text
stringlengths
1
2.05k
import relay, te from tvm.contrib
import graph_executor from tvm.relay
import transform from tvm.relay.testing
import run_infer_type from tvm.relay.testing.temp_op_attr
import TempOpAttr def get_ref_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups, channels=None, ): casted_data = relay.op.cast(data, "int32") casted_kernel = relay.op.cast(kernel, "int32") shifted_data = relay.op.subtract(casted_data, relay.const(input_zero_point, "int32")) shifted_kernel = relay.op.subtract(casted_kernel, relay.const(kernel_zero_point, "int32")) func = relay.op.nn.conv2d_transpose( shifted_data, shifted_kernel, padding=padding, strides=strides, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, out_dtype=out_dtype, data_layout=data_layout, kernel_layout=kernel_layout, ) func = relay.Function(relay.analysis.free_vars(func), func) return func def get_qnn_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, channels, groups, ): func = relay.qnn.op.conv2d_transpose( data, kernel, input_zero_point=relay.const(input_zero_point, "int32"), kernel_zero_point=relay.const(kernel_zero_point, "int32"), input_scale=relay.const(input_scale, "float32"), kernel_scale=relay.const(kernel_scale, "float32"), kernel_size=kernel_size, strides=strides, dilation=dilation, padding=padding, out_dtype=out_dtype, groups=groups, channels=channels, data_layout=data_layout, kernel_layout=kernel_layout, ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) return mod def get_funcs( data_shape, data_dtype, kernel_shape, kernel_dtype,
input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups=1, channels=None, ): data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=kernel_dtype) ref_func = get_ref_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups, channels, ) ref_func = run_infer_type(ref_func) ref_func = tvm.IRModule.from_expr(ref_func) qnn_func = get_qnn_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, channels, groups, ) return (ref_func, qnn_func) def verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype): def get_inputs(data_shape, data_dtype, kernel_shape, kernel_dtype): low = -128 high = 127 if data_dtype == "uint8": low = 0 high = 255 golden_data = np.random.randint(low=low, high=high, size=data_shape).astype(data_dtype) low = -128 high = 127 if kernel_dtype == "uint8": low = 0 high = 255 golden_weight = np.random.randint(low=low, high=high, size=kernel_shape).astype( kernel_dtype ) return (golden_data, golden_weight) def get_output(func, golden_inputs): with tvm.transform.PassContext(opt_level=2): golden_data, golden_weight = golden_inputs params = {"kernel": golden_weight} libs = relay.build(func,
"llvm", params=params) mod = graph_executor.create(libs.graph_json, libs.lib, device=tvm.cpu(0)) mod.set_input("data", golden_data) mod.set_input(**libs.params) mod.run() res = mod.get_output(0).numpy() return res golden_inputs = get_inputs(data_shape, data_dtype, kernel_shape, kernel_dtype) golden_output = get_output(ref_func, golden_inputs) qnn_output = get_output(qnn_func, golden_inputs) np.testing.assert_equal(qnn_output, golden_output) def test_no_zero_point(): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (1, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 1, 2, 4) data_dtype = "int8" kernel_shape = (1, 3, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_kernel_zero_point(): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uin
t8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=1, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 1, 2, 4) data_dtype = "int8" kernel_shape = (1, 3, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=5, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_input_zero_point(): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "int8" r
ef_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_both_zero_point(): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_different_dtype(): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_
dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", channels=kernel_shape[1], ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", channels=kernel_shape[1], ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_layout(): data_shape = (2, 2, 4, 4) data_dtype = "uint8" kernel_shape = (2, 2, 3, 4) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 2, 4, 3) data_dtype =
"uint8" kernel_shape = (2, 2, 1, 3) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_padding(): data_shape = (1, 4, 2, 2) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=5, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 2, 4, 4) data_dtype = "uint8" kernel_shape = (2, 2, 3, 4) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 8, 6, 4) data_dtype = "uint
8" kernel_shape = (2, 2, 3, 4) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1, 2, 2), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_const_folding(): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (4, 3, 2, 2) kernel_dtype = "uint8" golden_weight = np.random.randint(low=0, high=255, size=kernel_shape).astype(kernel_dtype) data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.const(golden_weight) qnn_func = get_qnn_func( data, kernel, input_zero_point=8, kernel_zero_point=3, kernel_size=(2, 2), input_scale=1.0, kernel_scale=1.0, padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", channels=kernel_shape[1], groups=1, ) folded_mod = transform.FoldConstant()(qnn_func) folded_func = folded_mod["main"] assert "reshape" not in folded_func.astext() def test_broadcast_layout(): data_shape = (1, 229, 229, 3) data_dtype = "uint8" kernel_shape = (7, 7, 64, 3) kernel_dtype = "int8" _, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(7, 7), padding=(1, 1), strides=(1, 1), dilation=(1, 1),
data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) func = qnn_func["main"].body bias = relay.var("bias", shape=(64,), dtype="int32") bias2 = relay.var("bias2", shape=(1, 233, 233, 64), dtype="int32") func = relay.add(func, bias2) func = relay.add(bias2, func) func = relay.add(bias, func) func = relay.add(func, bias) func = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(func) with tvm.transform.PassContext(opt_level=3): libs = relay.build(mod, "llvm -mcpu=skylake-avx512") def test_non_scalar_input_scale_zp(): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (1, 3, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=[0], kernel_zero_point=0, input_scale=[1.0], kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_per_channel_kernel_scale(): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (1, 3, 2, 2) kernel_dtype = "uint8" data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=kernel_dtype) kernel_scales = [2, 2, 2] kernel_scales = relay.const(np.array(kernel_scales).astype("float32")) func = relay.qnn.op.conv2d_transpose( data, kernel, input_zero_point=relay.const(0, "int32"), kernel_zero_point=relay.const(0, "int32"), input_scale=relay.const(2.0, "float32"), kernel_scale=kernel_scales, kernel_size=(2, 2), channels=kernel_shape[0], padding=(0, 0),
strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="IOHW", out_dtype="int32", ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) if __name__ == "__main__": test_no_zero_point() test_input_zero_point() test_kernel_zero_point() test_both_zero_point() test_different_dtype() test_layout() test_padding() test_const_folding() test_broadcast_layout() test_per_channel_kernel_scale()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_infer_type from tvm.contrib
import graph_executor from tvm.relay.testing.temp_op_attr
import TempOpAttr def legalize_qnn_conv2d(attrs, inputs, types): return None def get_ref_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups, channels=None, ): if isinstance(input_zero_point, (int, float)): input_zero_point = relay.const(input_zero_point, "int32") if isinstance(kernel_zero_point, (int, float)): kernel_zero_point = relay.const(kernel_zero_point, "int32") else: if kernel_layout == "OIHW": kernel_zero_point = relay.reshape(kernel_zero_point, [-1, 1, 1, 1]) elif kernel_layout == "HWOI": kernel_zero_point = relay.reshape(kernel_zero_point, [1, 1, -1, 1]) casted_data = relay.op.cast(data, "int32") casted_kernel = relay.op.cast(kernel, "int32") shifted_data = relay.op.subtract(casted_data, input_zero_point) shifted_kernel = relay.op.subtract(casted_kernel, kernel_zero_point) func = relay.op.nn.conv2d( shifted_data, shifted_kernel, padding=padding, strides=strides, dilation=dilation, groups=groups, channels=channels, kernel_size=kernel_size, out_dtype=out_dtype, data_layout=data_layout, kernel_layout=kernel_layout, ) func = relay.Function(relay.analysis.free_vars(func), func) return func def get_qnn_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, channels, groups, ): if isinstance(input_zero_point, (int, float)): input_zero_point = relay.const(input_zero_point, "int32") if isinstance(kernel_zero_point, (int, float)): kernel_zero_point = relay.const(kernel_zero_point, "int32") func = relay.qnn.op.conv2d( data,
kernel, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=relay.const(input_scale, "float32"), kernel_scale=relay.const(kernel_scale, "float32"), kernel_size=kernel_size, strides=strides, dilation=dilation, padding=padding, out_dtype=out_dtype, groups=groups, channels=channels, data_layout=data_layout, kernel_layout=kernel_layout, ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) return mod def get_funcs( data_shape, data_dtype, kernel_shape, kernel_dtype, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups=1, channels=None, ): data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=kernel_dtype) ref_func = get_ref_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, groups, channels, ) ref_func = run_infer_type(ref_func) ref_func = tvm.IRModule.from_expr(ref_func) qnn_func = get_qnn_func( data, kernel, input_zero_point, kernel_zero_point, input_scale, kernel_scale, kernel_size, padding, strides, dilation, data_layout, kernel_layout, out_dtype, channels, groups, ) return (ref_func, qnn_func) def verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype): def get_inputs(data_shape, data_dtype, kernel_shape, kernel_dtype): low = -128 high = 127
if data_dtype == "uint8": low = 0 high = 255 golden_data = np.random.randint(low=low, high=high, size=data_shape).astype(data_dtype) low = -128 high = 127 if kernel_dtype == "uint8": low = 0 high = 255 golden_weight = np.random.randint(low=low, high=high, size=kernel_shape).astype( kernel_dtype ) return (golden_data, golden_weight) def get_output(func, golden_inputs): with tvm.transform.PassContext(opt_level=2): golden_data, golden_weight = golden_inputs params = {"kernel": golden_weight} graph, lib, params = relay.build(func, "llvm", params=params) mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) mod.set_input("data", golden_data) mod.set_input(**params) mod.run() res = mod.get_output(0).numpy() return res golden_inputs = get_inputs(data_shape, data_dtype, kernel_shape, kernel_dtype) golden_output = get_output(ref_func, golden_inputs) qnn_output = get_output(qnn_func, golden_inputs) np.testing.assert_equal(qnn_output, golden_output) def test_no_zero_point(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (3, 1, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_
dtype, kernel_shape, kernel_dtype) data_shape = (2, 1, 2, 4) data_dtype = "int8" kernel_shape = (3, 1, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_kernel_zero_point(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=1, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 1, 2, 4) data_dtype = "int8" kernel_shape = (3, 1, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_
point=5, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_input_zero_point(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_both_zero_point(): with
TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_dynamic_zero_point(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" input_zero_point = relay.op.multiply( relay.const(2, dtype="int32"), relay.const(2, dtype="int32") ) kernel_zero_point = relay.const(np.random.randint(10, size=[3]), "int32")
ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 2, 4) data_dtype = "int8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "int8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_layout(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 2, 4, 4) data_dtype = "uint8" kernel_shape = (2, 2, 4, 3) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), paddi
ng=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 2, 4, 3) data_dtype = "uint8" kernel_shape = (2, 2, 3, 1) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(1, 1), groups=3, data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_padding(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (1, 4, 2, 2) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=5, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 2, 4, 4) data_dtype = "uint8" kernel_shape = (2, 2, 4, 3) kernel_dtype = "
uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 2, 4, 4) data_dtype = "uint8" kernel_shape = (2, 2, 4, 3) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(1, 1, 2, 2), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_dilation(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 4, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1),
dilation=(2, 2), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 4, 4, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=0, kernel_zero_point=0, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 1), dilation=(2, 2), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_const_folding(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 2, 2) kernel_dtype = "uint8" golden_weight = np.random.randint(low=0, high=255, size=kernel_shape).astype(kernel_dtype) data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.const(golden_weight) qnn_func = get_qnn_func( data, kernel, input_zero_point=8, kernel_zero_point=3, kernel_size=(2, 2), input_scale=1.0, kernel_scale=1.0, padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", channels=kernel_shape[0], groups=1, ) folded_mod = transform.FoldConstant()(qnn_func) folded_func = folded_mod["main"] assert "reshape" not in folded_func.as
