text
stringlengths 1
2.05k
|
---|
class ScalarLoop(torch.nn.Module):
"""ScalarLoop module"""
def forward(self, inp):
"""forward"""
a = 0
for i in range(inp.size(0)):
b = i * i
b = b + 1
a += b
if a != 0:
a += 1
else:
a += 2
return a |
class SimpleLoop(torch.nn.Module):
def forward(self, inp):
a = inp
for _ in range(inp.size(0)):
b = a * 2.0
c = a + b
a += c
return a |
class LoopWithIf(torch.nn.Module):
"""LoopWithIf module"""
def forward(self, inp):
a = inp
for _ in range(inp.size(0)):
b = a * 2.0
b = a + b
if b.sum() > 0.0:
a += b
else:
a -= b
return a |
class NestedLoop(torch.nn.Module):
def forward(self, inp):
a = inp
for i in range(inp.size(0)):
b = a * float(i)
for j in range(inp.size(1)):
a += b * float(j)
return a |
class SimpleScalarWhileLoop(torch.nn.Module):
"""SimpleScalarWhileLoop module"""
def forward(self, inp):
"""forward"""
a = 1
i = 0
while i <= inp.size(0):
a += i
i += 2
i = 0
while i < 10:
a += i
i += 3
return a |
class SimpleWhileLoop(torch.nn.Module):
def forward(self, inp):
a = inp
i = 0
while i < inp.size(0):
a += a * float(i) * 2.0
i += 1
return a
models = [
SimpleIf(10, 20),
NestedIf(10, 20),
ScalarLoop(),
SimpleLoop(),
LoopWithIf(),
SimpleScalarWhileLoop(),
SimpleWhileLoop(),
NestedLoop(),
]
for pt_model in models:
verify_script_model(pt_model.eval(), [(10, 20)], _get_default_vm_targets())
@tvm.testing.uses_gpu
def test_simple_rnn():
"""test_simple_rnn""" |
class DecisionGate(torch.nn.Module):
def forward(self, x):
if x.sum() > 0:
return x
else:
return -x |
class Cell(torch.nn.Module):
def __init__(self, dg):
super().__init__()
self.dg = dg
self.linear = torch.nn.Linear(4, 4)
def forward(self, x, h):
new_h = torch.tanh(self.dg(self.linear(x)) + h)
return new_h, new_h |
class RNNLoop(torch.nn.Module):
"""Pytorch RNNLoop module"""
def __init__(self):
super().__init__()
x = torch.rand(10, 4, dtype=torch.float)
h = torch.rand(10, 4, dtype=torch.float)
self.cell = torch.jit.trace(Cell(DecisionGate()), (x, h))
def forward(self, xs):
h = torch.zeros(10, 4, dtype=torch.float)
y = torch.zeros(10, 4, dtype=torch.float)
for i in range(xs.size(0)):
y, h = self.cell(xs[i], h)
return y
verify_script_model(RNNLoop().eval(), [(10, 10, 4)], _get_default_vm_targets())
@tvm.testing.uses_gpu
def test_forward_reduce_sum():
"""test_forward_reduce_sum"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class ReduceSum1(Module):
def forward(self, *args):
return args[0].sum(1) |
class ReduceSum2(Module):
def forward(self, *args):
return args[0].sum(dim=1, keepdim=False) |
class ReduceSum3(Module):
def forward(self, *args):
return args[0].sum(dim=2, keepdim=True) |
class ReduceSum4(Module):
def forward(self, *args):
return args[0].sum(dim=(2, 3), keepdim=True) |
class ReduceSum5(Module):
def forward(self, *args):
return args[0].sum(dim=(2, 3), keepdim=False)
input_data = torch.rand(input_shape).float()
verify_model(ReduceSum1().float().eval(), input_data=input_data)
verify_model(ReduceSum2().float().eval(), input_data=input_data)
verify_model(ReduceSum3().float().eval(), input_data=input_data)
verify_model(ReduceSum4().float().eval(), input_data=input_data)
verify_model(ReduceSum5().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_reduce_prod():
"""test_forward_reduce_prod"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class ReduceProd1(Module):
def forward(self, *args):
return args[0].prod(1) |
class ReduceProd2(Module):
def forward(self, *args):
return args[0].prod(dim=1, keepdim=False) |
class ReduceProd3(Module):
def forward(self, *args):
return args[0].prod(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ReduceProd1().float().eval(), input_data=input_data)
verify_model(ReduceProd2().float().eval(), input_data=input_data)
verify_model(ReduceProd3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_argmin():
"""test_forward_argmin"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class ArgMin1(Module):
def forward(self, *args):
return args[0].argmin(1) |
class ArgMin2(Module):
def forward(self, *args):
