text
stringlengths
1
2.05k
class Floor1(Module): def forward(self, *args): return torch.floor(args[0])
class Round1(Module): def forward(self, *args): return torch.round(args[0])
class Cos1(Module): def forward(self, *args): return torch.cos(args[0])
class Sin1(Module): def forward(self, *args): return torch.sin(args[0])
class Tan1(Module): def forward(self, *args): return torch.tan(args[0])
class Tanh1(Module): def forward(self, *args): return torch.tanh(args[0])
class Acos1(Module): def forward(self, *args): return torch.acos(args[0])
class Asin1(Module): def forward(self, *args): return torch.asin(args[0])
class Atan1(Module): def forward(self, *args): return torch.atan(args[0])
class Log1(Module): def forward(self, *args): return torch.log(args[0])
class Exp1(Module): def forward(self, *args): return torch.exp(args[0])
class Erf1(Module): def forward(self, *args): return torch.erf(args[0])
class Trunc1(Module): def forward(self, *args): return torch.trunc(args[0])
class Sign1(Module): def forward(self, *args): return torch.sign(args[0])
class Neg1(Module): def forward(self, *args): return torch.neg(args[0])
class Sinh1(Module): def forward(self, *args): return torch.sinh(args[0])
class Cosh1(Module): def forward(self, *args): return torch.cosh(args[0])
class Log2_1(Module): def forward(self, *args): return torch.log2(args[0])
class Log10_1(Module): def forward(self, *args): return torch.log10(args[0])
class Log1p_1(Module): def forward(self, *args): return torch.log1p(args[0])
class Square(Module): def forward(self, *args): return torch.square(args[0]) input_shape = [1, 3, 10, 10] input_data = torch.rand(input_shape).float() verify_model(Square().float().eval(), input_data=input_data) verify_model(Sqrt1().float().eval(), input_data=input_data) verify_model(RSqrt1().float().eval(), input_data=input_data) verify_model(Ceil1().float().eval(), input_data=input_data) verify_model(Floor1().float().eval(), input_data=input_data) verify_model(Round1().float().eval(), input_data=input_data) verify_model(Cos1().float().eval(), input_data=input_data) verify_model(Cosh1().float().eval(), input_data=input_data) verify_model(Sin1().float().eval(), input_data=input_data) verify_model(Sinh1().float().eval(), input_data=input_data) verify_model(Tan1().float().eval(), input_data=input_data) verify_model(Tanh1().float().eval(), input_data=input_data) verify_model(Acos1().float().eval(), input_data=input_data) verify_model(Asin1().float().eval(), input_data=input_data) verify_model(Atan1().float().eval(), input_data=input_data) verify_model(Log1().float().eval(), input_data=input_data) verify_model(Log2_1().float().eval(), input_data=input_data) verify_model(Log10_1().float().eval(), input_data=input_data) verify_model(Log1p_1().float().eval(), input_data=input_data) verify_model(Exp1().float().eval(), input_data=input_data) verify_model(Erf1().float().eval(), input_data=input_data) verify_model(Trunc1().float().eval(), input_data=input_data) verify_model(Sign1().float().eval(), input_data=input_data) verify_model(Neg1().float().eval(), input_data=input_data) @tvm.testing.uses_gpu def test_forward_tril(): """test_forward_tril""" torch.set_grad_enabled(False) def test_func(input_data): return torch.tril(input_data) input_data = torch.rand([3, 3]).float() verify_model(test_func, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float()
verify_model(test_func, input_data=input_data) def test_func1(input_data): return torch.tril(input_data, 1) input_data = torch.rand([3, 3]).float() verify_model(test_func1, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func1, input_data=input_data) def test_func2(input_data): return torch.tril(input_data, -1) input_data = torch.rand([3, 3]).float() verify_model(test_func2, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_triu(): """test_forward_triu""" torch.set_grad_enabled(False) def test_func(input_data): return torch.triu(input_data) input_data = torch.rand([3, 3]).float() verify_model(test_func, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func, input_data=input_data) def test_func1(input_data): return torch.triu(input_data, 1) input_data = torch.rand([3, 3]).float() verify_model(test_func1, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func1, input_data=input_data) def test_func2(input_data): return torch.triu(input_data, -1) input_data = torch.rand([3, 3]).float() verify_model(test_func2, input_data=input_data) input_data = torch.rand([1, 3, 10, 10]).float() verify_model(test_func2, input_data=input_data) @tvm.testing.uses_gpu def test_forward_where(): """test_forward_where""" torch.set_grad_enabled(False)
class Where1(Module): def forward(self, *args): y = torch.ones([3, 2]) if torch.cuda.is_available(): y = y.cuda() return torch.where(args[0] > 0, args[0], y)
class Where2(Module): def forward(self, *args): return torch.where(args[0] > 0, args[0], args[1])
class Where3(Module): def forward(self, *args): return torch.where(args[0])[0] x = torch.rand([3, 2]).float() verify_model(Where1(), input_data=[x]) y = torch.rand([3, 2]) verify_model(Where2(), input_data=[x, y]) inp = torch.rand([10]) inp[3:8] = 0 verify_trace_model(Where3(), [inp], ["llvm"]) @tvm.testing.uses_gpu def test_forward_addcdiv(): """test_forward_addcdiv""" torch.set_grad_enabled(False)
class Addcdiv1(Module): def forward(self, *args): t1 = torch.ones([3, 1]) t2 = torch.ones([1, 3]) if torch.cuda.is_available(): t1 = t1.cuda() t2 = t2.cuda() return torch.addcdiv(args[0], 0.1, t1, t2)
class Addcdiv2(Module): def forward(self, *args): return torch.addcdiv(args[0], 0.5, args[1], args[2]) input_data = torch.rand([1, 3]).float() verify_model(Addcdiv1().float().eval(), input_data=input_data) t1 = torch.rand([3, 1]).float() t2 = torch.rand([1, 3]).float() verify_model(Addcdiv2().float().eval(), input_data=[input_data, t1, t2]) @tvm.testing.uses_gpu def test_forward_addcmul(): """test_forward_addcmul""" torch.set_grad_enabled(False)
