text
stringlengths
1
2.05k
import relay from tvm.contrib
import graph_executor from tvm.runtime.vm
import VirtualMachine from tvm.topi.nn.qnn
import SQNN_DTYPE_TO_CODE def allclose_with_rounding(a, b): mismatch = a != b assert np.sum(mismatch) <= 3 def quantize_test_driver(in_dtype, quant_args, axis, out_dtype, in_data): shape = in_data.shape input_data = relay.var("input_data", shape=shape, dtype=in_dtype) output_zero_point = relay.const(quant_args["out_zero_point"]) output_scale = relay.const(quant_args["out_scale"]) quantized_output = relay.qnn.op.quantize( input_data, output_scale=output_scale, output_zero_point=output_zero_point, axis=axis, out_dtype=out_dtype, ) mod = relay.Function(relay.analysis.free_vars(quantized_output), quantized_output) mod = tvm.IRModule.from_expr(mod) with tvm.transform.PassContext(opt_level=3): graph, lib, params = relay.build(mod, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu(0)) rt_mod.set_input(input_data=in_data) rt_mod.set_input(**params) rt_mod.run() res = rt_mod.get_output(0).numpy() return res def build_simulated_quantize(input_data, scale, zp, dtype, axis=-1): sim_q = relay.qnn.op.simulated_quantize( input_data, scale, zp, axis=axis, out_dtype=dtype, ) mod = tvm.IRModule.from_expr(sim_q) with tvm.transform.PassContext(opt_level=3): vm_exec = relay.vm.compile(mod, "llvm", params=None) vm = VirtualMachine(vm_exec, tvm.cpu(0)) return vm def verify_simulated_quantize_simple(dtype): data = np.random.uniform(low=-128, high=127, size=[2, 5]).astype("float32") scale_np = np.float32(0.5) zp_np = np.int32(127) dtype_np = np.int32(SQNN_DTYPE_TO_CODE[dtype]) quant_args = {"out_zero_point": zp_np, "out_scale": scale_np} q_out = quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype=dtype, in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = rel
ay.var("scale", shape=[]) zp = relay.var("zp", shape=[], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32") vm = build_simulated_quantize(input_data, scale, zp, dtype) sim_q_out = vm.invoke("main", input_data=data, scale=scale_np, zp=zp_np, dtype=dtype_np) allclose_with_rounding(sim_q_out.numpy(), q_out) def test_simulated_quantize(): verify_simulated_quantize_simple("uint8") verify_simulated_quantize_simple("int8") verify_simulated_quantize_simple("int32") def test_dynamic_channels(): data = np.random.uniform(low=-64, high=64, size=[2, 5]).astype("float32") scale_np = np.asarray([0.5]).astype("float32") zp_np = np.asarray([127]).astype("int32") dtype_np = np.int32(SQNN_DTYPE_TO_CODE["uint8"]) quant_args = {"out_zero_point": zp_np[0], "out_scale": scale_np[0]} q_out = quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=0, out_dtype="uint8", in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = relay.var("scale", shape=[relay.Any()], dtype="float32") zp = relay.var("zp", shape=[relay.Any()], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32") vm = build_simulated_quantize(input_data, scale, zp, dtype, axis=0) sim_q_out = vm.invoke("main", input_data=data, scale=scale_np, zp=zp_np, dtype=dtype_np) allclose_with_rounding(sim_q_out.numpy(), q_out) scale_np = np.array([0.5, 0.25]).astype("float32") zp_np = np.array([127, 123]).astype("int32") quant_args = {"out_zero_point": zp_np, "out_scale": scale_np} q_out = quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=0, out_dtype="uint8", in_data=data, ) sim_q_out = vm.invoke("main", input_data=data, scale=scale_np, zp=zp_np, dtype=dtype_np) allclose_with_rounding(sim_q_out.numpy(), q_out) def test_dynamic_dtype(): data = np.ra
ndom.uniform(low=-64, high=64, size=[2, 5]).astype("float32") scale_np = np.asarray([0.5]).astype("float32") zp_np = np.asarray([127]).astype("int32") dtype_np = np.int32(SQNN_DTYPE_TO_CODE["uint8"]) quant_args = {"out_zero_point": zp_np[0], "out_scale": scale_np[0]} q_out = quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="uint8", in_data=data, ) input_data = relay.var("input_data", shape=data.shape, dtype="float32") scale = relay.var("scale", shape=[relay.Any()], dtype="float32") zp = relay.var("zp", shape=[relay.Any()], dtype="int32") dtype = relay.var("dtype", shape=[], dtype="int32") vm = build_simulated_quantize(input_data, scale, zp, dtype) sim_q_out = vm.invoke("main", input_data=data, scale=scale_np, zp=zp_np, dtype=dtype_np) allclose_with_rounding(sim_q_out.numpy(), q_out) q_out = quantize_test_driver( in_dtype="float32", quant_args=quant_args, axis=-1, out_dtype="int32", in_data=data, ) dtype_np = np.int32(SQNN_DTYPE_TO_CODE["int32"]) sim_q_out = vm.invoke("main", input_data=data, scale=scale_np, zp=zp_np, dtype=dtype_np) allclose_with_rounding(sim_q_out.numpy(), q_out) if __name__ == "__main__": test_simulated_quantize() test_dynamic_channels() test_dynamic_dtype()
import tvm
import numpy as np from tvm
import relay def qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp, data_dtype="uint8"): assert len(x_datas) == len(y_datas) assert len(y_datas) == len(golden_outputs) x = relay.var("x", shape=(1, 4), dtype=data_dtype) y = relay.var("y", shape=(1, 4), dtype=data_dtype) lhs_scale = relay.const(scale_and_zp["lhs_scale"], "float32") lhs_zp = relay.const(scale_and_zp["lhs_zp"], "int32") rhs_scale = relay.const(scale_and_zp["rhs_scale"], "float32") rhs_zp = relay.const(scale_and_zp["rhs_zp"], "int32") output_scale = relay.const(scale_and_zp["output_scale"], "float32") output_zp = relay.const(scale_and_zp["output_zp"], "int32") z = relay.qnn.op.subtract( lhs=x, rhs=y, lhs_scale=lhs_scale, lhs_zero_point=lhs_zp, rhs_scale=rhs_scale, rhs_zero_point=rhs_zp, output_scale=output_scale, output_zero_point=output_zp, ) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] for i in range(0, len(x_datas)): x_data = x_datas[i] y_data = y_datas[i] golden_output = golden_outputs[i] op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)( x_data, y_data ) np.testing.assert_equal(op_res.numpy(), golden_output) def test_tflite_same_io_qnn_params(): scale_and_zp = { "lhs_scale": 0.00784314, "lhs_zp": 127, "rhs_scale": 0.00784314, "rhs_zp": 127, "output_scale": 0.00784314, "output_zp": 127, } x_datas = [ np.array((140, 153, 165, 178)).reshape((1, 4)), np.array((25, 153, 178, 216)).reshape((1, 4)), np.array((25, 153, 216, 165)).reshape((1, 4)), ] y_datas = [ np.array((204, 178, 165, 140)).reshape((1, 4)), np.array((204, 178, 191, 25)).reshape((1, 4)), np
.array((204, 178, 25, 191)).reshape((1, 4)), ] golden_outputs = [ np.array((63, 102, 127, 165)).reshape((1, 4)), np.array((0, 102, 114, 255)).reshape((1, 4)), np.array((0, 102, 255, 101)).reshape((1, 4)), ] qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp) def test_tflite_different_io_qnn_params(): scale_and_zp = { "lhs_scale": 0.0156863, "lhs_zp": 127, "rhs_scale": 0.0117647, "rhs_zp": 85, "output_scale": 0.0235294, "output_zp": 128, } x_datas = [ np.array((76, 140, 153, 172)).reshape((1, 4)), np.array((133, 140, 146, 153)).reshape((1, 4)), np.array((76, 140, 172, 146)).reshape((1, 4)), ] y_datas = [ np.array((136, 119, 128, 17)).reshape((1, 4)), np.array((136, 119, 111, 94)).reshape((1, 4)), np.array((136, 119, 17, 128)).reshape((1, 4)), ] golden_outputs = [ np.array((68, 120, 123, 192)).reshape((1, 4)), np.array((106, 120, 128, 140)).reshape((1, 4)), np.array((68, 120, 192, 119)).reshape((1, 4)), ] qnn_subtract_driver(x_datas, y_datas, golden_outputs, scale_and_zp) def test_saturation(): scale_and_zp = { "lhs_scale": 0.125, "lhs_zp": 0, "rhs_scale": 0.125, "rhs_zp": 0, "output_scale": 0.125, "output_zp": 0, } x_data = [np.array((255, 1, 1, 0)).reshape((1, 4))] y_data = [np.array((255, 255, 128, 0)).reshape((1, 4))] golden_output = [np.array((0, 0, 0, 0)).reshape((1, 4))] qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp) scale_and_zp = { "lhs_scale": 0.125, "lhs_zp": 0, "rhs_scale": 0.125, "rhs_zp": 0, "output_scale": 0.25, "output_zp": 0, } x_data = [np.array((255, 1, 200, 0)).reshape((1, 4))] y_data = [np.array((255, 255, 127, 0)).reshape((1, 4))] golden_output = [np.array((0, 0, 36, 0)).reshape((1, 4))] qnn_subtract_driver(x_da