return args[0].argmin(dim=1, keepdim=False) |
class ArgMin3(Module):
def forward(self, *args):
return args[0].argmin(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ArgMin1().float().eval(), input_data=input_data)
verify_model(ArgMin2().float().eval(), input_data=input_data)
verify_model(ArgMin3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_argmax():
"""test_forward_argmax"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class ArgMax1(Module):
def forward(self, *args):
return args[0].argmax(1) |
class ArgMax2(Module):
def forward(self, *args):
return args[0].argmax(dim=1, keepdim=False) |
class ArgMax3(Module):
def forward(self, *args):
return args[0].argmax(dim=2, keepdim=True)
input_data = torch.rand(input_shape).float()
verify_model(ArgMax1().float().eval(), input_data=input_data)
verify_model(ArgMax2().float().eval(), input_data=input_data)
verify_model(ArgMax3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_std():
"""test_forward_std"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class Std1(Module):
def forward(self, *args):
return args[0].std(1, unbiased=False) |
class Std2(Module):
def forward(self, *args):
return args[0].std(dim=1, keepdim=False, unbiased=False) |
class Std3(Module):
def forward(self, *args):
return args[0].std(dim=2, keepdim=True, unbiased=False) |
class Std4(Module):
def forward(self, *args):
return args[0].std(dim=(2, 3), keepdim=True, unbiased=False) |
class Std5(Module):
def forward(self, *args):
return args[0].std(dim=(2, 3), keepdim=False, unbiased=False) |
class Std6(Module):
def forward(self, *args):
return args[0].std(unbiased=False) |
class Std7(Module):
def forward(self, *args):
return args[0].std(dim=1, keepdim=False, unbiased=True) |
class Std8(Module):
def forward(self, *args):
return args[0].std(dim=(2, 3), keepdim=True, unbiased=True) |
class Std9(Module):
def forward(self, *args):
return args[0].std(unbiased=True)
input_data = torch.rand(input_shape).float()
verify_model(Std1().float().eval(), input_data=input_data)
verify_model(Std2().float().eval(), input_data=input_data)
verify_model(Std3().float().eval(), input_data=input_data)
verify_model(Std4().float().eval(), input_data=input_data)
verify_model(Std5().float().eval(), input_data=input_data)
verify_model(Std6().float().eval(), input_data=input_data)
verify_model(Std7().float().eval(), input_data=input_data)
verify_model(Std8().float().eval(), input_data=input_data)
verify_model(Std9().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_var_mean():
"""test_forward_var_mean"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class VarMean1(Module):
def forward(self, *args):
return torch.var_mean(args[0], 1, unbiased=False) |
class VarMean2(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=1, keepdim=False, unbiased=False) |
class VarMean3(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=2, keepdim=True, unbiased=False) |
class VarMean4(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=(2, 3), keepdim=True, unbiased=False) |
class VarMean5(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=(2, 3), keepdim=False, unbiased=False) |
class VarMean6(Module):
def forward(self, *args):
return torch.var_mean(args[0], unbiased=False) |
class VarMean7(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=1, keepdim=False, unbiased=True) |
class VarMean8(Module):
def forward(self, *args):
return torch.var_mean(args[0], dim=(2, 3), keepdim=True, unbiased=True) |
class VarMean9(Module):
def forward(self, *args):
return torch.var_mean(args[0], unbiased=True)
input_data = torch.rand(input_shape).float()
verify_model(VarMean1().float().eval(), input_data=input_data)
verify_model(VarMean2().float().eval(), input_data=input_data)
verify_model(VarMean3().float().eval(), input_data=input_data)
verify_model(VarMean4().float().eval(), input_data=input_data)
verify_model(VarMean5().float().eval(), input_data=input_data)
verify_model(VarMean6().float().eval(), input_data=input_data)
verify_model(VarMean7().float().eval(), input_data=input_data)
