text
stringlengths 1
2.05k
|
---|
import (
rewrite_nms_to_batched_nms,
rewrite_batched_nms_with_max_out_size,
rewrite_scatter_to_gather,
)
from tvm.contrib.download |
import download
in_size = 300
def process_image(img):
img = cv2.imread(img).astype("float32")
img = cv2.resize(img, (in_size, in_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img / 255.0).permute(2, 0, 1).float()
img = torch.unsqueeze(img, axis=0)
return img
def do_trace(model, inp, in_size=in_size):
model_trace = torch.jit.trace(model, inp)
model_trace.eval()
return model_trace
def dict_to_tuple(out_dict):
if "masks" in out_dict.keys():
return out_dict["boxes"], out_dict["scores"], out_dict["labels"], out_dict["masks"]
return out_dict["boxes"], out_dict["scores"], out_dict["labels"] |
class TraceWrapper(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, inp):
out = self.model(inp)
return dict_to_tuple(out[0])
def generate_jit_model(index):
model_funcs = [
torchvision.models.detection.fasterrcnn_resnet50_fpn,
torchvision.models.detection.maskrcnn_resnet50_fpn,
]
model_func = model_funcs[index]
model = TraceWrapper(model_func(pretrained=True, rpn_pre_nms_top_n_test=1000))
model.eval()
inp = torch.Tensor(np.random.uniform(0.0, 250.0, size=(1, 3, in_size, in_size)))
with torch.no_grad():
out = model(inp)
script_module = do_trace(model, inp)
script_out = script_module(inp)
assert len(out[0]) > 0 and len(script_out[0]) > 0
return script_module
def test_detection_models():
img = "test_street_small.jpg"
img_url = (
"https:
)
download(img_url, img)
input_shape = (1, 3, in_size, in_size)
input_name = "input0"
shape_list = [(input_name, input_shape)]
scripted_model = generate_jit_model(1)
mod, params = relay.frontend.from_pytorch(scripted_model, shape_list)
data = process_image(img)
data_np = data.detach().numpy()
with torch.no_grad():
pt_res = scripted_model(data)
def compile_and_run_vm(mod, params, data_np, target):
with tvm.transform.PassContext(opt_level=3):
vm_exec = relay.vm.compile(mod, target=target, params=params)
dev = tvm.device(target, 0)
vm = VirtualMachine(vm_exec, dev)
vm.set_input("main", **{input_name: data_np})
return vm.run()
for target in ["llvm"]:
tvm_res = compile_and_run_vm(mod, params, data_np, target)
tvm.testing.assert_allclose(
pt_res[0].cpu().numpy(), tvm_res[0].numpy(), rtol=1e-5, atol=1e-5
)
tvm.testing.assert_allclose(
pt_res[1].cpu().numpy(), tvm_res[1].numpy(), rtol=1e-5, atol=1e-5 |
)
np.testing.assert_equal(pt_res[2].cpu().numpy(), tvm_res[2].numpy())
score_threshold = 0.9
print("Num boxes:", pt_res[0].cpu().numpy().shape[0])
print("Num valid boxes:", np.sum(pt_res[1].cpu().numpy() >= score_threshold))
before = mod["main"]
mod = rewrite_nms_to_batched_nms(mod)
after = mod["main"]
assert not tvm.ir.structural_equal(after, before)
before = mod["main"]
mod = rewrite_scatter_to_gather(mod, 4)
after = mod["main"]
assert not tvm.ir.structural_equal(after, before)
tvm_res_after_rewrite = compile_and_run_vm(mod, params, data_np, "llvm")
for res1, res2 in zip(tvm_res, tvm_res_after_rewrite):
tvm.testing.assert_allclose(res1.numpy(), res2.numpy()) |
import torch |
import tvm |
import tvm.testing |
import onnx |
import io |
import sys
from tvm |
import relay
from tvm.contrib |
import graph_executor
from torch |
import nn
lstm_feature_size = 16
lstm_hidden_size = 32
lstm_projection_size = 20
gru_feature_size = 8
gru_hidden_size = 16
num_layers = 2
seqs_length = 2
batch_size = 2
rnn_feature_size = 8
rnn_hidden_size = 16 |
class RNN_Model(nn.Module):
"""
It is base class for RNN layer classes.
It contains some common fields and methods for child classes.
"""
def __init__(
self,
):
super().__init__()
self.model = None
def forward(self, input, hidden_init=None):
"""
Computes the output tensor after input inference along RNN layer.
:param input: batch of data as a tensor of shape (seqs_length, batch_size, feature_size) or (batch_size, seqs_length, feature_size) if self.batch_first = True
:param hidden_init: initial hidden state(s) of the RNN as a tensor(s) of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None.
:return: the output tensor of shape (batch_size, hidden_size)
"""
if self.model is None:
raise NotImplementedError("self.model must be defined in subclasses!")
out, _ = self.model(input, hidden_init)
return out
def gen_rnd_weights(self):
"""
Generate random weigths for the model
"""
if self.model is None:
raise NotImplementedError("self.model must be defined in subclasses!")
with torch.no_grad():
for weight_group in self.model.all_weights:
for weight in weight_group:
weight.data = torch.rand(weight.shape)
def get_dummy_inputs(self):
raise NotImplementedError("subclasses must override get_dummy_inputs()!")
def get_input_names(self):
raise NotImplementedError("subclasses must override get_input_names()!")
def get_shape_desc(self, frontend_type):
raise NotImplementedError("subclasses must override get_shape_desc(frontend_type)!")
def get_tvm_inputs(self, dtype):
raise NotImplementedError("subclasses must override get_tvm_inputs(dtype)!") |
class RNN_Model_Impl(RNN_Model):
def __init__(
self,
seq_len=seqs_length,
batch_size=batch_size,
feature_size=rnn_feature_size,
hidden_size=rnn_hidden_size,
batch_first=False,
layer_num=1,
bidirectional=False,
use_bias=True,
rnd_weights_init=False,
nonlinearity="tanh",
dropout=0.0,
):
super().__init__()
self.shape = [seq_len, batch_size, feature_size]
if batch_first:
self.shape = [batch_size, seq_len, feature_size]
layers_num = 2 * layer_num if bidirectional else layer_num
self.h0_shape = [layers_num, batch_size, hidden_size]
self.dummy_inputs = (torch.rand(self.shape), torch.zeros(self.h0_shape))
self.model = nn.RNN(
input_size=feature_size,
hidden_size=hidden_size,
num_layers=layer_num,
nonlinearity=nonlinearity,
bias=use_bias,
batch_first=batch_first,
dropout=dropout,
bidirectional=bidirectional,
)
if rnd_weights_init:
self.gen_rnd_weights()
def gen_rnd_weights(self):
super().gen_rnd_weights()
def get_dummy_inputs(self):
return self.dummy_inputs
def get_input_names(self):
return ["input", "h0"]
def get_shape_desc(self, frontend_type):
shape_desc = None
if frontend_type == "pt":
shape_desc = [("input", self.shape)]
elif frontend_type == "onnx":
shape_desc = {
"input": self.shape,
"h0": self.h0_shape,
}
return shape_desc
def get_tvm_inputs(self, dtype):
return {
"input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)),
"h0": tvm.nd.array(self.dummy_inputs[1].numpy().astype(dtype)),
} |
class GRU_Model(RNN_Model):
def __init__(
self,
seq_len=seqs_length,
batch_size=batch_size,
feature_size=gru_feature_size,
hidden_size=gru_hidden_size,
batch_first=False,
layer_num=1,
bidirectional=False,
use_bias=True,
rnd_weights_init=False,
):
super().__init__()
self.shape = [seq_len, batch_size, feature_size]
if batch_first:
self.shape = [batch_size, seq_len, feature_size]
layers_num = 2 * layer_num if bidirectional else layer_num
self.h0_shape = [layers_num, batch_size, hidden_size]
self.dummy_inputs = (torch.rand(self.shape), torch.zeros(self.h0_shape))
self.model = nn.GRU(
input_size=feature_size,
hidden_size=hidden_size,
num_layers=layer_num,
bidirectional=bidirectional,
batch_first=batch_first,
bias=use_bias,
)
if rnd_weights_init:
self.gen_rnd_weights()
def gen_rnd_weights(self):
"""
Generate random weigths for the model with biases
For first uni- and bidirectional weights group:
Wi (3*hidden_size, feature_size)
Wh (3*hidden_size, hidden_size)
Bi (3*hidden_size)
Bh (3*hidden_size)
For other weights group:
Wi (3*hidden_size, hidden_size)
Wh (3*hidden_size, hidden_size)
Bi (3*hidden_size)
Bh (3*hidden_size)
For generation of random weigths for the model without biases the Bi and Bh weights are skipped
"""
super().gen_rnd_weights()
def get_dummy_inputs(self):
return self.dummy_inputs
def get_input_names(self):
return ["input", "h0"]
def get_shape_desc(self, frontend_type):
shape_desc = None
if frontend_type == "pt":
shape_desc = [("input", self.shape)]
elif frontend_type == "onnx":
shape_desc = { |
"input": self.shape,
"h0": self.h0_shape,
}
return shape_desc
def get_tvm_inputs(self, dtype):
return {
"input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)),
"h0": tvm.nd.array(self.dummy_inputs[1].numpy().astype(dtype)),
}
def check_torch_version_for_proj_in_lstm():
"""
proj_size parameter is supported in torch.nn.LSTM layer started from 1.8.0 torch version
"""
me = False
version = torch.__version__
major, minor, micro = version.split(".")