text() def test_kernel_size_1x1(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 1, 1) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(1, 1), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) assert "avg_pool2d" not in qnn_func.astext() verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_kernel_size_1x1_strides_2(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 2, 4) data_dtype = "uint8" kernel_shape = (3, 4, 1, 1) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=5, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(1, 1), padding=(0, 0), strides=(2, 2), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) assert "avg_pool2d" not in qnn_func.astext() verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_tflite_large_irregular(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (1, 1024, 1, 1) data_dtype = "uint8"
kernel_shape = (1001, 1024, 1, 1) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=127, kernel_zero_point=127, input_scale=1.0, kernel_scale=1.0, kernel_size=(1, 1), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) golden_data = np.full(data_shape, 127).astype("uint8") golden_weight = np.full(kernel_shape, 127).astype("uint8") with tvm.transform.PassContext(opt_level=2): params = {"kernel": golden_weight} graph, lib, params = relay.build(qnn_func, "llvm", params=params) mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) mod.set_input("data", golden_data) mod.set_input(**params) mod.run() qnn_output = mod.get_output(0).numpy() golden_output = np.full((1, 1001, 1, 1), 0).astype("uint8") np.testing.assert_equal(qnn_output, golden_output) def test_tflite_output_multiplier_greater_than_one(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (3, 1, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_scale=1.0, kernel_scale=1.0, input_zero_point=128, kernel_zero_point=128, kernel_size=(2, 2), padding=(0, 0), strides=(2, 2), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW",
out_dtype="int32", ) golden_data = 128 + np.array((1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 3, 4, 1, 2, 3, 4)).reshape( data_shape ).astype("uint8") golden_weight = 128 + np.array((1, 2, 3, 4, -1, 1, -1, 1, -1, -1, 1, 1)).reshape( kernel_shape ) golden_weight = golden_weight.astype("uint8") with tvm.transform.PassContext(opt_level=2): params = {"kernel": golden_weight} graph, lib, params = relay.build(qnn_func, "llvm", params=params) mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) mod.set_input("data", golden_data) mod.set_input(**params) mod.run() qnn_output = mod.get_output(0).numpy() golden_output = np.array((17, 17, 0, 0, 2, 2, 16, 36, 2, 2, 0, 0)).reshape(2, 3, 1, 2) np.testing.assert_equal(qnn_output, golden_output) def test_tflite_anistropic_strides(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (1, 1, 3, 6) data_dtype = "uint8" kernel_shape = (1, 1, 2, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=127, kernel_zero_point=127, input_scale=1.0, kernel_scale=1.0, kernel_size=(2, 2), padding=(0, 0), strides=(1, 3), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) golden_data = np.array( ( 133, 131, 129, 125, 123, 121, 135, 133, 131, 123, 121, 119, 137,
135, 133, 121, 119, 117, ) ).reshape(data_shape) golden_data = golden_data.astype("uint8") golden_weight = np.array((129, 131, 133, 135)).reshape(kernel_shape) golden_weight = golden_weight.astype("uint8") with tvm.transform.PassContext(opt_level=2): params = {"kernel": golden_weight} graph, lib, params = relay.build(qnn_func, "llvm", params=params) mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) mod.set_input("data", golden_data) mod.set_input(**params) mod.run() qnn_output = mod.get_output(0).numpy() golden_output = np.array((124, -92, 164, -132)).reshape(1, 1, 2, 2) np.testing.assert_equal(qnn_output, golden_output) def test_broadcast_layout(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (1, 229, 229, 3) data_dtype = "uint8" kernel_shape = (7, 7, 3, 64) kernel_dtype = "int8" _, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=8, kernel_zero_point=3, input_scale=1.0, kernel_scale=1.0, kernel_size=(7, 7), padding=(1, 1), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) func = qnn_func["main"].body bias = relay.var("bias", shape=(64,), dtype="int32") bias2 = relay.var("bias2", shape=(1, 225, 225, 1), dtype="int32") func = relay.add(func, bias2) func = relay.add(bias2, func) func = relay.add(bias, func) func = relay.add(func, bias) func = relay.Function(relay.analysis.free_vars(func), func)
mod = tvm.IRModule.from_expr(func) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm -mcpu=skylake-avx512") def test_depthwise_depth_multiplier(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 4, 16, 16) data_dtype = "uint8" kernel_shape = (4, 1, 3, 3) kernel_dtype = "uint8" input_zero_point = relay.op.multiply( relay.const(2, dtype="int32"), relay.const(2, dtype="int32") ) kernel_zero_point = relay.const(np.random.randint(10, size=[4]), "int32") ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(3, 3), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", groups=4, channels=4, ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (10, 4, 16, 16) data_dtype = "uint8" kernel_shape = (4, 2, 3, 3) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(3, 3), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32",
groups=4, channels=8, ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 16, 16, 4) data_dtype = "uint8" kernel_shape = (3, 3, 4, 1) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(3, 3), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", groups=4, ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) data_shape = (2, 16, 16, 4) data_dtype = "uint8" kernel_shape = (3, 3, 4, 2) kernel_dtype = "uint8" ref_func, qnn_func = get_funcs( data_shape=data_shape, data_dtype=data_dtype, kernel_shape=kernel_shape, kernel_dtype=kernel_dtype, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=1.0, kernel_scale=1.0, kernel_size=(3, 3), padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NHWC", kernel_layout="HWOI", out_dtype="int32", groups=4, channels=8, ) verify(ref_func, qnn_func, data_shape, data_dtype, kernel_shape, kernel_dtype) def test_per_channel_kernel_scale(): with TempOpAttr("qnn.conv2d", "FTVMQnnLegalize", legalize_qnn_conv2d): data_shape = (2, 1, 2, 4) data_dtype = "uint8" kernel_shape = (3, 1, 2, 2) kernel_dtype =
"uint8" data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=kernel_dtype) kernel_scales = [2, 2, 2] kernel_scales = relay.const(np.array(kernel_scales).astype("float32")) func = relay.qnn.op.conv2d( data, kernel, input_zero_point=relay.const(0, "int32"), kernel_zero_point=relay.const(0, "int32"), input_scale=relay.const(2.0, "float32"), kernel_scale=kernel_scales, kernel_size=(2, 2), channels=kernel_shape[0], padding=(0, 0), strides=(1, 1), dilation=(1, 1), data_layout="NCHW", kernel_layout="OIHW", out_dtype="int32", ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) if __name__ == "__main__": test_no_zero_point() test_input_zero_point() test_kernel_zero_point() test_both_zero_point() test_layout() test_padding() test_dilation() test_const_folding() test_kernel_size_1x1() test_kernel_size_1x1_strides_2() test_tflite_large_irregular() test_broadcast_layout() test_tflite_output_multiplier_greater_than_one() test_tflite_anistropic_strides() test_depthwise_depth_multiplier() test_per_channel_kernel_scale()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor from tvm.relay.testing.temp_op_attr