verify_model(VarMean8().float().eval(), input_data=input_data)
verify_model(VarMean9().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_variance():
"""test_forward_variance"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class Variance1(Module):
def forward(self, *args):
return args[0].var(1, unbiased=False) |
class Variance2(Module):
def forward(self, *args):
return args[0].var(dim=1, keepdim=False, unbiased=False) |
class Variance3(Module):
def forward(self, *args):
return args[0].var(dim=2, keepdim=True, unbiased=False) |
class Variance4(Module):
def forward(self, *args):
return args[0].var(dim=(2, 3), keepdim=True, unbiased=False) |
class Variance5(Module):
def forward(self, *args):
return args[0].var(dim=(2, 3), keepdim=False, unbiased=False) |
class Variance6(Module):
def forward(self, *args):
return args[0].var(unbiased=False) |
class Variance7(Module):
def forward(self, *args):
return args[0].var(dim=1, keepdim=False, unbiased=True) |
class Variance8(Module):
def forward(self, *args):
return args[0].var(dim=(2, 3), keepdim=True, unbiased=True) |
class Variance9(Module):
def forward(self, *args):
return args[0].var(unbiased=True)
input_data = torch.rand(input_shape).float()
verify_model(Variance1().float().eval(), input_data=input_data)
verify_model(Variance2().float().eval(), input_data=input_data)
verify_model(Variance3().float().eval(), input_data=input_data)
verify_model(Variance4().float().eval(), input_data=input_data)
verify_model(Variance5().float().eval(), input_data=input_data)
verify_model(Variance6().float().eval(), input_data=input_data)
verify_model(Variance7().float().eval(), input_data=input_data)
verify_model(Variance8().float().eval(), input_data=input_data)
verify_model(Variance9().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_rsub():
"""test_forward_rsub"""
torch.set_grad_enabled(False) |
class Rsub1(Module):
def forward(self, *args):
return torch.rsub(args[0], args[1]) |
class Rsub2(Module):
def forward(self, *args):
return torch.rsub(args[0], args[1], alpha=0.5)
d1 = torch.rand([1, 3]).float()
d2 = torch.rand([1, 3]).float()
d3 = torch.rand([1, 3]).int()
verify_model(Rsub1().float().eval(), input_data=[d1, d2])
verify_model(Rsub1().float().eval(), input_data=[d1, d3])
verify_model(Rsub2().float().eval(), input_data=[d1, d2])
verify_model(Rsub2().float().eval(), input_data=[d1, d3])
d1 = torch.rand([1, 3]).half()
d2 = torch.rand([1, 3]).half()
verify_model(Rsub1().half().eval(), input_data=[d1, d2])
verify_model(Rsub1().half().eval(), input_data=[d1, d3])
verify_model(Rsub2().half().eval(), input_data=[d1, d2])
verify_model(Rsub2().half().eval(), input_data=[d1, d3])
@tvm.testing.uses_gpu
def test_forward_embedding():
"""test_forward_embedding"""
torch.set_grad_enabled(False)
input_data = torch.randint(0, 10, [2, 4]).long()
verify_model(torch.nn.Embedding(10, 3).float().eval(), input_data=input_data)
input_data = torch.randint(0, 4, [2, 3, 4]).long()
verify_model(torch.nn.Embedding(4, 5, sparse=False).float().eval(), input_data=input_data)
input_data = torch.randint(0, 4, [2, 3, 4]).long()
verify_model(torch.nn.Embedding(4, 5, sparse=True).float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_onehot():
"""test_forward_onehot"""
torch.set_grad_enabled(False) |
class OneHot1(Module):
def forward(self, *args):
return torch.nn.functional.one_hot(args[0], num_classes=3) |
class OneHot2(Module):
def forward(self, *args):
return torch.nn.functional.one_hot(args[0], num_classes=5)
input_data = torch.arange(0, 5) % 3
verify_model(OneHot1().float().eval(), input_data=input_data)
input_data = torch.arange(0, 5) % 4
verify_model(OneHot2().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_isfinite():
"""test_forward_isfinite"""
torch.set_grad_enabled(False) |
class IsFinite1(Module):
def forward(self, *args):
return torch.isfinite(args[0])
input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float()
verify_model(IsFinite1().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_isnan():