if int(major) > 1:
me = True
elif int(major) == 1:
if int(minor) >= 8:
me = True
return me |
class LSTM_Model(RNN_Model):
def __init__(
self,
seq_len=seqs_length,
batch_size=batch_size,
feature_size=lstm_feature_size,
hidden_size=lstm_hidden_size,
batch_first=False,
layer_num=1,
bidirectional=False,
proj_size=0,
use_bias=True,
rnd_weights_init=False,
):
super().__init__()
self.shape = [seq_len, batch_size, feature_size]
if batch_first:
self.shape = [batch_size, seq_len, feature_size]
layers_num = 2 * layer_num if bidirectional else layer_num
self.h0_shape = [layers_num, batch_size, hidden_size]
if proj_size > 0:
self.h0_shape = [layers_num, batch_size, proj_size]
self.c0_shape = [layers_num, batch_size, hidden_size]
self.dummy_inputs = (
torch.rand(self.shape),
(torch.zeros(self.h0_shape), torch.zeros(self.c0_shape)),
)
if check_torch_version_for_proj_in_lstm():
self.model = nn.LSTM(
input_size=lstm_feature_size,
hidden_size=lstm_hidden_size,
num_layers=layer_num,
bidirectional=bidirectional,
proj_size=proj_size,
batch_first=batch_first,
bias=use_bias,
)
else:
if proj_size > 0:
print(
"WARNING: projection is not supported for torch version less than 1.8.0! ",
"LSTM was constructed without projection!",
)
self.model = nn.LSTM(
input_size=lstm_feature_size,
hidden_size=lstm_hidden_size,
num_layers=layer_num,
bidirectional=bidirectional,
batch_first=batch_first,
bias=use_bias,
)
if rnd_weights_init:
self.gen_rnd_weights()
def gen_rnd_weights(self):
"""
Generate random |
weigths for the model with biases
Without projection:
For first weights group:
Wi (4*lstm_hidden_size, lstm_feature_size)
Wh (4*lstm_hidden_size, lstm_hidden_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
For first bidirectional weights group:
Wi (4*lstm_hidden_size, lstm_feature_size)
Wh (4*lstm_hidden_size, lstm_hidden_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
For other weights group:
Wi (4*lstm_hidden_size, lstm_hidden_size)
Wh (4*lstm_hidden_size, lstm_hidden_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
With projection:
For first weights group:
Wi (4*lstm_hidden_size, lstm_feature_size)
Wh (4*lstm_hidden_size, proj_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
P (proj_size, lstm_hidden_size)
For first bidirectional weights group:
Wi (4*lstm_hidden_size, lstm_feature_size)
Wh (4*lstm_hidden_size, proj_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
P (proj_size, lstm_hidden_size)
For other weights group:
Wi (4*lstm_hidden_size, proj_size * num_directions)
Wh (4*lstm_hidden_size, proj_size)
Bi (4*lstm_hidden_size)
Bh (4*lstm_hidden_size)
P (proj_size, lstm_hidden_size)
For generation of random weigths for the model without biases Bi and Bh are skipped
"""
super().gen_rnd_weights()
def get_dummy_inputs(self):
return self.dummy_inputs
def get_input_names(self):
return ["input", "h0", "c0"]
def get_shape_desc(self, frontend_type):
shape_desc = None
if frontend_type == "pt":
sh |
ape_desc = [("input", self.shape)]
elif frontend_type == "onnx":
shape_desc = {
"input": self.shape,
"h0": self.h0_shape,
"c0": self.c0_shape,
}
return shape_desc
def get_tvm_inputs(self, dtype):
return {
"input": tvm.nd.array(self.dummy_inputs[0].numpy().astype(dtype)),
"h0": tvm.nd.array(self.dummy_inputs[1][0].numpy().astype(dtype)),
"c0": tvm.nd.array(self.dummy_inputs[1][1].numpy().astype(dtype)),
}
def compare(input, gold_data, rtol=1e-5, atol=1e-5):
tvm.testing.assert_allclose(input, gold_data, rtol=rtol, atol=atol)
def check_rnn(rnn_type, rnn_mod, target=tvm.target.Target("llvm -mcpu=core-avx2"), dev=tvm.cpu(0)):
def get_model(
rnn_type,
rnn_mod,
args,
):
if "b" in rnn_mod:
args["bidirectional"] = True
if "s" in rnn_mod:
args["layer_num"] = num_layers
if "tanh" in rnn_mod:
args["nonlinearity"] = "tanh"
if "relu" in rnn_mod:
args["nonlinearity"] = "relu"
if rnn_type == "GRU":
RNN_Model_selector = GRU_Model
elif rnn_type == "LSTM":
RNN_Model_selector = LSTM_Model
if "p" in rnn_mod:
args["proj_size"] = lstm_projection_size
elif rnn_type == "RNN":
RNN_Model_selector = RNN_Model_Impl
return RNN_Model_selector(**args)
def get_onnx_model(model):
onnx_io = io.BytesIO()
with torch.no_grad():
input_names = model.get_input_names()
inputs = model.get_dummy_inputs()
torch.onnx.export(model, inputs, onnx_io, input_names=input_names)
onnx_io.seek(0, 0)
return onnx.load_model(onnx_io)
model = None
dtype = "float32"
device = torch.device("cpu")
for batch_first in (True, False):
for use_bias in (True, False):
for rnd_weights in [True |
]:
model_inputs = {
"batch_first": batch_first,
"use_bias": use_bias,
"rnd_weights_init": rnd_weights,
}
model = get_model(rnn_type, rnn_mod, model_inputs)
model.to(device)
model.eval()
dummy_inputs = model.get_dummy_inputs()
golden_output = model.forward(dummy_inputs[0].to(device)).detach().cpu().numpy()
tvm_output = None
for format in ["pt"]:
shape_desc = model.get_shape_desc(format)
if format == "pt":
traced_script_module = torch.jit.trace(model, dummy_inputs[0]).eval()
mod, params = relay.frontend.from_pytorch(traced_script_module, shape_desc)
elif format == "onnx":
try:
onnx_model = get_onnx_model(model)
except:
print(
"WARNING: torch.onnx.export does not support conversion LSTM with projection "
"from pytorch! TODO: waiting for the support and correct test after that."
