text
stringlengths
1
2.05k
analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) dtype = "float32" beta = relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) y = relay.nn.layer_norm(y, gamma, beta, axis=1) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_InstanceNorm_convert_layout(): """Check that layout transforms are propagated through instance norm.""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) dtype = "float32" beta = relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) y = relay.nn.instance_norm(y, gamma, beta, axis=3) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) dtype = "float32" beta =
relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) y = relay.nn.instance_norm(y, gamma, beta, axis=1) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_bn_convert_layout(): """Check that layout transforms are propagated through bn.""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) dtype = "float32" beta = relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) moving_mean = relay.var("moving_mean", relay.TensorType((64,), dtype)) moving_var = relay.var("moving_var", relay.TensorType((64,), dtype)) y = relay.nn.batch_norm(y, gamma, beta, moving_mean, moving_var, axis=3) y = relay.nn.relu(y[0]) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) dtype = "float32" beta = relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) moving_mean = relay.var("moving_mean", relay.TensorType((64,), dtype)) movin
g_var = relay.var("moving_var", relay.TensorType((64,), dtype)) y = relay.nn.batch_norm(y, gamma, beta, moving_mean, moving_var, axis=1) y = relay.nn.relu(y[0]) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_conv_requantize_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") y = relay.qnn.op.conv2d( x, weight, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.qnn.op.requantize( y, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), out_dtype="int32", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "OIHW") y = relay.qnn.op.conv2d( x, weight, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y =
relay.qnn.op.requantize( y, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), axis=1, out_dtype="int32", ) y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_conv_concat_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight1 = relay.var("weight1", shape=(3, 3, 64, 64), dtype="int8") weight2 = relay.var("weight2", shape=(3, 3, 64, 64), dtype="int8") y = relay.qnn.op.conv2d( x, weight1, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y1 = relay.qnn.op.conv2d( y, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.cast(y, "int8") y1 = relay.cast(y, "int8") ret = relay.qnn.op.concatenate( [y, y1], [relay.const(1, "float32"), relay.const(1, "float32")], [relay.const(1, "int32"), relay.const(1, "int32")], relay.const(1, "float32"), relay.const(1, "int32"), axis=3, )
y = relay.Function(analysis.free_vars(ret), ret) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight1 = relay.var("weight1", shape=(3, 3, 64, 64), dtype="int8") weight2 = relay.var("weight2", shape=(3, 3, 64, 64), dtype="int8") weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") y = relay.layout_transform(x, "NHWC", "NCHW") y = relay.qnn.op.conv2d( y, weight1, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y1 = relay.qnn.op.conv2d( y, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.cast(y, "int8") y1 = relay.cast(y, "int8") ret = relay.qnn.op.concatenate( [y, y1], [relay.const(1, "float32"), relay.const(1, "float32")], [relay.const(1, "int32"), relay.const(1, "int32")], relay.const(1, "float32"), relay.const(1, "int32"), axis=1, ) ret = relay.layout_transform(ret, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_conv_add_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight1 = relay.var("weight1", shape=(3, 3, 64, 64), dtype="i
nt8") weight2 = relay.var("weight2", shape=(3, 3, 64, 64), dtype="int8") y = relay.qnn.op.conv2d( x, weight1, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y1 = relay.qnn.op.conv2d( y, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.cast(y, "int8") y1 = relay.cast(y, "int8") ret = relay.qnn.op.add( y, y1, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), ) y = relay.Function(analysis.free_vars(ret), ret) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight1 = relay.var("weight1", shape=(3, 3, 64, 64), dtype="int8") weight2 = relay.var("weight2", shape=(3, 3, 64, 64), dtype="int8") weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") y = relay.layout_transform(x, "NHWC", "NCHW") y = relay.qnn.op.conv2d( y, weight1, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y1 = relay.qn
n.op.conv2d( y, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.cast(y, "int8") y1 = relay.cast(y, "int8") ret = relay.qnn.op.add( y, y1, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), ) ret = relay.layout_transform(ret, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_conv_nhwc_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56), dtype="int8") weight = relay.var("weight", shape=(64, 64, 3, 3), dtype="int8") y = relay.qnn.op.conv2d( x, weight, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56), dtype="int8") weight = relay.var("weight", shape=(64, 64, 3, 3), dtype="int8") x = relay.layout_transform(x, "NCHW", "NHWC") weight = relay.layout_transform(weight, "OIHW", "HWIO") y = relay.qnn.op.conv2d( x, weight,
relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.layout_transform(y, "NHWC", "NCHW") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d": ["NHWC", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_conv_transpose_requantize_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") y = relay.qnn.op.conv2d_transpose( x, weight, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) y = relay.qnn.op.requantize( y, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), out_dtype="int32", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "IOHW") y = relay.qnn.op.conv2d_transpose( x, weight, relay.const(1, "int32"),
relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), out_dtype="int32", ) y = relay.qnn.op.requantize( y, relay.const(1, "float32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "int32"), axis=1, out_dtype="int32", ) y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"qnn.conv2d_transpose": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_convert_kernel_layout(): """Check that convolution kernel layout is correctly transformed.""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) w = relay.layout_transform(w, "HWIO", "OHWI") y = relay.nn.conv2d( x, w, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="OHWI", ) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "OHWI"]})) b = run_opt_pass(expected(), transform.
InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_roi_align_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_align( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NCHW" ) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight1 = relay.layout_transform(weight1, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_align( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NHWC" ) ret = relay.layout_transform(y, "NHWC", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y a = before() desired_layouts = { "nn.conv2d": ["NHWC", "HWIO"], "vision.roi_align": ["NHWC", "default"], } a = run_opt_pass(a, transform.ConvertLayout(desired_layouts)) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_strided_slice_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = rel
ay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.strided_slice(y, begin=[0, 1], end=[1, -1, 10], strides=[1, 1, 2, 1]) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight = relay.layout_transform(weight, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.strided_slice(y, begin=[0, 0, 0, 1], end=[1, 10, 56, -1], strides=[1, 2, 1, 1]) y = relay.layout_transform(y, "NHWC", "NCHW") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_split_convert_layout(): def _test_conv_split_convert_layout1(): def before(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) y = relay.nn.conv2d( x, weight, channels=512, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=2, axis=-1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) out = relay.Tuple([a, b]) return re