import TempOpAttr def legalize_qnn_dense(attrs, inputs, types): return None def make_requantize_params(input_scale, output_scale, output_zero_point, out_dtype): config = { "input_scale": input_scale, "output_scale": output_scale, "output_zero_point": output_zero_point, "out_dtype": out_dtype, } return config def make_configuration( quantized_data, quantized_kernel, dtype, input_shape, kernel_shape, input_zero_point, kernel_zero_point, input_scale, kernel_scale, units, output, out_dtype="int32", bias=None, requantize=None, ): if requantize is not None: assert bias is not None config = { "quantized_data": quantized_data, "quantized_kernel": quantized_kernel, "dtype": dtype, "input_shape": input_shape, "kernel_shape": kernel_shape, "input_zero_point": input_zero_point, "kernel_zero_point": kernel_zero_point, "input_scale": input_scale, "kernel_scale": kernel_scale, "units": units, "output": output, "out_dtype": out_dtype, "bias": bias, "requantize": requantize, } return config def make_int_configuration(use_bias=False, requantize_output=False, per_channel=False): input_shape, kernel_shape, output_shape = (2, 10), (3, 10), (2, 3) input_zero_point, kernel_zero_point = -1, -1 in_dtype = "int8" out_dtype = "int32" if not requantize_output else "int8" units = 3 quantized_data_np = ( np.array([1, 3, 5, 7, 9, 11, 13, 15, -19, -21, 1, 3, 5, 7, 9, 11, 13, -17, 17, -21]) .astype(in_dtype) .reshape(input_shape) ) quantized_kernel_np = ( np.array( [ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 3, 5,
7, 9, 11, 13, 15, 17, 19, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ] ) .astype(in_dtype) .reshape(kernel_shape) ) input_scale = 0.5 kernel_scale = 0.5 output_scale = 1.0 bias = np.array([4, 8, 12]).astype(out_dtype).reshape((units,)) if use_bias else None if per_channel: assert use_bias and requantize_output kernel_scale = np.array([0.5, 0.3, 0.4], dtype=np.float32) output = np.array([23, 14, 20, 57, 34, 47]) elif requantize_output: assert use_bias output = np.array([23, 24, 25, 57, 58, 59]) elif use_bias: output = np.array([96, 100, 104, 232, 236, 240]) else: output = np.array([92, 92, 92, 228, 228, 228]) requant_params = ( make_requantize_params(input_scale * kernel_scale, output_scale, -1, "int8") if requantize_output else None ) output = output.astype(out_dtype).reshape(output_shape) return make_configuration( quantized_data=quantized_data_np, quantized_kernel=quantized_kernel_np, dtype=in_dtype, input_shape=input_shape, kernel_shape=kernel_shape, input_zero_point=input_zero_point, kernel_zero_point=kernel_zero_point, input_scale=input_scale, kernel_scale=kernel_scale, units=units, output=output, bias=bias, requantize=requant_params, ) def qnn_dense_driver(test_configuration): in_dtype = test_configuration["dtype"] out_dtype = test_configuration["out_dtype"] quantized_data_name = "quantized_data" quantized_kernel_name = "quantized_kernel" expected_out_dtype = test_configuration["out_dtype"] bias_name = "bias" quantized_data = relay.var( quantized
_data_name, shape=test_configuration["input_shape"], dtype=in_dtype ) quantized_kernel = relay.var( quantized_kernel_name, shape=test_configuration["kernel_shape"], dtype=in_dtype ) mod = relay.qnn.op.dense( quantized_data, quantized_kernel, relay.const(test_configuration["input_zero_point"], "int32"), relay.const(test_configuration["kernel_zero_point"], "int32"), relay.const(test_configuration["input_scale"], "float32"), relay.const(test_configuration["kernel_scale"], "float32"), test_configuration["units"], ) if test_configuration[bias_name] is not None: bias = relay.var(bias_name, shape=test_configuration["bias"].shape, dtype=out_dtype) mod = relay.nn.bias_add(mod, bias) if test_configuration["requantize"] is not None: requantize_config = test_configuration["requantize"] mod = relay.qnn.op.requantize( mod, input_scale=relay.const(requantize_config["input_scale"], "float32"), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(requantize_config["output_scale"], "float32"), output_zero_point=relay.const(requantize_config["output_zero_point"], "int32"), out_dtype=requantize_config["out_dtype"], ) expected_out_dtype = requantize_config["out_dtype"] mod = relay.Function(relay.analysis.free_vars(mod), mod) mod = tvm.IRModule.from_expr(mod) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) with tvm.transform.PassContext(opt_level=2): graph, lib, params = relay.build(mod, "llvm", params=None) mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) mod.set_input(quantized_data_name, test_configuration[quantized_data_name]) mod.set_input(quantized_kernel_name, test_configuration[quantized_kernel_name]) if test_configuration[bias_name] is not None: mod.set_input(bias_name, test_configur
ation[bias_name]) mod.set_input(**params) mod.run() res = mod.get_output(0).numpy() np.testing.assert_equal(res, test_configuration["output"]) assert res.dtype == expected_out_dtype def test_qnn_dense_without_bias(): with TempOpAttr("qnn.dense", "FTVMQnnLegalize", legalize_qnn_dense): int32_output_without_bias_params = make_int_configuration(use_bias=False) qnn_dense_driver(int32_output_without_bias_params) def test_qnn_dense_with_bias(): with TempOpAttr("qnn.dense", "FTVMQnnLegalize", legalize_qnn_dense): int32_output_with_bias_params = make_int_configuration(use_bias=True) qnn_dense_driver(int32_output_with_bias_params) def test_qnn_dense_with_requantized_output(): with TempOpAttr("qnn.dense", "FTVMQnnLegalize", legalize_qnn_dense): int8_requantized_output_with_bias_params = make_int_configuration( use_bias=True, requantize_output=True ) qnn_dense_driver(int8_requantized_output_with_bias_params) def test_per_channel_weight_scale(): with TempOpAttr("qnn.dense", "FTVMQnnLegalize", legalize_qnn_dense): config = make_int_configuration(use_bias=True, requantize_output=True, per_channel=True) qnn_dense_driver(config) if __name__ == "__main__": test_qnn_dense_without_bias() test_qnn_dense_with_bias() test_qnn_dense_with_requantized_output() test_per_channel_weight_scale()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor from tvm.relay.testing
import run_infer_type def dequantize_test_driver(in_dtype, quant_args, in_data, verify_output_data, axis): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype=in_dtype) input_zero_point = relay.const(quant_args["in_zero_point"], "int32") input_scale = relay.const(quant_args["in_scale"], "float32") quantized_output = relay.qnn.op.dequantize( input_data, input_scale=input_scale, input_zero_point=input_zero_point, axis=axis ) mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() np.testing.assert_equal(res, verify_output_data) assert res.dtype == np.float32 def test_uint8_to_float32(): data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]).astype("uint8").reshape((2, 5)) output = ( np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) .astype("float32") .reshape((2, 5)) ) quant_args = {"in_zero_point": 127, "in_scale": 0.5} dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_int8_to_float32(): data = ( np.array([-128, -127, -126, -125, -124, 123, 124, 125, 126, 127]) .astype("int8") .reshape((2, 5)) ) output = ( np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) .astype("float32") .reshape((2, 5)) ) quant_args = {"in_zero_point": -1, "in_scale": 0.5} dequantize_test_driver( in_dtype="int8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_scalar_int8_to_float32(): da