)
continue
mod, params = relay.frontend.from_onnx(onnx_model, shape_desc)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target=target, params=params)
m = graph_executor.GraphModule(lib["default"](dev))
tvm_inputs = model.get_tvm_inputs(dtype)
m.set_input(**tvm_inputs)
m.run()
tvm_output = m.get_output(0).numpy() |
compare(tvm_output, golden_output)
@tvm.testing.uses_gpu
def test_rnns():
for target, dev in tvm.testing.enabled_targets():
for mod_type in ["uni", "s", "b", "sb"]:
check_rnn("GRU", mod_type, target, dev)
for mod_type in ["uni", "s", "b", "sb"]:
check_rnn("LSTM", mod_type, target, dev)
for mod_type in ["uni", "s", "b", "sb", "tanh", "relu"]:
check_rnn("RNN", mod_type, target, dev)
if __name__ == "__main__":
test_rnns() |
"""
BatchNorm without given mean and variance given testcases
====================
This is a test script to test fused_batch_norm operators
in TensorFlow frontend when mean and variance are not given.
""" |
import tvm |
import tvm.testing |
import numpy as np
try: |
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError: |
import tensorflow as tf
from tvm |
import relay
from tensorflow.python.framework |
import graph_util
def verify_fused_batch_norm(shape):
g = tf.Graph()
with g.as_default():
input_tensor = tf.placeholder(tf.float32, shape=shape, name="input")
alpha = tf.constant(
np.random.rand(
shape[-1],
),
dtype=tf.float32,
name="alpha",
)
beta = tf.constant(
np.random.rand(
shape[-1],
),
dtype=tf.float32,
name="beta",
)
bn = tf.nn.fused_batch_norm(x=input_tensor, offset=beta, scale=alpha, name="bn")
out = tf.identity(bn[0], name="output")
data = np.random.rand(*shape)
with tf.Session(graph=out.graph) as sess:
sess.run([tf.global_variables_initializer()])
tf_out = sess.run(out, feed_dict={input_tensor: data})
constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def, ["output"])
for device in ["llvm"]:
dev = tvm.device(device, 0)
if not tvm.testing.device_enabled(device):
print("Skip because %s is not enabled" % device)
continue
mod, params = relay.frontend.from_tensorflow(constant_graph, outputs=["output"])
with tvm.transform.PassContext(opt_level=3):
graph, lib, params = relay.build(mod, target=device, params=params)
from tvm.contrib |
import graph_executor
m = graph_executor.create(graph, lib, dev)
m.set_input(**params)
m.set_input("input", data)
m.run()
tvm_out = m.get_output(0)
tvm.testing.assert_allclose(
tvm_out.numpy(), tf_out.astype(tvm_out.dtype), atol=1e-3, rtol=1e-3
)
def test_fused_batch_norm():
verify_fused_batch_norm(shape=(1, 12, 12, 32))
verify_fused_batch_norm(shape=(1, 24, 24, 64))
verify_fused_batch_norm(shape=(1, 64, 64, 128))
verify_fused_batch_norm(shape=(8, 12, 12, 32))
verify_fused_batch_norm(shape=(16, 12, 12, 32))
verify_fused_batch_norm(shape=(32, 12, 12, 32))
if __name__ == "__main__":
test_fused_batch_norm() |
"""Unit tests for converting TensorFlow control flow op to Relay.""" |
import pytest
try: |
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError: |
import tensorflow as tf
from tensorflow.python.ops |
import control_flow_ops |
import numpy as np
from tvm |
import nd
from tvm |
import relay
from tvm.relay.frontend.tensorflow |
import from_tensorflow
def check_equal(graph, tf_out, input_map=None):
mod, params = from_tensorflow(graph.as_graph_def(add_shapes=True))
if input_map is not None:
params.update(input_map)
relay_out = relay.create_executor("vm", mod=mod).evaluate()(**params)
if isinstance(relay_out, nd.NDArray):
np.testing.assert_allclose(tf_out, relay_out.numpy())
else:
if not isinstance(tf_out, (list, tuple)):
tf_out = [tf_out]
for x, y in zip(tf_out, [r.numpy() for r in relay_out]):
np.testing.assert_allclose(x, y)
def test_vanilla_loop():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(0, name="while/constant")
def c(i):
return tf.less(i, 10)
def b(i):
return tf.add(i, 1)
r = tf.while_loop(c, b, [i])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_callnode_loop_vars():
graph = tf.Graph()
with graph.as_default():
i = tf.add(tf.constant(0), 1)
def c(i):
return tf.less(i, 10)
def b(i):
return tf.add(i, 1)
r = tf.while_loop(c, b, [i])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_loop_2_vars():
graph = tf.Graph()
with graph.as_default():
i0 = tf.constant(0)
j0 = tf.ones([2, 2])
def c(i, j):
return i < 10
def b(i, j):
return [tf.add(i, 1), j]
i1, i2 = tf.while_loop(c, b, loop_vars=[i0, j0])
i1 += tf.constant(1337)
with tf.Session() as sess:
tf_out = sess.run(i1)
check_equal(graph, tf_out)
def test_loop_3_vars():
graph = tf.Graph()
with graph.as_default():
i0 = tf.constant(1)
j0 = tf.constant(2)
k0 = tf.constant(4)
def c(i, j, k):
return i < 10
def b(i, j, k):
return [i + 1, j * k, k + i] |
r = tf.while_loop(c, b, loop_vars=[i0, j0, k0])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_loop_conditions():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(1)
j = tf.constant(1)
k = tf.constant(5)
def c(i, j, k):
return tf.equal(
tf.not_equal(tf.less(i + j, 10), tf.less(j * k, 100)), tf.greater_equal(k, i + j)
)
def b(i, j, k):
return [i + j, j + k, k + 1]
r = tf.while_loop(c, b, loop_vars=[i, j, k])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
@pytest.mark.skip
def test_loop_bodies():
graph = tf.Graph()
with graph.as_default():
def body(x):
a = tf.constant(np.array([[5, 6], [7, 8]]), dtype=tf.int32)
b = tf.constant(np.array([[1, 2], [3, 4]]), dtype=tf.int32)
c = a + b
return tf.nn.relu(x + c)
def condition(x):
return tf.reduce_sum(x) < 100
x = tf.constant(0, shape=[2, 2])
r = tf.while_loop(condition, body, [x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_nested_loop():
graph = tf.Graph()
with graph.as_default():
def body(x):
def nest_body(c):
return tf.multiply(c, 2)
def cd(c):
return tf.less(c, 10)
c = tf.constant(2)
res = tf.while_loop(cd, nest_body, loop_vars=[c])
return tf.nn.relu(x + res)