class Addcmul1(Module): def forward(self, *args): t1 = torch.ones([3, 1]) t2 = torch.ones([1, 3]) if torch.cuda.is_available(): t1 = t1.cuda() t2 = t2.cuda() return torch.addcmul(args[0], 0.1, t1, t2)
class Addcmul2(Module): def forward(self, *args): return torch.addcmul(args[0], 0.5, args[1], args[2]) input_data = torch.rand([1, 3]).float() verify_model(Addcmul1().float().eval(), input_data=input_data) t1 = torch.rand([3, 1]).float() t2 = torch.rand([1, 3]).float() verify_model(Addcmul2().float().eval(), input_data=[input_data, t1, t2]) @tvm.testing.uses_gpu def test_forward_true_divide(): """test_forward_true_divide""" if package_version.parse(torch.__version__) < package_version.parse("1.5.0"): return torch.set_grad_enabled(False)
class TrueDivide(Module): def forward(self, *args): return torch.true_divide(args[0], args[1]) dividend = torch.rand([5, 3]).float() divisor_tensor = torch.rand([5, 3]).float() + 0.5 divisor_scalar = torch.tensor(1.0, dtype=torch.float32) verify_model( TrueDivide().float().eval(), input_data=[dividend, divisor_tensor], atol=1e-4, rtol=1e-4 ) verify_model( TrueDivide().float().eval(), input_data=[dividend, divisor_scalar], atol=1e-4, rtol=1e-4 ) @tvm.testing.uses_gpu def test_forward_is_floating_point(): """test_forward_is_floating_point""" torch.set_grad_enabled(False)
class IsFloatingPoint(Module): def forward(self, arg): return torch.is_floating_point(arg) targets = _get_default_vm_targets() verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float64) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float32) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.float16) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int64) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int32) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int16) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.int8) verify_script_model(IsFloatingPoint(), [(1, 1)], targets, idtype=torch.uint8) @tvm.testing.uses_gpu def test_forward_traced_function(): """test_forward_traced_function""" def fn(t1, t2): return t1 + t2 tensor1 = torch.randn(3, 4) tensor2 = torch.randn(3, 4) verify_model(fn, input_data=[tensor1, tensor2]) @tvm.testing.uses_gpu def test_forward_dtypes(): """test_forward_dtypes""" def fn(t1, t2): return 2.5 * t1 + t2 for dt in [torch.int32, torch.int64, torch.double]: tensor1 = torch.randn(3, 4).to(dtype=dt) tensor2 = torch.randn(3, 4).to(dtype=dt) verify_model(fn, input_data=[tensor1, tensor2])
class ModuleWithIntParameters(Module): def __init__(self, arr): super().__init__() self.param = torch.nn.Parameter(torch.LongTensor(arr), requires_grad=False) def forward(self, x): return x.long() + self.param shape = (10, 10) param = torch.ones(shape, dtype=torch.long) inp = torch.ones(shape, dtype=torch.int) verify_model(ModuleWithIntParameters(param), input_data=inp) @tvm.testing.uses_gpu def test_weight_names(): tm = torch.jit.trace(torch.nn.Linear(3, 4), [torch.randn(2, 3)]) _, params = relay.frontend.from_pytorch(tm, [("input", (2, 3))]) assert set(params.keys()) == set(n for n, _ in tm.named_parameters()) @tvm.testing.uses_gpu def test_duplicate_weight_use(): """test_duplicate_weight_use"""
class Test(Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(5, 3) def forward(self, x): x = self.lin(x) x = x @ self.lin.weight return x verify_model(Test(), input_data=[torch.randn(5, 5)]) @tvm.testing.uses_gpu def test_forward_matmul(): """test_forward_matmul""" torch.set_grad_enabled(False)
class MatMul1(Module): def forward(self, *args): return torch.matmul(args[0], args[1]) tensor1 = torch.randn(3, 4) tensor2 = torch.randn(4) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) tensor1 = torch.randn(4) tensor2 = torch.randn(4, 3) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) tensor1 = torch.randn(10, 4) tensor2 = torch.randn(4, 10) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(10, 4, 5) verify_model( MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.batch_matmul"] ) tensor1 = torch.randn(10, 3, 4) tensor2 = torch.randn(4, 5) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) tensor1 = torch.randn(10, 4) tensor2 = torch.randn(3, 4, 5) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2], expected_ops=["nn.dense"]) tensor1 = torch.randn(1, 12, 14, 64) tensor2 = torch.randn(1, 12, 64, 14) verify_model(MatMul1().float().eval(), input_data=[tensor1, tensor2]) def test_forward_index(): """test_forward_index""" torch.set_grad_enabled(False) input_shape = [3, 4, 5, 6]
class Index0(Module): def forward(self, x): return x[[0, 1], [0, 2], :2, 4] input_data = torch.rand(input_shape).float() verify_model(Index0().eval(), input_data=input_data)
class Index1(Module): def forward(self, x): return x[[0], [1, 2, 3, 0], [3, 1, 2, 2], [4, 2, 1, 0]] input_data = torch.rand(input_shape).float() verify_model(Index1().eval(), input_data=input_data) def test_fn_bool_mask(): return lambda data, mask: data[0, mask] data = torch.tensor([[1, 2, 3], [4, 5, 6]]) mask = torch.tensor([True, True, False]) verify_trace_model(test_fn_bool_mask(), [data, mask], ["llvm", "cuda"]) def test_logsumexp(): """test_logsumexp"""
class Logsumexp(Module): def __init__(self, dim, keepdim=False): super().__init__() self.dim = dim self.keepdim = keepdim def forward(self, x): return torch.logsumexp(x, self.dim, self.keepdim) input_shape = (100, 100) input_data = torch.rand(input_shape) verify_model(Logsumexp(0), input_data=input_data) verify_model(Logsumexp(0, keepdim=True), input_data=input_data) verify_model(Logsumexp(1, keepdim=True), input_data=input_data.double()) def test_stack(): """test_stack"""
