public int remove(Object element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
int index = values.indexOf(element);
if (index == -1) {
return 0;
}
int prevCount = frequency.get(index);
if (prevCount > count) {
frequency.set(index, prevCount - count);
}
else {
values.remove(index);
frequency.remove(index);
}
return prevCount;
}
/**
* Check if this multiset contains at least one occurrence of the
* specified element
*
* @param `element` The element to be checked
* @return true if this multiset contains at least one occurrence
* of the element
*/
public boolean contains(Object element) {
return values.contains(element);
}
/**
* Check if this multiset contains at least one occurrence of each element
* in the specified collection
*
* @param `c` The collection of elements to be checked
* @return true if this multiset contains at least one occurrence
* of each element
*/
public boolean containsAll(Collection<?> c) {
return values.containsAll(c);
}
/**
* Update the frequency of an element to the specified count or
* add element to this multiset if not present
*
* @param `element` The element to be updated
* @param `count` The new count
* @return The previous count
*/
public int setCount(E element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
if (count == 0) {
remove(element);
}
int index = values.indexOf(element);
if (index == -1) {
return add(element, count);
}
int prevCount = frequency.get(index);
frequency.set(index, count);
return prevCount;
}
/**
* Find the frequency of an element in this multiset
*
* @param `element` The element to be counted
* @return The frequency of the element
*/
public int count(Object element) {
int index = values.indexOf(element);
return (index == -1) ? 0 : frequency.get(index);
}
/**
* @return A view of the set of distinct elements in this multiset
*/
public Set<E> elementSet() {
return values.stream().collect(Collectors.toSet());
}
/**
* @return true if this multiset is empty
*/
public boolean isEmpty() {
return values.size() == 0;
}
/**
* @return Total number of elements in this multiset, including duplicates
*/
public int size() {
int size = 0;
for (Integer i: frequency) {
size += i;
}
return size;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder("[");
for (int i = 0; i < values.size(); i++)
{
sb.append(values.get(i));
if (frequency.get(i) > 1) {
sb.append(" x ").append(frequency.get(i));
}
if (i != values.size() - 1) {
sb.append(", ");
}
}
return sb.append("]").toString();
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a703e52ce71d5765901c3149bf17a732 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Codeforces {
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args){
try {
FastReader fastReader = new FastReader();
int T = fastReader.nextInt();
while (T-- > 0) {
int n = fastReader.nextInt();
long a[] = new long[n];
for(int i=0; i<n; i++){
a[i] = fastReader.nextInt();
}
int count = 0;
for(int i=0; i<n; i++){
if(a[i]%2==0){
while(a[i]%2 == 0){
count++;
a[i] /= 2;
}
}
}
Arrays.sort(a);
a[n-1] *= Math.pow(2, count);
long sum = 0;
for(int i=0; i<n; i++){
sum+= a[i];
}
System.out.println(sum);
}
}
catch (Exception e){
return;
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | fc379f2bf0c8e60c0cfdc35dbcbd9ca1 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
public class practice {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
StringBuilder sb = new StringBuilder();
int t = scan.nextInt();
while (t --> 0) {
int n = scan.nextInt();
int arr[] = new int[n];
int k = 0;
for (int i = 0; i < n; i++) {
arr[i] = scan.nextInt();
while ((arr[i] & 1) == 0) {
arr[i] /= 2;
k++;
}
}
long max = Arrays.stream(arr).max().getAsInt();
long sum = Arrays.stream(arr).sum() - max;
sb.append((max * (long) Math.pow(2, k) + sum) + "\n");
}
System.out.println(sb.toString().trim());
scan.close();
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a0387adaa81bd805842221e3bbcb7f44 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class Main {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static int p,q;
public static void main(String[] args)
{
FastReader sc = new FastReader();
int t=sc.nextInt();
while(t--!=0)
{
int n=sc.nextInt();
long a[]=new long[n];
long sum=0,max=0;
long ans=0;
for(int i=0;i<n;i++)
{
a[i]=sc.nextLong();
while(a[i]%2==0)
{
a[i]/=2;
sum++;
}
max=Math.max(max,a[i]);
ans+=a[i];
}
ans-=max;
ans+=max*(long)Math.pow(2,sum);
System.out.println(ans);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 98f3173642d06803a0fda6911c64da27 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner lec = new Scanner(System.in);