def condition(x):
return tf.greater(x, 100)
x = tf.constant(3)
r = tf.while_loop(condition, body, loop_vars=[x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_vanilla_cond():
graph = tf.Graph()
with graph.as_default():
i = tf.constant(1)
j = tf.constant(4)
def f |
1():
return tf.multiply(1, 17)
def f2():
return tf.add(4, 23)
r = tf.cond(tf.less(i, j), f1, f2)
with tf.Session(graph=graph) as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_multiple_cond_vars():
graph = tf.Graph()
with graph.as_default():
x1 = tf.constant(7)
x2 = tf.constant(12)
z = tf.constant(20)
r = tf.cond(tf.less(tf.add(x1, x2), 10), lambda: tf.add(10, 2), lambda: tf.square(5))
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_cond_fn_parameters():
graph = tf.Graph()
with graph.as_default():
def fn1(x, y):
return tf.multiply(5, 6)
def fn2(x, y):
return tf.add(3, 4)
i = tf.constant(1)
j = tf.constant(2)
k = tf.constant(3)
r = tf.cond(tf.less(i, j), lambda: fn1(i, k), lambda: fn2(j, k))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={i: 1, j: 2, k: 3})
check_equal(graph, tf_out)
def test_nested_cond():
graph = tf.Graph()
with graph.as_default():
def fn1(a, b):
def nest_fn1():
return tf.add(1, 2)
def nest_fn2():
return tf.subtract(10, 5)
res = tf.cond(tf.less(1, 2), nest_fn1, nest_fn2)
return tf.multiply(tf.add(87, res), 10)
def fn2(a, b):
return tf.add(10, 10)
x = tf.constant(5)
y = tf.constant(6)
z = tf.constant(7)
pred = tf.less(x, y)
r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True})
check_equal(graph, tf_out)
def test_loop_in_cond():
graph = tf.Graph()
with graph.as_default():
def fn1(a, b):
i = tf.constant(0)
def cd(i):
return tf.less(i, 10)
def bd(i): |
return tf.add(i, 1)
res = tf.while_loop(cd, bd, [i])
return tf.multiply(tf.add(20, res), 10)
def fn2(a, b):
return tf.add(10, 20)
x = tf.constant(7)
y = tf.constant(20)
z = tf.constant(10)
pred = tf.less(x, y)
r = tf.cond(pred, lambda: fn1(x, y), lambda: fn2(y, z))
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={x: 1, y: 2, z: 3, pred: True})
check_equal(graph, tf_out)
def test_cond_in_loop():
graph = tf.Graph()
with graph.as_default():
def body(x):
x = tf.constant(7)
z = tf.constant(20)
res = tf.cond(tf.less(x, 10), lambda: tf.add(10, 20), lambda: tf.square(10))
return tf.multiply(res, x)
x = tf.constant(21)
def condition(x):
return tf.less(x, 100)
r = tf.while_loop(condition, body, loop_vars=[x])
with tf.Session() as sess:
tf_out = sess.run(r)
check_equal(graph, tf_out)
def test_vanilla_loop_bound():
graph = tf.Graph()
with graph.as_default():
dshape = (2, 10)
dtype = "float32"
dname = "data"
np_data = np.random.uniform(size=dshape).astype(dtype)
data = tf.placeholder(shape=dshape, dtype=dtype, name=dname)
x = tf.slice(data, [1, 4], [1, 4])
outer = x + 5.0
def body(x, y):
res = tf.cond(tf.less(y, 10), lambda: tf.add(10.0, 20.0), lambda: tf.square(10.0))
z = tf.constant(7)
res = tf.cond(tf.less(z, 10), lambda: res * 5, lambda: res + 10)
return tf.multiply(res, x * outer), y + 1
y = tf.constant(0)
def condition(x, y):
return tf.less(y, 20)
r = tf.while_loop(condition, body, loop_vars=[x, y])
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={"%s:0" % dname: np_data})
check_equal(graph, tf_out, {dname: np_data})
def test_nested_loop_bound():
graph = tf.Gra |
ph()
with graph.as_default():
dshape = (2, 10)
dtype = "float32"
dname = "data"
np_data = np.random.uniform(size=dshape).astype(dtype)
data = tf.placeholder(shape=dshape, dtype=dtype, name=dname)
x = tf.slice(data, [1, 4], [1, 4])
outer = x + 5.0
def body(x, y):
res = tf.cond(tf.less(y, 10), lambda: tf.add(10.0, 20.0), lambda: tf.square(10.0))
def nested_body(nx, ny):
return nx + 1, res + 2.0
def nested_cond(nx, ny):
return tf.less(nx, 15)
nx = tf.constant(0)
ny = tf.constant(0.0)
nested_res = tf.while_loop(nested_cond, nested_body, loop_vars=[nx, ny])
res = res + nested_res[1]
z = tf.constant(7)
res = tf.cond(tf.less(z, 10), lambda: res * 5, lambda: res + 10)
return tf.multiply(res, x * outer), y + 1
y = tf.constant(0)
def condition(x, y):
return tf.less(y, 20)
r = tf.while_loop(condition, body, loop_vars=[x, y])
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={"%s:0" % dname: np_data})
check_equal(graph, tf_out, {dname: np_data})
def test_switch():
graph = tf.Graph()
with graph.as_default():
data_np = np.random.uniform(0, 5, size=(2, 4, 5, 1)).astype("float32")
dname = "data"
flag_name = "flag"
data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name=dname)
split = tf.split(data, 2, axis=0)
flag = tf.placeholder(shape={}, dtype=tf.bool, name=flag_name)
output_false, output_true = control_flow_ops.switch(split[1], flag)
with tf.Session() as sess:
tf_out = sess.run(output_false, feed_dict={data.name: data_np, flag.name: False})
check_equal(graph, tf_out, {dname: data_np, flag_name: False})
def test_loop_tuple_input():
graph = tf.Graph()
with graph.as_default():
data_np = np.random.uniform(0, 5, size= |
(2, 4, 5, 1)).astype("float32")
dname = "data"
data = tf.placeholder(shape=data_np.shape, dtype=data_np.dtype, name=dname)
split = tf.split(data, 2, axis=0)
def body(x, y):
return x + 2, y + 1
start = tf.constant(0)
def condition(x, y):
return tf.less(y, 20)
r = tf.while_loop(condition, body, loop_vars=[split[1], start])
with tf.Session() as sess:
tf_out = sess.run(r, feed_dict={data.name: data_np})
check_equal(graph, tf_out, {dname: data_np})
if __name__ == "__main__":
test_vanilla_loop()
test_loop_2_vars()
test_loop_3_vars()
test_loop_conditions()
test_callnode_loop_vars()
test_vanilla_cond()
test_multiple_cond_vars()
test_cond_fn_parameters()
test_nested_loop()
test_nested_cond()
test_loop_in_cond()
test_cond_in_loop()
test_vanilla_loop_bound()
test_nested_loop_bound()
test_switch()
test_loop_tuple_input() |
"""Unit tests for converting TensorFlow debugging ops to Relay."""