"""test_forward_isnan"""
torch.set_grad_enabled(False) |
class IsNan1(Module):
def forward(self, *args):
return torch.isnan(args[0])
input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float()
verify_model(IsNan1().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_isinf():
"""test_forward_isinf"""
torch.set_grad_enabled(False) |
class IsInf1(Module):
def forward(self, *args):
return torch.isinf(args[0])
input_data = torch.tensor([1, float("inf"), 2, float("-inf"), float("nan")]).float()
verify_model(IsInf1().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_clamp():
"""test_forward_clamp"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class Clamp1(Module):
def forward(self, *args):
return torch.clamp(args[0], min=-0.5, max=0.5) |
class Clamp2(Module):
def forward(self, *args):
return torch.clamp(args[0], min=-0.3) |
class Clamp3(Module):
def forward(self, *args):
return torch.clamp(args[0], max=1.0) |
class Clamp_MinExpr_MaxConstant(Module):
def forward(self, *args):
h, w = args[0].shape[2:]
amin = h / 100.0
return torch.clamp(args[0], min=amin, max=w)
input_data = torch.rand(input_shape).float()
verify_model(Clamp1().float().eval(), input_data=input_data)
verify_model(Clamp2().float().eval(), input_data=input_data)
verify_model(Clamp3().float().eval(), input_data=input_data)
verify_model(Clamp_MinExpr_MaxConstant().float().eval(), input_data=input_data)
verify_model(lambda inp: torch.clamp_min(inp, 0.5), input_data)
inp_uint8 = torch.randint(low=0, high=256, size=(100, 100), dtype=torch.uint8)
verify_model(lambda inp: torch.clamp_max(inp, 125), inp_uint8)
@tvm.testing.uses_gpu
def test_forward_clamp_():
"""test_forward_clamp_"""
torch.set_grad_enabled(False) |
class ClampInPlace(Module):
def __init__(self, i_min, i_max):
super().__init__()
self.min = i_min
self.max = i_max
def forward(self, *args):
return torch.clamp_(args[0], self.min, self.max)
for ishape, i_min, i_max in (([4, 8], 0.1, 0.9), ([7, 6], 0.2, 0.5)):
input_data = torch.rand(ishape).float()
verify_model(ClampInPlace(i_min, i_max).float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_ones():
"""test_forward_ones"""
torch.set_grad_enabled(False) |
class Ones1(Module):
def forward(self, *args):
return torch.ones(2, 3)
verify_model(Ones1().float().eval(), input_data=[])
@tvm.testing.uses_gpu
def test_forward_ones_like():
"""test_forward_ones_like"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class OnesLike1(Module):
def forward(self, *args):
return torch.ones_like(args[0]) |
class OnesLike2(Module):
def forward(self, *args):
return torch.ones_like(args[0], dtype=torch.int8) |
class OnesLike3(Module):
def forward(self, *args):
return torch.ones_like(args[0], dtype=torch.float)
input_data = torch.rand(input_shape).float()
verify_model(OnesLike1().float().eval(), input_data=input_data)
verify_model(OnesLike2().float().eval(), input_data=input_data)
verify_model(OnesLike3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_new_ones():
"""test_forward_new_ones"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
def test_func(input_tensor):
return input_tensor.new_ones([3, 10, 10])
verify_model_with_input(test_func, [torch.rand(input_shape).float()])
@tvm.testing.uses_gpu
def test_forward_zeros():
"""test_forward_zeros"""
torch.set_grad_enabled(False) |
class Zeros1(Module):
def forward(self, *args):
return torch.zeros(2, 3)
verify_model(Zeros1().float().eval(), input_data=[])
def test_forward_zero_():
def test_func(x):
return x.zero_()
verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()])
@tvm.testing.uses_gpu
def test_forward_zeros_like():
"""test_forward_zeros_like"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class ZerosLike1(Module):
def forward(self, *args):
return torch.zeros_like(args[0]) |
class ZerosLike2(Module):
def forward(self, *args):
return torch.zeros_like(args[0], dtype=torch.int32) |
class ZerosLike3(Module):
def forward(self, *args):
return torch.zeros_like(args[0], dtype=torch.float)
