text
stringlengths
1
2.05k
t32")), zero_point, axis=0 ), kernel_size=[5, 5], channels=16, ) op = relay.qnn.op.quantize(op, relay.const(1.0), relay.const(0), out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") compare_fq_to_int(op, [x_np, w_np], allow_rounding_error=True) def test_fake_quantize_transposeconv(): for out_dtype in ["int8", "uint8"]: x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") w = relay.var("w", shape=[3, 16, 5, 5], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.conv2d_transpose( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5], data_layout="NCHW", kernel_layout="IOHW", ) op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") w_np = np.random.randint(-128, 127, size=[3, 16, 5, 5], dtype="int8") compare_fq_to_int(op, [x_np, w_np]) def test_fake_quantize_dense(): for out_dtype in ["int8", "uint8"]: x = relay.var("x", shape=[128, 64], dtype="int8") w = relay.var("w", shape=[256, 64], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.dense( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), ) op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[128, 64], dtype="int8") w_np = np.random.randint(-128, 127, size=[256, 64], dtype="int8") compare_fq_to_int(op, [x_np, w_np]) def test_fake_quantize_dense_per_channel(): for out_dtype in ["int8", "uint8"]: x = re
lay.var("x", shape=[128, 64], dtype="int8") w = relay.var("w", shape=[256, 64], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.dense( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize( w, relay.const(np.random.random([256]).astype("float32")), relay.const([0] * 256), axis=0, ), units=256, ) op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[128, 64], dtype="int8") w_np = np.random.randint(-128, 127, size=[256, 64], dtype="int8") compare_fq_to_int(op, [x_np, w_np], allow_rounding_error=True) def test_fake_quantize_batch_matmul(): for out_dtype in ["int8", "uint8"]: x = relay.var("x", shape=[1, 128, 64], dtype="int8") w = relay.var("w", shape=[1, 256, 64], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.batch_matmul( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), ) op = relay.qnn.op.quantize(op, one, zero, out_dtype=out_dtype) x_np = np.random.randint(-128, 127, size=[1, 128, 64], dtype="int8") w_np = np.random.randint(-128, 127, size=[1, 256, 64], dtype="int8") compare_fq_to_int(op, [x_np, w_np]) def test_fake_transpose_quantize_conv(): x = relay.var("x", shape=[1, 224, 224, 3], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") one = relay.const(1.0) zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) x = relay.transpose(x, [0, 3, 1, 2]) op = relay.op.nn.conv2d( x, relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5] ) op = relay.qnn.op.quantize(op, one, zero) x_np = np.random.randint(-128, 127, size=[1, 224, 224, 3],
dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") compare_fq_to_int(op, [x_np, w_np]) @pytest.mark.parametrize("const_bias", [False, True]) def test_fake_transpose_quantize_conv_bias_add(const_bias): x = relay.var("x", shape=[1, 224, 224, 3], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") one = relay.const(1.0) zero = relay.const(0) if const_bias: bias = relay.const(np.random.random(16).astype("float32")) else: bias = relay.qnn.op.dequantize(relay.var("bias", shape=[16], dtype="int32"), one, zero) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) x = relay.transpose(x, [0, 3, 1, 2]) op = relay.op.nn.conv2d( x, relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5] ) op = relay.op.nn.bias_add(op, bias) op = relay.qnn.op.quantize(op, one, zero) x_np = np.random.randint(-128, 127, size=[1, 224, 224, 3], dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") bias_np = np.random.randint(-32768, 32767, size=[16], dtype="int32") args = [x_np, w_np] if not const_bias: args.append(bias_np) compare_fq_to_int(op, args) def test_fake_transpose_quantize_conv_bias_add_per_channel(): x = relay.var("x", shape=[1, 224, 224, 3], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") bias = relay.var("bias", shape=[16], dtype="int32") one = relay.const(1.0) zero = relay.const(0) w_scale = (np.random.random([16]).astype("float32") - 0.5) / 10 + 0.5 noise = (np.random.random([16]).astype("float32") - 0.5) * 1e-15 w_zp = relay.const([0] * 16) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) x = relay.transpose(x, [0, 3, 1, 2]) op = relay.op.nn.conv2d( x, relay.qnn.op.dequantize(w, relay.const(w_scale), w_zp, axis=0), kernel_size=[5, 5] ) op = relay.op.nn.bias_add( op, relay.qnn.op.dequantize(bias, relay.const(2.0 * w_scale + no
ise), w_zp, axis=0) ) op = relay.qnn.op.quantize(op, one, zero) x_np = np.random.randint(-128, 127, size=[1, 224, 224, 3], dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") bias_np = np.random.randint(-32768, 32767, size=[16], dtype="int32") compare_fq_to_int(op, [x_np, w_np, bias_np], allow_rounding_error=True) def test_fake_transpose_quantize_conv_bias_add_mismatch(): x = relay.var("x", shape=[1, 224, 224, 3], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") bias = relay.var("bias", shape=[16], dtype="int32") one = relay.const(1.0) two = relay.const(2.0) zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) x = relay.transpose(x, [0, 3, 1, 2]) op = relay.op.nn.conv2d( x, relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5] ) op = relay.op.nn.bias_add(op, relay.qnn.op.dequantize(bias, two, zero)) op = relay.qnn.op.quantize(op, one, zero) x_np = np.random.randint(-128, 127, size=[1, 224, 224, 3], dtype="int8") w_np = np.random.randint(-128, 127, size=[16, 3, 5, 5], dtype="int8") bias_np = np.random.randint(-32768, 32767, size=[16], dtype="int32") compare_fq_to_int(op, [x_np, w_np, bias_np]) def test_fake_quantize_maxpool(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.nn.max_pool2d(x, [3, 3]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) @pytest.mark.parametrize("output_size", [None, 1]) def test_fake_quantize_adaptive_avgpool1d(output_size): x = relay.var("x", shape=[1, 128, 768], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(-12)) op = relay.op.nn.adaptive_avg_pool1d(x, output_size) op = relay.qnn.op.quantize(op, relay.const(0.
5), relay.const(10)) x_np = np.random.randint(-128, 127, size=[1, 128, 768], dtype="int8") compare_fq_to_int(op, [x_np], True) def test_fake_quantize_avgpool(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(-12)) op = relay.op.nn.avg_pool2d(x, [3, 3]) op = relay.qnn.op.quantize(op, relay.const(0.5), relay.const(10)) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np], True) def test_fake_quantize_global_avg_pool(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(-12)) op = relay.op.nn.global_avg_pool2d(x) op = relay.qnn.op.quantize(op, relay.const(0.5), relay.const(10)) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np], True) class TestUnaryQNNOp: def helper_test_fake_quantize_unary_op(self, fp32_op, pos_values=False): for dtype in ["int8", "uint8"]: x = relay.var("x", shape=[1, 3, 3, 3], dtype=dtype) zero = -128 if dtype == "int8" else 0 if pos_values: input_mid_point = relay.const(zero) output_mid_point = relay.const(zero) else: input_mid_point = relay.const(np.random.randint(0, 255) + zero) output_mid_point = relay.const(np.random.randint(0, 255) + zero) input_scale = relay.const(np.random.rand()) output_scale = relay.const(np.random.rand()) x = relay.qnn.op.dequantize(x, input_scale, input_mid_point) op = fp32_op(x) op = relay.qnn.op.quantize(op, output_scale, output_mid_point, out_dtype=dtype) x_np = np.random.randint(0 + zero, 255 + zero, size=[1, 3, 3, 3], dtype=dtype) compare_fq_to_int(op, [x_np], True) def test_sqrt(self): self.helper_test_fake_quantize_una