class Stack(torch.nn.Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return torch.stack((x, x), dim=self.axis) inp = torch.randn(8, 8, 8) verify_model(Stack(), input_data=inp) verify_model(Stack(axis=-1), input_data=inp) verify_model(Stack(axis=3), input_data=inp) verify_model(Stack(axis=-4), input_data=inp) def test_stack_dynamic(): """test_stack_dynamic"""
class Stack(torch.nn.Module): def forward(self, x): tensor_list = [] for i in range(x.size(0)): tensor_list += [x[i]] return torch.stack(tensor_list, dim=0) verify_script_model(Stack(), [(8, 8, 8)], _get_default_vm_targets()) def test_forward_unbind(): """test_forward_unbind"""
class Unbind(torch.nn.Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return torch.unbind(x, self.axis) inp = torch.randn(8, 8, 8) verify_model(Unbind(0), input_data=inp) verify_model(Unbind(1), input_data=inp) verify_model(Unbind(2), input_data=inp) def test_forward_nonzero(): """test_forward_nonzero"""
class Nonzero(Module): def __init__(self, as_tuple=False): super().__init__() self.as_tuple = as_tuple def forward(self, data): return torch.nonzero(data, as_tuple=self.as_tuple) inp = torch.Tensor(np.array([[0, 1, 0], [2, 0, 9], [-1, -1, 0]]).astype("float32")) verify_trace_model(Nonzero(), [inp], ["llvm"]) def test_forward_scatter(): """test_forward_scatter""" def test_fn_scatter(dim): return lambda data, index, src: torch.scatter(data, dim=dim, index=index, src=src) def test_fn_scatter_add(dim): return lambda data, index, src: torch.scatter_add(data, dim=dim, index=index, src=src) in_data = torch.zeros(3, 5) in_index = torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]) in_src = torch.rand(2, 5) targets = ["llvm", "cuda"] verify_trace_model(test_fn_scatter(0), [in_data, in_index, in_src], targets) verify_trace_model(test_fn_scatter_add(0), [in_data, in_index, in_src], targets) in_data = torch.zeros(2, 4) in_index = torch.tensor([[2], [3]]) in_src = torch.rand(2, 1) verify_trace_model(test_fn_scatter(1), [in_data, in_index, in_src], targets) verify_trace_model(test_fn_scatter_add(1), [in_data, in_index, in_src], targets) def test_forward_index_put(): """test_forward_index_put""" def test_fn_index_put2(): return lambda data, xidx, yidx, values: torch.index_put( data, indices=[xidx, yidx], values=values ) def test_fn_index_put3a(): return lambda data, xidx, yidx, zidx, values: torch.index_put( data, indices=[xidx, yidx, zidx], values=values, accumulate=True ) shape = (3, 5) in_data = torch.zeros(shape) xidx = torch.tensor([0, 1, 2, 2]) yidx = torch.tensor([0, 1, 3, 4]) values = torch.tensor([2.0, 4.0, 7.0, 9.0]) targets = ["llvm", "cuda"] verify_trace_model(test_fn_index_put2(), [in_data, xidx, yidx, values], targets) shape = (3, 5, 3) in_data = torch.zer
os(shape) xidx = torch.tensor([0, 1, 2, 2, 0]) yidx = torch.tensor([0, 1, 3, 4, 0]) zidx = torch.tensor([0, 1, 1, 2, 0]) values = torch.tensor([2.0, 4.0, 7.0, 9.0, 1.0]) verify_trace_model(test_fn_index_put3a(), [in_data, xidx, yidx, zidx, values], targets) def test_numel(): """test_numel"""
class Numel(Module): def forward(self, data): return torch.tensor(torch.numel(data)) targets = _get_default_vm_targets() verify_script_model(Numel(), [(1,)], targets) verify_script_model(Numel(), [(3, 5)], targets) verify_script_model(Numel(), [(3, 5, 8)], targets) def test_empty(): """Test for aten::empty""" def test_func(): return torch.empty([1, 3, 10, 10]) verify_model_with_input(test_func, [], assert_shape_only=True) def test_empty_like(): """Test for aten::empty_like""" def test_func(data): return torch.empty_like(data) verify_model_with_input(test_func, [torch.rand([1, 3, 10, 10]).float()], assert_shape_only=True) @tvm.testing.uses_gpu def test_new_empty(): """test_forward_new_ones""" torch.set_grad_enabled(False) input_shape = [1, 3, 10, 10] def test_func(input_tensor): return input_tensor.new_empty([3, 10, 10]) verify_model_with_input(test_func, [torch.rand(input_shape).float()], assert_shape_only=True) def test_func1(input_tensor): return input_tensor.new_empty([3, 10, 10], dtype=torch.int32) verify_model_with_input(test_func1, [torch.rand(input_shape).float()], assert_shape_only=True) def test_randn(): """Test for aten::randn""" def test_func(): return torch.randn([1, 3, 10, 10]) verify_model_with_input(test_func, [], assert_shape_only=True) def test_func1(): return torch.randn(1, 3, 10, 10) verify_model_with_input(test_func1, [], assert_shape_only=True) def test_forward_pretrained_bert_base_uncased(): """ Refer the bert example given in https: .. code-block:: bash pip install pytorch_pretrained_bert==0.6.2 --user """ try: from pytorch_pretrained_bert
import BertForMaskedLM, BertTokenizer except ImportError: print("Torch pretrained bert package must be installed to run this script.") return tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]" tokenized_text = tokenizer.tokenize(text) masked_index = 8 tokenized_text[masked_index] = "[MASK]" assert tokenized_text == [ "[CLS]", "who", "was", "jim", "henson", "?", "[SEP]", "jim", "[MASK]", "was", "a", "puppet", " "[SEP]", ] indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text) segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) model = BertForMaskedLM.from_pretrained("bert-base-uncased") model.eval() with torch.no_grad(): torch_preds = model(tokens_tensor, segments_tensors) scripted_model = torch.jit.trace(model, (tokens_tensor, segments_tensors)).eval() input_1 = "input_ids" input_2 = "input.2" shape_list = [(input_1, list(tokens_tensor.shape)), (input_2, list(segments_tensors.shape))] mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) target = "llvm" with tvm.transform.PassContext(opt_level=3): relay_graph, relay_lib, relay_params = relay.build(mod, target=target, params=params) dev = tvm.device(target, 0) relay_model = graph_executor.create(relay_graph, relay_lib, dev) relay_model.set_input(**relay_params) relay_model.set_input(input_1, tokens_tensor) relay_model.set_input(input_2, segments_tensors) relay_model.run() compiled_output = relay_model.get_output(0).numpy()