lay.Function(analysis.free_vars(out), out) def expected(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=512, kernel_size=(3, 3)) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=2, axis=1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) a = relay.layout_transform(a, "NCHW", "NHWC") b = relay.layout_transform(b, "NCHW", "NHWC") out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_conv_split_convert_layout2(): def before(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) y = relay.nn.conv2d( x, weight, channels=512, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=2, axis=3).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) def expected(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.con
v2d(x, weight, channels=512, kernel_size=(3, 3)) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=2, axis=1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) a = relay.layout_transform(a, "NCHW", "NHWC") b = relay.layout_transform(b, "NCHW", "NHWC") out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_conv_split_convert_layout3(): def before(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) y = relay.nn.conv2d( x, weight, channels=512, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=(5, 10), axis=-1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) c = relay.TupleGetItem(y, 2) out = relay.Tuple([a, b, c]) return relay.Function(analysis.free_vars(out), out) def expected(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=512, kernel_size=(3, 3)) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=(5, 10), axis=1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) c = relay.TupleGetItem(y, 2)
a = relay.layout_transform(a, "NCHW", "NHWC") b = relay.layout_transform(b, "NCHW", "NHWC") c = relay.layout_transform(c, "NCHW", "NHWC") out = relay.Tuple([a, b, c]) return relay.Function(analysis.free_vars(out), out) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_conv_split_convert_layout_blocking(): def before(): x = relay.var("x", shape=(1, 512, 38, 38)) weight = relay.var("weight", shape=(512, 512, 3, 3)) y = relay.nn.conv2d( x, weight, channels=512, kernel_size=(3, 3), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=[256], axis=1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) def expected(): x = relay.var("x", shape=(1, 512, 38, 38)) weight = relay.var("weight", shape=(512, 512, 3, 3)) weight = relay.layout_transform(weight, "OIHW", "OIHW4o") x = relay.layout_transform(x, "NCHW", "NCHW4c") y = relay.op.nn.contrib_conv2d_nchwc( x, weight, channels=512, kernel_size=(3, 3), padding=(0, 0), data_layout="NCHW4c", kernel_layout="OIHW4o", ) y = relay.nn.relu(y) y = relay.op.split(y, indices_or_sections=[64], axis=1).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) a = relay.layout_transform(a, "NCHW4c", "NCHW")
b = relay.layout_transform(b, "NCHW4c", "NCHW") out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW4c", "OIHW4o"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) _test_conv_split_convert_layout1() _test_conv_split_convert_layout2() _test_conv_split_convert_layout3() _test_conv_split_convert_layout_blocking() def test_conv_strided_slice_axes_convert_layout(): def before(): x = relay.var("x", shape=(1, 28, 28, 32)) weight = relay.var("weight", shape=(3, 3, 32, 32)) y = relay.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.strided_slice(y, begin=[0, 16], end=[1, 33], strides=[1, 1], axes=[0, 3]) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 28, 28, 32)) weight = relay.var("weight", shape=(3, 3, 32, 32)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d( x, weight, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.strided_slice(y, begin=[0, 16], end=[1, 33], strides=[1, 1], axes=[0, 1]) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = run_opt_pass(before(), transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def te
st_conv_topk_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.topk(y, k=2, axis=2) if isinstance(y, relay.expr.TupleWrapper): y = y.astuple() y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.topk(y, k=2, axis=3).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) a = relay.layout_transform(a, "NCHW", "NHWC") b = relay.layout_transform(b, "NCHW", "NHWC") out = relay.Tuple([a, b]) return relay.Function(analysis.free_vars(out), out) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_roi_pool_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_pool( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, layout="NCHW" ) y = relay.Fun
ction(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight1 = relay.layout_transform(weight1, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_pool( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, layout="NHWC" ) ret = relay.layout_transform(y, "NHWC", "NCHW") y = relay.Function(analysis.free_vars(ret), ret) return y a = before() desired_layouts = { "nn.conv2d": ["NHWC", "HWIO"], "vision.roi_pool": ["NHWC", "default"], } a = run_opt_pass(a, transform.ConvertLayout(desired_layouts)) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_default_keyword(): """Check that the default keyword selects correct TVM default layout.""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 3, 3, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OHWI", ) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) w = relay.var("weight", shape=(64, 3, 3, 64)) w = relay.layout_transform(w, "OHWI", "OIHW") y = relay.nn.conv2d( x, w, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW",
kernel_layout="OIHW", ) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_different_ops_convert_layout(): """Check convert layout correctly supports converting the layout of different ops in the same graph. """ def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 3, 3, 64)) weight2 = relay.var("weight2", shape=(64, 3, 3, 64), dtype="int8") weight3 = relay.var("weight3", shape=(64, 3, 3, 64)) out = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OHWI", ) out = relay.cast(out, "int8") out = relay.qnn.op.conv2d( out, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OHWI", ) out = relay.cast(out, "float32") out = relay.nn.conv2d_transpose( out, weight3, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OHWI", ) out = relay.Function(analysis.free_vars(out), out) return out def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 3, 3, 64)) weight2 = relay.var("weight2", shape=(64, 3, 3, 64), dtype="int8") weight3 = relay.var("weight3", shape=(64, 3, 3, 64)) x = rel
ay.layout_transform(x, "NCHW", "NHWC") weight1 = relay.layout_transform(weight1, "OHWI", "HWIO") out = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) out = relay.cast(out, "int8") out = relay.layout_transform(out, "NHWC", "NCHW") weight2 = relay.layout_transform(weight2, "OHWI", "OIHW") out = relay.qnn.op.conv2d( out, weight2, relay.const(1, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) out = relay.cast(out, "float32") out = relay.layout_transform(out, "NCHW", "NHWC") weight3 = relay.layout_transform(weight3, "OHWI", "HWIO") out = relay.nn.conv2d_transpose( out, weight3, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) out = relay.layout_transform(out, "NHWC", "NCHW") out = relay.Function(analysis.free_vars(out), out) return out a = before() desired_layouts = { "nn.conv2d": ["NHWC", "HWIO"], "qnn.conv2d": ["NCHW", "OIHW"], "nn.conv2d_transpose": ["NHWC", "HWIO"], } a = run_opt_pass(a, transform.ConvertLayout(desired_layouts)) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_no_desired_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight1, channels=64,
kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_align( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NCHW" ) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight1 = relay.layout_transform(weight1, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.layout_transform(y, "NHWC", "NCHW") rois = relay.var("rois", shape=(32, 5)) y = relay.vision.roi_align( y, rois, pooled_size=(14, 14), spatial_scale=0.0625, sample_ratio=2, layout="NCHW" ) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "HWIO"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_convert_with_config(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) weight2 = relay.var("weight2", shape=(3, 3, 64, 64)) y2 = relay.nn.conv2d( y, weight2, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout
="NHWC", kernel_layout="HWIO", ) y2 = relay.nn.relu(y2) out = relay.Function([x, weight, weight2], y2) return out def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) weight2 = relay.var("weight2", shape=(3, 3, 64, 64)) weight2 = relay.layout_transform(weight2, "HWIO", "HWOI") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.layout_transform(y, "NHWC", "HWNC") y2 = relay.nn.conv2d( y, weight2, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="HWNC", kernel_layout="HWOI", ) y2 = relay.nn.relu(y2) y2 = relay.layout_transform(y2, "HWNC", "NHWC") output = relay.Function(relay.analysis.free_vars(y2), y2) return output a = before() layout_config = relay.transform.LayoutConfig(skip_layers=[0]) with layout_config: a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["HWNC", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_squeeze_convert_layout(): def _test_conv_squeeze_convert_layout1(): def before(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) y = relay.nn.conv2d( x, weight, channels=1000, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.squeeze(y, axis=[-3]) return relay.Function(analysis.free_vars
(y), y) def expected(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=1000, kernel_size=(1, 1)) y = relay.nn.relu(y) y = relay.squeeze(y, axis=[2]) y = relay.layout_transform(y, "NCW", "NWC") return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_conv_squeeze_convert_layout2(): def before(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) y = relay.nn.conv2d( x, weight, channels=1000, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.squeeze(y) return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=1000, kernel_size=(1, 1)) y = relay.nn.relu(y) y = relay.squeeze(y, [0, 2, 3]) return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a,
b), "Actual = \n" + str(a) def _test_conv_squeeze_convert_layout3(): def before(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) y = relay.nn.conv2d( x, weight, channels=1000, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.squeeze(y, axis=[]) return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=1000, kernel_size=(1, 1)) y = relay.nn.relu(y) y = relay.squeeze(y, axis=[]) y = relay.layout_transform(y, "NCHW", "NHWC") return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) _test_conv_squeeze_convert_layout1() _test_conv_squeeze_convert_layout2() _test_conv_squeeze_convert_layout3() def test_conv_reduce_convert_layout(): def _test_conv_reduce_convert_layout1(): def before(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) y = relay.nn.conv2d( x, weight, channels=1000, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.sum(y, axis=(1, 2)) y
= relay.sum(y, axis=(1,)) y = relay.sum(y) y = relay.sum(y) return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 1, 1, 2048)) weight = relay.var("weight", shape=(1, 1, 2048, 1000)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=1000, kernel_size=(1, 1)) y = relay.nn.relu(y) y = relay.sum(y, axis=(2, 3)) y = relay.sum(y, axis=(1,)) y = relay.sum(y) y = relay.sum(y) return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_conv_reduce_convert_layout2(): def _set_span(y, text): return relay.Call( y.op, y.args, y.attrs, y.type_args, relay.Span(relay.SourceName(text), 0, 0, 0, 0) ) def before(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3, 3, 512, 512)) y = relay.nn.conv2d( x, weight, channels=512, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", ) y = _set_span(y, "SpanConv2D") y = relay.nn.relu(y) y = _set_span(y, "SpanRelu") y = relay.multiply(y, y) y = _set_span(y, "SpanMultiply") y = relay.sum(y, axis=(3,), keepdims=True) y = _set_span(y, "SpanSum") return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 38, 38, 512)) weight = relay.var("weight", shape=(3,
3, 512, 512)) weight = relay.layout_transform(weight, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight, channels=512, kernel_size=(3, 3)) y = relay.nn.relu(y) y = relay.multiply(y, y) y = relay.sum(y, axis=(1,), keepdims=True) y = relay.layout_transform(y, "NCHW", "NHWC") return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) assert "SpanConv2D" in a.astext() assert "SpanRelu" in a.astext() assert "SpanMultiply" in a.astext() assert "SpanSum" in a.astext() b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) _test_conv_reduce_convert_layout1() _test_conv_reduce_convert_layout2() def test_image_resize2d_convert_layout(): def _test_image_resize_convert_layout_nchw_to_nhwc(): def before(): x = relay.var("x", shape=(1, 2, 4, 4)) y = relay.image.resize2d(x, (8, 8)) y = relay.Function([x], y) return y def expected(): x = relay.var("x", shape=(1, 2, 4, 4)) x = relay.layout_transform(x, "NCHW", "NHWC") y = relay.image.resize2d(x, (8, 8), layout="NHWC") y = relay.layout_transform(y, "NHWC", "NCHW") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"image.resize2d": ["NHWC"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def _test_image_resize_convert_layout_nhwc_to_nchw(): def before(): x = relay.var("x", shape=(1, 4, 4, 2)) y = relay.image.resize2d(x, (8, 8), layout="NHWC") y = relay.Function([x], y)
return y def expected(): x = relay.var("x", shape=(1, 4, 4, 2)) x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.image.resize2d(x, (8, 8), layout="NCHW") y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"image.resize2d": ["NCHW"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) _test_image_resize_convert_layout_nchw_to_nhwc() _test_image_resize_convert_layout_nhwc_to_nchw() def test_conv_image_resize2d_convert_layout(): """Check that layout transforms are propagated through image resize.""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.image.resize2d(y, (112, 112), layout="NHWC") y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.image.resize2d(y, (112, 112), layout="NCHW") y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_infer
_correct_layout(): test_infer_correct_layout_flag = False def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y @reg.register_infer_correct_layout("nn.relu", level=11) def infer_correct_layout_relu(attrs, new_in_layouts, old_in_layouts, old_in_types): nonlocal test_infer_correct_layout_flag test_infer_correct_layout_flag = True ret = tvm.tir.layout("") if new_in_layouts: assert len(new_in_layouts) >= 1 ret = new_in_layouts[0] else: for i in range(len(old_in_layouts)): if old_in_layouts[i]: ret = old_in_layouts[i] break input_layouts = [] for i in range(len(old_in_layouts)): input_layouts.append(ret) return InferCorrectLayoutOutput(input_layouts, [ret], attrs) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) assert test_infer_correct_layout_flag == True def test_reduce_op_convert_layout(): for reduce_op in [relay.argmax, relay.mean, relay.max]: def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = reduce_op(y, axis=[2, 3]) y = relay.Function([x, weight], y) return y def expected(): x = relay.v
ar("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight = relay.layout_transform(weight, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = reduce_op(y, axis=[1, 2]) y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_max_pool_uses_specified_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NCHW") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight = relay.layout_transform(weight, "OIHW", "OHWI") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="OHWI", ) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NHWC", out_layout="NHW
C") y = relay.layout_transform(y, "NHWC", "NCHW") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass( a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "OHWI"], "nn.max_pool2d": ["NHWC"]}) ) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) @pytest.mark.parametrize( "data_layout, kernel_layout", [ ("NCHW1c", "OIHW1i1o"), ("NCHW4c", "OIHW4i4o"), ("NCHW8c", "OIHW8i8o"), ("NCHW16c", "OIHW16i16o"), ], ) def test_resnet_convert_layout_nchwc(data_layout, kernel_layout): x = relay.var("x", shape=(1, 3, 224, 224)) weight1 = relay.var("weight1", shape=(64, 3, 7, 7)) weight2 = relay.var("weight2", shape=(64, 64, 3, 3)) weight3 = relay.var("weight3", shape=(64, 64, 1, 1)) def before(): y = relay.nn.conv2d( x, weight1, strides=(2, 2), padding=(3, 3), channels=64, kernel_size=(7, 7), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(3, 3), strides=(2, 2), padding=(1, 1)) y1 = relay.nn.conv2d( y, weight2, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( y, weight3, channels=64, kernel_size=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y2 = relay.nn.relu(y2) y = y1 + y2 y = relay.nn.global_max_pool2d(y, layout="NCHW") return y def expected(): if data_layout == "NCHW1c": y = relay.nn.contrib_conv2d_nchwc( relay.l