ry_op(fp32_op=relay.sqrt, pos_values=True) def test_rsqrt(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.rsqrt, pos_values=True) def test_exp(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.exp) def test_erf(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.erf) def test_sigmoid(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.sigmoid) def test_tanh(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.tanh) def test_log(self): self.helper_test_fake_quantize_unary_op(fp32_op=relay.log, pos_values=True) def test_fake_quantize_reshape(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.reshape(x, [1, 3, -1]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_image_resize_bilinear(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.image.resize2d(x, size=[4, 4], method="linear") op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np], allow_rounding_error=True) def test_fake_quantize_abs(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.abs(x) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_expand_dims(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const
(2.0), zero) op = relay.op.expand_dims(x, axis=1) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_squeeze(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.squeeze(x, axis=[0]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_strided_slice(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.strided_slice(x, begin=[0, 0, 0, 0], end=[1, 1, 112, 112]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_split(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.split(x, axis=3, indices_or_sections=2) op = relay.qnn.op.quantize(op[0], relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) op = relay.op.split(x, axis=3, indices_or_sections=[56, 112, 168]) op = relay.qnn.op.quantize(op[1], relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_batch_flatten(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.nn.batch_flatten(x) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, si
ze=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_transpose_reshape(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.transpose(x, [1, 0, 2, 3]) op = relay.op.reshape(op, [3, -1]) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_concat(): zero = relay.const(0) inputs = [] for i in range(4): inputs.append( relay.qnn.op.dequantize( relay.var("x%d" % i, shape=[1, 4], dtype="int8"), relay.const(i + 0.5), zero ) ) concat = relay.op.concatenate(inputs, axis=1) out = relay.qnn.op.quantize(concat, relay.const(3.5), zero) inputs_np = [] for i in range(4): inputs_np.append(np.random.randint(-128, 127, size=[1, 4], dtype="int8")) compare_fq_to_int(out, inputs_np) @pytest.mark.parametrize("k", [0, 1, 5]) @pytest.mark.parametrize("axis", [0, -1, 1]) @pytest.mark.parametrize("is_ascend", [True, False]) @pytest.mark.parametrize("dtype", ["int8", "uint8"]) def test_fake_quantize_topk(k, axis, is_ascend, dtype): x = relay.var("x", shape=[20, 100], dtype=dtype) zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.topk(x, k, axis, "values", is_ascend, "float32") op = relay.qnn.op.quantize(op, relay.const(2.0), zero, out_dtype=dtype) x_np = np.random.randint(0, 127, size=[20, 100], dtype=dtype) compare_fq_to_int(op, [x_np]) def test_fake_quantize_clip(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(114)) op = relay.op.clip(x, 0, 6) op = relay.qnn.op.quantize(op, relay.const(2.0), relay.const(114), out_dtype="uint8") x_np = np.random.randint(0, 255, size=[1, 3, 224,