int casoPrueba=lec.nextInt();
int mayorImpar=0;
int contador=0;
int tamanoArreglo=0;
for (int i=0; i<casoPrueba; i++) {
mayorImpar=0;
contador=0;
tamanoArreglo = lec.nextInt();
long [] arreglo = new long [tamanoArreglo];
for (int j=0; j<tamanoArreglo; j++) {
arreglo[j]=lec.nextInt();
}
for (int h=0; h<tamanoArreglo; h++) {
while(arreglo[h]%2==0) {
arreglo[h]=arreglo[h]/2;
contador++;
}
if (arreglo[h]>arreglo[mayorImpar]) {
mayorImpar=h;
}
}
if (mayorImpar!=-1) {
for (int k=0; k<contador; k++) {
arreglo[mayorImpar]=arreglo[mayorImpar]*2;
}
} else {
for (int k=0; k<contador; k++) {
arreglo[0]=arreglo[0]*2;
}
}
long total=0;
for (int q=0; q < tamanoArreglo;q++) {
total=arreglo[q]+total;
}
System.out.println(total);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | aa1236ed66f48dc7c3cba214eb228112 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.*;
public class solution {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long arr[]=new long[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
int i=0;
long count=0;long res=0;
for(i=0;i<n;i++)
{ while(arr[i]%2==0)
{count++;
arr[i]=arr[i]/2;
}
}
Arrays.sort(arr);
for(int k=0;k<n-1;k++)
{
res=res+arr[k];
}
res+= arr[n-1]*(long)Math.pow(2,count) ;
System.out.println(res);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a0fd9dda5c67b40739afd390d8e9b83b | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes |
import java.util.Arrays;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int t=in.nextInt();
for(int i=1;i<=t;i++) {
long ans=0;
int x=in.nextInt();
long[] a=new long[x];
for(int j=0;j<x;j++) {
a[j]=in.nextInt();
}
int time=0;
Arrays.sort(a);
for(int j=0;j<=x-1;j++) {
while(a[j]%2==0) {
a[j]/=2;
time++;
}
}
Arrays.sort(a);
for(int j=0;j<x-1;j++) {
ans+=a[j];
}
a[x-1]=(long) (a[x-1]* Math.pow(2,time));
ans+=a[x-1];
System.out.println(ans);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | a6f6e8ccc579045b237144f0d9e52608 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class DivideandMultiply {
static final int MOD = (int) 1e9 + 7;
public static void main(String[] args) {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int t = fs.nextInt();
while(t-- >0){
int n=fs.nextInt();
long []a=new long[n];
long s=1;
for(int i=0;i<n;i++)
a[i]=fs.nextLong();
for(int i=0;i<n;i++){
while(a[i]%2==0){
a[i]/=2;
s*=2;
}
}
Arrays.sort(a);
a[n-1]*=s;s=0;
for(int i=0;i<n;i++) s+=a[i];
out.println(s);
}
out.close();
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())try {st=new StringTokenizer(br.readLine());}
catch (IOException e) {e.printStackTrace();}
return st.nextToken();
}
int[] readArray(int n) {int[] a=new int[n];for (int i=0; i<n; i++) a[i]=nextInt();return a; }
long[] readLongArray(int n) {long[] a=new long[n];for (int i=0; i<n; i++) a[i]=nextLong();return a; }
int nextInt() {return Integer.parseInt(next());}
long nextLong() {return Long.parseLong(next());}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 0787732b98068a8126896202828ba4e6 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.*;
import java.io.*;
import java.lang.*;
import java.math.*;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import static java.lang.Math.log;
import static java.lang.System.out;
import static java.lang.Integer.MAX_VALUE;
import static java.lang.Integer.MIN_VALUE;
public class Codechef {
static class Pair{
int pop;
int special;
String post;
Pair(int pop,int spe,String post){
this.pop = pop;
this.special = spe;
this.post = post;
}
}
static int garr[] ;
static FastReader fs;
static boolean isPrimes[];
static int countprimes[];
static int max_seive = 1000000;
public static void main(String args[]) throws Exception{
try{
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
}
catch(Exception e){
}
fs =new FastReader();
int tt = 1;
tt = fs.nextInt();
while(tt--!=0)
solve();
}
public static void solve(){
int n = fs.nextInt();
int arr[]= new int[n];
int max_odd = -1;
int max_even = -1;
int max_even_ind =-1,max_odd_ind=-1;
int k = 0;
long ans = 0;
long maxi =0;
for(int i =0;i<n;i++){
int yo = fs.nextInt();
while(yo%2==0){
yo/=2;
k++;
}
maxi = Math.max(maxi,yo);
ans+=yo;
}
ans-=maxi;
out.println(ans+maxi*(long)Math.pow(2,k));
}
public static boolean isPallindrome(String val){
StringBuilder sb =new StringBuilder(val);
return val.equals(sb.reverse().toString());
}
public static void seive(){
countprimes = new int[max_seive];
isPrimes = new boolean[max_seive];
Arrays.fill(isPrimes,true);
isPrimes[0] = false;
isPrimes[1] = false;