ta = np.array(-128).astype("int8") output = np.array(-63.5).astype("float32") quant_args = {"in_zero_point": -1, "in_scale": 0.5} dequantize_test_driver( in_dtype="int8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_int32_to_float32(): data = np.array([113, 29, -1052]).astype("int32") output = np.array([0.6550452, 0.16810896, -6.098297]).astype("float32") quant_args = {"in_zero_point": 0, "in_scale": 0.0057968604} dequantize_test_driver( in_dtype="int32", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_channelwise_axis_1(): data = np.transpose( np.array([0, 1, 2, 3, 4, 243, 247, 249, 250, 251]).astype("uint8").reshape((2, 5)) ) output = np.transpose( np.array([-63.5, -63, -62.5, -62, -61.5, 30, 31, 31.5, 31.75, 32]) .astype("float32") .reshape((2, 5)) ) quant_args = { "in_zero_point": np.array([127, 123]).astype("int32"), "in_scale": np.array([0.5, 0.25]).astype("float32"), } dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_channelwise_axis_0(): data = np.array([0, 1, 2, 3, 4, 243, 247, 249, 250, 251]).astype("uint8").reshape((2, 5)) output = ( np.array([-63.5, -63, -62.5, -62, -61.5, 30, 31, 31.5, 31.75, 32]) .astype("float32") .reshape((2, 5)) ) quant_args = { "in_zero_point": np.array([127, 123]).astype("int32"), "in_scale": np.array([0.5, 0.25]).astype("float32"), } dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=0 ) def test_per_tensor_vector_args(): data = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]).astype("uint8") output = np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]).astype("float32") quant_args = { "in_zero_point": np.array([12
7]).astype("int32"), "in_scale": np.array([0.5]).astype("float32"), } dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, in_data=data, verify_output_data=output, axis=-1 ) def test_dynamic_dequantize(): x = relay.var("x", shape=(1, 2, 3, 4), dtype="int8") scale_var = relay.var("scale", shape=(), dtype="float32") zp_var = relay.var("zp", shape=(), dtype="int32") deq_x = relay.qnn.op.dequantize(x, scale_var * scale_var, zp_var + zp_var) tt = run_infer_type(deq_x) assert tt.checked_type == relay.TensorType((1, 2, 3, 4), "float32") func = relay.Function([x, scale_var, zp_var], deq_x) data = np.random.uniform(size=(1, 2, 3, 4)).astype("int8") scale = np.array(1).astype("float32") zp = np.array(0).astype("int32") mod = tvm.ir.IRModule.from_expr(func) for target, dev in tvm.testing.enabled_targets(): with relay.build_config(opt_level=3, disabled_pass=["AlterOpLayout"]): lib = relay.build(mod, target=target) module = graph_executor.GraphModule(lib["default"](dev)) module.set_input(**{"x": data, "scale": scale, "zp": zp}) module.run() if __name__ == "__main__": test_uint8_to_float32() test_int8_to_float32() test_scalar_int8_to_float32() test_int32_to_float32() test_channelwise_axis_1() test_channelwise_axis_0() test_dynamic_dequantize()
import tvm
import numpy as np from tvm
import relay def dequantize(data, scale, zp): return scale * (np.asarray(data) - zp) def generate_golden_output(x_data, dequantized_x, alpha, o_scale, o_zero_point, i_zero_point): prod = np.multiply(dequantized_x, alpha) prod = np.around(prod / o_scale + o_zero_point) q_min = np.iinfo(np.uint8).min q_max = np.iinfo(np.uint8).max prod = np.clip(prod, q_min, q_max) requantized = np.clip(np.round(dequantized_x / o_scale + o_zero_point), q_min, q_max) output = np.where(x_data < i_zero_point, prod, requantized) return output def test_qnn_leaky_relu(): data_dtype = "uint8" input_scale = 0.125 input_zero_point = 60 output_scale = 0.6 output_zero_point = 17 alpha = 0.9 x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.qnn.op.leaky_relu( x=x, alpha=alpha, input_scale=relay.const(input_scale, "float32"), input_zero_point=relay.const(input_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 133, 0, 9)).reshape((1, 4)) x_dequantized = dequantize(x_data, input_scale, input_zero_point) golden_output = generate_golden_output( x_data, x_dequantized, alpha, output_scale, output_zero_point, input_zero_point ) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)(x_data) np.testing.assert_equal(op_res.numpy(), golden_output) if __name__ == "__main__": test_qnn_leaky_relu()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor
import tvm.topi.testing def recover(data, scale, zp): return scale * (np.asarray(data) - zp) def generate_golden_output(x_recovered, y_recovered, scale, zp): mul = x_recovered * y_recovered output = np.around(mul / scale + zp) q_min = np.iinfo(np.uint8).min q_max = np.iinfo(np.uint8).max return np.clip(output, q_min, q_max) def test_tflite_same_io_qnn_params(): data_dtype = "uint8" lhs_scale = rhs_scale = output_scale = 0.00784314 lhs_zero_point = rhs_zero_point = output_zero_point = 127 x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.mul( lhs=x, rhs=y, lhs_scale=relay.const(lhs_scale, "float32"), lhs_zero_point=relay.const(lhs_zero_point, "int32"), rhs_scale=relay.const(rhs_scale, "float32"), rhs_zero_point=relay.const(rhs_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_datas = [ np.array((1, 153, 2, 178)).reshape((1, 4)), np.array((25, 1, 178, 216)).reshape((1, 4)), np.array((25, 153, 1, 165)).reshape((1, 4)), ] y_datas = [ np.array((204, 178, 1, 8)).reshape((1, 4)), np.array((204, 178, 191, 1)).reshape((1, 4)), np.array((204, 178, 1, 191)).reshape((1, 4)), ] for i in range(0, 3): x_data = x_datas[i] y_data = y_datas[i] x_rec = recover(x_data, lhs_scale, lhs_zero_point) y_rec = recover(y_data, rhs_scale, rhs_zero_point) golden = generate_golden_output(x_rec, y_rec, output_scale, output_zero_point) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data )
np.testing.assert_equal(op_res.numpy(), np.uint8(golden)) def test_tflite_different_io_qnn_params(): data_dtype = "uint8" lhs_scale = 0.0156863 lhs_zero_point = 127 rhs_scale = 0.0117647 rhs_zero_point = 85 output_scale = 0.0235294 output_zero_point = 128 x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.mul( lhs=x, rhs=y, lhs_scale=relay.const(lhs_scale, "float32"), lhs_zero_point=relay.const(lhs_zero_point, "int32"), rhs_scale=relay.const(rhs_scale, "float32"), rhs_zero_point=relay.const(rhs_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_datas = [ np.array((76, 140, 153, 172)).reshape((1, 4)), np.array((133, 140, 146, 153)).reshape((1, 4)), np.array((76, 140, 172, 146)).reshape((1, 4)), ] y_datas = [ np.array((136, 119, 128, 17)).reshape((1, 4)), np.array((136, 119, 111, 94)).reshape((1, 4)), np.array((136, 119, 17, 128)).reshape((1, 4)), ] for i in range(0, 3): x_data = x_datas[i] y_data = y_datas[i] x_rec = recover(x_data, lhs_scale, lhs_zero_point) y_rec = recover(y_data, rhs_scale, rhs_zero_point) golden = generate_golden_output(x_rec, y_rec, output_scale, output_zero_point) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), np.uint8(golden)) def test_saturation(): data_dtype = "uint8" lhs_scale = rhs_scale = output_scale = 0.125 lhs_zero_point = rhs_zero_point = output_zero_point =