224], dtype="uint8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_clip_per_channel(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize( x, relay.const([1.0, 2.0, 3.0]), relay.const([96, 114, 128]), axis=1 ) op = relay.op.clip(x, 0, 6) op = relay.qnn.op.quantize( op, relay.const([1.0, 2.0, 3.0]), relay.const([96, 114, 128]), out_dtype="uint8", axis=1 ) x_np = np.random.randint(0, 255, size=[1, 3, 224, 224], dtype="uint8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_relu(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(114)) op = relay.op.nn.relu(x) op = relay.qnn.op.quantize(op, relay.const(2.0), relay.const(114), out_dtype="uint8") x_np = np.random.randint(0, 255, size=[1, 3, 224, 224], dtype="uint8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_mean(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(114)) op = relay.op.mean(x) op = relay.qnn.op.quantize(op, relay.const(2.0), relay.const(114), out_dtype="uint8") x_np = np.random.randint(0, 255, size=[1, 3, 224, 224], dtype="uint8") compare_fq_to_int(op, [x_np], allow_rounding_error=True) def test_fake_quantize_relu_per_channel(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize( x, relay.const([1.0, 2.0, 3.0]), relay.const([96, 114, 128]), axis=1 ) op = relay.op.nn.relu(x) op = relay.qnn.op.quantize( op, relay.const([1.0, 2.0, 3.0]), relay.const([96, 114, 128]), out_dtype="uint8", axis=1 ) x_np = np.random.randint(0, 255, size=[1, 3, 224, 224], dtype="uint8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_leaky_relu(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="uint8") x = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(114))
op = relay.op.nn.leaky_relu(x, 0.1) op = relay.qnn.op.quantize(op, relay.const(2.0), relay.const(114), out_dtype="uint8") x_np = np.random.randint(0, 255, size=[1, 3, 224, 224], dtype="uint8") compare_fq_to_int(op, [x_np], True) @pytest.mark.parametrize( "operator", [relay.op.add, relay.op.multiply, relay.op.subtract, relay.op.minimum, relay.op.maximum], ) def test_fake_quantize_binary(operator): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(0.1), relay.const(0)) y = relay.var("y", shape=[1, 3, 224, 224], dtype="int8") y = relay.qnn.op.dequantize(y, relay.const(0.2), relay.const(0)) op = operator(x, y) if operator == relay.op.multiply: out_scale = relay.const(20.0) else: out_scale = relay.const(0.1) op = relay.qnn.op.quantize(op, out_scale, relay.const(0), out_dtype="int8") x_np = np.random.randint(-25, 25, size=[1, 3, 224, 224], dtype="int8") y_np = np.random.randint(-25, 25, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np, y_np]) @pytest.mark.parametrize( "operator", [relay.op.add, relay.op.multiply, relay.op.subtract, relay.op.minimum, relay.op.maximum], ) def test_fake_quantize_binary_per_channel(operator): def verify_binary_per_channel(lhs_scale, rhs_scale, lhs_zp, rhs_zp, out_zp, lhs_axis, rhs_axis): if operator == relay.op.multiply: out_scale = relay.const(2.0) rhs_axis = lhs_axis else: out_scale = relay.const(0.1) x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(lhs_scale), relay.const(lhs_zp), axis=lhs_axis) y = relay.var("y", shape=[1, 3, 224, 224], dtype="int8") y = relay.qnn.op.dequantize(y, relay.const(rhs_scale), relay.const(rhs_zp), axis=rhs_axis) op = operator(x, y) op = relay.qnn.op.quantize(op, out_scale, relay.const(out_zp), out_dtype="int8") x_np = np.rando
m.randint(-25, 25, size=[1, 3, 224, 224], dtype="int8") y_np = np.random.randint(-25, 25, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np, y_np], allow_rounding_error=True) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 3), rhs_scale=np.random.uniform(1.0, 5.0, 3), lhs_zp=0, rhs_zp=0, out_zp=0, lhs_axis=1, rhs_axis=1, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 3), rhs_scale=np.random.uniform(1.0, 5.0, 3), lhs_zp=np.random.randint(1, 3), rhs_zp=np.random.randint(1, 3), out_zp=0, lhs_axis=1, rhs_axis=1, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 3), rhs_scale=np.random.uniform(1.0, 5.0, 3), lhs_zp=np.random.randint(1, 3), rhs_zp=np.random.randint(1, 3), out_zp=np.random.randint(1, 3), lhs_axis=1, rhs_axis=1, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 224), rhs_scale=np.random.uniform(1.0, 5.0, 224), lhs_zp=np.random.randint(1, 3), rhs_zp=np.random.randint(1, 3), out_zp=np.random.randint(1, 3), lhs_axis=-1, rhs_axis=-1, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 224), rhs_scale=np.random.uniform(1.0, 5.0, 224), lhs_zp=0, rhs_zp=0, out_zp=0, lhs_axis=2, rhs_axis=3, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 224), rhs_scale=np.random.uniform(1.0, 5.0, 224), lhs_zp=np.random.randint(1, 3), rhs_zp=np.random.randint(1, 3), out_zp=0, lhs_axis=2, rhs_axis=3, ) verify_binary_per_channel( lhs_scale=np.random.uniform(1.0, 5.0, 224), rhs_scale=np.random.uniform(1.0, 5.0, 224), lhs_zp=np.random.randint(1, 3), rhs_zp=np.random.randint(1