ta, y_data, golden_output, scale_and_zp) scale_and_zp = { "lhs_scale": 0.5, "lhs_zp": 0, "rhs_scale": 0.25, "rhs_zp": 0, "output_scale": 0.125, "output_zp": 0, } x_data = [np.array((255, 0, 1, 0)).reshape((1, 4))] y_data = [np.array((0, 128, 64, 0)).reshape((1, 4))] golden_output = [np.array((255, 0, 0, 0)).reshape((1, 4))] qnn_subtract_driver(x_data, y_data, golden_output, scale_and_zp) if __name__ == "__main__": test_tflite_same_io_qnn_params() test_tflite_different_io_qnn_params() test_saturation()
from typing
import Callable, List
import numpy as np
import pytest
import scipy.special
import tvm
import tvm.testing from tvm
import relay from tvm.relay.qnn.op.legalizations
import hardswish_func def dequantize(data, scale, zp): return scale * (np.asarray(data) - zp) def generate_golden_output( floating_point_golden_func, dequantized_x, output_scale, output_zero_point, dtype ): output = floating_point_golden_func(dequantized_x) output = np.around(output / output_scale + output_zero_point) np_dtype = {"int8": np.int8, "uint8": np.uint8}[dtype] q_min = np.iinfo(np_dtype).min q_max = np.iinfo(np_dtype).max return np.clip(output, q_min, q_max) def run_qnn_func(func: relay.Function, args: List[relay.Expr]): mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) mod = relay.qnn.transform.Legalize()(mod) mod = relay.qnn.transform.CanonicalizeOps()(mod) func = mod["main"] op_res = relay.create_executor("graph", device=tvm.cpu(0), target="llvm").evaluate(func)(*args) return op_res.numpy() def create_qnn_func( qnn_op: Callable[[relay.Expr, relay.Expr, relay.Expr, relay.Expr, relay.Expr], relay.Call], x_data: np.ndarray, input_scale: float, input_zero_point: int, output_scale: float, output_zero_point: int, input_dtype: str = "uint8", ): x = relay.var("x", shape=x_data.shape, dtype=input_dtype) y = qnn_op( x=x, scale=relay.const(input_scale, "float32"), zero_point=relay.const(input_zero_point, "int32"), output_scale=relay.const(output_scale, "float32"), output_zero_point=relay.const(output_zero_point, "int32"), ) return relay.Function([x], y) def run_condition( qnn_op: Callable[[relay.Expr, relay.Expr, relay.Expr, relay.Expr, relay.Expr], relay.Call], floating_point_golden_func: Callable[[np.ndarray], np.ndarray], x_data: np.ndarray, input_scale: float, input_zero_point: int, output_scale: float, output_zero_point: int, input_dtype: str = "uint8", ): func = create_qnn_func( qnn_op, x_data, input_scale=input_scale, input_zero_point=input_zero_point,
output_scale=output_scale, output_zero_point=output_zero_point, input_dtype=input_dtype, ) x_dequantized = dequantize(x_data, input_scale, input_zero_point) golden_output = generate_golden_output( floating_point_golden_func, x_dequantized, output_scale, output_zero_point, dtype=input_dtype, ) op_res = run_qnn_func(func, [x_data]) np.testing.assert_equal(op_res, golden_output.astype(input_dtype)) def generic_test( qnn_op: Callable[[relay.Expr, relay.Expr, relay.Expr, relay.Expr, relay.Expr], relay.Call], floating_point_golden_func: Callable[[np.ndarray], np.ndarray], input_dtype: str = "uint8", x_data: np.ndarray = np.arange(0, 256, dtype="uint8"), ): x_data = x_data.view(input_dtype) return run_condition( qnn_op, floating_point_golden_func, x_data, input_scale=0.125, input_zero_point=0, output_scale=0.125, output_zero_point=0, input_dtype=input_dtype, ) class TestRSqrt: def test_saturation(self): x_data = np.array((255, 133, 0, 9)).reshape((1, 4)) run_condition( relay.qnn.op.rsqrt, lambda x: 1 / np.sqrt(x), x_data, input_scale=0.125, input_zero_point=0, output_scale=0.125, output_zero_point=0, input_dtype="uint8", ) run_condition( relay.qnn.op.rsqrt, lambda x: 1 / np.sqrt(x), x_data, input_scale=0.125, input_zero_point=0, output_scale=0.25, output_zero_point=0, input_dtype="uint8", ) def test_all_numbers_uint8(self): generic_test(relay.qnn.op.rsqrt, lambda x: 1 / np.sqrt(x), input_dtype="uint8") def test_all_numbers_int8(self): generic_test( relay.qnn.op.rsqrt, lambda x: 1 / np.sqrt(x), input_dtype="int8", x_data=
np.arange(1, 128, dtype="int8"), ) class Sqrt: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.sqrt, np.sqrt, input_dtype="uint8") def test_all_numbers_int8(self): generic_test( relay.qnn.op.sqrt, np.sqrt, input_dtype="int8", x_data=np.arange(1, 128, dtype="int8"), ) class TestExp: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.exp, np.exp, input_dtype="uint8") def test_all_numbers_int8(self): generic_test(relay.qnn.op.exp, np.exp, input_dtype="int8") class TestTanh: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.tanh, np.tanh, input_dtype="uint8") def test_all_numbers_int8(self): generic_test(relay.qnn.op.tanh, np.tanh, input_dtype="int8") class TestErf: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.erf, scipy.special.erf, input_dtype="uint8") def test_all_numbers_int8(self): generic_test(relay.qnn.op.erf, scipy.special.erf, input_dtype="int8") class TestSigmoid: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.sigmoid, lambda x: 1 / (1 + np.exp(-x)), input_dtype="uint8") def test_all_numbers_int8(self): generic_test(relay.qnn.op.sigmoid, lambda x: 1 / (1 + np.exp(-x)), input_dtype="int8") class TestHardswish: def test_all_numbers_uint8(self): generic_test(relay.qnn.op.hardswish, hardswish_func, input_dtype="uint8") def test_all_numbers_int8(self): generic_test(relay.qnn.op.hardswish, hardswish_func, input_dtype="int8") if __name__ == "__main__": tvm.testing.main()
import os
import numpy as np
import tvm from tvm
import te, runtime
import json
import base64 from tvm._ffi.base
import py_str from tvm.relay.op
import add from tvm
import relay from tvm
import rpc from tvm.contrib
import utils, graph_executor def test_save_load(): x = np.ones((10, 2)).astype("float32") y = np.ones((1, 2, 3)).astype("float32") params = {"x": x, "y": y} param_bytes = runtime.save_param_dict(params) assert isinstance(param_bytes, bytearray) param2 = relay.load_param_dict(param_bytes) assert len(param2) == 2 np.testing.assert_equal(param2["x"].numpy(), x) np.testing.assert_equal(param2["y"].numpy(), y) def test_ndarray_reflection(): np_array = np.random.uniform(size=(10, 2)).astype("float32") tvm_array = tvm.nd.array(np_array) param_dict = {"x": tvm_array, "y": tvm_array} assert param_dict["x"].same_as(param_dict["y"]) deser_param_dict = relay.load_param_dict(runtime.save_param_dict(param_dict)) np.testing.assert_equal(deser_param_dict["x"].numpy(), tvm_array.numpy()) np.testing.assert_equal(deser_param_dict["x"].numpy(), deser_param_dict["y"].numpy()) def test_bigendian_rpc_param(): """Test big endian rpc when there is a PowerPC RPC server available""" host = os.environ.get("TVM_POWERPC_TEST_HOST", None) port = os.environ.get("TVM_POWERPC_TEST_PORT", 9090) if host is None: return def verify_graph_executor(remote, target, shape, dtype): x = relay.var("x") y = relay.const(1) z = relay.add(x, y) func = relay.Function([x], z) x_in = np.ones(shape).astype(dtype) params = {"x": x_in} graph, lib, params = relay.build(func, target=target, params=params) temp = utils.tempdir() path_dso = temp.relpath("dev_lib.o") lib.save(path_dso) remote.upload(path_dso) lib = remote.load_module("dev_lib.o") dev = remote.cpu(0) mod = graph_executor.create(graph, lib, dev) mod.load_params(runtime.save_param_dict(params)) mod.run() out = mod.get_output(0, tvm.nd.empty(shape, dtype=dtype, device=dev)) tvm.testing.assert_allclose(x_in + 1, out.numpy()) print("Test RPC conn
ection to PowerPC...") remote = rpc.connect(host, port) target = "llvm -mtriple=powerpc-linux-gnu" for dtype in ["float32", "float64", "int32", "int8"]: verify_graph_executor(remote, target, (10,), dtype) if __name__ == "__main__": test_save_load() test_ndarray_reflection() test_bigendian_rpc_param()
"""Test alter op layout pass"""
import pytest
import tvm from tvm
import relay, topi from tvm.relay
import transform, analysis from tvm.relay.testing.temp_op_attr
import TempOpAttr from tvm.relay.testing
import run_infer_type
import numpy as np
import tvm.testing from tvm.relay