ayout_transform(x, "NCHW", data_layout), relay.layout_transform(weight1, "OIHW", kernel_layout), strides=(2, 2), padding=(3, 3), channels=64, kernel_size=(7, 7), data_layout=data_layout, kernel_layout=kernel_layout, ) y = relay.nn.relu(y) y = relay.nn.max_pool2d( y, pool_size=(3, 3), strides=(2, 2), padding=(1, 1), layout=data_layout ) else: y = relay.nn.conv2d( x, weight1, strides=(2, 2), padding=(3, 3), channels=64, kernel_size=(7, 7), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(3, 3), strides=(2, 2), padding=(1, 1)) y = relay.layout_transform(y, "NCHW", data_layout) y1 = relay.nn.contrib_conv2d_nchwc( y, relay.layout_transform(weight2, "OIHW", kernel_layout), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout=data_layout, kernel_layout=kernel_layout, ) y1 = relay.nn.relu(y1) y2 = relay.nn.contrib_conv2d_nchwc( y, relay.layout_transform(weight3, "OIHW", kernel_layout), channels=64, kernel_size=(1, 1), data_layout=data_layout, kernel_layout=kernel_layout, ) y2 = relay.nn.relu(y2) y = y1 + y2 y = relay.nn.global_max_pool2d(y, layout=data_layout) y = relay.layout_transform(y, data_layout, "NCHW") return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": [data_layout, kernel_layout]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n Expect = \
n" + str(b) def test_conv_l2n_convert_layout(): """Check that layout transforms are propagated through bn.""" axis_list = ([3], [-1], [2, 3]) expected_axis = ([1], [1], [3, 1]) for i, axis in enumerate(axis_list): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) z = relay.nn.l2_normalize(y, eps=0.001, axis=axis) z = relay.Function(analysis.free_vars(z), z) return z def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) z = relay.nn.l2_normalize(y, eps=0.001, axis=expected_axis[i]) z = relay.layout_transform(z, "NCHW", "NHWC") z = relay.Function(analysis.free_vars(z), z) return z a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) if __name__ == "__main__": pytest.main([__file__])
import tvm
import tvm.testing from tvm.relay
import Function, transform from tvm.relay.testing
import inception_v3
import pytest cpu_scope = tvm.target.VirtualDevice(tvm.cpu(), tvm.target.Target("llvm")) metatable = {"VirtualDevice": [cpu_scope]} core = tvm.IRModule() core.import_from_std("core.rly") def optimize_and_check(before_program, after_program, passes): if isinstance(before_program, str): before_program = tvm.parser.parse(before_program) if isinstance(after_program, str): after_program = tvm.parser.parse(after_program) if not isinstance(passes, list): passes = [passes] optimize = tvm.transform.Sequential(passes) optimized_program = optimize(before_program) print("Actual:") print(optimized_program) print("Expected:") print(after_program) assert tvm.ir.structural_equal(optimized_program, after_program, map_free_vars=True) def test_dead_let(): before_program = """ def @main(%z: int) { let %x = 1; %z } """ after_program = """ def @main(%z: int) { %z } """ optimize_and_check(before_program, after_program, transform.DeadCodeElimination()) def test_one_live_let(): before_program = """ def @main(%z: int) { let %x = 1; let %y = 2; %x + %x } """ after_program = """ def @main(%z: int) { let %x = 1; %x + %x } """ optimize_and_check(before_program, after_program, transform.DeadCodeElimination()) def test_nested_let(): before_program = """ def @main(%d: int, %b: int) { let %a = %b; let %c = %d; %c } """ after_program = """ def @main(%d: int, %b: int) { let %c = %d; %c } """ optimize_and_check(before_program, after_program, transform.DeadCodeElimination()) def test_live_recursion(): before_program = """ def @main() { let %f = fn (%n: int, %data: int) -> int { if (%n == 0) { %data } else { %f(%n - 1, log(%data)) } }; %
f(2, 10000) } """ after_program = """ def @main() { let %f = fn (%n: int, %data: int) -> int { if (%n == 0) { %data } else { %f(%n - 1, log(%data)) } }; %f(2, 10000) } """ optimize_and_check( before_program, after_program, [transform.DeadCodeElimination(), transform.InferType()] ) def test_dead_recursion(): before_program = """ def @main() { let %f = fn (%n: int, %data: int) -> int { if (%n == 0) { %data } else { %f(%n - 1, log(%data)) } }; () } """ after_program = """ def @main() { () } """ optimize_and_check( before_program, after_program, [transform.DeadCodeElimination(), transform.InferType()] ) def test_add_with_let(): before_program = """ def @main() { (let %a = 1; 3) + 2 } """ after_program = """ def @main() { 3 + 2 } """ optimize_and_check( before_program, after_program, [transform.DeadCodeElimination(), transform.InferType()] ) def test_tuple_get_item(): before_program = """ def @main() { let %a = 100; (1, 2, 3, 4).0 } """ after_program = """ def @main() { (1, 2, 3, 4).0 } """ optimize_and_check(before_program, after_program, transform.DeadCodeElimination()) def test_inline_into_function(): """Don't inline across function boundaries.""" before_program = """ def @main() { let %x = 1 + 1; let %f = fn (%y: int) -> int { let %z = %y + %y; %x + %z }; (%f(2), %f(3)) } """ after_program = """ def @main() { let %x = 1 + 1; let %f = fn (%y: int) -> int { %x + (%y + %y) }; (%f(2), %f(3)) } """ optimize_and_check( bef
ore_program, after_program, transform.DeadCodeElimination(inline_once=True) ) def test_impure_op(): """Don't elide calls to side-effecting operators.""" before_program = tvm.parser.parse( """ def @main() { let %size: int64 = cast(1024, dtype="int64"); let %alignment: int64 = cast(64, dtype="int64"); let %x = memory.alloc_storage(%size, %alignment, virtual_device=meta[VirtualDevice][0]); let %_ = memory.kill(%x); 0 } """, "from_string", core, metatable, ) after_program = tvm.parser.parse( """ def @main() { %0 = memory.alloc_storage(cast(1024, dtype="int64"), cast(64, dtype="int64"), virtual_device=meta[VirtualDevice][0]); let %_ = memory.kill(%0); 0 } """, "from_string", core, metatable, ) optimize_and_check( before_program, after_program, transform.DeadCodeElimination(inline_once=True) ) def test_impure_func(): """Don't elide calls to side-effecting functions.""" before_program = tvm.parser.parse( """ def @f() -> int { let %size: int64 = cast(1024, dtype="int64"); let %alignment: int64 = cast(64, dtype="int64"); let %x = memory.alloc_storage(%size, %alignment, virtual_device=meta[VirtualDevice][0]); let %_ = memory.kill(%x); 0 } def @main() -> int { let %y = @f(); 0 } """, "from_string", core, metatable, ) after_program = tvm.parser.parse( """ def @f() -> int { %0 = memory.alloc_storage(cast(1024, dtype="int64"), cast(64, dtype="int64"), virtual_device=meta[VirtualDevice][0]); let %_ = memor
y.kill(%0); 0 } def @main() -> int { let %y = @f(); 0 } """, "from_string", core, metatable, ) optimize_and_check( before_program, after_program, transform.DeadCodeElimination(inline_once=True) ) def test_refs(): """Don't elide expressions with reference create/read/write side effects""" before_program = """ def @f(%r) -> int { let %v = ref_read(%r); let %u = ref_write(%r, %v + 1); %v } def @main() -> int { let %r = ref(0); let %y = @f(%r); let %z = @f(%r); %z } """ after_program = before_program optimize_and_check( before_program, after_program, [transform.InferType(), transform.DeadCodeElimination(inline_once=True)], ) def test_complexity(): mod = transform.InferType()( tvm.IRModule.from_expr(inception_v3.get_net(1, 1000, (3, 299, 299), "float32")) ) optimize_and_check(mod, mod, transform.DeadCodeElimination(inline_once=True)) if __name__ == "__main__": tvm.testing.main()
import pytest
import numpy as np
import tvm from tvm
import relay from tvm.relay.backend.interpreter
import ConstructorValue from tvm.relay
import transform, ExprVisitor, TypeVisitor from tvm.relay.testing
import Prelude def has_func_type(t):