tvm.testing.assert_allclose(torch_preds, compiled_output, rtol=1e-3, atol=1e-3) torch_pred_idx = torch.argmax(torch_preds[0, masked_index]).item() torch_pred_token = tokenizer.convert_ids_to_tokens([torch_pred_idx])[0] tvm_pred_idx = compiled_output[0, masked_index].argmax() tvm_pred_token = tokenizer.convert_ids_to_tokens([tvm_pred_idx])[0] assert torch_pred_idx == tvm_pred_idx assert torch_pred_token == tvm_pred_token print(f"Torch top-1 id: {torch_pred_idx}, token: {torch_pred_idx}") print(f"TVM top-1 id: {tvm_pred_idx}, token: {tvm_pred_token}") @pytest.mark.skipif( platform.machine() == "aarch64", reason="Currently failing on AArch64", ) def test_convert_torch_script_with_input_types(): """test_convert_torch_script_with_input_types""" def model_fn(x, y): x = x.to(dtype=torch.int32) y = x + y return y ishape = (4, 5) input_x = torch.rand(ishape, dtype=torch.float32) input_y = torch.randint(low=0, high=100, size=ishape, dtype=torch.int32) inputs = [input_x, input_y] script_module = torch.jit.trace(model_fn, inputs) fname = "tmp.pt" torch.jit.save(script_module, fname) loaded = torch.jit.load(fname) os.remove(fname) verify_model(loaded.eval(), input_data=inputs) def expected(x_shape, y_shape): x = relay.var("x", shape=x_shape, dtype="float32") y = relay.var("y", shape=y_shape, dtype="int32") args = [x, y] x1 = relay.cast(x, "int32") y1 = relay.add(x1, y) mod = tvm.IRModule.from_expr(relay.Function(args, y1)) return mod["main"] input_infos = [("input0", (ishape, "float")), ("input1", (ishape, "int"))] mod, _ = relay.frontend.from_pytorch(loaded, input_infos) expected_mod = expected(ishape, ishape) assert tvm.ir.structural_equal(expected_mod, mod["main"], map_free_vars=True) def test_bincount(): """test_bincount""" def test_fn(x, weights=None):
return torch.bincount(x, weights=weights) inp = torch.randint(0, 100, (10000,), dtype=torch.int64) weights = torch.linspace(0, 100, steps=10000) targets = ["llvm", "cuda"] verify_trace_model(test_fn, [inp], targets) verify_trace_model(test_fn, [inp, weights], targets) def test_hard_swish(): """test_hard_swish""" examples = [torch.rand(8).float(), torch.rand(8, 10).float(), torch.rand(1, 1, 10).float()] for input_data in examples: verify_model(torch.nn.Hardswish().eval(), input_data=input_data) verify_model(torch.nn.Hardswish(inplace=True).eval(), input_data=input_data) def test_hard_sigmoid(): """test_hard_sigmoid""" examples = [torch.rand(8).float(), torch.rand(8, 10).float(), torch.rand(1, 1, 10).float()] for input_data in examples: verify_model(torch.nn.Hardsigmoid().eval(), input_data=input_data) verify_model(torch.nn.Hardsigmoid(inplace=True).eval(), input_data=input_data) def test_cumsum(): """test_cumsum""" def test_fn(dim, dtype=None): return lambda x: torch.cumsum(x, dim=dim, dtype=dtype) inp = torch.randint(0, 100, (10000,), dtype=torch.int32) verify_model(test_fn(0), [inp]) verify_model(test_fn(0), [inp.to(torch.int64)]) verify_model(test_fn(0, dtype=torch.int64), [inp.to(torch.int64)]) inp = torch.randn((100, 100), dtype=torch.float32) verify_model(test_fn(dim=0, dtype=torch.float64), [inp]) verify_model(test_fn(dim=1), [inp]) inp = torch.randn((100, 100), dtype=torch.float32) > 0.5 verify_model(test_fn(dim=0, dtype=torch.int32), [inp]) def test_masked_fill(): """test_transformer""" def test_fn(x, mask): return torch.masked_fill(x, mask, 0.0) inp = torch.randn(100, 100) verify_model(test_fn, [inp, inp > 0.5]) verify_model(test_fn, [inp.to(torch.float64), inp > 0.5]) def test_transformer(): """test_transformer""" model = torch.nn.Transformer(d_model=256, nhead=8, num_encoder_layers=6, num_decoder_layers=6) model =
model.eval() src = torch.rand((10, 32, 256)) tgt = torch.rand((20, 32, 256)) verify_model(model.eval(), input_data=[src, tgt]) def test_argsort(): """test_argsort""" def test_fn(dim, descending): return lambda x: torch.argsort(x, dim=dim, descending=descending) inp = torch.randn(100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(0, False), [inp]) inp = torch.randn(100, 100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(0, False), [inp]) verify_model(test_fn(1, True), [inp]) verify_model(test_fn(1, False), [inp]) def test_sort(): """test_sort""" def test_fn(dim, descending): return lambda x: torch.sort(x, dim=dim, descending=descending) inp = torch.randn(100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(-1, False), [inp]) inp = torch.randn(100, 100) verify_model(test_fn(0, True), [inp]) verify_model(test_fn(-2, False), [inp]) verify_model(test_fn(1, True), [inp]) verify_model(test_fn(-1, False), [inp]) def test_logical_and(): """test_logical_and""" def test_fn(x, y): return torch.logical_and(x, y) a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) verify_model(test_fn, [a, b]) a = torch.tensor([True, False, True]) b = torch.tensor([True, False, False]) verify_model(test_fn, [a, b]) def test_masked_select(): """test_masked_select""" def test_fn(x, mask): return torch.masked_select(x, mask) for shape in [(10,), (3, 4), (16, 32, 64)]: x = torch.randn(*shape) mask = x.ge(0.5) verify_trace_model(test_fn, [x, mask], ["llvm", "cuda"]) def test_unique(): """test_unique""" def test_fn(is_sorted, return_inverse, return_counts): return lambda x: torch.unique(x, is_sorted, return_inverse, return_counts) in_data = torch.randint(0, 20, (10,), dtype=torch.int32) targets = ["llvm", "cuda"] verify_trace_m