0 x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) z = relay.qnn.op.mul( lhs=x, rhs=y, lhs_scale=relay.const(lhs_scale, "float32"), lhs_zero_point=relay.const(lhs_zero_point, "int32"), rhs_scale=relay.const(rhs_scale, "float32"), rhs_zero_point=relay.const(rhs_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 1, 1, 0)).reshape((1, 4)) y_data = np.array((255, 255, 128, 0)).reshape((1, 4)) x_rec = recover(x_data, lhs_scale, lhs_zero_point) y_rec = recover(y_data, rhs_scale, rhs_zero_point) golden = generate_golden_output(x_rec, y_rec, output_scale, output_zero_point) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), np.uint8(golden)) lhs_scale = rhs_scale = 0.125 output_scale = 0.25 z = relay.qnn.op.mul( lhs=x, rhs=y, lhs_scale=relay.const(lhs_scale, "float32"), lhs_zero_point=relay.const(lhs_zero_point, "int32"), rhs_scale=relay.const(rhs_scale, "float32"), rhs_zero_point=relay.const(rhs_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 1, 1, 0)).reshape((1, 4)) y_data = np.array((255, 255, 127, 0)).reshape((1, 4)) x_rec = recover(x_data, lhs_scale
, lhs_zero_point) y_rec = recover(y_data, rhs_scale, rhs_zero_point) golden = generate_golden_output(x_rec, y_rec, output_scale, output_zero_point) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), np.uint8(golden)) lhs_scale = 0.5 rhs_scale = 0.25 output_scale = 0.125 z = relay.qnn.op.mul( lhs=x, rhs=y, lhs_scale=relay.const(lhs_scale, "float32"), lhs_zero_point=relay.const(lhs_zero_point, "int32"), rhs_scale=relay.const(rhs_scale, "float32"), rhs_zero_point=relay.const(rhs_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] x_data = np.array((255, 0, 1, 0)).reshape((1, 4)) y_data = np.array((0, 128, 64, 0)).reshape((1, 4)) x_rec = recover(x_data, lhs_scale, lhs_zero_point) y_rec = recover(y_data, rhs_scale, rhs_zero_point) golden = generate_golden_output(x_rec, y_rec, output_scale, output_zero_point) op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), np.uint8(golden)) if __name__ == "__main__": test_tflite_same_io_qnn_params() test_tflite_different_io_qnn_params() test_saturation()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor from tvm.relay.testing
import run_infer_type def quantize_test_driver(in_dtype, quant_args, axis, out_dtype, in_data, verify_output_data): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype=in_dtype) output_zero_point = relay.const(quant_args["out_zero_point"]) output_scale = relay.const(quant_args["out_scale"]) quantized_output = relay.qnn.op.quantize( input_data, output_scale=output_scale, output_zero_point=output_zero_point, axis=axis, out_dtype=out_dtype, ) mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() np.testing.assert_equal(res, verify_output_data) assert res.dtype == out_dtype def test_float32_to_uint8(): data = ( np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) .astype("float32") .reshape((2, 5)) ) output = np.array([0, 1, 2, 3, 4, 251, 252, 253, 254, 255]).astype("uint8").reshape((2, 5)) quant_args = {"out_zero_point": np.int32(127), "out_scale": np.float32(0.5)} quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="uint8", in_data=data, verify_output_data=output, ) def test_float32_to_int8(): data = ( np.array([-63.5, -63, -62.5, -62, -61.5, 62, 62.5, 63, 63.5, 64]) .astype("float32") .reshape((2, 5)) ) output = ( np.array([-128, -127, -126, -125, -124, 123, 124, 125, 126, 127]) .astype("int8") .reshape((2, 5)) ) quant_args = {"out_zero_point": np.int32(-1), "out_scale": np.float32(0.5)} quantize_test_
driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="int8", in_data=data, verify_output_data=output, ) def test_scalar_float32_to_int8(): data = np.array(-63.5).astype("float32") output = np.array(-128).astype("int8") quant_args = {"out_zero_point": np.int32(-1), "out_scale": np.float32(0.5)} quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="int8", in_data=data, verify_output_data=output, ) def test_channelwise_axis_0(): data = ( np.array([-63.5, -63, -62.5, -62, -61.5, 30, 31, 31.5, 31.75, 32]) .astype("float32") .reshape((2, 5)) ) output = np.array([0, 1, 2, 3, 4, 243, 247, 249, 250, 251]).astype("uint8").reshape((2, 5)) quant_args = { "out_zero_point": np.array([127, 123]).astype("int32"), "out_scale": np.array([0.5, 0.25]).astype("float32"), } quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=0, out_dtype="uint8", in_data=data, verify_output_data=output, ) def test_channelwise_axis_1(): data = np.transpose( np.array([-63.5, -63, -62.5, -62, -61.5, 30, 31, 31.5, 31.75, 32]) .astype("float32") .reshape((2, 5)) ) output = np.transpose( np.array([0, 1, 2, 3, 4, 243, 247, 249, 250, 251]).astype("uint8").reshape((2, 5)) ) quant_args = { "out_zero_point": np.array([127, 123]).astype("int32"), "out_scale": np.array([0.5, 0.25]).astype("float32"), } quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="uint8", in_data=data, verify_output_data=output, ) def test_dynamic_quantize(): x = relay.var("x", shape=(1, 2, 3, 4), dtype="float32") scale_var = relay.var("scale", shape=(), dtype="float32") zp_var = relay.var("zp", shape=(), dtype="int
32") q_x = relay.qnn.op.quantize(x, scale_var * scale_var, zp_var + zp_var) tt = run_infer_type(q_x) assert tt.checked_type == relay.TensorType((1, 2, 3, 4), "int8") func = relay.Function([x, scale_var, zp_var], q_x) data = np.random.uniform(size=(1, 2, 3, 4)).astype("float32") scale = np.array(1).astype("float32") zp = np.array(0).astype("int32") mod = tvm.ir.IRModule.from_expr(func) for target, dev in tvm.testing.enabled_targets(): with relay.build_config(opt_level=3, disabled_pass=["AlterOpLayout"]): lib = relay.build(mod, target=target) module = graph_executor.GraphModule(lib["default"](dev)) module.set_input(**{"x": data, "scale": scale, "zp": zp}) module.run() if __name__ == "__main__": test_float32_to_uint8() test_float32_to_int8() test_scalar_float32_to_int8() test_channelwise_axis_0() test_channelwise_axis_1() test_dynamic_quantize()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor roundings = ["UPWARD", "TONEAREST"] compute_dtypes = ["float32", "float64", "int64"] def verify(mod, goldens, target="llvm"): with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, target, params=None) golden_data, golden_output = goldens rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input("input_data", golden_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() np.testing.assert_equal(res, golden_output) def get_mod( data_shape, data_dtype, out_dtype, input_scale, output_scale, input_zero_point=0, output_zero_point=0, rounding="None", compute_dtype="None", axis=0, ): input_data = relay.var("input_data", shape=data_shape, dtype=data_dtype) if isinstance(input_scale, float): input_scale_expr = relay.const(input_scale, "float32") else: input_scale_expr = relay.const(np.array(input_scale).astype("float32")) if isinstance(input_zero_point, float): input_zero_point_expr = relay.const(input_zero_point, "int32") else: input_zero_point_expr = relay.const(np.array(input_zero_point).astype("int32")) mod = relay.qnn.op.requantize( input_data, input_scale=input_scale_expr, input_zero_point=input_zero_point_expr, output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), axis=axis, rounding=rounding, compute_dtype=compute_dtype, out_dtype=out_dtype, ) mod = relay.Function(relay.analysis.free_vars(mod), mod) mod = tvm.IRModule.from_expr(mod) return mod def test_same_scale(): golden_data = np.arange(-100, 100, 1).astype("int32") golden_output = golden_data for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(200,),