class FuncTypeVisitor(TypeVisitor): def __init__(self): super().__init__() self.has_func = False def visit_func_type(self, ftt): self.has_func = True ftvisitor = FuncTypeVisitor() ftvisitor.visit(t) return ftvisitor.has_func def assert_no_higher_order_functions(expr, mod):
class CheckFirstOrderVisitor(ExprVisitor): def __init__(self, mod): super().__init__() self.mod = mod self.hof = [] self.visited_gv = set() def visit_call(self, call): is_higher_order = False if has_func_type(call.checked_type): is_higher_order = True for a in call.args: if has_func_type(a.checked_type): is_higher_order = True if is_higher_order: self.hof.append(call) super().visit_call(call) def visit_global_var(self, gv): if gv not in self.visited_gv: self.visited_gv.add(gv) self.visit(self.mod[gv]) mod = transform.InferType()(mod) check_fo_visitor = CheckFirstOrderVisitor(mod) check_fo_visitor.visit(expr) nl = "\n--------\n" errmsg = f"""found {len(check_fo_visitor.hof)} higher order functions: {nl.join(expr.astext() for expr in check_fo_visitor.hof)}""" assert len(check_fo_visitor.hof) == 0, errmsg def defunctionalized(mod): mod = transform.InferType()(mod) mod["main"] = transform.Defunctionalization(mod["main"], mod) mod = transform.InferType()(mod) assert_no_higher_order_functions(mod["main"], mod) return mod def to_list(mod, l): list = mod.get_global_type_var("List") list_adt = mod[list] cons = list_adt.constructors[0] nil = list_adt.constructors[1] assert isinstance(l, ConstructorValue) val = l ret = [] while True: if val.tag == cons.tag: ret.append(val.fields[0].numpy()) val = val.fields[1] else: assert val.tag == nil.tag break return ret def to_adt_list(mod, arr): expr = mod["main"] l = mod.get_global_type_var("List") list_adt = mod[l] cons = list_adt.constructors[0] nil = list_adt.constructors[1] li = nil() for a in arr:
li = cons(relay.const(a), li) adt = relay.create_executor(mod=mod).evaluate(li) mod["main"] = expr return adt def test_simple(): code = """ def @simple[A, B](%f: fn(A) -> B, %xs: A) -> B { %f(%xs) } def @main(%l: Tensor[(5, 5), float32]) -> Tensor[(5, 5), float32] { %0 = fn[A](%x: A) -> A { %x }; @simple(%0, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.rand(5, 5).astype("float32") out = relay.create_executor("debug", mod=mod).evaluate()(input) defunc_out = relay.create_executor("debug", mod=defunc_mod).evaluate()(input) np.testing.assert_equal(out.numpy(), defunc_out.numpy()) def test_global_recursion(): code = """ type List[A] { Cons(A, List[A]), Nil, } def @id[A](%x: A) -> A { %x } def @map[A, B](%f: fn(A) -> B, %xs: List[A]) -> List[B] { match (%xs) { Cons(%x, %rest) => Cons(%f(%x), @map(%f, %rest)), Nil => Nil, } } def @main(%l: List[float32]) -> List[float32] { @map(@id, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.rand(10).astype("float32") out = relay.create_executor("debug", mod=mod).evaluate(mod["main"])(to_adt_list(mod, input)) defunc_out = relay.create_executor("debug", mod=defunc_mod).evaluate()( to_adt_list(defunc_mod, input) ) np.testing.assert_array_equal(to_list(mod, out), to_list(defunc_mod, defunc_out)) def test_recursive_datatype(): code = """ type List[A] { Cons(A, List[A]), Nil, } def @sum(%f: fn(int32) -> int32, %k: List[int32]) -> int32 { match (%k) { Cons(%x, %rest) => %0 = fn(%n) { %x + %f(%n) }; @sum(%0, %rest), Nil => %f(0), } } def @id[A](%x: A) -> A { %x } def @main(%l: List[int32]) -> int32 { @sum(@id, %l) } """ mod = tvm.parser.fromtext(code) defunc_mod = defunctionalized(mod) input = np.random.randint(1, 100, 10) out = relay.create_executor("debug", mod=mod).evaluate(mod["main"])(to_adt_lis
t(mod, input)) defunc_out = relay.create_executor("debug", mod=defunc_mod).evaluate()( to_adt_list(defunc_mod, input) ) tvm.testing.assert_allclose(out.numpy(), defunc_out.numpy()) if __name__ == "__main__": pytest.main([__file__])
import numpy
import pytest
import tvm from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_opt_pass def test_defuse_simple(): """Simple testcase.""" def before(): x = relay.var("x", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.exp(y) w = relay.squeeze(z) return relay.Function([x], w) x = before() x = run_opt_pass(x, transform.InferType()) fused = run_opt_pass(x, transform.FuseOps()) defused = run_opt_pass(fused, transform.DefuseOps()) assert tvm.ir.structural_equal(x, defused) def test_inception_like(): def conv(data): y = relay.nn.conv2d(data, relay.var("w"), kernel_size=(3, 3), padding=(1, 1), channels=16) return relay.nn.relu(data=y) def inception_like(data): c0 = conv(data) c1 = conv(data) return relay.concatenate((c0, c1), axis=1) def before(dshape): x = relay.var("x", shape=dshape) in1 = inception_like(x) in2 = inception_like(in1) return relay.Function(relay.analysis.free_vars(in2), in2) dshape = (1, 16, 64, 64) x = before(dshape) x = run_opt_pass(x, transform.InferType()) fused = run_opt_pass(x, transform.FuseOps()) defused = run_opt_pass(fused, transform.DefuseOps()) assert tvm.ir.structural_equal(x, defused) def test_defuse_complex(): """Complex defuse testcase""" def fused_conv2d_batch_norm(w): data = relay.var("data", shape=(1, 224, 224, 3)) bn_gamma0 = relay.var("bn_gamma0", relay.TensorType((64,), "float32")) bn_beta0 = relay.var("bn_beta0", relay.TensorType((64,), "float32")) bn_mmean0 = relay.var("bn_mean0", relay.TensorType((64,), "float32")) bn_mvar0 = relay.var("bn_var0", relay.TensorType((64,), "float32")) c0 = relay.nn.conv2d( data, w, strides=(2, 2), padding=(3, 3, 3, 3), channels=64, kernel_size=(7, 7), data_layout="NHWC", kernel_layout="OHWI", out_layout="NHWC", ) c1 = relay.nn.bat
ch_norm(c0, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0, axis=3) c2 = c1[0] return relay.Function(relay.analysis.free_vars(c2), c2) def fused_conv2d_batch_norm_relu(z): data2 = relay.var("data2", shape=(1, 56, 56, 64)) bn_gamma0 = relay.var("bn_gamma0", relay.TensorType((64,), "float32")) bn_beta0 = relay.var("bn_beta0", relay.TensorType((64,), "float32")) bn_mmean0 = relay.var("bn_mean0", relay.TensorType((64,), "float32")) bn_mvar0 = relay.var("bn_var0", relay.TensorType((64,), "float32")) c0 = relay.nn.conv2d( data2, z, padding=(1, 1, 1, 1), channels=64, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="OHWI", out_layout="NHWC", ) c1 = relay.nn.batch_norm(c0, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0, axis=3) c2 = c1[0] c3 = relay.nn.relu(data=c2) return relay.Function(relay.analysis.free_vars(c3), c3) def fused_max_pool2d(): data1 = relay.var("data1", shape=(1, 112, 112, 64)) a1 = relay.nn.max_pool2d( data1, pool_size=(3, 3), strides=(2, 2), padding=(1, 1, 1, 1), layout="NHWC", out_layout="NHWC", ) return relay.Function(relay.analysis.free_vars(a1), a1) def fused_add_relu(): data1 = relay.var("data1", shape=(1, 56, 56, 64)) data2 = relay.var("data2", shape=(1, 56, 56, 64)) a0 = relay.add(data1, data2) a1 = relay.nn.relu(a0) return relay.Function(relay.analysis.free_vars(a1), a1) def before_fused(conv_layer1_weight, conv_layer2_weight): data = relay.var("data", shape=(1, 3, 224, 224)) data1 = relay.layout_transform(data, src_layout="NCHW", dst_layout="NHWC") bn_gamma0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) bn_beta0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32")))
bn_mmean0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) bn_mvar0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) a0 = fused_conv2d_batch_norm(conv_layer1_weight) a1 = fused_max_pool2d() a2 = fused_conv2d_batch_norm_relu(conv_layer2_weight) a3 = fused_add_relu() y0 = relay.Call(a0, [data1, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0]) y1 = relay.Call(a1, [y0]) y2 = relay.Call(a2, [y1, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0]) y3 = relay.Call(a3, [y1, y2]) return relay.Function(relay.analysis.free_vars(y3), y3) def golden_defused(conv_layer1_weight, conv_layer2_weight): data = relay.var("data", shape=(1, 3, 224, 224)) data1 = relay.layout_transform(data, src_layout="NCHW", dst_layout="NHWC") bn_gamma0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) bn_beta0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) bn_mmean0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) bn_mvar0 = relay.const(tvm.nd.array(numpy.ndarray(shape=(64,), dtype="float32"))) c0 = relay.nn.conv2d( data1, conv_layer1_weight, strides=(2, 2), padding=(3, 3, 3, 3), channels=64, kernel_size=(7, 7), data_layout="NHWC", kernel_layout="OHWI", out_layout="NHWC", ) c1 = relay.nn.batch_norm(c0, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0, axis=3) c2 = c1[0] c3 = relay.nn.max_pool2d( c2, pool_size=(3, 3), strides=(2, 2), padding=(1, 1, 1, 1), layout="NHWC", out_layout="NHWC", ) c4 = relay.nn.conv2d( c3, conv_layer2_weight, padding=(1, 1, 1, 1), channels=64, kernel_size=(3, 3), data_layout="NHWC",