import testing def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_alter_op(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_return_none(): """Test doing nothing by returning 'None'""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.nn.global_max_pool2d(x) y = relay.Function([x], y) return y called = [False] def alter_conv2d(attrs, inputs, tinfos, out_type): called[0] = True return None with TempOpAttr("nn.globa
l_max_pool2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(before(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) assert called[0] def test_alter_layout(): """Test alternating the layout of a conv2d. The layout of broadcast operators and the weight should be changed accordingly. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias") weight = relay.var("weight") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.bias_add(y, bias) y = relay.Tuple([y])[0] y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2)) y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" new_attrs["kernel_layout"] = "OIHW16i" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.layout_transform(x, "NCHW", "NCHW16c") w = relay.layout_transform(weight, "OIHW", "OIHW16i") y = relay.nn.conv2d( y, w, channels=64, kernel_size=(3, 3), padding=(1, 1), kernel_layout="OIHW16i", data_layout="NCHW16c", ) b = relay.expand_dims(bias, axis=1, num_newaxis=2) b = relay.expand_dims(b, axis=0, num_newaxis=1) b = relay.layout_transform(b, "NCHW", "NCHW16c") y = relay.add(y, b) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layo
ut="NCHW16c") y = relay.cast(y, "int32") y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_multi(): """Test alternating the layout of a conv2d. The layout of broadcast operators and the weight should be changed accordingly. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight") y = relay.nn.conv2d(x, weight, channels=128, kernel_size=(3, 3), padding=(1, 1)) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" new_attrs["kernel_layout"] = "OHWI16i64o2i" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(128, 64, 3, 3)) y = relay.layout_transform(x, "NCHW", "NCHW16c") w = relay.layout_transform(weight, "OIHW", "OHWI16i64o2i") y = relay.nn.conv2d( y, w, channels=128, kernel_size=(3, 3), padding=(1, 1), kernel_layout="OHWI16i64o2i", data_layout="NCHW16c", ) y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(exp
ected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_lrn(): """Test alternating the layout of a conv2d. The layout of broadcast operators and the weight should be changed accordingly. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias") weight = relay.var("weight") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.max_pool2d(y, pool_size=(2, 2)) y = relay.nn.lrn(y) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" new_attrs["kernel_layout"] = "OIHW16i" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.layout_transform(x, "NCHW", "NCHW16c") w = relay.layout_transform(weight, "OIHW", "OIHW16i") y = relay.nn.conv2d( y, w, channels=64, kernel_size=(3, 3), padding=(1, 1), kernel_layout="OIHW16i", data_layout="NCHW16c", ) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NCHW16c") y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.nn.lrn(y) y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_dual_path(): """ Test alternating the layout with
two outputs. One path continues to use the new layout while one path fall backs to old layout. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y1 = relay.nn.conv2d(y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1)) y1 = relay.nn.relu(y1) y2 = relay.nn.batch_flatten(y) ret = relay.Tuple([y1, y2]) y = relay.Function(analysis.free_vars(ret), ret) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.nn.relu(y) y1 = relay.nn.conv2d( y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y1 = relay.nn.relu(y1) y1 = relay.layout_transform(y1, "NCHW16c", "NCHW") y2 = relay.layout_transform(y, "NCHW16c", "NCHW") y2 = relay.nn.batch_flatten(y2) ret = relay.Tuple([y1, y2]) y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_resnet(): """Test alternating the layout of a residual block This also tests th
e elimination of duplicated transformation. If a same transformation applies to a same node twice, only one transformation will be created. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y2 = relay.nn.conv2d(x, weight2, channels=32, kernel_size=(1, 1)) y2 = relay.nn.relu(y2) y = y + y2 y = relay.nn.global_max_pool2d(y) return relay.Function(analysis.free_vars(y), y) def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") x = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.nn.relu(y) y2 = relay.nn.conv2d(x, weight2, channels=32, kernel_size=(1, 1), data_layout="NCHW16c") y2 = relay.nn.relu(y2) y = y + y2 y = relay.nn.global_max_pool2d(y, layout="NCHW16c") y = relay.layout_transform(y, "NCHW16c", "NCHW") return relay.Function(analysis.free_vars(y), y) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_broadcast_op(): """Test boradcast operators""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias", shape=(64,)) scale = relay.var("scale", sh
ape=(64, 1, 1)) weight = relay.var("weight") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.bias_add(y, bias) y = relay.multiply(scale, y) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) bias = relay.var("bias", shape=(64,)) scale = relay.var("scale", shape=(64, 1, 1)) weight = relay.var("weight") x = relay.layout_transform(x, "NCHW", "NCHW16c") bias = relay.expand_dims(bias, 1, 2) bias = relay.expand_dims(bias, 0, 1) bias = relay.layout_transform(bias, "NCHW", "NCHW16c") scale = relay.expand_dims(scale, 0, 1) scale = relay.layout_transform(scale, "NCHW", "NCHW16c") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.add(y, bias) y = relay.multiply(scale, y) y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_broadcast_scalar_op(): """Test alternating the layout of a conv2d. The layout of broadcast operators and the weight should be changed accordingly. """ def before(): x = relay.var("x", shape=(1, 500, 500, 64)) kernel = relay.var("kernel", shape=(3, 3, 64, 64), dtype="float32") bias = relay.var("bias", shape
=(64,)) multiplier1 = relay.var("multiplier1", shape=(1,), dtype="float32") multiplier2 = relay.var("multiplier2", shape=(1, 1), dtype="float32") y = relay.nn.conv2d(x, kernel, data_layout="NHWC", kernel_layout="HWIO", kernel_size=(3, 3)) y = relay.add(bias, y) y = relay.nn.relu(y) y = relay.multiply(multiplier1, y) y = relay.multiply(y, multiplier2) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 500, 500, 64)) kernel = relay.var("kernel", shape=(3, 3, 64, 64), dtype="float32") bias = relay.var("bias", shape=(64,)) multiplier1 = relay.var("multiplier1", shape=(1,), dtype="float32") multiplier2 = relay.var("multiplier2", shape=(1, 1), dtype="float32") b = relay.expand_dims(bias, axis=0, num_newaxis=3) b = relay.layout_transform(b, "NHWC", "NCHW16c") y = relay.layout_transform(x, "NHWC", "NCHW16c") y = relay.nn.conv2d( y, kernel, data_layout="NCHW16c", kernel_layout="HWIO", kernel_size=(3, 3) ) y = relay.add(b, y) y = relay.nn.relu(y) y = relay.multiply(multiplier1, y) y = relay.multiply(y, multiplier2) y = relay.layout_transform(y, "NCHW16c", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_scalar(): """Test alternating the layout of a conv2d. The layout of broadcast operators a
nd the weight should be changed accordingly. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.add(y, relay.const(1, "float32")) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) w = relay.var("weight") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, w, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.add(y, relay.const(1.0, "float32")) y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_scalar_regression(): """regression test where scalar fails""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 16)) bias = relay.var("bias", shape=(1, 1, 1, 16)) y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.add(y, bias) mean = relay.mean(y, axis=3, exclude=True) var = relay.variance(y, axis=3, exclude=True) gamma = relay.var("gamma") beta = r