input_data = torch.rand(input_shape).float()
verify_model(ZerosLike1().float().eval(), input_data=input_data)
verify_model(ZerosLike2().float().eval(), input_data=input_data)
verify_model(ZerosLike3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_full():
"""test_forward_full"""
torch.set_grad_enabled(False) |
class Full1(Module):
def forward(self, *args):
return torch.full((2, 3), 3.14) |
class Full2(Module):
def forward(self, *args):
return torch.full((1, 2, 3), 1.0, dtype=torch.int32)
verify_model(Full1().float().eval(), input_data=[])
verify_model(Full2().float().eval(), input_data=[])
@tvm.testing.uses_gpu
def test_forward_full_like():
"""test_forward_full_like"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10] |
class FullLike1(Module):
def forward(self, *args):
return torch.full_like(args[0], 3.14) |
class FullLike2(Module):
def forward(self, *args):
return torch.full_like(args[0], 22.22, dtype=torch.int32) |
class FullLike3(Module):
def forward(self, *args):
return torch.full_like(args[0], 1.4, dtype=torch.float)
input_data = torch.rand(input_shape).float()
verify_model(FullLike1().float().eval(), input_data=input_data)
verify_model(FullLike2().float().eval(), input_data=input_data)
verify_model(FullLike3().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_new_full():
"""test_forward_new_full"""
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
def test_func(input_tensor):
return input_tensor.new_full([2, 3], 1)
verify_model_with_input(test_func, [torch.rand(input_shape).float()])
def test_forward_fill_():
def test_func(x):
return x.fill_(3)
verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()])
def test_forward_fill_with_div():
"""test_forward_fill_with_div"""
def test_func(x):
y = torch.div(torch.tensor(6.0), torch.tensor(2.0))
return x.fill_(y)
verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()])
@tvm.testing.uses_gpu
def test_forward_linspace():
"""test_forward_linspace"""
torch.set_grad_enabled(False) |
class Linspace1(Module):
def forward(self, *args):
return torch.linspace(5, 10, steps=100) |
class Linspace2(Module):
def forward(self, *args):
return torch.linspace(-10, 10, steps=5) |
class Linspace3(Module):
def forward(self, *args):
return torch.linspace(start=-10, end=10, steps=5) |
class Linspace4(Module):
def forward(self, *args):
return torch.linspace(start=-10, end=10, steps=1) |
class Linspace5(Module):
def forward(self, *args):
return torch.linspace(1, 2, 1, dtype=torch.int32) |
class Linspace6(Module):
def forward(self, *args):
return torch.linspace(start=1, end=6, steps=2) |
class Linspace7(Module):
def forward(self, *args):
return torch.linspace(1, 4, steps=100, dtype=torch.float32) |
class Linspace8(Module):
def forward(self, *args):
return torch.linspace(1, 2, 1, dtype=torch.int16)
verify_model(Linspace1().float().eval())
verify_model(Linspace2().float().eval())
verify_model(Linspace3().float().eval())
verify_model(Linspace4().float().eval())
verify_model(Linspace5().float().eval())
verify_model(Linspace6().float().eval())
verify_model(Linspace7().float().eval())
verify_model(Linspace8().float().eval())
@tvm.testing.uses_gpu
def test_forward_take():
"""test_forward_take"""
torch.set_grad_enabled(False) |
class Take1(Module):
def forward(self, *args):
indices = torch.tensor([[0, 0], [1, 0]])
if torch.cuda.is_available():
indices = indices.cuda()
return torch.take(args[0], indices) |
class Take2(Module):
def forward(self, *args):
return torch.take(args[0], args[1])
input_data = torch.tensor([[1, 2], [3, 4]])
verify_model(Take1().float().eval(), input_data=input_data)
indices = torch.tensor([[0, 0], [1, 0]])
verify_model(Take2().float().eval(), input_data=[input_data, indices])
indices = torch.tensor([0, -1])
verify_model(Take2().float().eval(), input_data=[input_data, indices])
@tvm.testing.uses_gpu
def test_forward_topk():
"""test_forward_topk"""
torch.set_grad_enabled(False) |
class Topk1(Module):
def forward(self, *args):
return torch.topk(args[0], k=3) |
class Topk2(Module):
def forward(self, *args):