for(int i =2;i*i<=max_seive;i++){
if(isPrimes[i]){
for(int j =i*i;j<max_seive;j+=i){
isPrimes[j] = false;
}
}
}
int count =0;
for(int i = 2;i<max_seive;i++){
if(isPrimes[i]){
count++;
}
countprimes[i] = count;
}
}
static int gcd(int a,int b){
return (b==0)?a: gcd(b,a%b);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next(){
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int[] readArray(int n){
int arr[]= new int[n];
for(int i=0;i<arr.length;i++){
arr[i] = fs.nextInt();
}
return arr;
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | 597fc26b9eaa69c82c24a013804ec9ec | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | import java.util.Scanner;
public class DivideAndMultiply {
public static void main (String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
int i = 0;
while (i < t) {
int length = sc.nextInt();
int[] a = new int[length];
for (int j = 0; j < length; j++) {
a[j] = sc.nextInt();
}
long temp = 1;
for (int k = 0; k < length; k++){
while (a[k] % 2 == 0) {
a[k] /= 2;
temp *= 2;
}
}
Sort(a, 0, a.length - 1);
int maxSum = 0;
long lastNo = a[length - 1];
lastNo *= temp;
for (int p = 0; p < length - 1; p++) {
maxSum += a[p];
}
System.out.println(maxSum + lastNo);
i++;
}
}
public static void Merge (int[] a, int l, int m, int h) {
int n1 = m - l + 1;
int n2 = h - m;
int[] L = new int[n1];
int[] R = new int[n2];
for (int i = 0; i < n1; i++) {
L[i] = a[i + l];
}
for (int j = 0; j < n2; j++) {
R[j] = a[j + m + 1];
}
int i = 0;
int j = 0;
int k = l;
while (i < L.length && j < R.length) {
if (L[i] < R[j]) {
a[k++] = L[i++];
} else {
a[k++] = R[j++];
}
}
for (; i < L.length; i++) {
a[k++] = L[i];
}
for(; j < R.length; j++) {
a[k++] = R[j];
}
}
public static void Sort (int[] a, int l, int h) {
if (l < h) {
int mid = (l + h) / 2;
Sort(a, l, mid);
Sort(a, mid + 1, h);
Merge(a, l, mid, h);
}
}
} | Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output | |
PASSED | ee577aa11d6179613f80f8548589bc63 | train_110.jsonl | 1638110100 | William has array of $$$n$$$ numbers $$$a_1, a_2, \dots, a_n$$$. He can perform the following sequence of operations any number of times: Pick any two items from array $$$a_i$$$ and $$$a_j$$$, where $$$a_i$$$ must be a multiple of $$$2$$$ $$$a_i = \frac{a_i}{2}$$$ $$$a_j = a_j \cdot 2$$$ Help William find the maximal sum of array elements, which he can get by performing the sequence of operations described above. | 256 megabytes | //package Contest2;
import java.io.*;
import java.util.*;
public class DivideAndMultiply {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int cases = scan.nextInt();
for (int t = 0; t < cases; t++)
{
int len = scan.nextInt();
long[] arr = new long[len];
for (int i = 0; i < len; i++) arr[i] = scan.nextInt();
int power = 0;
for (int i = 0; i < len; i++) {
while (arr[i] % 2 == 0) {
arr[i] /= 2;
power++;
}
}
int maxInd = 0;
for (int i = 1; i < len; i++) if (arr[i] > arr[maxInd]) maxInd = i;
while (power-->0) arr[maxInd] *= 2;
long sum = 0;
for (long n : arr)
sum += n;
System.out.println(sum);
}
}
}
| Java | ["5\n3\n6 4 2\n5\n1 2 3 4 5\n1\n10\n3\n2 3 4\n15\n8 8 8 8 8 8 8 8 8 8 8 8 8 8 8"] | 1 second | ["50\n46\n10\n26\n35184372088846"] | NoteIn the first example test case the optimal sequence would be: Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{4}{2} = 2$$$ and $$$a_1 = 6 \cdot 2 = 12$$$, making the array look as: [12, 2, 2]. Pick $$$i = 2$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_2 = \frac{2}{2} = 1$$$ and $$$a_1 = 12 \cdot 2 = 24$$$, making the array look as: [24, 1, 2]. Pick $$$i = 3$$$ and $$$j = 1$$$. After performing a sequence of operations $$$a_3 = \frac{2}{2} = 1$$$ and $$$a_1 = 24 \cdot 2 = 48$$$, making the array look as: [48, 1, 1]. The final answer $$$48 + 1 + 1 = 50$$$.In the third example test case there is no way to change the sum of elements, so the answer is $$$10$$$. | Java 11 | standard input | [
"greedy",
"implementation",
"math",
"number theory"
] | f5de1e9b059bddf8f8dd46c18ce12683 | Each test contains multiple test cases. The first line contains the number of test cases $$$t$$$ ($$$1 \le t \le 10^4$$$). Description of the test cases follows. The first line of each test case contains an integer $$$n$$$ $$$(1 \le n \le 15)$$$, the number of elements in William's array. The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ $$$(1 \le a_i < 16)$$$, the contents of William's array. | 900 | For each test case output the maximal sum of array elements after performing an optimal sequence of operations. | standard output |
Subsets and Splits