elay.var("beta") y = relay.nn.batch_norm(y, gamma, beta, mean, var, axis=3) y = y[0] return relay.Function(analysis.free_vars(y), y) def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 16)) bias = relay.var("bias", shape=(1, 1, 1, 16)) x = relay.layout_transform(x, src_layout="NHWC", dst_layout="NCHW") x = relay.layout_transform(x, src_layout="NCHW", dst_layout="NCHW16c") weight = relay.layout_transform(weight, src_layout="HWIO", dst_layout="OIHW") y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) bias = relay.layout_transform(bias, src_layout="NHWC", dst_layout="NCHW") bias = relay.layout_transform(bias, src_layout="NCHW", dst_layout="NCHW16c") add = relay.add(y, bias) mean = relay.mean(add, axis=[1, 4], exclude=True) var = relay.variance(add, axis=[1, 4], exclude=True) denom = relay.const(1.0) / relay.sqrt(var + relay.const(1e-05)) gamma = relay.var("gamma", shape=(16,)) denom_c16c = denom * relay.layout_transform(gamma, src_layout="C", dst_layout="C16c") denom = relay.layout_transform(denom_c16c, src_layout="C16c", dst_layout="C") denom_expand1 = relay.expand_dims(denom, axis=1, num_newaxis=2) denom_expand2 = relay.expand_dims(denom_expand1, axis=0) denom_nchwc16 = relay.layout_transform( denom_expand2, src_layout="NCHW", dst_layout="NCHW16c" ) out = add * denom_nchwc16 beta = relay.var("beta", shape=(16,)) numerator_c16c = (-mean) * denom_c16c + relay.layout_transform( beta, src_layout="C", dst_layout="C16c" ) numerator
= relay.layout_transform(numerator_c16c, src_layout="C16c", dst_layout="C") numerator_expand1 = relay.expand_dims(numerator, axis=1, num_newaxis=2) numerator_expand2 = relay.expand_dims(numerator_expand1, axis=0) numerator_nchwc16 = relay.layout_transform( numerator_expand2, src_layout="NCHW", dst_layout="NCHW16c" ) out = out + numerator_nchwc16 out = relay.layout_transform(out, src_layout="NCHW16c", dst_layout="NCHW") y = relay.layout_transform(out, src_layout="NCHW", dst_layout="NHWC") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() desired_layouts = {"nn.conv2d": ["NCHW", "default"], "nn.batch_norm": ["NHWC", "default"]} a = run_opt_pass( a, [ transform.InferType(), relay.transform.ConvertLayout(desired_layouts), transform.SimplifyInference(), transform.CanonicalizeOps(), transform.AlterOpLayout(), ], ) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_concatenate(): """NCHW, NHWC and corner case concatenate layout transform.""" def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def before_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y1 = relay.nn.conv2d(y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1)) ret = relay.concatenate([y, y1], axis=1) y = relay.Function(analysis.free_vars(ret), ret) retur
n y def expected_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y1 = relay.nn.conv2d( y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.concatenate([y, y1], axis=1) ret = relay.layout_transform(ret, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nchw() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nchw(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def before_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC" ) y1 = relay.nn.conv2d( y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC" ) ret = relay.concatenate([y, y1], axis=3) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") weight2 = relay.var("weight2") y = relay.layout_transform(x, "NHWC", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y1 = relay.nn.conv2d( y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.concatenate([y, y1], axis=1) ret = relay.layout
_transform(ret, "NCHW16c", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_nchw_upsamping_op(): """Test upsamping operators""" def before(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight", shape=(32, 32, 3, 3)) y = relay.nn.conv2d(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.upsampling(y, scale_h=2, scale_w=2) y = relay.nn.avg_pool2d(y, pool_size=(2, 2), strides=(2, 2)) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight") x = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.nn.upsampling(y, scale_h=2, scale_w=2, layout="NCHW16c") y = relay.nn.avg_pool2d(y, pool_size=(2, 2), strides=(2, 2), layout="NCHW16c") y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_nchw_dyn_upsamping_op(): """Test upsamping operators"""
def before(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight", shape=(32, 32, 3, 3)) y = relay.nn.conv2d(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.upsampling(y, scale_h=relay.const(2), scale_w=relay.const(2)) y = relay.nn.avg_pool2d(y, pool_size=(2, 2), strides=(2, 2)) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight") x = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.nn.upsampling(y, scale_h=relay.const(2), scale_w=relay.const(2), layout="NCHW16c") y = relay.nn.avg_pool2d(y, pool_size=(2, 2), strides=(2, 2), layout="NCHW16c") y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) @tvm.testing.parametrize_targets("llvm") def test_alter_layout_strided_slice(target, dev): """Test rewriting strided_slice during alter_iop_layout""" def before(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight", shape=(32, 32, 3, 3)) y = relay.nn.conv2d(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.strided_slice(y, begin=[0, 16], end=[1, 33], strides=[1, 1]) y = relay.Function(analysis.free_vars(y), y)
return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW4c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 32, 28, 28)) weight = relay.var("weight", shape=(32, 32, 3, 3)) weight = relay.layout_transform(weight, "OIHW", "OIHW4i4o") x = relay.layout_transform(x, "NCHW", "NCHW4c") y = relay.op.nn.contrib_conv2d_nchwc( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW4c" ) y = relay.strided_slice(y, begin=[0, 4], end=[1, 21], strides=[1, 1]) y = relay.layout_transform(y, "NCHW4c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() b = run_opt_pass(expected(), transform.InferType()) mod_before = tvm.IRModule() mod_new = tvm.IRModule() mod_before["main"] = a mod_new["main"] = b mod_before = transform.InferType()(mod_before) mod_new = transform.InferType()(mod_new) with relay.build_config(opt_level=3): for kind in ["graph", "debug", "vm"]: np_data = np.random.uniform(size=(1, 32, 28, 28)).astype("float32") np_weight = np.random.uniform(size=(32, 32, 3, 3)).astype("float32") f_before = relay.create_executor( kind, mod=mod_before, device=dev, target=target ).evaluate() result_before = f_before(np_data, np_weight) f_new = relay.create_executor(kind, mod=mod_new, device=dev, target=target).evaluate() result_new = f_new(np_data, np_weight) tvm.testing.assert_allclose( result_before.numpy(), result_new.numpy(), rtol=1e-5, atol=1e-5 ) def test_alter_layout_strided_slice_axes_nhwc(): """Test rewriting strided_slice with axes during alter_io
p_layout""" def before(): x = relay.var("x", shape=(1, 28, 28, 32)) weight = relay.var("weight", shape=(3, 3, 32, 32)) y = relay.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.strided_slice(y, begin=[0, 16], end=[1, 32], strides=[1, 1], axes=[0, 3]) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NHWC4c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 28, 28, 32)) weight = relay.var("weight", shape=(3, 3, 32, 32)) x = relay.layout_transform(x, "NHWC", "NHWC4c") y = relay.op.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC4c", kernel_layout="HWIO", ) y = relay.strided_slice(y, begin=[0, 4], end=[1, 8], strides=[1, 1], axes=[0, 3]) y = relay.layout_transform(y, "NHWC4c", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) mod_before = tvm.IRModule() mod_new = tvm.IRModule() mod_before["main"] = a mod_new["main"] = b assert tvm.ir.structural_equal(mod_before, mod_new) def test_alter_layout_depthwise_conv2d(): """Test depthwise_conv2d operator""" def before(): x = relay.var("x", shape=(1, 32, 56, 56)) w = relay.var("w", shape=(32, 1, 3, 3)) y = relay.nn.conv2d(x, w, padding=(1, 1), channels=32, kernel_size=(3, 3), groups=32) y =