data_dtype="int32", out_dtype="int8", input_scale=0.5, output_scale=0.5, rounding=rounding, compute_dtype=compute_dtype, ) assert "right_shift" not in mod.astext() verify(mod, (golden_data, golden_output)) def test_scalar_same_scale(): golden_data = np.array(-10).astype("int32") golden_output = golden_data for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(), data_dtype="int32", out_dtype="int8", input_scale=0.5, output_scale=0.5, rounding=rounding, compute_dtype=compute_dtype, ) assert "right_shift" not in mod.astext() verify(mod, (golden_data, golden_output)) def test_downscale(): for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, rounding=rounding, compute_dtype=compute_dtype, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.repeat([0, 1, 2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) golden_data = np.arange(0, -32, -1).astype("int32") if rounding == "UPWARD": golden_output = np.repeat([0, -1, -2], [9, 16, 7]) else: golden_output = np.repeat([0, -1, -2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=4,
rounding=rounding, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.repeat([0, 1, 2, 3, 4, 5, 6, 7, 8], [2, 4, 4, 4, 4, 4, 4, 4, 2]) verify(mod, (golden_data, golden_output)) golden_data = np.arange(0, -32, -1).astype("int32") if rounding == "UPWARD": golden_output = np.repeat( [0, -1, -2, -3, -4, -5, -6, -7, -8], [3, 4, 4, 4, 4, 4, 4, 4, 1] ) else: golden_output = np.repeat( [0, -1, -2, -3, -4, -5, -6, -7, -8], [2, 4, 4, 4, 4, 4, 4, 4, 2] ) verify(mod, (golden_data, golden_output)) mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="uint8", input_scale=1, output_scale=16, rounding=rounding, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.repeat([0, 1, 2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) mod = get_mod( data_shape=(32,), data_dtype="uint8", out_dtype="uint8", input_scale=1, output_scale=16, rounding=rounding, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.repeat([0, 1, 2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) def test_upscale(): for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=2, output_scale=1, rounding=rounding,
compute_dtype=compute_dtype, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.multiply(2, golden_data) verify(mod, (golden_data, golden_output)) golden_data = np.arange(0, -32, -1).astype("int32") golden_output = np.multiply(2, golden_data) verify(mod, (golden_data, golden_output)) def test_non_power_of_two(): for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=3, rounding=rounding, compute_dtype=compute_dtype, ) golden_data = np.multiply(np.arange(0, 32, 1).astype("int32"), 3) golden_output = np.arange(0, 32, 1) verify(mod, (golden_data, golden_output)) golden_data = np.multiply(np.arange(0, -32, -1).astype("int32"), 3) golden_output = np.arange(0, -32, -1) verify(mod, (golden_data, golden_output)) mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=3, output_scale=1, rounding=rounding, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.multiply(golden_data, 3) verify(mod, (golden_data, golden_output)) golden_data = np.arange(0, -32, -1).astype("int32") golden_output = np.multiply(golden_data, 3) verify(mod, (golden_data, golden_output)) def test_saturation(): for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(16,), data_dt
ype="int32", out_dtype="int8", input_scale=0.5, output_scale=0.5, rounding=rounding, compute_dtype=compute_dtype, ) golden_data = np.arange(0, 16, 1).astype("int32") golden_data = np.add(120, golden_data) output = np.array( [120, 121, 122, 123, 124, 125, 126, 127, 127, 127, 127, 127, 127, 127, 127, 127] ) golden_output = output verify(mod, (golden_data, golden_output)) golden_data = np.arange(0, -16, -1).astype("int32") golden_data = np.add(-120, golden_data) output = np.array( [ -120, -121, -122, -123, -124, -125, -126, -127, -128, -128, -128, -128, -128, -128, -128, -128, ] ) golden_output = output verify(mod, (golden_data, golden_output)) def test_zero_point(): for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, output_zero_point=1, rounding=rounding, compute_dtype=compute_dtype, ) golden_data = np.arange(0, 32, 1).astype("int32") golden_output = np.repeat([0, 1, 2], [8, 16, 8]) golden_output = np.add(1, golden_output) verify(mod, (golden_data, golden_output)) golden_data = np.arange(-32, -64, -1).astype("int32"
) if rounding == "UPWARD": golden_output = np.repeat([-2, -3, -4], [9, 16, 7]) else: golden_output = np.repeat([-2, -3, -4], [8, 16, 8]) golden_output = np.add(1, golden_output) verify(mod, (golden_data, golden_output)) for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, input_zero_point=16, rounding=rounding, compute_dtype=compute_dtype, ) golden_data = np.arange(32, 64, 1).astype("int32") golden_output = np.repeat([2, 3, 4], [8, 16, 8]) golden_output = np.subtract(golden_output, 1) verify(mod, (golden_data, golden_output)) golden_data = np.arange(-32, -64, -1).astype("int32") if rounding == "UPWARD": golden_output = np.repeat([-2, -3, -4], [9, 16, 7]) else: golden_output = np.repeat([-2, -3, -4], [8, 16, 8]) golden_output = np.subtract(golden_output, 1) verify(mod, (golden_data, golden_output)) def test_per_channel_same_scale(): golden_data = np.arange(-5, 5, 1).astype("int32").reshape((5, 2)) golden_output = golden_data for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(5, 2), data_dtype="int32", out_dtype="int8", input_scale=[0.5, 0.5], output_scale=0.5, axis=1, rounding=rounding, compute_dtype=compute_dtype, ) verify(mod, (golden_data, golden_output)) golden_data = np.arange(-10, 10, 1).astype("int32").reshape((2, 2, 5)) golden_output = golden_d
ata for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(2, 2, 5), data_dtype="int32", out_dtype="int8", input_scale=[0.5, 0.5], output_scale=0.5, axis=1, rounding=rounding, compute_dtype=compute_dtype, ) verify(mod, (golden_data, golden_output)) def test_per_channel_different_scale(): golden_data = np.arange(-5, 5, 1).astype("int32").reshape((5, 2)) golden_output = np.array([-5, -2, -3, -1, -1, 0, 1, 1, 3, 2]).reshape((5, 2)) for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(5, 2), data_dtype="int32", out_dtype="int8", input_scale=[0.5, 0.25], output_scale=0.5, axis=1, rounding=rounding, compute_dtype=compute_dtype, ) verify(mod, (golden_data, golden_output)) golden_data = np.arange(-20, 20, 2).astype("int32").reshape((2, 2, 5)) golden_output = np.array( [-20, -18, -16, -14, -12, -5, -4, -3, -2, -1, 0, 2, 4, 6, 8, 5, 6, 7, 8, 9] ).reshape((2, 2, 5)) for compute_dtype in compute_dtypes: for rounding in roundings: mod = get_mod( data_shape=(2, 2, 5), data_dtype="int32", out_dtype="int8", input_scale=[0.5, 0.25], output_scale=0.5, axis=1, rounding=rounding, compute_dtype=compute_dtype, ) verify(mod, (golden_data, golden_output)) golden_data = np.arange(-5, 5, 1).astype("int32").reshape((5, 2)) golden_output = np.array([-10, -2, -6, -1, -2, 0, 2, 1, 6, 2]).reshape((5, 2)) for compute_dtype in compute_dtypes: for rounding in roundings: mod