odel(test_fn(True, True, True), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) verify_trace_model(test_fn(True, True, False), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) in_data = torch.randint(0, 20, (20,), dtype=torch.int64) verify_trace_model(test_fn(True, True, True), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) verify_trace_model(test_fn(True, True, False), [in_data], targets) verify_trace_model(test_fn(True, False, True), [in_data], targets) def test_forward_nll_loss(): """test_forward_nll_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.randint(0, 3, (N,)) weights = torch.tensor([1, 2, 3]).float() verify_model(torch.nn.NLLLoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(weight=weights).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(ignore_index=1).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="none").eval(), input_data=[predictions, targets]) d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.randint(0, 3, (N, d1, d2)) verify_model(torch.nn.NLLLoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(weight=weights).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(ignore_index=1).eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.NLLLoss(reduction="none").eval(), input_data=[predictions, targets]) def test_cross_entropy_loss(): """test_cross_entropy_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).fl
oat() targets = torch.randint(0, 3, (N,)) weights = torch.tensor([1, 2, 3]).float() verify_model(torch.nn.CrossEntropyLoss().eval(), input_data=[predictions, targets]) verify_model( torch.nn.CrossEntropyLoss(weight=weights).eval(), input_data=[predictions, targets] ) predictions = torch.randn(N, C).float() targets = torch.randn(N, C) verify_model(torch.nn.CrossEntropyLoss().eval(), input_data=[predictions, targets]) def test_forward_l1_loss(): """test_forward_l1_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.rand((N, C)).float() verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets]) d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.rand((N, C, d1, d2)).float() verify_model(torch.nn.L1Loss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.L1Loss(reduction="none").eval(), input_data=[predictions, targets]) def test_forward_mse_loss(): """test_forward_mse_loss""" torch.set_grad_enabled(False) N, C = 10, 3 predictions = torch.rand((N, C)).float() targets = torch.rand((N, C)).float() verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="sum").eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets]) d1, d2 = 2, 3 predictions = torch.rand((N, C, d1, d2)).float() targets = torch.rand((N, C, d1, d2)).float() verify_model(torch.nn.MSELoss().eval(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="sum").eval
(), input_data=[predictions, targets]) verify_model(torch.nn.MSELoss(reduction="none").eval(), input_data=[predictions, targets]) @tvm.testing.uses_gpu def test_forward_flip(): """Test for aten::flip""" torch.set_grad_enabled(False)
class Flip(Module): def __init__(self, axis=0): super().__init__() self.axis = axis def forward(self, x): return x.flip([self.axis]) input_t = torch.randn(2, 3, 4) verify_model(Flip(axis=0), input_data=input_t) verify_model(Flip(axis=1), input_data=input_t) verify_model(Flip(axis=2), input_data=input_t) verify_model(Flip(axis=-1), input_data=input_t) def test_annotate_span(): """test_annotate_span""" model = torchvision.models.resnet18().eval() inp = torch.randn([1, 3, 224, 224]) trace = torch.jit.trace(model, inp).eval() mod, _ = relay.frontend.from_pytorch( trace, [("input", inp.shape)], use_parser_friendly_name=True ) relay.transform.AnnotateSpans()(mod) @tvm.testing.uses_gpu def test_all_any(): """test_all_any""" def test_fn(f, dim=None, keepdim=False): return lambda x: f(x, dim=dim, keepdim=keepdim) def test_fn_no_arg(f): return lambda x: f(x) for f in [torch.all, torch.any]: verify_model(test_fn(f, 0), [torch.rand(1, 2).bool()]) verify_model(test_fn(f, 0), [torch.arange(0, 3).to(torch.uint8)]) verify_model(test_fn(f, 1), [torch.rand(4, 2).bool()]) verify_model(test_fn(f, 0, keepdim=True), [torch.rand(4, 2).bool()]) verify_model(test_fn_no_arg(f), [torch.rand(1, 2).bool()]) verify_model(test_fn_no_arg(f), [torch.arange(0, 3).to(torch.uint8)]) @tvm.testing.uses_gpu def test_searchsorted(): """test_searchsorted""" def test_fn(out_int32=False, right=False): return lambda x, y: torch.searchsorted(x, y, out_int32=out_int32, right=right) sorted_sequence = torch.tensor([[1, 3, 5, 7, 9], [2, 4, 6, 8, 10]]) values = torch.tensor([[3, 6, 9], [3, 6, 9]]) verify_model(test_fn(), [sorted_sequence, values]) verify_model(test_fn(out_int32=True), [sorted_sequence[0], values[0]]) verify_model(test_fn(right=True), [sorted_sequence, values]) sorted_sequence_1d = torch.tensor([1, 3, 5, 7,
9]) values = torch.tensor([[3, 6, 9], [4, 2, 7]]) verify_model(test_fn(), [sorted_sequence_1d, values]) verify_model(test_fn(), [sorted_sequence_1d, torch.tensor(6)]) @tvm.testing.uses_gpu def test_bucketize(): """test_bucketize""" def test_fn(out_int32=False, right=False): return lambda x, y: torch.bucketize(x, y, out_int32=out_int32, right=right) boundaries = torch.tensor([1, 3, 5, 7, 9]) values = torch.tensor([3, 6, 9]) verify_model(test_fn(), [values, boundaries]) verify_model(test_fn(out_int32=True, right=True), [values, boundaries]) @tvm.testing.uses_gpu def test_roll(): """Test for aten::roll""" def test_fn(shifts, dims): return lambda x: torch.roll(x, shifts, dims) x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) verify_model(test_fn(1, 0), [x]) verify_model(test_fn(-1, 0), [x]) verify_model(test_fn(shifts=(2, 1), dims=(0, 1)), [x]) @tvm.testing.uses_gpu def test_einsum(): """test_einsum""" def test_fn(equation): return lambda *x: torch.einsum(equation, *x) x = torch.ones([2, 3]) y = torch.ones([3, 4]) z = torch.ones([4, 5]) verify_model(test_fn("ij,jk"), [x, y]) verify_model(test_fn("ij,jk,km->im"), [x, y, z]) def test_stft(): """test_stft""" def test_fn(n_fft, hop_length, win_length, center, pad_mode, normalized, onesided): return lambda input, window=None: torch.stft( input=input, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=normalized, onesided=onesided, ) input_t = torch.rand([1, 12]).float() window = torch.tensor([2, 3, 4], dtype=torch.int32) targets = ["llvm", "cuda"] verify_trace_model(test_fn(3, 3, 3, False, "constant", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "constant", False, True), [input_t, win