try: |
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError: |
import tensorflow as tf |
import numpy as np
from tvm |
import relay
from tvm.relay.frontend.tensorflow |
import from_tensorflow
def run_relay(graph, shape_dict=None, *vars):
mod, params = from_tensorflow(graph.as_graph_def(add_shapes=True), shape=shape_dict)
return relay.create_executor("debug", mod=mod).evaluate()(*vars)
def test_assert_true():
g = tf.Graph()
shape = (1, 2)
with g.as_default():
x = tf.placeholder(tf.float32, shape=shape, name="input")
assert_op = tf.Assert(tf.reduce_all(tf.less_equal(x, x)), ["it failed"])
with tf.Session() as sess:
x_value = np.random.rand(*shape)
assert sess.run(assert_op, feed_dict={x: x_value}) is None
np.testing.assert_allclose(0, run_relay(g, {"input": shape}).numpy())
def test_assert_true_var_capture():
g = tf.Graph()
with g.as_default():
x = tf.placeholder(tf.float32, shape=())
assert_op = tf.Assert(tf.less_equal(x, x), ["it failed", x])
with tf.Session() as sess:
x_value = np.random.rand()
assert sess.run(assert_op, feed_dict={x: x_value}) is None
np.testing.assert_allclose(True, run_relay(g, None, x_value).numpy())
def test_assert_false():
g = tf.Graph()
with g.as_default():
assert_op = tf.Assert(tf.constant(False), ["it failed"])
with tf.Session() as sess:
try:
print(sess.run(assert_op))
assert False
except tf.errors.InvalidArgumentError as e:
assert "it failed" in e.message
np.testing.assert_allclose(0, run_relay(g).numpy())
if __name__ == "__main__":
test_assert_true()
test_assert_true_var_capture()
test_assert_false() |
"""
Tensorflow testcases
====================
This article is a test script to test tensorflow operator with Relay.
"""
from __future__ |
import print_function
from distutils.version |
import LooseVersion |
import threading |
import platform |
import os.path
from packaging |
import version as package_version |
import numpy as np |
import pytest
from PIL |
import Image
from tvm |
import relay
from tvm.runtime.vm |
import VirtualMachine
from tvm.relay.frontend.tensorflow |
import from_tensorflow
from tvm.contrib |
import graph_executor
from tvm.contrib |
import utils |
import tvm |
import tvm.relay.testing.tf as tf_testing |
import tvm.testing
from tensorflow.python.framework |
import constant_op
from tensorflow.python.framework |
import graph_util
from tensorflow.python.ops |
import nn_ops
from tensorflow.python.ops |
import nn
from tensorflow.python.ops |
import array_ops
from tensorflow.python.ops |
import math_ops
from tensorflow.python.ops |
import variable_scope
from tensorflow.python.ops |
import variables
from tensorflow.python.ops |
import init_ops
from tensorflow.python.framework |
import function
from tensorflow.python.framework |
import ops
from tensorflow.python.framework |
import dtypes
from tensorflow.python.ops |
import gen_functional_ops
from tensorflow.python.client |
import device_lib
try: |
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
except ImportError: |
import tensorflow as tf
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
gpu_sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
gpu_sess.close()
def convert_to_list(x):
if not isinstance(x, list):
x = [x]
return x
tf_dtypes = {
"float32": tf.float32,
"float16": tf.float16,
"float64": tf.float64,
"int32": tf.int32,
"uint8": tf.uint8,
"int8": tf.int8,
"int16": tf.int16,
"uint16": tf.uint16,
"int64": tf.int64,
}
def vmobj_to_list(o):
"""Converts TVM objects returned by VM execution to Python List."""
if isinstance(o, tvm.nd.NDArray):
return [o.numpy()]
elif isinstance(o, tvm.runtime.container.ADT):
result = []
for f in o:
result.extend(vmobj_to_list(f))
return result
elif isinstance(o, tvm.relay.backend.interpreter.ConstructorValue):
if o.constructor.name_hint == "Cons":
tl = vmobj_to_list(o.fields[1])
hd = vmobj_to_list(o.fields[0])
hd.extend(tl)
return hd
elif o.constructor.name_hint == "Nil":
return []
elif "tensor_nil" in o.constructor.name_hint:
return [0]
elif "tensor" in o.constructor.name_hint:
return [o.fields[0].numpy()]
else:
raise RuntimeError(f"Unknown object type: {o.constructor.name_hint}")
else:
raise RuntimeError(f"Unknown object type: {type(o)}")
def run_tvm_graph(
graph_def,
input_data,
input_node,
num_output=1,
target="llvm",
out_names=None,
opt_level=3,
mode="graph_executor",
cuda_layout="NCHW",
layout=None,
disabled_pass=None,
ignore_in_shape=False,
serialize=False,
convert_config=None,
):
"""Generic function to compile on relay and execute on tvm"""
input_data = convert_to_list(input_data)
input_node = convert_to_list(input_node)
if target == "cuda":
layout = cuda_layout
target_host = None
if ignore_in_sha |
pe:
shape_dict = None
else:
shape_dict = {
e: i.shape if hasattr(i, "shape") else () for e, i in zip(input_node, input_data)
}
mod, params = relay.frontend.from_tensorflow(
graph_def,
layout=layout,
shape=shape_dict,
outputs=out_names,
convert_config=convert_config,
)
dev = tvm.device(target, 0)
if mode == "debug":
inputs = []
for param in mod["main"].params:
found = False
for i, n in enumerate(input_node):
if n == param.name_hint:
found = True
inputs.append(tvm.nd.array(input_data[i]))
break
if not found:
inputs.append(tvm.nd.array(params[param.name_hint]))
result = relay.create_executor(mode, mod=mod, device=tvm.cpu(), target="llvm").evaluate()(
*inputs
)
return vmobj_to_list(result)
elif mode == "vm":
with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass):
mod = relay.transform.InferType()(mod)
vm_exec = relay.vm.compile(mod, target="llvm", params=params)
if serialize:
code, lib = vm_exec.save()
vm_exec = tvm.runtime.vm.Executable.load_exec(code, lib)
vm = VirtualMachine(vm_exec, tvm.cpu())
inputs = {}
for e, i in zip(input_node, input_data):
inputs[e] = tvm.nd.array(i)
result = vm.invoke("main", **inputs)
return vmobj_to_list(result)
else:
with tvm.transform.PassContext(opt_level=opt_level, disabled_pass=disabled_pass):
target = tvm.target.Target(target, target_host)
graph, lib, params = relay.build(mod, target=target, params=params)
m = graph_executor.create(graph, lib, dev)
for e, i in zip(input_node, input_data):
if e != "":
m.set_input(e, tvm.nd.array(i))
m.set_input(**params) |
m.run()
assert out_names is None or num_output == len(
out_names
), f"out_names: {out_names} num_output: {num_output}"
tvm_output_list = [m.get_output(i).numpy() for i in range(num_output)]
return tvm_output_list
def run_tf_graph(sess, input_data, input_node, output_node):
"""Generic function to execute tensorflow"""
input_data = convert_to_list(input_data)
input_node = convert_to_list(input_node)
output_node = convert_to_list(output_node)
tensor = [sess.graph.get_tensor_by_name(output_name) for output_name in output_node]