kernel_layout="OHWI", out_layout="NHWC", ) c5 = relay.nn.batch_norm(c4, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0, axis=3) c6 = c5[0] c7 = relay.nn.relu(c6) c8 = relay.add(c3, c7) c9 = relay.nn.relu(c8) return relay.Function(relay.analysis.free_vars(c9), c9) conv_layer1_weight = relay.nn.Constant( tvm.nd.array(numpy.ndarray(shape=(64, 7, 7, 3), dtype="float32")) ) conv_layer2_weight = relay.nn.Constant( tvm.nd.array(numpy.ndarray(shape=(64, 3, 3, 64), dtype="float32")) ) x = before_fused(conv_layer1_weight, conv_layer2_weight) x = run_opt_pass(x, transform.InferType()) defused = run_opt_pass(x, transform.DefuseOps()) golden1 = golden_defused(conv_layer1_weight, conv_layer2_weight) golden1 = run_opt_pass(golden1, transform.InferType()) assert tvm.ir.structural_equal(defused, golden1), ( "Actual = \n" + str(defused) + "\nGolden = \n" + str(golden1) ) if __name__ == "__main__": pytest.main([__file__])
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.relay
import transform from tvm.relay.build_module
import bind_params_by_name from tvm.relay.testing
import run_infer_type, create_workload
import tvm.topi.testing
import tvm.testing def run_opt_pass(expr, opt_pass, params=None): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) if params is not None: mod["main"] = bind_params_by_name(mod["main"], params) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def verify_func(func, data, ref_res, rtol=1e-5, atol=1e-7): assert isinstance(data, list) for target, dev in tvm.testing.enabled_targets(): for kind in ["graph", "vm", "debug"]: mod = tvm.ir.IRModule.from_expr(func) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( *data ) tvm.testing.assert_allclose(op_res.numpy(), ref_res, rtol=rtol, atol=atol) @tvm.testing.uses_gpu def test_dynamic_to_static_reshape(): def verify_reshape(shape, newshape, oshape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(newshape, "float32")) z = relay.reshape(x, relay.shape_of(y)) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("reshape") assert "newshape=" in zz.astext() assert zz.checked_type == relay.ty.TensorType(oshape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=newshape).astype("float32") ref_res = np.reshape(x_data, oshape) verify_func(func2, [x_data, y_data], ref_res) verify_reshape((2, 3, 4), (8, 3), (8, 3)) verify_reshape((4, 7), (2, 7, 2), (2, 7, 2)) @tvm.testing.uses_gpu def test_dynamic_to_static_squeeze(): def verify_squeeze(shape, axis, oshape): x = relay.var("x", relay.TensorType(shape, "float32"))
y = relay.var("y", relay.TensorType(axis, "float32")) z = relay.squeeze(x, relay.shape_of(y)) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("squeeze") assert "axis=" in zz.astext() assert zz.checked_type == relay.ty.TensorType(oshape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=axis).astype("float32") ref_res = np.squeeze(x_data, axis) verify_func(func2, [x_data, y_data], ref_res) verify_squeeze((1, 3, 4, 1), (0,), (3, 4, 1)) verify_squeeze((1, 3, 4, 1), (3,), (1, 3, 4)) verify_squeeze((1, 3, 4, 1), (0, 3), (3, 4)) @tvm.testing.uses_gpu def test_dynamic_to_static_double_reshape(): def verify_reshape(shape, newshape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(newshape, "float32")) z = relay.reshape(x, relay.shape_of(y)) z = relay.reshape(z, relay.shape_of(x)) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("reshape") assert "newshape=" in zz.astext() assert zz.checked_type == relay.ty.TensorType(shape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=newshape).astype("float32") verify_func(func2, [x_data, y_data], x_data) verify_reshape((2, 3, 4), (8, 3)) verify_reshape((4, 7), (2, 7, 2)) @tvm.testing.uses_gpu def test_dynamic_to_static_quad_reshape(): def verify_reshape(shape, newshape): x = relay.var("x",
relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(newshape, "float32")) z1 = relay.reshape(x, relay.shape_of(y)) z2 = relay.reshape(z1, relay.shape_of(x)) z3 = relay.reshape(z2, relay.shape_of(z1)) z4 = relay.reshape(z3, relay.shape_of(z2)) func = run_infer_type(relay.Function([x, y], z4)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("reshape") assert "newshape=" in zz.astext() assert zz.checked_type == relay.ty.TensorType(shape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=newshape).astype("float32") verify_func(func2, [x_data, y_data], x_data) verify_reshape((2, 3, 4), (8, 3)) verify_reshape((4, 7), (2, 7, 2)) @tvm.testing.uses_gpu def test_dynamic_to_static_tile(): def verify_tile(shape, reps, oshape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(reps, "float32")) z = relay.tile(x, relay.shape_of(y)) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("tile") assert zz.checked_type == relay.ty.TensorType(oshape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=reps).astype("float32") ref_res = np.tile(x_data, reps) verify_func(func2, [x_data, y_data], ref_res) verify_tile((2, 3, 4), (2, 1, 5), (4, 3, 20)) verify_tile((4, 7), (4, 2), (16, 14)) @tvm.testing.uses_gpu def test_dynamic_to_static_topk(): def verify_topk(k, axis, ret_type,
is_ascend, dtype): shape = (20, 100) x = relay.var("x", relay.TensorType(shape, "float32")) k_var = relay.var("k", relay.TensorType((), "int32")) out = relay.topk(x, k_var, axis, ret_type, is_ascend, dtype) if isinstance(out, relay.expr.TupleWrapper): out = out.astuple() func = relay.Function([x, k_var], out) params = {"k": k} np_data = np.random.uniform(size=shape).astype("float32") if is_ascend: np_indices = np.argsort(np_data, axis=axis) else: np_indices = np.argsort(-np_data, axis=axis) kk = k if k >= 1 else shape[axis] if axis == 0: np_indices = np_indices[:kk, :] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[1]): np_values[:, i] = np_data[np_indices[:, i], i] else: np_indices = np_indices[:, :kk] np_values = np.zeros(np_indices.shape).astype("float32") for i in range(shape[0]): np_values[i, :] = np_data[i, np_indices[i, :]] np_indices = np_indices.astype(dtype) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("topk") for target, dev in tvm.testing.enabled_targets(): if "llvm" not in target: continue for kind in ["graph", "vm", "debug"]: mod = tvm.ir.IRModule.from_expr(func2) op_res = relay.create_executor(kind, mod=mod, device=dev, target=target).evaluate()( np_data ) if ret_type == "both": tvm.testing.assert_allclose(op_res[0].numpy(), np_values) tvm.testing.assert_allclose(op_res[1].numpy(), np_indices) elif ret_type == "values": tvm.test
ing.assert_allclose(op_res.numpy(), np_values) else: tvm.testing.assert_allclose(op_res.numpy(), np_indices) np.random.seed(0) for k in [0, 1, 5]: for axis in [0, -1, 1]: for ret_type in ["both", "values", "indices"]: verify_topk(k, axis, ret_type, True, "int64") verify_topk(k, axis, ret_type, False, "float32") @tvm.testing.uses_gpu def test_dynamic_to_static_broadcast_to(): def verify_broadcast_to(shape, broadcast_shape): x = relay.var("x", relay.TensorType(shape, "float32")) y = relay.var("y", relay.TensorType(broadcast_shape, "float32")) z = relay.broadcast_to(x, shape=relay.shape_of(y)) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("broadcast_to") assert zz.checked_type == relay.ty.TensorType(broadcast_shape, "float32") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") y_data = np.random.uniform(low=-1, high=1, size=broadcast_shape).astype("float32") ref_res = np.broadcast_to(x_data, y_data.shape) verify_func(func2, [x_data, y_data], ref_res) verify_broadcast_to((3, 1), (3, 3)) @tvm.testing.uses_gpu def test_dynamic_to_static_zeros_ones(): def verify_ones_zeros(shape, dtype): for op, ref in [(relay.zeros, np.zeros), (relay.ones, np.ones)]: x = relay.var("x", relay.TensorType(shape, dtype)) y = op(relay.shape_of(x), dtype) func = run_infer_type(relay.Function([x], y)) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic()), transform.InferType(), ) zz = func2.body assert zz.checked_type == relay.ty.TensorType(shape, dtype) x_data = np.random.unifor