dow], targets) verify_trace_model(test_fn(3, 3, 3, False, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", True, True), [input_t, window], targets) verify_trace_model(test_fn(3, 3, 3, True, "reflect", False, False), [input_t, window], targets) input_t = torch.rand([2, 12]).float() window = torch.tensor([2, 3, 4], dtype=torch.int32) verify_trace_model(test_fn(3, 3, 3, False, "reflect", False, True), [input_t, window], targets) window = torch.tensor([1, 3], dtype=torch.int32) verify_trace_model(test_fn(2, 1, 2, False, "reflect", False, True), [input_t, window], targets) verify_trace_model(test_fn(2, 1, 2, False, "reflect", False, True), [input_t], targets) @tvm.testing.uses_gpu def test_dot(): """Test for aten::dot""" def test_fn(x): return x.dot(x) x = torch.randn([4]) verify_model(test_fn, [x]) @tvm.testing.uses_gpu def test_mv(): """Test for aten::mv""" def test_fn(m, v): return m.mv(v) verify_model(test_fn, [torch.randn(4, 4), torch.randn(4)]) verify_model(test_fn, [torch.randn(2, 2), torch.randn(2)]) verify_model(test_fn, [torch.randn(3, 8), torch.randn(8)]) def test_grid_sample(): """test_grid_sample"""
class Grid_sample(Module): def __init__(self, method, padding_mode, align_corners): super().__init__() self._method = method self._padding_mode = padding_mode self._align_corners = align_corners def forward(self, x, y): return torch.nn.functional.grid_sample( input=x, grid=y, mode=self._method, padding_mode=self._padding_mode, align_corners=self._align_corners, ) methods = ["nearest", "bilinear", "bicubic"] padding_modes = ["zeros", "border", "reflection"] align_corners = [True, False] data_2D = torch.rand([4, 4, 8, 8]).float() grid_2D = torch.rand([4, 16, 16, 2]).float() data_3D = torch.rand([4, 4, 4, 4, 4]).float() grid_3D = torch.rand([4, 8, 8, 8, 3]).float() for _method in methods: for _padding in padding_modes: for _align in align_corners: model = Grid_sample(_method, _padding, _align) verify_model(model, input_data=[data_2D, grid_2D]) if _method != "bicubic": verify_model(model, input_data=[data_3D, grid_3D]) def test_list_tuple(): """test compilation error for a Python list followed by a prim::TupleConstruct."""
class List_tuple(Module): """List_tuple""" def forward(self, x): """forward""" merged = [] mask_list = [] for i in range(3): w0 = torch.sigmoid(x) merged.append((w0, w0)) mask_list.append(x) for i in range(3): merged[i] = merged[i][0] + merged[i][1] return mask_list[2], merged x = torch.rand([4, 4, 16, 32]).float() script_module = torch.jit.trace(List_tuple(), x, strict=False).eval() relay.frontend.from_pytorch(script_module, [("x", x.shape)]) @tvm.testing.uses_gpu def test_binary_bitwise(): """Test for binary bitwise""" def test_ior(x, y): return x.__ior__(y) def test_iand(x, y): return x.__iand__(y) def test_ixor(x, y): return x.__ixor__(y) x = torch.tensor([7, 49, 16, 1, 2, 3], dtype=torch.uint8) y = torch.tensor([39, 128, 99, 228, 63, 17], dtype=torch.uint8) for test_fn in [test_ior, test_iand, test_ixor]: verify_model(test_fn, [x, y]) @tvm.testing.uses_gpu def test_shift(): """Test for aten::__lshift__, aten::__rshift__""" def test_lshift(x, y): return x << y def test_rshift(x, y): return x >> y x = torch.tensor([39, 128, 99, 228, 63, 17], dtype=torch.int32) y = torch.tensor([3, 2, 7, 4, 5, 9], dtype=torch.int32) for test_fn in [test_lshift, test_rshift]: verify_model(test_fn, [x, y]) @tvm.testing.uses_gpu def test_mod(): """Test for aten::fmod""" def test_fmod(x, y): return torch.fmod(x, y) def test_remainder(x, y): return torch.remainder(x, y) for test_fn in [test_fmod, test_remainder]: verify_model(test_fn, [torch.tensor([-3.0, -2, -1, 1, 2, 3]), torch.tensor(2)]) verify_model(test_fn, [torch.tensor([1, 2, 3, 4, 5]), torch.tensor(-1.5)]) def test_softmax_fuse(): """test_softmax_fuse"""
class Model(torch.nn.Module): """Pytorch model module""" def __init__(self, nchwc_post_op=False) -> None: super().__init__() self.conv = torch.nn.Conv2d(3, 3, (1, 1), 1) self.nchwc_post_op = nchwc_post_op @torch.no_grad() def forward(self, x): """forward""" t0a = self.conv(x) t0b = torch.floor(x) t2b = torch.softmax(t0a, dim=2) if self.nchwc_post_op: t3a = t0a - t0b t4a = t2b - t0b t6a = t3a + t4a return t6a return t2b + 1 sh = [3, 3, 10, 1] inp = torch.ones(*sh, dtype=torch.float32) for model in [Model(nchwc_post_op=False).eval(), Model(nchwc_post_op=True).eval()]: output_torch = model(inp).numpy() mod, params = relay.frontend.from_pytorch(torch.jit.trace(model, inp), [("inp0", sh)]) with tvm.transform.PassContext(opt_level=4): out = ( relay.create_executor("graph", mod, params=params) .evaluate()(inp0=inp.numpy()) .numpy() ) tvm.testing.assert_allclose(out, output_torch, rtol=1e-5, atol=1e-5) @tvm.testing.uses_gpu def test_lerp(): """test_lerp""" def test_fn(x, y, w): return torch.lerp(x, y, w) input_shape = [16] x = torch.rand(input_shape).float() y = torch.rand(input_shape).float() w = torch.rand(input_shape).float() verify_model(test_fn, [x, y, w]) verify_model(test_fn, [x, y, w[0]]) def test_trilu(): def _test_trilu(op, diagonal): return lambda inp: op(inp, diagonal) for op in [torch.triu, torch.tril]: verify_model(_test_trilu(op, 0), [torch.rand(size=[3, 3])]) verify_model(_test_trilu(op, 1), [torch.rand(size=[6, 6])]) verify_model(_test_trilu(op, -2), [torch.rand(size=[6, 6])]) def test_multinomial(): def _test_multinomial(num_samples): return lambda inp: torch.multinomial(inp,