input_dict = {e: input_data[i] for i, e in enumerate(input_node)}
if len(input_node) == 1 and input_node[0] == "":
output_data = sess.run(tensor)
else:
output_data = sess.run(tensor, input_dict)
return output_data
def compare_tf_with_tvm(
in_data,
in_name,
out_name,
init_global_variables=False,
no_gpu=False,
opt_level=3,
mode="graph_executor",
cuda_layout="NCHW",
add_shapes_to_graph_def=True,
targets=None,
ignore_in_shape=False,
convert_config=None,
):
"""Generic function to generate and compare tensorflow and TVM output"""
def name_without_num(name):
return name.split(":")[0] if ":" in name else name
out_name = convert_to_list(out_name)
out_node = [name_without_num(name) for name in out_name]
in_data = convert_to_list(in_data)
in_name = convert_to_list(in_name)
in_node = [name_without_num(name) for name in in_name]
with tf.Session() as sess:
if init_global_variables:
sess.run(variables.global_variables_initializer())
final_graph_def = (
tf_testing.AddShapesToGraphDef(sess, out_node)
if add_shapes_to_graph_def
else tf.get_default_graph().as_graph_def()
)
tf_output = run_tf_graph(sess, in_data, in_name, out_name)
devices = targets if targets else ["llvm", "cuda"]
for device in devices: |
_ = tvm.device(device, 0)
if not tvm.testing.device_enabled(device):
print(f"Skip because {device} is not enabled")
continue
if no_gpu and device == "cuda":
continue
if "cublas" in device and not tvm.get_global_func("tvm.contrib.cublas.matmul", True):
print(f"Skip because cublas is not enabled: {device}")
continue
tvm_output = run_tvm_graph(
final_graph_def,
in_data,
in_node,
target=device,
out_names=out_name,
num_output=len(out_name),
opt_level=opt_level,
mode=mode,
cuda_layout=cuda_layout,
ignore_in_shape=ignore_in_shape,
convert_config=convert_config,
)
for i, tf_out in enumerate(tf_output):
if not isinstance(tf_out, np.ndarray):
assert len(tvm_output[i].shape) == 0
tvm.testing.assert_allclose(tf_out, tvm_output[i], atol=1e-5, rtol=1e-5)
sess.close()
def is_gpu_available():
"""Verify gpu is available"""
local_device_protos = device_lib.list_local_devices()
gpu_list = [x.name for x in local_device_protos if x.device_type == "GPU"]
if gpu_list:
print("Tensorflow GPU:", gpu_list)
return True
else:
return False
def _test_pooling_iteration(input_shape, **kwargs):
"""One iteration of pool operation with given shapes and attributes"""
x = -np.arange(np.prod(input_shape), dtype=np.float32).reshape(input_shape) - 1
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=input_shape, dtype="float32")
nn_ops.pool(in_data, **kwargs)
if kwargs["pooling_type"] == "MAX":
out_name = "max_pool:0"
else:
out_name = "avg_pool:0"
compare_tf_with_tvm(x, "Placeholder:0 |
", out_name)
def _test_pooling(input_shape, **kwargs):
_test_pooling_iteration(input_shape, **kwargs)
if is_gpu_available():
if len(input_shape) == 4:
input_shape = [input_shape[ii] for ii in (0, 3, 1, 2)]
if isinstance(kwargs["padding"], list):
kwargs["padding"] = [kwargs["padding"][ii] for ii in (0, 3, 1, 2)]
kwargs["data_format"] = "NCHW"
_test_pooling_iteration(input_shape, **kwargs)
def _test_pooling_dynamic(input_shape, np_shape, **kwargs):
"""Pooling with dynamic height and width dimensions."""
x = -np.arange(np.prod(np_shape), dtype=np.float32).reshape(np_shape) - 1
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=input_shape, dtype="float32")
nn_ops.pool(in_data, **kwargs)
if kwargs["pooling_type"] == "MAX":
out_name = "max_pool:0"
else:
out_name = "avg_pool:0"
compare_tf_with_tvm(x, "Placeholder:0", out_name, mode="vm", ignore_in_shape=True)
@tvm.testing.uses_gpu
def test_forward_pooling():
"""Pooling"""
for pool_type in ["AVG", "MAX"]:
_test_pooling(
input_shape=[1, 3, 32, 32, 32],
window_shape=[2, 2, 2],
padding="VALID",
pooling_type=pool_type,
dilation_rate=[1, 1, 1],
strides=[2, 2, 2],
)
_test_pooling(
input_shape=[1, 3, 32, 32, 32],
window_shape=[1, 1, 1],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1, 1],
strides=[1, 1, 1],
)
_test_pooling(
input_shape=[1, 3, 32, 32, 32],
window_shape=[2, 2, 2],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1, 1],
strides=[2, 2, 2],
)
_test_pooling_dynamic(
input_shape=[1, None, None, 3],
np_shape=[1, 32, 32, 3],
window_shape=[2, |
2],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1],
strides=[1, 1],
)
if is_gpu_available():
_test_pooling(
input_shape=[1, 3, 32, 32, 32],
window_shape=[1, 1, 1],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1, 1],
strides=[1, 1, 1],
data_format="NCDHW",
)
_test_pooling(
input_shape=[1, 3, 32, 32, 32],
window_shape=[2, 2, 2],
padding="VALID",
pooling_type=pool_type,
dilation_rate=[1, 1, 1],
strides=[2, 2, 2],
data_format="NCDHW",
)
_test_pooling(
input_shape=[2, 9, 10, 2],
window_shape=[1, 1],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1],
strides=[1, 1],
)
_test_pooling(
input_shape=[2, 10, 9, 2],
window_shape=[1, 1],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1],
strides=[1, 1],
)
_test_pooling(
input_shape=[2, 9, 10, 2],
window_shape=[2, 1],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1],
strides=[1, 1],
)
_test_pooling(
input_shape=[2, 10, 9, 2],
window_shape=[2, 3],
padding="SAME",
pooling_type=pool_type,
dilation_rate=[1, 1],
strides=[2, 1],
)
_test_pooling(
input_shape=[1, 1, 2, 1],
window_shape=[1, 1],
padding="VALID",
pooling_type=pool_type,
dilation_rate=[1, 2],
)
_test_pooling(
input_shape=[1, 2, 1],
window_shape=[1] |
,
padding="VALID",
pooling_type=pool_type,
dilation_rate=[2],
)
if package_version.parse(tf.VERSION) >= package_version.parse("2.4.1"):
_test_pooling(
input_shape=[2, 9, 10, 2],
window_shape=[4, 4],
padding=[[0, 0], [0, 1], [2, 3], [0, 0]],
pooling_type="MAX",
dilation_rate=[1, 1],
strides=[1, 1],
)
def _test_convolution(
opname,
tensor_in_sizes,
filter_in_sizes,
dilations,
strides,
padding,
data_format,
deconv_output_shape=None,
add_shapes_to_graph_def=True,
):
"""One iteration of convolution with given shapes and attributes"""
deconv_output_shape = deconv_output_shape or []
total_size_1 = np.prod(tensor_in_sizes)
total_size_2 = np.prod(filter_in_sizes)
data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)]
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32")
in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32")
if data_format == "NHWC":
strides = [1] + strides + [1]
dilations = [1] + dilations + [1]
else:
strides = [1, 1] + strides
dilations = [1, 1] + dilations
if opname == "conv":
nn_ops.conv2d(
in_data,
in_filter,
strides=strides,
dilations=dilations,
padding=padding,
data_format=data_format,
)
compare_tf_with_tvm(
np.reshape(data_array, tensor_in_sizes).astype("float32"),
"Placeholder:0",
"Conv2D:0",
add_shapes_to_graph_def=add_shapes_to_graph_def,