m(low=1, high=1, size=shape) ref_res = ref(x_data.shape) verify_func(func2, [x_data], ref_res) verify_ones_zeros((1, 2, 3), "int64") verify_ones_zeros((9, 8, 3, 4), "float32") @tvm.testing.uses_gpu def test_dynamic_to_static_resize2d(): def verify_resize(shape, scale, method, layout): if layout == "NHWC": size = (shape[1] * scale, shape[2] * scale) else: size = (shape[2] * scale, shape[3] * scale) x = relay.var("x", relay.TensorType(shape, "float32")) size_var = relay.var("size", relay.TensorType((len(size),), "float32")) coord_trans = "asymmetric" if method == "nearest_neighbor" else "align_corners" z = relay.image.resize2d( x, size_var, None, layout, method, coordinate_transformation_mode=coord_trans ) params = {"size": np.array(size).astype("float32")} func = run_infer_type(relay.Function([x, size_var], z)) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("image.resize2d") x_data = np.random.uniform(low=-1, high=1, size=shape).astype("float32") ref_res = tvm.topi.testing.resize2d_python( x_data, (scale, scale), layout, method, coord_trans ) for method in ["linear", "nearest_neighbor"]: for layout in ["NCHW", "NHWC"]: verify_resize((1, 4, 4, 4), 2, method, layout) @tvm.testing.uses_gpu def test_dynamic_to_static_one_hot(): def _verify(indices_shape, depth, on_value, off_value, axis, dtype): indices = relay.var("indices", relay.TensorType(indices_shape, "int32")) depth_var = relay.const(depth) on_value_var = relay.var("on_value", relay.TensorType((), "int32")) off_value_var = relay.var("off_value", relay.TensorType((), "int32")) out = relay.one_hot(indices, on_value_var, off_va
lue_var, depth_var, axis, dtype) params = { "on_value": on_value, "off_value": off_value, } func = relay.Function([indices, on_value_var, off_value_var], out) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("one_hot") indices_np = np.random.randint(0, depth, size=indices_shape).astype("int32") out_np = tvm.topi.testing.one_hot(indices_np, on_value, off_value, depth, axis, dtype) verify_func(func2, [indices_np], out_np) _verify((3,), 3, 1, 0, -1, "int32") _verify((3,), 3, 1.0, 0.0, -1, "float32") _verify((2, 2), 5, 2, -2, 0, "int32") _verify((2, 2), 5, 0.5, -0.5, 1, "float32") _verify((3, 2, 4, 5), 6, 1, 0, 1, "int32") _verify((3, 2, 4, 5), 6, 1.0, 0.0, 0, "float32") @tvm.testing.uses_gpu def test_dynamic_to_static_full(): def verify_full(fill_value, fill_shape, dtype): x = relay.var("x", relay.scalar_type(dtype)) y = relay.var("y", relay.TensorType(fill_shape, "int64")) z = relay.full(x, relay.shape_of(y), dtype) func = run_infer_type(relay.Function([x, y], z)) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("full") ref_res = np.full(fill_shape, fill_value).astype(dtype) y_data = np.random.uniform(low=-1, high=1, size=fill_shape).astype("int64") verify_func(func2, [fill_value, y_data], ref_res) verify_full(4, (1, 2, 3, 4), "int32") verify_full(4.0, (1, 2, 8, 10), "float32") def test_dynamic_to_static_upsampling(): def verify_upsampling(data_shape, scale_h_val, scale_w_val, dtype): x = relay.var("x", relay.TensorType(data_shape, dtype)) scale_h = relay.var("scale_h", relay.TensorType(()
, "float32")) scale_w = relay.var("scale_w", relay.TensorType((), "float32")) z = relay.nn.upsampling(x, scale_h, scale_w) params = { "scale_h": scale_h_val, "scale_w": scale_w_val, } func = run_infer_type(relay.Function([x, scale_h, scale_w], z)) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("nn.upsampling") x_data = np.random.uniform(size=data_shape).astype(dtype) ref_res = tvm.topi.testing.resize2d_python( x_data, (scale_h_val, scale_w_val), "NCHW", "nearest_neighbor", "asymmetric" ) verify_func(func2, [x_data], ref_res) verify_upsampling((1, 16, 32, 32), 2, 2, "int8") verify_upsampling((1, 16, 32, 32), 4, 4, "int32") def test_dynamic_to_static_upsampling3d(): def verify_upsampling3d(data_shape, scale_d_val, scale_h_val, scale_w_val, dtype): x = relay.var("x", relay.TensorType(data_shape, dtype)) scale_d = relay.var("scale_d", relay.TensorType((), "float32")) scale_h = relay.var("scale_h", relay.TensorType((), "float32")) scale_w = relay.var("scale_w", relay.TensorType((), "float32")) z = relay.nn.upsampling3d(x, scale_d, scale_h, scale_w) params = { "scale_d": scale_d_val, "scale_h": scale_h_val, "scale_w": scale_w_val, } func = run_infer_type(relay.Function([x, scale_d, scale_h, scale_w], z)) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("nn.upsampling3d") x_data = np.random.uniform(size=data_shape).astype(dtype) ref_res = tvm.topi.testing.resize3d_python( x_data, (scale_d_v
al, scale_h_val, scale_w_val), "NCDHW", "nearest_neighbor", "asymmetric", ) verify_func(func2, [x_data], ref_res) verify_upsampling3d((1, 1, 1, 1, 1), 2, 3, 4, "int8") verify_upsampling3d((5, 7, 8, 10, 32), 3, 2, 2, "int8") verify_upsampling3d((1, 4, 2, 5, 3), 5, 4, 3, "int32") def test_dynamic_to_static_pad(): def verify_pad(data_shape, pad_width_val, pad_val, dtype): x = relay.var("x", relay.TensorType(data_shape, dtype)) pad_width = relay.var( "pad_width", relay.TensorType((len(pad_width_val), len(pad_width_val[0])), "int32") ) z = relay.nn.pad(x, pad_width, pad_val) func = run_infer_type(relay.Function([x, pad_width], z)) params = {"pad_width": np.array(pad_width_val)} func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("nn.pad") x_data = np.random.uniform(size=data_shape).astype(dtype) ref_res = np.pad( x_data, pad_width_val, "constant", constant_values=(((pad_val,) * 2),) * len(data_shape) ) verify_func(func2, [x_data], ref_res) verify_pad((4, 10, 7, 7), ((1, 1), (2, 2), (3, 3), (4, 4)), 2.0, "int32") verify_pad((2, 7), ((1, 4), (2, 2)), 4.0, "float64") def test_dynamic_to_static_strided_slice(): def verify( dshape, begin_val, end_val, strides_val, output, slice_mode="end", test_ref=True, dtype="int32", ): x = relay.var("x", relay.TensorType(dshape, "float32")) ndim = len(dshape) begin_val = begin_val if begin_val else [0] * ndim end_val = end_val if end_val else list(dshape) if strides_val: if len(strides_val) == 1: strides_val = strides_val * ndim else: strides_val = [1] * ndim
x_data = np.random.uniform(size=dshape).astype("float32") ref_res = tvm.topi.testing.strided_slice_python( x_data, begin_val, end_val, strides_val, slice_mode ) data = [x_data, np.array(begin_val), np.array(end_val)] begin = relay.var("begin", relay.TensorType((len(begin_val),), dtype)) end = relay.var("end", relay.TensorType((len(end_val),), dtype)) func_params = [x, begin, end] if strides_val: data.append(np.array(strides_val)) strides = relay.var("strides", relay.TensorType((len(strides_val),), dtype)) z = relay.strided_slice(x, begin=begin, end=end, strides=strides, slice_mode=slice_mode) func_params.append(strides) else: z = relay.strided_slice(x, begin=begin, end=end, slice_mode=slice_mode) func = relay.Function(func_params, z) params = {"begin": begin_val, "end": end_val, "strides": strides_val} func = run_infer_type(func) func2 = run_opt_pass( run_opt_pass(func, transform.DynamicToStatic(), params), transform.InferType() ) assert isinstance(func2.body, relay.Call) assert func2.body.op == relay.op.get("strided_slice") verify_func(func2, [x_data], ref_res) verify((1, 3, 10, 10), [0, 0, 0, 0], [1, 3, 10, 10], [1], (0, 3, 10, 10), dtype="int64") verify( (1, 224, 224, 3), [0, 20, 20, 0], [1, 140, 140, 3], [1, 1, 1, 1], (1, 120, 120, 3), dtype="int64", ) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], [2, 1, 1], (1, 3, 3), dtype="int16") verify((3, 4, 3), [0, 0, 0], [4, -5, 4], [1, -1, 2], (3, 1, 2)) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], None, (2, 3, 3)) verify((3, 4, 3), [1, 1, 0], [4, 1000, 3], None, (2, 3, 3)) verify((3, 4, 3), [1, 1, 0], [4, 4, 4], None, (2, 3, 3)) verify((3, 4, 3), [1, 1, 0], [4, 4, 3], None, (2, 3, 3)) verify((3, 4, 3), [1, -1, 0], [4, -5, 3], [2, -1, 1], (1, 4, 3)) verify((3, 4, 3)