relay.Function(analysis.free_vars(y), y) return y from tvm
import topi def alter_conv2d(attrs, inputs, tinfos, out_type): with tvm.target.Target("llvm -mcpu=core-avx2"): return topi.nn.conv2d_alter_layout(attrs, inputs, tinfos, out_type) def expected(): x = relay.var("x", shape=(1, 32, 56, 56)) w = relay.var("w", shape=(32, 1, 3, 3)) x = relay.layout_transform(x, "NCHW", "NCHW8c") w = relay.layout_transform(w, "OIHW", "OIHW1i8o") y = relay.nn.contrib_depthwise_conv2d_nchwc( x, w, padding=(1, 1, 1, 1), channels=32, kernel_size=(3, 3), groups=32, data_layout="NCHW8c", kernel_layout="OIHW1i8o", out_layout="NCHW8c", ) y = relay.layout_transform(y, "NCHW8c", "NCHW") y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b) def test_alter_layout_prelu(): """Test PRelu operator""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight") alpha = relay.var("alpha", relay.IncompleteType()) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.prelu(y, alpha) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) w = relay.var("weight") alpha = relay.var("alpha", relay.IncompleteType()) y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d(
y, w, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) y = relay.layout_transform(y, "NCHW16c", "NCHW") y = relay.nn.prelu(y, alpha) y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, [transform.CanonicalizeOps(), transform.AlterOpLayout()]) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b) def test_alter_layout_pad(): """Check NCHW, NHWC and corner case for pad layout conversion""" def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def before_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1))) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1), (0, 0))) ret = relay.layout_transform(ret, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nchw() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nchw(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def before_nhwc(
): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC" ) ret = relay.nn.pad(y, pad_width=((0, 0), (1, 1), (1, 1), (0, 0))) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NHWC", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.nn.pad(y, pad_width=((0, 0), (0, 0), (1, 1), (1, 1), (0, 0))) ret = relay.layout_transform(ret, "NCHW16c", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) ret = relay.nn.pad(y, pad_width=((0, 0), (1, 1), (1, 1), (1, 1))) y = relay.Function(analysis.free_vars(ret), ret) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.layout_transform(y, "NCHW16c", "NCHW") ret = relay.nn.pad(ret, pad_width=((0, 0), (1, 1), (1, 1), (1, 1))) y = relay.Function(analysis.free_vars(ret), ret) return y with Te
mpOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_pool(): """Check NCHW, NHWC pool layout conversion""" def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def before_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) ret = relay.nn.avg_pool2d(y, pool_size=(1, 1)) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.nn.avg_pool2d(y, pool_size=(1, 1), layout="NCHW16c") ret = relay.layout_transform(ret, "NCHW16c", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nchw() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nchw(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def before_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC" ) ret = relay.nn.avg_pool2d(y, pool_size=(1, 1), layout="NHWC") y = relay.Function(analysi
s.free_vars(ret), ret) return y def expected_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NHWC", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.nn.avg_pool2d(y, pool_size=(1, 1), layout="NCHW16c") ret = relay.layout_transform(ret, "NCHW16c", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_sum(): """Check NCHW, NHWC sum layout conversion""" def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" return relay.nn.conv2d(data, weight, **new_attrs) def before_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) ret = relay.sum(y, axis=1, keepdims=True) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NCHW", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.sum(y, axis=[1, 4], keepdims=True) ret = relay.layout_transform(ret, "NCHW1c", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = bef
ore_nchw() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nchw(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def before_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC" ) ret = relay.sum(y, axis=3, keepdims=True) y = relay.Function(analysis.free_vars(ret), ret) return y def expected_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1") y = relay.layout_transform(x, "NHWC", "NCHW16c") y = relay.nn.conv2d( y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW16c" ) ret = relay.sum(y, axis=[1, 4], keepdims=True) ret = relay.layout_transform(ret, "NCHW1c", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_nhwc_arm(): """Check that AlterOplayout does not alter NHWC data layout.""" def alter_conv2d(attrs, inputs, tinfos, out_type): from tvm
import topi with tvm.target.Target("llvm -device=arm_cpu"): return topi.nn.conv2d_alter_layout(attrs, inputs, tinfos, out_type) def before_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 64)) weight2 = relay.var("weight2", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO" ) y = relay.nn.relu(y) y = relay.nn.avg_pool2d(y, pool_size=(1, 1), layout="NHWC") y = relay.nn.conv2d( y, weight2, channels=64, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO" ) y = relay.nn.relu(y) y = relay.Function(analysis.free_vars(y), y) return y def expected_nhwc(): return before_nhwc() with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_layout_nhwc_int8_aarch64(): """Check that AlterOplayout does not alter NHWC data layout.""" from tvm
import autotvm expected_workload_shape = (20, 42, 4, 16)
class Int8Fallback(autotvm.FallbackContext): def _query_inside(self, target, workload): key = (target, workload) if key in self.memory: return self.memory[key] cfg = autotvm.task.space.FallbackConfigEntity() cfg.is_fallback = False cfg.cost = 0 self.memory[key] = cfg return cfg def update(self, target, workload, cfg): key = (str(target), workload) assert workload[2][1] == expected_workload_shape assert workload[0] == "conv2d_NHWC_quantized_interleaved_without_transform.arm_cpu" self.memory[key] = cfg def alter_conv2d(attrs, inputs, tinfos, out_type): from tvm
import topi with tvm.target.Target("llvm -device=arm_cpu -mtriple=aarch64-linux-gnu"): with Int8Fallback(): tmp = topi.nn.conv2d_alter_layout(attrs, inputs, tinfos, out_type) return tmp def before_nhwc_int8(): x = relay.var("x", shape=(1, 56, 56, 73), dtype="int8") weight = relay.var("weight1", shape=(3, 3, 73, 79), dtype="int8") y = relay.nn.conv2d( x, weight, channels=79, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) y = relay.Function(analysis.free_vars(y), y) return y def expected_nhwc_int8(): x = relay.var("x", shape=(1, 56, 56, 73), dtype="int8") weight = relay.var("weight1", shape=(3, 3, 73, 79), dtype="int8") tile_rows = 4 tile_cols = 16 weight_transformed = relay.nn.contrib_conv2d_gemm_weight_transform( weight, tile_rows, tile_cols ) y = relay.nn.contrib_conv2d_gemm_without_weight_transform( x, weight_transformed, channels=79, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) y = relay.Function(analysis.free_vars(y), y) return y with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before_nhwc_int8() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected_nhwc_int8(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_alter_op_with_global_var(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) mod =