num_samples=num_samples, replacement=True) verify_model( _test_multinomial(2), [torch.rand(size=[3]).float()], cpu_only=True, check_correctness=False ) verify_model( _test_multinomial(1), [torch.rand(size=[4, 5]).float()], cpu_only=True, check_correctness=False, ) if __name__ == "__main__": tvm.testing.main()
""" Tests on fx-quantized torch model conversion """
import torch
import torchvision
import numpy as np from torch.quantization
import get_default_qconfig from torch.quantization.quantize_fx
import prepare_fx, convert_fx from torchvision.models.efficientnet
import efficientnet_b4 from torchvision.models.resnet
import resnet50 from tvm
import relay def quantize(model): qconfig = get_default_qconfig("fbgemm") qconfig_dict = {"": qconfig} return convert_fx(prepare_fx(model, qconfig_dict)) def quantize_and_build(model, in_size): inp = torch.rand(1, 3, in_size, in_size) input_name = "inp" qmodel = quantize(model) with torch.no_grad(): script_module = torch.jit.trace(qmodel, inp) mod, _ = relay.frontend.from_pytorch(script_module, [(input_name, inp.shape)]) mod = relay.transform.InferType()(mod) assert "qnn.conv2d" in mod.astext(show_meta_data=False) def test_ssd_vgg():
class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): features = self.model.backbone(inp) features = list(features.values()) out = self.model.head(features) return out["bbox_regression"], out["cls_logits"] model_func = torchvision.models.detection.ssd300_vgg16 model = TraceWrapper(model_func(num_classes=50, pretrained_backbone=True)).eval() quantize_and_build(model, 300) def test_deeplab_v3():
class TraceWrapper(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model def forward(self, inp): out = self.model(inp) return out["out"] deeplabv3 = torchvision.models.segmentation.deeplabv3_mobilenet_v3_large(pretrained=True) model = TraceWrapper(deeplabv3.eval()).eval() quantize_and_build(model, 300) def test_imagenet(): for model_func in [resnet50, efficientnet_b4]: quantize_and_build(model_func(pretrained=True).eval(), 224)
""" Tests on torch lstm model conversion """
import numpy as np
import torch
import torch.nn as nn from torch.nn
import Parameter
import torch.jit as jit from typing
import List, Tuple from torch
import Tensor
import tvm
import tvm.testing from tvm
import relay from tvm.relay.frontend.pytorch
import from_pytorch from tvm.relay.prelude
import Prelude from tvm.runtime.container
import ADT, tuple_object
class LayerNormLSTMCell(jit.ScriptModule): def __init__(self, input_size, hidden_size): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.weight_ih = Parameter(torch.randn(4 * hidden_size, input_size)) self.weight_hh = Parameter(torch.randn(4 * hidden_size, hidden_size)) ln = nn.LayerNorm self.layernorm_i = ln(4 * hidden_size) self.layernorm_h = ln(4 * hidden_size) self.layernorm_c = ln(hidden_size) @jit.script_method def forward(self, input, state): hx, cx = state igates = self.layernorm_i(torch.mm(input, self.weight_ih.t())) hgates = self.layernorm_h(torch.mm(hx, self.weight_hh.t())) gates = igates + hgates ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) ingate = torch.sigmoid(ingate) forgetgate = torch.sigmoid(forgetgate) cellgate = torch.tanh(cellgate) outgate = torch.sigmoid(outgate) cy = self.layernorm_c((forgetgate * cx) + (ingate * cellgate)) hy = outgate * torch.tanh(cy) return hy, (hy, cy)
class LSTMLayer(jit.ScriptModule): def __init__(self, cell, *cell_args): super().__init__() self.cell = cell(*cell_args) @jit.script_method def forward(self, input, state): outputs = [] for i in range(input.size(0)): out, state = self.cell(input[i], state) outputs += [out] return torch.stack(outputs), state
class ReverseLSTMLayer(jit.ScriptModule): def __init__(self, cell, *cell_args): super(ReverseLSTMLayer, self).__init__() self.cell = cell(*cell_args) @jit.script_method def forward(self, inputs, state): outputs = jit.annotate(List[Tensor], []) seq_len = inputs.size(0) for i in range(seq_len): out, state = self.cell(inputs[seq_len - i - 1], state) outputs = [out] + outputs return torch.stack(outputs), state
class BidirLSTMLayer(jit.ScriptModule): __constants__ = ["directions"] def __init__(self, cell, *cell_args): super(BidirLSTMLayer, self).__init__() self.directions = nn.ModuleList( [ LSTMLayer(cell, *cell_args), ReverseLSTMLayer(cell, *cell_args), ] ) @jit.script_method def forward(self, input, states): outputs = jit.annotate(List[Tensor], []) output_states = jit.annotate(List[Tuple[Tensor, Tensor]], []) for (i, direction) in enumerate(self.directions): state = states[i] out, out_state = direction(input, state) outputs += [out] output_states += [out_state] return torch.cat(outputs, 0), output_states def init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args): layers = [layer(*first_layer_args)] + [layer(*other_layer_args) for _ in range(num_layers - 1)] return nn.ModuleList(layers)
class StackedLSTM(jit.ScriptModule): __constants__ = ["layers"] def __init__(self, num_layers, layer, first_layer_args, other_layer_args): super().__init__() self.layers = init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args) @jit.script_method def forward(self, input, states): output_states = jit.annotate(List[Tuple[Tensor, Tensor]], []) output = input for (i, rnn_layer) in enumerate(self.layers): state = states[i] output, out_state = rnn_layer(output, state) output_states += [out_state] return output, output_states