return torch.topk(args[0], k=3, dim=-2) |
class Topk3(Module):
def forward(self, *args):
return torch.topk(args[0], k=3, dim=3) |
class Topk4(Module):
def forward(self, *args):
return torch.topk(args[0], k=3, largest=True) |
class Topk5(Module):
def forward(self, *args):
return torch.topk(args[0], k=3, largest=False) |
class Topk6(Module):
def forward(self, *args):
return torch.topk(args[0], k=3, sorted=True)
input_shape = [1, 3, 10, 10]
input_data = torch.rand(input_shape).float()
verify_model(Topk1().float().eval(), input_data=input_data)
verify_model(Topk2().float().eval(), input_data=input_data)
verify_model(Topk3().float().eval(), input_data=input_data)
verify_model(Topk4().float().eval(), input_data=input_data)
verify_model(Topk5().float().eval(), input_data=input_data)
verify_model(Topk6().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_logical_not():
"""test_forward_logical_not"""
torch.set_grad_enabled(False) |
class LogicalNot1(Module):
def forward(self, *args):
return torch.logical_not(args[0])
input_data = torch.tensor([True, False])
verify_model(LogicalNot1().float().eval(), input_data=input_data)
input_data = torch.tensor([0, 1, -10], dtype=torch.int8)
verify_model(LogicalNot1().float().eval(), input_data=input_data)
input_data = torch.tensor([0.0, 1.5, -10.0], dtype=torch.double)
verify_model(LogicalNot1().float().eval(), input_data=input_data)
input_data = torch.tensor([0.0, 1.0, -10.0], dtype=torch.int32)
verify_model(LogicalNot1().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_bitwise_not():
"""test_forward_bitwise_not"""
torch.set_grad_enabled(False) |
class BitwiseNot1(Module):
def forward(self, *args):
return torch.bitwise_not(args[0])
input_data = torch.tensor([0, 1, -10], dtype=torch.int8)
verify_model(BitwiseNot1().float().eval(), input_data=input_data)
input_data = torch.tensor([0.0, 1.0, -10.0], dtype=torch.int32)
verify_model(BitwiseNot1().float().eval(), input_data=input_data)
input_data = torch.tensor([True, False])
verify_model(BitwiseNot1().float().eval(), input_data=input_data)
@tvm.testing.uses_gpu
def test_forward_bitwise_xor():
"""test_forward_bitwise_xor"""
torch.set_grad_enabled(False) |
class BitwiseXor1(Module):
def forward(self, *args):
return torch.bitwise_xor(args[0], args[1]) |
class BitwiseXor2(Module):
def forward(self, *args):
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
if torch.cuda.is_available():
rhs = rhs.cuda()
return torch.bitwise_xor(args[0], rhs)
lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs])
lhs = torch.tensor([True, True, False])
rhs = torch.tensor([False, True, False])
verify_model(BitwiseXor1().float().eval(), input_data=[lhs, rhs])
lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
verify_model(BitwiseXor2().float().eval(), input_data=[lhs])
@tvm.testing.uses_gpu
def test_forward_logical_xor():
"""test_forward_logical_xor"""
torch.set_grad_enabled(False) |
class LogicalXor1(Module):
def forward(self, *args):
return torch.logical_xor(args[0], args[1]) |
class LogicalXor2(Module):
def forward(self, *args):
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
if torch.cuda.is_available():
rhs = rhs.cuda()
return torch.logical_xor(args[0], rhs)
lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
rhs = torch.tensor([1, 0, 3], dtype=torch.int8)
verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs])
lhs = torch.tensor([True, True, False])
rhs = torch.tensor([False, True, False])
verify_model(LogicalXor1().float().eval(), input_data=[lhs, rhs])
lhs = torch.tensor([-1, -2, 3], dtype=torch.int8)
verify_model(LogicalXor2().float().eval(), input_data=[lhs])
@tvm.testing.uses_gpu
def test_forward_unary():
"""test_forward_unary"""
torch.set_grad_enabled(False) |
class Sqrt1(Module):
def forward(self, *args):
return torch.sqrt(args[0]) |
class RSqrt1(Module):
def forward(self, *args):
return torch.rsqrt(args[0]) |
class Ceil1(Module):
def forward(self, *args):
return torch.ceil(args[0]) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.