tvm.IRModule() foo = relay.GlobalVar("foo") mod[foo] = relay.Function([x, weight], y) mod = transform.InferType()(mod) mod["main"] = relay.Function([x, weight], foo(x, weight)) mod = transform.InferType()(mod) return mod def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.nn.relu(y) mod = tvm.IRModule() foo = relay.GlobalVar("foo") mod[foo] = relay.Function([x, weight], y) mod = transform.InferType()(mod) mod["main"] = relay.Function([x, weight], foo(x, weight)) return mod with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = before() a = transform.AlterOpLayout()(a) b = transform.InferType()(expected()) assert tvm.ir.structural_equal(a, b, map_free_vars=True), "Actual = \n" + str(a) def test_alter_op_dense(): def before(): x = relay.var("x", shape=(32, 1, 128)) weight = relay.var("weight", shape=(48, 64)) avg1d = relay.nn.adaptive_avg_pool1d(x, [64]) squeeze = relay.squeeze(avg1d, axis=[1]) y = relay.nn.dense(squeeze, weight) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(32, 1, 128)) weight = relay.var("weight", shape=(48, 64)) target_layout = "NC16n" weight_transform = relay.layout_transform(weight, "NC", target_layout) avg1d = relay.nn.adaptive_avg_pool1d(x, [64]) squeeze = relay.squeeze(avg1d, axis=[1])
y = relay.nn.contrib_dense_pack( squeeze, weight_transform, target_layout, units=None, out_dtype="float32" ) y = relay.Function(analysis.free_vars(y), y) return y target = "llvm -mcpu=core-avx2" with tvm.target.Target(target): with TempOpAttr( "nn.dense", "FTVMAlterOpLayout", topi.x86.dense_alter_op._alter_dense_layout ): a = before() a = run_opt_pass(a, transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b) def test_not_inplace_modify(): def func(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=[2, 2], strides=[2, 2], padding=[0, 0, 0, 0]) y = relay.Function([x, weight], y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW16c" new_attrs["kernel_layout"] = "OIHW16i" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): before = func() run_opt_pass(before, [transform.AlterOpLayout()]) assert before.body.attrs.layout == "NCHW" def test_alter_op_dense_packed_data(): def before(): x = relay.var("x", shape=(1, 32, 8, 8)) weight = relay.var("conv2d_weight", shape=(32, 32, 3, 3)) conv = relay.nn.conv2d(x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1)) pool = relay.nn.avg_pool2d(conv, pool_size=[8, 8], padding=[0, 0, 0, 0]) squeeze = relay.squeeze(pool, axis=[2, 3]) dense = relay.nn.dense(squeeze, relay.var("dense_weight", shape=(16, 32))) return relay.Function(analysis.free_vars(dense), dense) def
expected(): x = relay.var("x", shape=(1, 32, 8, 8)) conv_weight = relay.var("conv2d_weight", shape=(32, 32, 3, 3)) dense_weight = relay.var("dense_weight", shape=(16, 32)) conv = relay.nn.contrib_conv2d_nchwc( relay.layout_transform(x, "NCHW", "NCHW8c"), relay.layout_transform(conv_weight, "OIHW", "OIHW8i8o"), channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW8c", kernel_layout="OIHW8i8o", out_layout="NCHW8c", ) pool = relay.nn.avg_pool2d(conv, pool_size=[8, 8], padding=[0, 0, 0, 0], layout="NCHW8c") squeeze = relay.squeeze(pool, axis=[2, 3]) dense = relay.nn.contrib_dense_pack( relay.layout_transform(squeeze, "NC8c", "NC"), relay.layout_transform(dense_weight, "NC", "NC16n"), "NC16n", out_dtype="float32", ) return relay.Function(analysis.free_vars(dense), dense) with tvm.target.Target("llvm -mcpu=core-avx2"): with TempOpAttr( "nn.dense", "FTVMAlterOpLayout", topi.x86.dense_alter_op._alter_dense_layout ): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b) def test_conv2d_strided_slice_packed_to_unpacked(): """We do not support propagating through packed to unpacked layout""" x_shape = (1, 1, 1, 1, 4) w_shape = (9, 1, 3, 3, 4, 4) def before(): x = relay.var("x", shape=x_shape) weight = relay.var("weight", shape=w_shape) y = relay.nn.conv2d( x, weight, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW4c", kernel_layout="OIHW4i4o", ) y = relay.strided_slice(y, begin=[0, 0], end=[1, -1], strides=[1, 8]) return relay.Function([x, weight], y) def expected(): x = relay.var
("x", shape=x_shape) weight = relay.var("weight", shape=w_shape) x_nchw = relay.layout_transform(x, src_layout="NCHW4c", dst_layout="NCHW") weight_oihw = relay.layout_transform(weight, src_layout="OIHW4i4o", dst_layout="OIHW") y = relay.nn.conv2d( x_nchw, weight_oihw, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.layout_transform(y, src_layout="NCHW", dst_layout="NCHW4c") y = relay.strided_slice(y, begin=[0, 0], end=[1, -1], strides=[1, 8]) return relay.Function([x, weight], y) def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW" new_attrs["kernel_layout"] = "OIHW" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b) def test_conv2d_strided_slice_arbitrary_stride(): """Test rewriting strided_slice with arbitrary stride""" def before(): x = relay.var("x", shape=(4, 12, 1, 1)) weight = relay.var("weight", shape=(9, 12, 1, 1)) y = relay.nn.conv2d(x, weight, channels=9, kernel_size=(1, 1), padding=(0, 0)) y = relay.strided_slice(y, begin=[3], end=[6], strides=[3], axes=[1]) y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW3c" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): run_opt_pass(before(), transform.AlterOpLayout()) def test_conv2d_reduce_channels(): x = relay.var("data", sh
ape=(1, 8, 48, 48)) y = relay.nn.conv2d( data=x, weight=relay.var("weight"), kernel_size=(1, 1), channels=8, dilation=1, strides=(47, 47), ) z = relay.argmin(y, axis=1) mod, params = testing.create_workload(z) with tvm.transform.PassContext(opt_level=3): relay.build(mod, params=params, target="llvm") def test_alter_layout_nonscalar_broadcast(): """Test boradcast operators""" def before(): x = relay.var("x", shape=(1, 16, 3, 3)) weight = relay.var("weight", shape=(16, 16, 1, 1)) y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(1, 1), padding=(0, 0), data_layout="NCHW" ) z = relay.var("z", shape=(1, 3, 3)) y = y + z y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 16, 3, 3)) weight = relay.var("weight", shape=(16, 16, 1, 1)) x = relay.layout_transform(x, src_layout="NCHW", dst_layout="NCHW4c") weight = relay.layout_transform(weight, src_layout="OIHW", dst_layout="OIHW4i4o") y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(1, 1), padding=(0, 0), data_layout="NCHW4c", kernel_layout="OIHW4i4o", ) z = relay.var("z", shape=(1, 3, 3)) z = relay.expand_dims(z, 0) z = relay.layout_transform(z, src_layout="NCHW", dst_layout="NCHW1c") y = y + z y = relay.layout_transform(y, src_layout="NCHW4c", dst_layout="NCHW") y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW4c" new_attrs["kernel_layout"] = "OIHW4i4o" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a
= run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\nExpected = \n" + str(b) inp = np.random.uniform(size=(1, 16, 3, 3)).astype(np.float32) weight = np.random.uniform(size=(16, 16, 1, 1)).astype(np.float32) z = np.random.uniform(size=(1, 3, 3)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) np.testing.assert_allclose(res.numpy(), res1.numpy()) def test_alter_layout_blocked_no_broadcast(): """Test boradcast operators working on already blocked layout""" def before(): dtype = "float32" input_shape = (1, 8, 16, 16, 4) filter_shape = (1, 8, 4, 4, 4, 4) bias_shape = (1, 1, 1, 1, 4) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) C = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW4c", kernel_layout="OIHW4i4o", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) bias = relay.op.add(conv, C) bias = relay.Function(analysis.free_vars(bias), bias) return bias def expected(): return before() def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["
data_layout"] = "NCHW4c" new_attrs["kernel_layout"] = "OIHW4i4o" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\nExpected = \n" + str(b) inp = np.random.uniform(size=(1, 8, 16, 16, 4)).astype(np.float32) weight = np.random.uniform(size=(1, 8, 4, 4, 4, 4)).astype(np.float32) z = np.random.uniform(size=(1, 1, 1, 1, 4)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) np.testing.assert_allclose(res.numpy(), res1.numpy()) def test_alter_layout_blocked_broadcast(): """Test boradcast operators working on already blocked layout""" def before(): dtype = "float32" input_shape = (1, 8, 16, 16, 4) filter_shape = (1, 8, 4, 4, 4, 4) bias_shape = (1, 1, 1, 1, 1) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) C = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW4c", kernel_layout="OIHW4i4o", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) bias = relay.op.add(conv, C) bias = relay.Function(analysis.free