)
elif opname == "conv_transpose":
nn_ops.conv2d_transpose(
in_data, |
in_filter,
output_shape=deconv_output_shape,
strides=strides,
padding=padding,
data_format=data_format,
)
compare_tf_with_tvm(
np.reshape(data_array, tensor_in_sizes).astype("float32"),
"Placeholder:0",
"conv2d_transpose:0",
add_shapes_to_graph_def=add_shapes_to_graph_def,
)
else:
nn_ops.depthwise_conv2d_native(
in_data,
in_filter,
strides=strides,
dilations=dilations,
padding=padding,
data_format=data_format,
)
compare_tf_with_tvm(
np.reshape(data_array, tensor_in_sizes).astype("float32"),
"Placeholder:0",
"DepthwiseConv2dNative:0",
add_shapes_to_graph_def=add_shapes_to_graph_def,
)
@pytest.mark.skip(reason="See https:
@tvm.testing.uses_gpu
def test_forward_convolution():
"""Convolution"""
if is_gpu_available():
_test_convolution("conv", [4, 176, 8, 8], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NCHW")
_test_convolution("conv", [4, 19, 17, 17], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NCHW")
_test_convolution("conv", [4, 124, 17, 17], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NCHW")
_test_convolution("conv", [4, 12, 17, 17], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NCHW")
_test_convolution(
"depthwise", [4, 176, 8, 8], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NCHW"
)
_test_convolution(
"depthwise", [4, 19, 17, 17], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NCHW"
)
_test_convolution(
"depthwise", [4, 124, 17, 17], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NCHW"
)
_test_convolution(
"depthwise", [4, 12, 17, 17], [3, 3, 12, 1], [1, 1], [2, 2], "VALID", "NCHW"
)
_test |
_convolution(
"depthwise", [4, 12, 17, 17], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NCHW"
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[1, 1, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NCHW",
[4, 176, 8, 8],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[2, 2, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NCHW",
[4, 176, 8, 8],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[2, 2, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NCHW",
[4, 176, 15, 15],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[3, 3, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NCHW",
[4, 176, 8, 8],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[3, 3, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NCHW",
[4, 176, 15, 15],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[3, 3, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NCHW",
[4, 176, 16, 16],
)
_test_convolution(
"conv_transpose",
[4, 19, 8, 8],
[3, 3, 19, 19],
[1, 1],
[2, 2],
"VALID",
"NCHW",
[4, 19, 17, 17],
)
_test_convolution(
"conv_transpose",
[4, 19, 17, 17],
[1, 1, 124, 19],
[1, 1],
[1, 1],
"SAME",
"NCHW",
[4, 124, 17, 17],
)
_test_convolution(
"conv_transpose",
[4, 19, |
17, 17],
[3, 3, 124, 19],
[1, 1],
[1, 1],
"SAME",
"NCHW",
[4, 124, 17, 17],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[3, 3, 12, 32],
[1, 1],
[2, 2],
"VALID",
"NCHW",
[4, 12, 17, 17],
)
_test_convolution(
"conv_transpose",
[4, 19, 8, 8],
[2, 2, 19, 19],
[1, 1],
[2, 2],
"VALID",
"NCHW",
[4, 19, 16, 16],
)
_test_convolution(
"conv_transpose",
[4, 32, 8, 8],
[2, 2, 12, 32],
[1, 1],
[2, 2],
"VALID",
"NCHW",
[4, 12, 16, 16],
)
_test_convolution(
"conv_transpose",
[1, 19, 8, 8],
[1, 1, 1, 19],
[1, 1],
[1, 1],
"VALID",
"NCHW",
[1, 1, 8, 8],
)
_test_convolution("conv", [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC")
_test_convolution("conv", [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC")
_test_convolution("conv", [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC")
_test_convolution("conv", [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC")
_test_convolution(
"conv",
[4, 17, 17, 12],
[3, 3, 12, 32],
[1, 1],
[2, 2],
"VALID",
"NHWC",
add_shapes_to_graph_def=False,
)
_test_convolution("depthwise", [4, 8, 8, 176], [1, 1, 176, 1], [1, 1], [1, 1], "SAME", "NHWC")
_test_convolution("depthwise", [4, 17, 17, 19], [3, 3, 19, 1], [1, 1], [2, 2], "VALID", "NHWC")
_test_convolution("depthwise", [4, 17, 17, 124], [1, 1, 124, 1], [1, 1], [1, 1], "SAME", "NHWC")
_test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 1 |
], [1, 1], [2, 2], "VALID", "NHWC")
_test_convolution("depthwise", [4, 17, 17, 12], [3, 3, 12, 2], [1, 1], [2, 2], "VALID", "NHWC")
_test_convolution(
"depthwise",
[4, 17, 17, 12],
[3, 3, 12, 2],
[1, 1],
[2, 2],
"VALID",
"NHWC",
add_shapes_to_graph_def=False,
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[1, 1, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NHWC",
[4, 8, 8, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[2, 2, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NHWC",
[4, 8, 8, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[2, 2, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NHWC",
[4, 15, 15, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[3, 3, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NHWC",
[4, 8, 8, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[3, 3, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NHWC",
[4, 15, 15, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[3, 3, 176, 32],
[1, 1],
[2, 2],
"SAME",
"NHWC",
[4, 16, 16, 176],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 19],
[3, 3, 19, 19],
[1, 1],
[2, 2],
"VALID",
"NHWC",
[4, 17, 17, 19],
)
_test_convolution(
"conv_transpose",
[4, 17, 17, 19],
[1, 1, 124, 19],
[1, 1],
[1, 1],
"SAME",
"NHWC",
[4, 17, 17, 124],
)
_test_convolution(
"conv_transpose",
[4, 17, 17, 19],
[3, 3, 124, 19],
[1, 1],
[1, 1],
"SAME",
"NHWC", |
[4, 17, 17, 124],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[3, 3, 12, 32],
[1, 1],
[2, 2],
"VALID",
"NHWC",
[4, 17, 17, 12],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 19],
[2, 2, 19, 19],
[1, 1],
[2, 2],
"VALID",
"NHWC",
[4, 16, 16, 19],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[2, 2, 12, 32],
[1, 1],
[2, 2],
"VALID",
"NHWC",
[4, 16, 16, 12],
)
_test_convolution(
"conv_transpose",
[1, 8, 8, 19],
[1, 1, 1, 19],
[1, 1],
[1, 1],
"VALID",
"NHWC",
[1, 8, 8, 1],
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[1, 1, 176, 32],
[1, 1],
[1, 1],
"SAME",
"NHWC",
[4, 8, 8, 176],
add_shapes_to_graph_def=False,
)
if package_version.parse(tf.VERSION) >= package_version.parse("2.4.1"):
_test_convolution(
"conv",
[4, 8, 8, 16],
[1, 1, 16, 32],
[1, 1],
[1, 1],
[[0, 0], [2, 3], [0, 1], [0, 0]],
"NHWC",
)
_test_convolution(
"depthwise",
[4, 8, 8, 16],
[1, 1, 16, 1],
[1, 1],
[1, 1],
[[0, 0], [2, 3], [0, 1], [0, 0]],
"NHWC",
)
_test_convolution(
"conv_transpose",
[4, 8, 8, 32],
[3, 3, 176, 32],
[1, 1],
[2, 2],
[[0, 0], [1, 0], [1, 0], [0, 0]],