, 3), out_zp=np.random.randint(1, 3), lhs_axis=2, rhs_axis=3, ) @pytest.mark.parametrize( "operator", [ relay.op.add, relay.op.multiply, relay.op.subtract, relay.op.minimum, relay.op.maximum, ], ) def test_fake_quantize_binary_const(operator): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(0.1), relay.const(10)) y = relay.const(1.0) op = operator(x, y) op = relay.qnn.op.quantize(op, relay.const(0.1), relay.const(10), out_dtype="int8") x_np = np.random.randint(-25, 25, size=[1, 3, 224, 224], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_subtract_different_output_zp(): for dtype in ["uint8"]: x = relay.var("x", shape=[1, 128, 128, 3], dtype=dtype) x = relay.qnn.op.dequantize(x, relay.const(0.1), relay.const(0), axis=1) y = relay.const(0.5) op = relay.subtract(x, y) op = relay.transpose(op, axes=[0, 3, 1, 2]) op = relay.qnn.op.quantize(op, relay.const(0.2), relay.const(128), out_dtype=dtype, axis=1) x_np = np.random.randint(0, 255, size=[1, 128, 128, 3], dtype=dtype) compare_fq_to_int(op, [x_np], True) def test_fake_quantize_pad(): x = relay.var("x", shape=[1, 383, 128], dtype="int8") x = relay.qnn.op.dequantize(x, relay.const(1.0), relay.const(10)) op = relay.op.nn.pad(x, [[0, 0], [0, 1], [0, 0]], 0.0) op = relay.qnn.op.quantize(op, relay.const(1.0), relay.const(10), out_dtype="int8") x_np = np.random.randint(-25, 25, size=[1, 383, 128], dtype="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_depth_to_space(): x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) op = relay.op.nn.depth_to_space(x, 4) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 224, 224], d
type="int8") compare_fq_to_int(op, [x_np]) def test_fake_quantize_max_min(): def run_test_case(partial_func): x = relay.var("x", shape=[1, 3, 10, 10], dtype="int8") zero = relay.const(0) x = relay.qnn.op.dequantize(x, relay.const(2.0), zero) x = relay.op.nn.depth_to_space(x, 4) op = partial_func(x) op = relay.qnn.op.quantize(op, relay.const(2.0), zero) x_np = np.random.randint(-128, 127, size=[1, 3, 10, 10], dtype="int8") compare_fq_to_int(op, [x_np]) run_test_case(relay.op.max) run_test_case(relay.op.min) run_test_case(lambda x: relay.op.max(x, axis=1)) run_test_case(lambda x: relay.op.min(x, axis=1)) def test_fq_avg_pool_conv2d(): dtype = "uint8" shape_x = [1, 4, 24, 24] shape_w = [8, 4, 1, 1] x = relay.var("x", shape=shape_x, dtype=dtype) w = relay.var("w", shape=shape_w, dtype=dtype) zero = relay.const(0) one = relay.const(1.0) op0 = relay.qnn.op.dequantize(x, relay.const(0.64), relay.const(2)) op1 = relay.op.nn.avg_pool2d(op0, [3, 3]) op2 = relay.qnn.op.dequantize(w, relay.const(0.5), relay.const(10)) op3 = relay.op.nn.conv2d(op1, op2, kernel_size=[1, 1]) expr = relay.qnn.op.quantize(op3, one, zero, out_dtype="uint8") x_np = np.random.randint(0, 255, size=shape_x, dtype=dtype) w_np = np.random.randint(0, 255, size=shape_w, dtype=dtype) compare_fq_to_int(expr, [x_np, w_np]) def test_fq_hard_fail(): @tvm.ir.register_op_attr("nn.conv2d", "FTVMFakeQuantizationToInteger", level=11) def conv2d(expr, type_map): raise NotImplementedError x = relay.var("x", shape=[1, 3, 224, 224], dtype="int8") w = relay.var("w", shape=[16, 3, 5, 5], dtype="int8") one = relay.const(1.0) zero = relay.const(0) op = relay.op.nn.conv2d( relay.qnn.op.dequantize(x, relay.const(2.0), zero), relay.qnn.op.dequantize(w, relay.const(0.5), zero), kernel_size=[5, 5], ) op = relay.qnn.op.quantize(op,