, [1, -1, 0], [2, -3, 3], [1, -1, 1], (1, 2, 3)) verify( (3, 4, 3), [1, 0, 0], [3, -1, 3], [1, 1, 1], (2, 4, 3), slice_mode="size", test_ref=False ) verify((3, 4, 3), [1, 0, 0], [-1, 2, 3], [1, 1, 1], (2, 2, 3), slice_mode="size", test_ref=True) @tvm.testing.uses_gpu def test_dyn_to_static_sparse_to_dense(): def verify_sparse_to_dense(sparse_indices, sparse_values, default_value, output_shape, xpected): sparse_indices_data = np.array(sparse_indices) sparse_values_data = np.array(sparse_values) default_value_data = np.array(default_value) output_shape_data = np.array(output_shape) a = relay.var( "a", relay.TensorType(sparse_indices_data.shape, str(sparse_indices_data.dtype)) ) b = relay.var( "b", relay.TensorType(sparse_values_data.shape, str(sparse_values_data.dtype)) ) output_shape_const = relay.const(output_shape_data) if default_value is None: args = [a, b] d = relay.sparse_to_dense(a, output_shape_const, b) else: c = relay.var( "c", relay.TensorType(default_value_data.shape, str(default_value_data.dtype)) ) args = [a, b, c] d = relay.sparse_to_dense(a, output_shape_const, b, c) zz = run_infer_type(d) assert len(zz.checked_type.shape) == len(output_shape) func = relay.Function(args, d) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) assert isinstance(func2.body, relay.Call) assert func2.body.op == relay.op.get("sparse_to_dense") if default_value is None: arguments = [sparse_indices_data, sparse_values_data] else: arguments = [sparse_indices_data, sparse_values_data, default_value_data] verify_func(func2, arguments, xpected) verify_sparse_to_dense(1, 3, 0, [5], [0, 3, 0, 0, 0]) verify_sparse_to_dense([0, 1, 4], [3, 3, 3], 0, [5], [3,
3, 0, 0, 3]) verify_sparse_to_dense( [[0, 0], [1, 2]], [1, 2], 0, [3, 4], [[1, 0, 0, 0], [0, 0, 2, 0], [0, 0, 0, 0]] ) verify_sparse_to_dense( [[0, 0, 0], [1, 2, 3]], [1, 2], 4, [2, 3, 4], [[[1, 4, 4, 4], [4, 4, 4, 4], [4, 4, 4, 4]], [[4, 4, 4, 4], [4, 4, 4, 4], [4, 4, 4, 2]]], ) verify_sparse_to_dense( [0, 1, 4], [3.1, 3.1, 3.1], 3.5, [5], [3.1, 3.1, 3.5, 3.5, 3.1] ) verify_sparse_to_dense(1, 3, None, [5], [0, 3, 0, 0, 0]) @tvm.testing.uses_gpu def test_dynamic_to_static_dynamic_rank(): def verify_full(fill_value, fill_shape, dtype): x = relay.var("x", relay.scalar_type(dtype)) y = relay.var("y", relay.TensorType(fill_shape, "int64")) shape = relay.shape_of(y) shape = relay.strided_slice(shape, [0], relay.shape_of(shape)) z = relay.full(x, shape, dtype) func = relay.Function([x, y], z) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("full") ref_res = np.full(fill_shape, fill_value).astype(dtype) y_data = np.random.uniform(low=-1, high=1, size=fill_shape).astype("int64") verify_func(func2, [fill_value, y_data], ref_res) verify_full(4, (1, 2, 3, 4), "int32") verify_full(4.0, (1, 2, 8, 10), "float32") @tvm.testing.uses_gpu def test_dynamic_to_static_dynamic_if(): x = relay.var("x", relay.TensorType((2, 2), "int64")) cond = relay.const(1) iff = relay.If(cond, relay.reshape(x, [1, 4]), relay.reshape(x, (4, 1))) func = relay.Function([x], iff) func2 = run_opt_pass(run_opt_pass(func, transform.DynamicToStatic()), transform.InferType()) zz = func2.body assert isinstance(zz, relay.Call) assert zz.op == relay.op.get("reshape") x_data = np.random.uniform(low=-1, high=1, size=(2, 2)).astype("int64") verify_func(func2, [x_data], x_data.reshape(1,
4)) if __name__ == "__main__": pytest.main([__file__])
"""Test eliminate common subexpr pass"""
import tvm from tvm
import te from tvm
import relay from tvm.relay.op
import register_alter_op_layout from tvm.relay
import transform, analysis def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_simple(): def before(): x = relay.var("x", shape=(1, 16)) y1 = relay.nn.relu(x) y2 = relay.nn.relu(x) y1 = relay.add(y1, relay.const(1.0, "float32")) y2 = relay.add(y2, relay.const(1.0, "float32")) y = relay.add(y1, y2) f = relay.Function([x], y) return f def expected(): x = relay.var("x", shape=(1, 16)) y = relay.nn.relu(x) y = relay.add(y, relay.const(1.0, "float32")) y = relay.add(y, y) f = relay.Function([x], y) return run_opt_pass(f, transform.InferType()) z = before() z = run_opt_pass(z, transform.EliminateCommonSubexpr()) assert tvm.ir.structural_equal(z, expected()) def test_callback(): def before(): x = relay.var("x", shape=(1, 16)) y1 = relay.nn.relu(x) y2 = relay.nn.relu(x) y1 = relay.add(y1, relay.const(1.0, "float32")) y2 = relay.add(y2, relay.const(1.0, "float32")) y = relay.add(y1, y2) f = relay.Function([x], y) return f def expected(): x = relay.var("x", shape=(1, 16)) y = relay.nn.relu(x) y1 = relay.add(y, relay.const(1.0, "float32")) y2 = relay.add(y, relay.const(1.0, "float32")) y = relay.add(y1, y2) f = relay.Function([x], y) return run_opt_pass(f, transform.InferType()) def fskip(expr): if isinstance(expr, relay.expr.Call) and expr.op.name == "add": return True return False z = before() z = run_opt_pass(z, transform.EliminateCommonSubexpr(fskip)) assert tvm.ir.structural_equal(z, expected()) def test_tuple_get_time(): def before(): x = relay.var("x", shape=(1, 16, 1, 1)) var = relay.var("v
ar", shape=(16,)) mean = relay.var("mean", shape=(16,)) beta = relay.var("beta", shape=(16,)) gamma = relay.var("gamma", shape=(16,)) BN = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5) T1 = BN[0] T2 = BN[0] add = T1 + T2 f = relay.Function([x, var, mean, beta, gamma], add) return f def expected(): x = relay.var("x", shape=(1, 16, 1, 1)) var = relay.var("var", shape=(16,)) mean = relay.var("mean", shape=(16,)) beta = relay.var("beta", shape=(16,)) gamma = relay.var("gamma", shape=(16,)) BN = relay.op.nn.batch_norm(x, gamma, beta, mean, var, epsilon=1e-5) T1 = BN[0] add = T1 + T1 f = relay.Function([x, var, mean, beta, gamma], add) return run_opt_pass(f, transform.InferType()) z = before() z = run_opt_pass(z, transform.EliminateCommonSubexpr()) assert tvm.ir.structural_equal(z, expected()) if __name__ == "__main__": test_simple() test_callback()
import os
import numpy as np
import tvm from tvm
import te from tvm
import relay
import tvm.relay.transform as _transform def test_eta_expand_global_var(): mod = tvm.parser.fromtext( r""" def @aux(%x: Tensor[(), int32]) -> Tensor[(), int32] { %x } def @main() -> fn(Tensor[(), int32]) -> Tensor[(), int32] { @aux } """ ) seq = tvm.transform.Sequential([_transform.EtaExpand(expand_global_var=True)]) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) expected = tvm.parser.fromtext( r""" def @aux(%x: Tensor[(), int32]) -> Tensor[(), int32] { %x } def @main() -> fn(Tensor[(), int32]) -> Tensor[(), int32] { fn (%x: Tensor[(), int32]) -> Tensor[(), int32] { @aux(%x) } } """ ) tvm.ir.assert_structural_equal(mod["main"], expected["main"], map_free_vars=True) def test_eta_expand_constructor(): mod = tvm.parser.fromtext( r""" type List[A] { Cons(A, List[A]), Nil, } def @main[A]() -> fn(A, List[A]) -> List[A] { Cons } """ ) seq = tvm.transform.Sequential( [_transform.EtaExpand(expand_constructor=True), _transform.InferType()] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) expected = tvm.parser.fromtext( r""" type List[A] { Cons(A, List[A]), Nil, } def @main[A]() -> fn(A, List[A]) -> List[A] { fn [A](%x: A, %xs: List[A]) -> List[A] { Cons(%x, %xs) } } """ ) tvm.ir.assert_structural_equal(mod["main"], expected["main"], map_free_vars=True) if __name__ == "__main__": test_eta_expand_global_var() test_eta_expand_constructor()
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay from tvm.relay.transform
import fake_quantization_to_integer def compare_fq_to_int(expr, args, allow_rounding_error=False): mod = tvm.IRModule.from_expr(expr) mod = tvm.relay.transform.InferType()(mod) mod_int = tvm.relay.transform.FakeQuantizationToInteger()(mod) assert not tvm.ir.structural_equal(mod, mod_int) result = ( relay.create_executor("vm", mod=mod, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) result_int = ( relay.create_executor("vm", mod=mod_int, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) if allow_rounding_error: assert np.all(np.abs(result.astype("int32") - result_int.astype("int32")) <= 1) else: assert np.array_equal(result, result_int) def test_fake_quantize_conv(): for out_dtype in ["int8", "uint8"]: x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.conv2d( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5], ) op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") compare_fq_to_int(op, [x_np, w_np]) def test_fake_quantize_conv_per_channel(): for out_dtype in ["int8", "uint8"]: x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") one = relay.const([1.0] * 16) zero_point = relay.const([np.random.randint(0, 255)] * 16) op = relay.op.nn.conv2d( relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(0)), relay.qnn.op.dequantize( w, relay.const(np.random.random([16]).astype("floa