_vars(bias), bias) return bias def expected(): return before() def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW4c" new_attrs["kernel_layout"] = "OIHW4i4o" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\nExpected = \n" + str(b) inp = np.random.uniform(size=(1, 8, 16, 16, 4)).astype(np.float32) weight = np.random.uniform(size=(1, 8, 4, 4, 4, 4)).astype(np.float32) z = np.random.uniform(size=(1, 1, 1, 1, 1)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) np.testing.assert_allclose(res.numpy(), res1.numpy()) def test_alter_layout_re_blocking_broadcast(): """Test of re-blocking shapes with boradcast operators""" def before(): dtype = "float32" input_shape = (1, 8, 16, 16, 4) filter_shape = (1, 8, 4, 4, 4, 4) bias_shape = (1, 1, 1, 1, 4) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) C = relay.var("bias", shape=bias_shape, dtype=dtype) conv = relay.nn.conv2d( A, B, data_layout="NCHW4c", kernel_layout="OIHW4i4o", padding
=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) bias = relay.op.add(conv, C) bias = relay.Function(analysis.free_vars(bias), bias) return bias def expected(): dtype = "float32" input_shape = (1, 8, 16, 16, 4) filter_shape = (1, 8, 4, 4, 4, 4) bias_shape = (1, 1, 1, 1, 4) A = relay.var("data", shape=input_shape, dtype=dtype) B = relay.var("weight", shape=filter_shape, dtype=dtype) C = relay.var("bias", shape=bias_shape, dtype=dtype) A = relay.layout_transform(A, src_layout="NCHW4c", dst_layout="NCHW2c") B = relay.layout_transform(B, src_layout="OIHW4i4o", dst_layout="OIHW2i2o") conv = relay.nn.conv2d( A, B, data_layout="NCHW2c", kernel_layout="OIHW2i2o", padding=[3, 3, 0, 0], strides=[2, 2], out_dtype=dtype, channels=4, kernel_size=(4, 4), ) C = relay.layout_transform(C, src_layout="NCHW4c", dst_layout="NCHW2c") bias = relay.op.add(conv, C) bias = relay.layout_transform(bias, src_layout="NCHW2c", dst_layout="NCHW4c") bias = relay.Function(analysis.free_vars(bias), bias) return bias def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW2c" new_attrs["kernel_layout"] = "OIHW2i2o" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\nExpected = \n" + str(b) inp = np.random.uniform(size=(1, 8, 16, 16, 4)).astype(np.float32) weight = np.random.uniform(size=(1, 8, 4, 4, 4, 4)).astype(np
.float32) z = np.random.uniform(size=(1, 1, 1, 1, 4)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) np.testing.assert_allclose(res.numpy(), res1.numpy(), rtol=1e-5, atol=1e-5) def test_broadcast_non_adaptable(): """NCHW4c + [x, x, 4] and NCHW4c is being altered to NCHW""" def before(): x = relay.var("x", shape=(1, 4, 3, 3, 4)) weight = relay.var("weight", shape=(4, 4, 1, 1, 4, 4)) y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(1, 1), padding=(0, 0), data_layout="NCHW4c", kernel_layout="OIHW4i4o", ) z = relay.var("z", shape=(3, 3, 4)) y = y + z y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 4, 3, 3, 4)) weight = relay.var("weight", shape=(4, 4, 1, 1, 4, 4)) x = relay.layout_transform(x, src_layout="NCHW4c", dst_layout="NCHW") weight = relay.layout_transform(weight, src_layout="OIHW4i4o", dst_layout="OIHW") y = relay.nn.conv2d( x, weight, channels=16, kernel_size=(1, 1), padding=(0, 0), data_layout="NCHW", kernel_layout="OIHW", ) z = relay.var("z", shape=(3, 3, 4)) y = relay.layout_transform(y, src_layout="NCHW", dst_layout="NCHW4c") y = y + z y = relay.Function(analysis.free_vars(y), y) return y def alter_conv2d(attrs, inputs, ti
nfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW" new_attrs["kernel_layout"] = "OIHW" return relay.nn.conv2d(data, weight, **new_attrs) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): a = run_opt_pass(before(), transform.AlterOpLayout()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\nExpected = \n" + str(b) inp = np.random.uniform(size=(1, 4, 3, 3, 4)).astype(np.float32) weight = np.random.uniform(size=(4, 4, 1, 1, 4, 4)).astype(np.float32) z = np.random.uniform(size=(3, 3, 4)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight, z) np.testing.assert_allclose(res.numpy(), res1.numpy()) def test_broadcast_respect_input_layouts(): def before(): x = relay.var("x", shape=(1, 16, 1, 1)) w = relay.var("w", shape=(16, 16, 1, 1)) x = relay.nn.conv2d( x, w, kernel_size=(1, 1), padding=(0, 0), channels=16, ) y1 = relay.min(x, axis=[2]) y2 = relay.min(x, axis=[3]) z = y1 + y2 z = relay.Function(analysis.free_vars(z), z) return z def alter_conv2d(attrs, inputs, tinfos, out_type): data, weight = inputs new_attrs = dict(attrs) new_attrs["data_layout"] = "NCHW4c" new_attrs["kernel_layout"] = "OIHW4i4o" return relay.nn.conv2d(data, weight, **new_attrs) inp
= np.random.uniform(size=(1, 16, 1, 1)).astype(np.float32) weight = np.random.uniform(size=(16, 16, 1, 1)).astype(np.float32) mod = tvm.IRModule.from_expr(before()) with TempOpAttr("nn.conv2d", "FTVMAlterOpLayout", alter_conv2d): with tvm.transform.PassContext(opt_level=4): res = relay.build_module.create_executor( "graph", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight) with tvm.transform.PassContext(opt_level=0): res1 = relay.build_module.create_executor( "debug", mod, target="llvm", device=tvm.cpu() ).evaluate()(inp, weight) np.testing.assert_allclose(res.numpy(), res1.numpy()) def test_axis_semantic_change(): x = relay.var("x", shape=(1, 1, 24, 48)) w1 = relay.const(np.random.uniform(size=(1, 1, 1, 1))) w2 = relay.const(np.random.uniform(size=(1, 1, 1, 1))) y = relay.nn.conv2d(x, w1, kernel_size=(1, 1), padding=(0, 0), channels=1) y = relay.transpose(y, (0, 1, 3, 2)) z = relay.nn.conv2d(y, w2, kernel_size=(1, 1), padding=(0, 0), channels=1) func = relay.Function([x], z) mod = tvm.IRModule.from_expr(func) with tvm.transform.PassContext(opt_level=3): relay.build(mod, target="llvm") def test_alter_with_subfunc(): v1 = relay.var("v", shape=[1, 256, 10, 10], dtype="float32") v2 = relay.image.resize2d(v1, size=[16, 16], roi=[0.0, 0.0, 0.0, 0.0], rounding_method="") sub_func = relay.Function([v1], v2) x1 = relay.var("x", shape=[1, 256, 10, 10], dtype="float32") x2 = sub_func(x1) x3 = relay.image.resize2d(x2, size=[8, 8], roi=[0.0, 0.0, 0.0, 0.0], rounding_method="") func = relay.Function([x1], x3) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) assert tvm.ir.structural_equal(relay.transform.AlterOpLayout()(mod), mod) def test_alter_with_reduce(): x = relay.var("x", shape=(1, 1, 1, 1)) y = relay.image.resize2d(x, (2, 4)) z = relay.mean(y, axis=0) a = relay.image.resize1d(z, (1,)
) func = relay.Function((x,), a) mod = tvm.IRModule.from_expr(func) mod = relay.transform.InferType()(mod) with tvm.transform.PassContext(opt_level=4): relay.build(mod, target="llvm") if __name__ == "__main__": pytest.main([__file__])
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Unit tests for annotating spans.""" import tvm import tvm.relay as relay from tvm.relay import testing import tvm.testing def test_annotate_spans_compatibility(): data = relay.var("data", relay.TensorType((1, 3, 64, 64), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") simple_net = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=3, padding=(1, 1) ) simple_net = relay.nn.batch_norm(simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar)[0] simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) module, params = testing.create_workload(simple_net) # Apply some simple passes to legalize the IR. with tvm.transform.PassContext(opt_level=0): module, params = relay.optimize( module, target=tvm.testing.enabled_targets()[0][0], params=params ) seq = tvm.transform.Sequential([relay.transform.AnnotateSpans(), relay.transform.DefuseOps()]) with tvm.transform.PassContext(opt_level=3): module = seq(module) if __name__ == "__main__": tvm.testing.main()
"""Unit tests for annotating external targets."""