class StackedBidirLSTM(jit.ScriptModule): __constants__ = ["layers"] def __init__(self, num_layers, layer, first_layer_args, other_layer_args): super(StackedBidirLSTM, self).__init__() self.layers = init_stacked_lstm(num_layers, layer, first_layer_args, other_layer_args) @jit.script_method def forward(self, input, states): output_states = jit.annotate(List[List[Tuple[Tensor, Tensor]]], []) output = input for (i, rnn_layer) in enumerate(self.layers): state = states[i] output, out_state = rnn_layer(output, state) output_states += [out_state] return output, output_states def lstm(input_size, hidden_size): return LSTMLayer(LayerNormLSTMCell, input_size, hidden_size) def stacked_lstm(input_size, hidden_size, num_layers): return StackedLSTM( num_layers, LSTMLayer, first_layer_args=[LayerNormLSTMCell, input_size, hidden_size], other_layer_args=[LayerNormLSTMCell, hidden_size, hidden_size], ) def bidir_lstm(input_size, hidden_size): return BidirLSTMLayer(LayerNormLSTMCell, input_size, hidden_size) def stacked_bidir_lstm(input_size, hidden_size, num_layers): return StackedBidirLSTM( num_layers, BidirLSTMLayer, first_layer_args=[LayerNormLSTMCell, input_size, hidden_size], other_layer_args=[LayerNormLSTMCell, hidden_size, hidden_size], ) def vmobj_to_list(o, dtype="float32"): if isinstance(o, tvm.nd.NDArray): return [o] elif isinstance(o, tvm.runtime.container.ADT): result = [] for f in o: result.extend(vmobj_to_list(f, dtype)) return result else: raise RuntimeError("Unknown object type: %s" % type(o)) def assert_equal(tvm_result, torch_result): if isinstance(torch_result, (tuple, list)): assert isinstance(tvm_result, list) for tvm_res, pt_res in zip(tvm_result, torch_result): assert_equal(tvm_res, pt_
res) elif isinstance(torch_result, torch.Tensor): tvm.testing.assert_allclose(tvm_result.numpy(), torch_result.numpy(), rtol=1e-4, atol=1e-4) def run_and_compare(mod, params, pt_result, target, device): exec_res = relay.create_executor("vm", mod=mod, device=device, target=target).evaluate()( **params ) def flatten(nested): res = [] for r in nested: if isinstance(r, torch.Tensor): res.append(r) else: res.extend(flatten(r)) return res if isinstance(exec_res, tvm.runtime.container.ADT): assert not isinstance(pt_result, torch.Tensor) tvm_res = vmobj_to_list(exec_res) torch_res = flatten(pt_result) else: tvm_res = exec_res torch_res = pt_result assert_equal(tvm_res, torch_res) def convert_list_to_vmobj(py_lst): def wrap_nd_array(arr): return tvm.nd.array(arr, device=tvm.cpu(0)) mod = tvm.IRModule() prelude = Prelude(mod) list, cons, nil = mod.get_type("List") adt_lst = ADT(nil.tag, []) for elem in reversed(py_lst): if isinstance(elem, np.ndarray): vmobj = wrap_nd_array(elem) elif isinstance(elem, tuple): vmobj = tuple_object([wrap_nd_array(e) for e in elem]) elif isinstance(elem, list): vmobj = convert_list_to_vmobj(elem) adt_lst = ADT(cons.tag, [vmobj, adt_lst]) return adt_lst @tvm.testing.uses_gpu def test_custom_lstm(): input_name = "input" states_name = "states" seq_len = 5 batch = 2 input_size = 3 hidden_size = 4 num_layers = 3 state_tensor_shape = (batch, hidden_size) torch.manual_seed(1) inp = torch.randn(seq_len, batch, input_size) input_shapes = [ (input_name, (seq_len, batch, input_size)), (states_name, (state_tensor_shape, state_tensor_shape)), ] input_shapes_stacked = [ (input_name, (seq_len, batch, input_size)), ( states_name,
[(state_tensor_shape, state_tensor_shape), (state_tensor_shape, state_tensor_shape)], ), ] input_shapes_stacked_bidir = [ (input_name, (seq_len, batch, input_size)), ( states_name, [ [(state_tensor_shape, state_tensor_shape) for _ in range(2)] for _ in range(num_layers) ], ), ] states = [ (torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(num_layers) ] bidir_states = [ (torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(2) ] stacked_bidir_states = [ [(torch.randn(state_tensor_shape), torch.randn(state_tensor_shape)) for _ in range(2)] for _ in range(num_layers) ] models = [ ("lstm", lstm(input_size, hidden_size).eval(), states[0], input_shapes), ( "stacked", stacked_lstm(input_size, hidden_size, num_layers).eval(), states, input_shapes_stacked, ), ("bidir", bidir_lstm(input_size, hidden_size).eval(), bidir_states, input_shapes_stacked), ] for (name, raw_model, states, input_shapes) in models: script_module = torch.jit.script(raw_model) mod, params = from_pytorch(script_module, input_shapes) with torch.no_grad(): pt_result = raw_model(inp.clone(), states) params[input_name] = inp.numpy() if isinstance(states, tuple): states_np = tuple(st.numpy() for st in states) elif isinstance(states, list) and isinstance(states[0], torch.Tensor): states_np = [st.numpy() for st in states] elif isinstance(states, list) and isinstance(states[0], tuple): states_np = [tuple(st.numpy() for st in states[i]) for i in range(len(states))] elif isinstance(states, list) and isinstance(states[0], list): states_np = [
[tuple(st.numpy() for st in states) for states in states[layer]] for layer in range(num_layers) ] else: assert False if isinstance(states_np, list): params[states_name] = convert_list_to_vmobj(states_np) else: params[states_name] = states_np for tgt, dev in tvm.testing.enabled_targets(): print("Running %s on target %s" % (name, tgt)) run_and_compare(mod, params, pt_result, target=tgt, device=dev)
"""Test torch vision fasterrcnn and maskrcnn models"""
import numpy as np
import cv2
import torch
import torchvision
import tvm
import tvm.testing from tvm
import relay from tvm.runtime.vm
import VirtualMachine from tvm.relay.frontend.pytorch_utils