"NHWC",
[4, 16, 16, 176],
)
def _test_convolution3d(
opname,
tensor_in_sizes,
filter_in_sizes,
dilations,
strides,
padding,
data_format,
deconv_output_shape=None,
add_shapes_to_graph_def=True,
):
"""One iteration of |
3D convolution with given shapes and attributes"""
deconv_output_shape = deconv_output_shape or []
total_size_1 = np.prod(tensor_in_sizes)
total_size_2 = np.prod(filter_in_sizes)
data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
filter_array = [f * 1.0 for f in range(1, total_size_2 + 1)]
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32")
in_filter = constant_op.constant(filter_array, shape=filter_in_sizes, dtype="float32")
if data_format == "NDHWC":
strides = [1] + strides + [1]
dilations = [1] + dilations + [1]
else:
strides = [1, 1] + strides
dilations = [1, 1] + dilations
if opname == "conv":
nn_ops.conv3d(
in_data,
in_filter,
strides=strides,
dilations=dilations,
padding=padding,
data_format=data_format,
)
compare_tf_with_tvm(
np.reshape(data_array, tensor_in_sizes).astype("float32"),
"Placeholder:0",
"Conv3D:0",
cuda_layout="NCDHW",
add_shapes_to_graph_def=add_shapes_to_graph_def,
)
@tvm.testing.uses_gpu
def test_forward_convolution3d():
"""Convolution3d"""
if is_gpu_available():
_test_convolution3d(
"conv", [4, 176, 8, 8, 8], [1, 1, 1, 176, 32], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW"
)
_test_convolution3d(
"conv", [4, 19, 17, 17, 17], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW"
)
_test_convolution3d(
"conv", [4, 124, 17, 17, 17], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NCDHW"
)
_test_convolution3d(
"conv", [4, 12, 17, 17, 17], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NCDHW"
)
_test_convolution3d(
"conv", [4, 8, 8, 8, 176], [1, 1, 1, 176, 3 |
2], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC"
)
_test_convolution3d(
"conv", [4, 17, 17, 17, 19], [3, 3, 3, 19, 19], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC"
)
_test_convolution3d(
"conv", [4, 17, 17, 17, 124], [1, 1, 1, 124, 19], [1, 1, 1], [1, 1, 1], "SAME", "NDHWC"
)
_test_convolution3d(
"conv", [4, 17, 17, 17, 12], [3, 3, 3, 12, 32], [1, 1, 1], [2, 2, 2], "VALID", "NDHWC"
)
_test_convolution3d(
"conv",
[4, 17, 17, 17, 12],
[3, 3, 3, 12, 32],
[1, 1, 1],
[2, 2, 2],
"VALID",
"NDHWC",
add_shapes_to_graph_def=False,
)
def _test_convolution3d_transpose(
data_shape,
filter_shape,
strides,
padding,
output_shape,
data_format="NCDHW",
add_shapes_to_graph_def=True,
):
"""One iteration of 3D convolution transpose with given shapes and attributes"""
dtype = "float32"
data_array = np.random.uniform(size=data_shape).astype(dtype)
filter_array = np.random.uniform(size=filter_shape).astype(dtype)
if data_format == "NDHWC":
strides = [1] + strides + [1]
else:
strides = [1, 1] + strides
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data_shape, dtype=dtype)
in_filter = constant_op.constant(filter_array, shape=filter_shape, dtype=dtype)
nn_ops.conv3d_transpose(
in_data,
in_filter,
output_shape=output_shape,
strides=strides,
padding=padding,
data_format=data_format,
)
compare_tf_with_tvm(
data_array,
"Placeholder:0",
"conv3d_transpose:0",
cuda_layout="NDHWC",
add_shapes_to_graph_def=add_shapes_to_graph_def,
)
@tvm.testing.uses_gpu
def test_forward_convolution3d_transpose():
"""Convolution3d transpose"""
if is_gpu_available():
_test_convolution3d_transpose(
data_shape=[1, 10, 8, 8, 8],
filt |
er_shape=[1, 1, 1, 6, 10],
strides=[1, 1, 1],
padding="VALID",
output_shape=[1, 6, 8, 8, 8],
)
_test_convolution3d_transpose(
data_shape=[4, 9, 8, 8, 8],
filter_shape=[1, 1, 1, 6, 9],
strides=[1, 1, 1],
padding="VALID",
output_shape=[4, 6, 8, 8, 8],
)
_test_convolution3d_transpose(
data_shape=[1, 3, 8, 8, 8],
filter_shape=[1, 1, 1, 6, 3],
strides=[2, 2, 2],
padding="SAME",
output_shape=[1, 6, 15, 15, 15],
)
_test_convolution3d_transpose(
data_shape=[1, 16, 8, 8, 8],
filter_shape=[3, 3, 3, 6, 16],
strides=[3, 3, 3],
padding="VALID",
output_shape=[1, 6, 24, 24, 24],
)
_test_convolution3d_transpose(
data_shape=[1, 8, 8, 8, 10],
filter_shape=[1, 1, 1, 6, 10],
strides=[1, 1, 1],
padding="VALID",
output_shape=[1, 8, 8, 8, 6],
data_format="NDHWC",
)
_test_convolution3d_transpose(
data_shape=[4, 8, 8, 8, 9],
filter_shape=[1, 1, 1, 6, 9],
strides=[1, 1, 1],
padding="VALID",
output_shape=[4, 8, 8, 8, 6],
data_format="NDHWC",
)
_test_convolution3d_transpose(
data_shape=[1, 8, 8, 8, 3],
filter_shape=[1, 1, 1, 6, 3],
strides=[2, 2, 2],
padding="SAME",
output_shape=[1, 15, 15, 15, 6],
data_format="NDHWC",
)
_test_convolution3d_transpose(
data_shape=[1, 8, 8, 8, 16],
filter_shape=[3, 3, 3, 6, 16],
strides=[3, 3, 3],
padding="VALID",
output_shape=[1, 24, 24, 24, 6],
data_format="NDHWC",
)
_test_convolution3d_transpose(
data_shape=[1, 8, 8, 8, 16],
filter_shape=[3, 3, 3, 6, 16],
strides=[3, 3, 3],
padding="VALID",
output_shape=[1, 24, 24, 24, 6],
data_format="NDHWC",
add_ |
shapes_to_graph_def=False,
)
def _test_biasadd(tensor_in_sizes, data_format):
"""One iteration of biasadd with given shapes and attributes"""
total_size_1 = 1
for s in tensor_in_sizes:
total_size_1 *= s
tensor_bias_sizes = [tensor_in_sizes[1]] if data_format == "NCHW" else [tensor_in_sizes[3]]
total_size_2 = tensor_bias_sizes[0]
data_array = [f * 1.0 for f in range(1, total_size_1 + 1)]
bias_array = [f * 1.0 for f in range(1, total_size_2 + 1)]
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=tensor_in_sizes, dtype="float32")
in_bias = constant_op.constant(bias_array, shape=tensor_bias_sizes, dtype="float32")
nn_ops.bias_add(in_data, in_bias, data_format=data_format)
compare_tf_with_tvm(
np.reshape(data_array, tensor_in_sizes).astype("float32"), "Placeholder:0", "BiasAdd:0"
)
@tvm.testing.uses_gpu
def test_forward_biasadd():
"""Bias add"""
if is_gpu_available():
_test_biasadd([4, 176, 8, 8], "NCHW")
_test_biasadd([1, 100, 1, 1], "NCHW")
_test_biasadd([4, 19, 17, 17], "NCHW")
_test_biasadd([4, 124, 3, 3], "NCHW")
_test_biasadd([4, 8, 8, 176], "NHWC")
_test_biasadd([1, 1, 1, 100], "NHWC")
_test_biasadd([4, 17, 17, 19], "NHWC")
_test_biasadd([4, 3, 3, 124], "NHWC")
def _test_forward_where(input_shape):
with tf.Graph().as_default():
dtype = tf.float32
t = tf.constant(
np.random.choice([0, 1, -2, 3, -1, 0.1, -0.2], size=input_shape).astype(dtype.name)
)
out = tf.where(t)
compare_tf_with_tvm([], [], out.name, mode="debug")
compare_tf_with_tvm([], [], out.name, mode="vm")
def test_forward_argwhere():
_test_forward_where((5,))
_test_forward_where((5, 5))
_test_forward_where((5, 5, 5))
_test_forward_where((5, 5, 5, 5))
_test_forward_where((5, 5, 5, 5, 5))
def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype="int32"): |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.