import os
import sys
import numpy as np
import pytest
import tvm
import tvm.relay.testing
import tvm.relay.transform as transform from tvm
import relay from tvm
import runtime from tvm.contrib
import utils def check_result( mod, map_inputs, out_shape, result, tol=1e-5, target="llvm", device=tvm.cpu(), params=None ): if sys.platform == "win32": print("Skip test on Windows for now") return def update_lib(lib): test_dir = os.path.dirname(os.path.realpath(os.path.expanduser(__file__))) source_dir = os.path.join(test_dir, "..", "..", "..") contrib_path = os.path.join(source_dir, "src", "runtime", "contrib") kwargs = {} kwargs["options"] = ["-O2", "-std=c++17", "-I" + contrib_path] tmp_path = utils.tempdir() lib_name = "lib.so" lib_path = tmp_path.relpath(lib_name) lib.export_library(lib_path, fcompile=False, **kwargs) lib = runtime.load_module(lib_path) return lib def check_vm_result(): with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): exe = relay.vm.compile(mod, target=target, params=params) code, lib = exe.save() lib = update_lib(lib) exe = runtime.vm.Executable.load_exec(code, lib) vm = runtime.vm.VirtualMachine(exe, device) out = vm.run(**map_inputs) tvm.testing.assert_allclose(out.numpy(), result, rtol=tol, atol=tol) def check_graph_executor_result(): with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): json, lib, param = relay.build(mod, target=target, params=params) lib = update_lib(lib) rt_mod = tvm.contrib.graph_executor.create(json, lib, device) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**param) rt_mod.run() out = tvm.nd.empty(out_shape, device=device) out = rt_mod.get_output(0, out) tvm.testing.assert_allclose(out.numpy(), result, rtol=tol, atol=tol) check_vm_result() check_graph_executor_result() def test_extern_dnnl(): def annotated(dtype, ishape, w1shape): data = relay.var("data", shape
=(ishape), dtype=dtype) weight1 = relay.var("weight1", shape=(w1shape), dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) f = relay.Function([data, weight1], out) mod = tvm.IRModule.from_expr(f) return mod def expected(dtype, ishape, w1shape): data = relay.var("data", shape=(ishape), dtype=dtype) weight1 = relay.var("weight1", shape=(w1shape), dtype=dtype) begin0 = relay.annotation.compiler_begin(data, "dnnl") begin1 = relay.annotation.compiler_begin(weight1, "dnnl") depthwise_conv2d_1 = relay.nn.conv2d( begin0, begin1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) end0 = relay.annotation.compiler_end(depthwise_conv2d_1, "dnnl") end1 = relay.annotation.compiler_end(depthwise_conv2d_1, "dnnl") begin2 = relay.annotation.compiler_begin(end1, "dnnl") begin3 = relay.annotation.compiler_begin(end0, "dnnl") begin4 = relay.annotation.compiler_begin(weight1, "dnnl") depthwise_conv2d_2 = relay.nn.conv2d( begin3, begin4, kernel_size=(3, 3), padding=(1, 1), groups=32 ) end2 = relay.annotation.compiler_end(depthwise_conv2d_2, "dnnl") begin5 = relay.annotation.compiler_begin(end2, "dnnl") out = relay.add(begin2, begin5) end3 = relay.annotation.compiler_end(out, "dnnl") f = relay.Function([data, weight1], end3) mod = tvm.IRModule.from_expr(f) return mod dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 1, 3, 3) def test_annotate(): mod = annotated(dtype, ishape, w1shape) mod = transform.AnnotateTarget("dnnl")(mod) mod = relay.transform.InferType()(mod) ref_
mod = expected(dtype, ishape, w1shape) ref_mod = relay.transform.InferType()(ref_mod) tvm.ir.assert_structural_equal(mod, ref_mod) def test_run(): if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return ref_mod = annotated(dtype, ishape, w1shape) mod = annotated(dtype, ishape, w1shape) mod = transform.PartitionGraph()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()( i_data, w1_data ) check_result( mod, {"data": i_data, "weight1": w1_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5 ) test_annotate() test_run() @pytest.mark.skip(reason="fix constant node before opening this case") def test_extern_dnnl_mobilenet(): if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 3, 224, 224) mod, params = relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32") mod["main"] = relay.build_module.bind_params_by_name(mod["main"], params) mod = transform.AnnotateTarget("dnnl")(mod) mod = transform.PartitionGraph()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) ref_mod, params = relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32") ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **params ) check_result(mod, {"data": i_data}, (1, 1000), ref_res.numpy(), tol=1e-5, params=params) def test_multiple_ends(): @tvm.ir.register_op_attr("nn.relu", "target.test") def relu(expr): return True def before(): x = relay.var("x", shape=(10, 10)) r = relay.nn.relu(x) a_1 = relay.abs(r) a_
2 = relay.abs(r) out = relay.add(a_1, a_2) f = relay.Function([x], out) mod = tvm.IRModule.from_expr(f) return mod def after(): x = relay.var("x", shape=(10, 10)) cb_1 = relay.annotation.compiler_begin(x, "test") r = relay.nn.relu(cb_1) ce_1 = relay.annotation.compiler_end(r, "test") ce_2 = relay.annotation.compiler_end(r, "test") cb_2 = relay.annotation.compiler_begin(ce_1, "default") cb_3 = relay.annotation.compiler_begin(ce_2, "default") a_1 = relay.abs(cb_2) a_2 = relay.abs(cb_3) ce_3 = relay.annotation.compiler_end(a_1, "default") ce_4 = relay.annotation.compiler_end(a_2, "default") cb_4 = relay.annotation.compiler_begin(ce_3, "default") cb_5 = relay.annotation.compiler_begin(ce_4, "default") out = relay.add(cb_4, cb_5) ce_6 = relay.annotation.compiler_end(out, "default") f = relay.Function([x], ce_6) mod = tvm.IRModule.from_expr(f) return mod for annotate_non_call_ops in [False, True]: result = transform.AnnotateTarget("test", annotate_non_call_ops)(before()) expected = transform.InferType()(after()) assert tvm.ir.structural_equal(expected, result) def test_type_propagation(): target = "test_type_propagation" @tvm.ir.register_op_attr("nn.relu", "target." + target) def relu(expr): return expr.args[0].checked_type.dtype == "float32" def before(): x = relay.var("x", shape=(10, 10)) r = relay.nn.relu(x) out = relay.nn.relu(r) f = relay.Function([x], out) mod = tvm.IRModule.from_expr(f) return mod for annotate_non_call_ops in [False, True]: assert transform.AnnotateTarget(target, annotate_non_call_ops)(before()) def test_ref_create_read_write(): target = "relu" @tvm.ir.register_op_attr("nn.relu", "target." + target) def annotate(expr): return True def before(): ref = relay
.expr.RefCreate(relay.const(1.0)) r = relay.expr.RefWrite(ref, relay.nn.relu(relay.expr.RefRead(ref))) return tvm.IRModule.from_expr(r) def after(annotate_non_call_ops): co = relay.const(1.0) if annotate_non_call_ops: co = relay.annotation.compiler_begin(co, "default") ref = relay.expr.RefCreate(co) ref1 = ref if annotate_non_call_ops: ref = relay.annotation.compiler_end(ref, "default") ref = relay.annotation.compiler_begin(ref, "default") ref1 = relay.annotation.compiler_end(ref1, "default") ref1 = relay.annotation.compiler_begin(ref1, "default") read = relay.expr.RefRead(ref1) if annotate_non_call_ops: read = relay.annotation.compiler_end(read, "default") beg = relay.annotation.compiler_begin(read, target) relu = relay.nn.relu(beg) end = relay.annotation.compiler_end(relu, target) if annotate_non_call_ops: end = relay.annotation.compiler_begin(end, "default") r = relay.expr.RefWrite(ref, end) if annotate_non_call_ops: r = relay.annotation.compiler_end(r, "default") return tvm.IRModule.from_expr(r) for annotate_non_call_ops in [True, False, True]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) expected = transform.InferType()(after(annotate_non_call_ops)) assert tvm.ir.structural_equal(expected, result) def test_tuple(): target = "test_tuple" @tvm.ir.register_op_attr("nn.relu", "target." + target) def relu(expr): return True @tvm.ir.register_op_attr("concatenate", "target." + target) def concatenate(expr): return True """Test that TupleNode is included in annotation when surrounded by supported nodes.""" def before(): x = relay.var("x", shape=(10, 5)) y = relay.var("y", shape=(10, 5)) a_1 = relay.nn.relu(x) a_2 = relay.nn.relu(y) out
= relay.concatenate((a_1, a_2), axis=1) f = relay.Function([x, y], out) mod = tvm.IRModule.from_expr(f) return mod def after(annotate_non_call_ops): x = relay.var("x", shape=(10, 5)) y = relay.var("y", shape=(10, 5)) cb_1 = relay.annotation.compiler_begin(x, target) cb_2 = relay.annotation.compiler_begin(y, target) a_1 = relay.nn.relu(cb_1) a_2 = relay.nn.relu(cb_2) ce_1 = relay.annotation.compiler_end(a_1, target) ce_2 = relay.annotation.compiler_end(a_2, target) if annotate_non_call_ops: cb_3 = relay.annotation.compiler_begin(ce_1, target) cb_4 = relay.annotation.compiler_begin(ce_2, target) tup = relay.Tuple([cb_3, cb_4]) ce_3 = relay.annotation.compiler_end(tup, target) else: ce_3 = relay.Tuple([ce_1, ce_2]) cb_3 = relay.annotation.compiler_begin(ce_3, target) out = relay.op._make.concatenate(cb_3, 1) ce_4 = relay.annotation.compiler_end(out, target) f = relay.Function([x, y], ce_4) mod = tvm.IRModule.from_expr(f) return mod for annotate_non_call_ops in [False, True]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) expected = transform.InferType()(after(annotate_non_call_ops)) assert tvm.ir.structural_equal(expected, result) def test_composite_function(): def before(): a = relay.var("a", shape=(10, 10)) b = relay.var("b", shape=(10, 10)) in_1 = relay.var("in_1", shape=(10, 10)) in_2 = relay.var("in_2", shape=(10, 10)) add_node = relay.add(in_1, in_2) relu_node = relay.nn.relu(add_node) add_relu = relay.Function([in_1, in_2], relu_node) add_relu = add_relu.with_attr("Composite", "test.add_relu") r = relay.Call(add_relu, [a, b]) f = relay.Function([a, b], r) mod = tvm.IRModule.from_expr(f) return mod def after():