= get_mod( data_shape=(5, 2), data_dtype="int32", out_dtype="int8", input_scale=[1.0, 0.25], output_scale=0.5, axis=1, rounding=rounding, compute_dtype=compute_dtype, ) verify(mod, (golden_data, golden_output)) def test_default_cfg_and_no_args(): mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, ) golden_data = np.arange(0, -32, -1).astype("int32") golden_output = np.repeat([0, -1, -2], [9, 16, 7]) verify(mod, (golden_data, golden_output)) def test_non_default_cfg_and_no_args(): for rounding_cfg in roundings: with relay.qnn.op.requantize_config(rounding=rounding_cfg): mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, ) golden_data = np.arange(0, -32, -1).astype("int32") if rounding_cfg == "UPWARD": golden_output = np.repeat([0, -1, -2], [9, 16, 7]) else: golden_output = np.repeat([0, -1, -2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) def test_default_cfg_and_args(): for rounding in roundings: with relay.qnn.op.requantize_config(rounding="UPWARD"): mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, rounding=rounding, ) golden_data = np.arange(0, -32, -1).astype("int32") if rounding == "UPWARD": golden_output = np.repeat([0, -1, -2], [9, 16, 7]) else: golden_output = np.repeat([0, -1, -2], [8, 16, 8]) verify(mod, (golden_data, gol
den_output)) def test_non_default_cfg_and_args(): for rounding_arg in roundings: for rounding_cfg in roundings: with relay.qnn.op.requantize_config(rounding=rounding_cfg): mod = get_mod( data_shape=(32,), data_dtype="int32", out_dtype="int8", input_scale=1, output_scale=16, rounding=rounding_arg, ) golden_data = np.arange(0, -32, -1).astype("int32") if rounding_arg == "UPWARD": golden_output = np.repeat([0, -1, -2], [9, 16, 7]) else: golden_output = np.repeat([0, -1, -2], [8, 16, 8]) verify(mod, (golden_data, golden_output)) if __name__ == "__main__": test_same_scale() test_scalar_same_scale() test_downscale() test_upscale() test_non_power_of_two() test_saturation() test_zero_point() test_per_channel_same_scale() test_per_channel_different_scale() test_default_cfg_and_no_args() test_non_default_cfg_and_no_args() test_default_cfg_and_args() test_non_default_cfg_and_args()
import tvm from tvm
import te
import numpy as np from tvm
import relay from tvm.contrib
import graph_executor from tvm.runtime.vm
import VirtualMachine from tvm.topi.nn.qnn
import SQNN_DTYPE_TO_CODE def dequantize_test_driver(in_dtype, quant_args, axis, in_data): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype=in_dtype) input_zero_point = relay.const(quant_args["in_zero_point"]) input_scale = relay.const(quant_args["in_scale"]) dequantized_output = relay.qnn.op.dequantize( input_data, input_scale=input_scale, input_zero_point=input_zero_point, axis=axis, ) mod = relay.Function(relay.analysis.free_vars(dequantized_output), dequantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() return res def build_simulated_dequantize(input_data, scale, zp, dtype, axis=-1): sim_q = relay.qnn.op.simulated_dequantize( input_data, scale, zp, axis=axis, in_dtype=dtype, ) mod = tvm.IRModule.from_expr(sim_q) with tvm.transform.PassContext(opt_level=3): vm_exec = relay.vm.compile(mod, "llvm", params=None) vm = VirtualMachine(vm_exec, tvm.cpu(0)) return vm def verify_simulated_dequantize_simple(dtype): data = np.random.uniform(low=-128, high=127, size=[2, 5]).astype(dtype) data_fp = data.astype("float32") scale_np = np.float32(0.5) zp_np = np.int32(127) dtype_np = np.int32(SQNN_DTYPE_TO_CODE[dtype]) quant_args = {"in_zero_point": zp_np, "in_scale": scale_np} dq_out = dequantize_test_driver( in_dtype=dtype, quant_args=quant_args, axis=-1, in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = relay.var("scale", shape=[]) zp = relay.var("zp", shape=[], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32
") vm = build_simulated_dequantize(input_data, scale, zp, dtype) sim_dq_out = vm.invoke("main", input_data=data_fp, scale=scale_np, zp=zp_np, dtype=dtype_np) np.testing.assert_allclose(sim_dq_out.numpy(), dq_out, rtol=1e-5) def test_simulated_dequantize(): verify_simulated_dequantize_simple("uint8") verify_simulated_dequantize_simple("int8") verify_simulated_dequantize_simple("int32") def test_dynamic_channels(): data = np.random.uniform(low=-64, high=64, size=[2, 5]).astype("int8") data_fp = data.astype("float32") scale_np = np.asarray([0.5]).astype("float32") zp_np = np.asarray([0]).astype("int32") dtype_np = np.int32(SQNN_DTYPE_TO_CODE["int8"]) quant_args = {"in_zero_point": zp_np[0], "in_scale": scale_np[0]} dq_out = dequantize_test_driver( in_dtype="int8", quant_args=quant_args, axis=0, in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = relay.var("scale", shape=[relay.Any()], dtype="float32") zp = relay.var("zp", shape=[relay.Any()], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32") vm = build_simulated_dequantize(input_data, scale, zp, dtype, axis=0) sim_dq_out = vm.invoke("main", input_data=data_fp, scale=scale_np, zp=zp_np, dtype=dtype_np) np.testing.assert_allclose(sim_dq_out.numpy(), dq_out, rtol=1e-5) scale_np = np.array([0.5, 0.25]).astype("float32") zp_np = np.array([127, 123]).astype("int32") quant_args = {"in_zero_point": zp_np, "in_scale": scale_np} dq_out = dequantize_test_driver( in_dtype="int8", quant_args=quant_args, axis=0, in_data=data, ) sim_dq_out = vm.invoke("main", input_data=data_fp, scale=scale_np, zp=zp_np, dtype=dtype_np) np.testing.assert_allclose(sim_dq_out.numpy(), dq_out, rtol=1e-5) def test_dynamic_dtype(): data = np.random.uniform(low=0, high=255, size=[2, 5]).astype("uint8") data_fp = data.ast
ype("float32") scale_np = np.asarray([0.5]).astype("float32") zp_np = np.asarray([127]).astype("int32") dtype_np = np.int32(SQNN_DTYPE_TO_CODE["uint8"]) quant_args = {"in_zero_point": zp_np[0], "in_scale": scale_np[0]} dq_out = dequantize_test_driver( in_dtype="uint8", quant_args=quant_args, axis=-1, in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = relay.var("scale", shape=[relay.Any()], dtype="float32") zp = relay.var("zp", shape=[relay.Any()], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32") vm = build_simulated_dequantize(input_data, scale, zp, dtype) sim_dq_out = vm.invoke("main", input_data=data_fp, scale=scale_np, zp=zp_np, dtype=dtype_np) np.testing.assert_allclose(sim_dq_out.numpy(), dq_out, rtol=1e-5) data = np.random.uniform(low=0, high=255, size=[2, 5]).astype("int8") data_fp = data.astype("float32") dq_out = dequantize_test_driver( in_dtype="int8", quant_args=quant_args, axis=-1, in_data=data, ) dtype_np = np.int32(SQNN_DTYPE_TO_CODE["int8"]) sim_dq_out = vm.invoke("main", input_data=data_fp, scale=scale_np, zp=zp_np, dtype=dtype_np) np.testing.assert_allclose(sim_dq_out.numpy(), dq_out, rtol=1e-5) if __name__ == "__main__": test_simulated_dequantize() test_dynamic_channels() test_dynamic_dtype()
import tvm from tvm
import te
import numpy as np from tvm