one, zero, out_dtype="int8") mod = tvm.IRModule.from_expr(op) mod = tvm.relay.transform.InferType()(mod) mod_int = tvm.relay.transform.FakeQuantizationToInteger(hard_fail=False)(mod) assert tvm.ir.structural_equal(mod_int, mod) with pytest.raises(Exception): mod_int = tvm.relay.transform.FakeQuantizationToInteger(hard_fail=True)(mod) def compare_expected_fq_qat_to_int(expr, expected_expr, args, allow_rounding_error=False): mod = tvm.IRModule.from_expr(expr) mod_def = tvm.relay.transform.InferType()(mod) mod_int = tvm.relay.transform.FakeQuantizationToInteger(False, True)(mod_def) mod_exp = tvm.relay.transform.InferType()(tvm.IRModule.from_expr(expected_expr)) assert not tvm.ir.structural_equal(mod, mod_int) assert tvm.ir.structural_equal(mod_int, mod_exp) result_def = ( relay.create_executor("vm", mod=mod_def, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) result_int = ( relay.create_executor("vm", mod=mod_int, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) result_exp = ( relay.create_executor("vm", mod=mod_exp, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) if allow_rounding_error: assert np.all(np.abs(result_def.astype("int32") - result_int.astype("int32")) <= 1) else: assert np.array_equal(result_def, result_int) assert np.array_equal(result_int, result_exp) def test_fq_qat_op_positive_part(): shape_x = [1, 4, 2] shape_w = [1, 4, 2] a = relay.var("a", shape=shape_x, dtype="int8") b = relay.var("b", shape=shape_w, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.qnn.op.dequantize(b, relay.const(6.0), relay.const(0)) op2 = relay.op.nn.batch_matmul(op0, op1) op3 = relay.op.add(op2, relay.const(1.0)) expr = relay.op.erf(op3) op0 = relay.qnn.op.qnn.batch_matmul( a, b, relay.const(0), re
lay.const(0), relay.const(2.0), relay.const(6.0) ) op1 = relay.qnn.op.qnn.dequantize(op0, relay.const(12.0), relay.const(0)) op2 = relay.op.add(op1, relay.const(1.0)) expected_expr = relay.op.erf(op2) x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np, w_np]) def test_fq_qat_negative_all(): shape_x = [1, 4, 2] shape_w = [1, 4, 2] a = relay.var("a", shape=shape_x, dtype="int8") b = relay.var("b", shape=shape_w, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.qnn.op.dequantize(b, relay.const(6.0), relay.const(0)) op2 = relay.op.add(op1, relay.const(1.0)) op3 = relay.op.nn.batch_matmul(op0, op2) expr = relay.op.erf(op3) expected_expr = expr x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np, w_np]) def test_fq_qat_positive_single(): shape_x = [1, 4, 2] shape_w = [1, 4, 2] a = relay.var("a", shape=shape_x, dtype="int8") b = relay.var("b", shape=shape_w, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.qnn.op.dequantize(b, relay.const(6.0), relay.const(0)) expr = relay.op.nn.batch_matmul(op0, op1) op0 = relay.qnn.op.qnn.batch_matmul( a, b, relay.const(0), relay.const(0), relay.const(2.0), relay.const(6.0) ) expected_expr = relay.qnn.op.qnn.dequantize(op0, relay.const(12.0), relay.const(0)) x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np, w_np]) def test_fq_qat_positive_nothing_to_do(): shape_x = [1, 4, 2] shape_w = [1, 4, 2] a = relay.var("a", shape=shap
e_x, dtype="int8") b = relay.var("b", shape=shape_w, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.qnn.op.dequantize(b, relay.const(6.0), relay.const(0)) op2 = relay.op.nn.batch_matmul(op0, op1) op3 = relay.op.add(op2, relay.const(1.0)) expr = relay.qnn.op.quantize(op3, relay.const(1.0), relay.const(0), out_dtype="int8") op0 = relay.qnn.op.batch_matmul( a, b, relay.const(0), relay.const(0), relay.const(2.0), relay.const(6.0) ) op1 = relay.qnn.op.quantize( relay.const(1.0), relay.const(12.0), relay.const(0), out_dtype="int32" ) op2 = relay.qnn.op.add( op0, op1, relay.const(12.0), relay.const(0), relay.const(12.0), relay.const(0), relay.const(12.0), relay.const(0), ) expected_expr = relay.qnn.op.requantize( op2, relay.const(12.0), relay.const(0), relay.const(1.0), relay.const(0), out_dtype="int8" ) x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np, w_np]) def test_fq_qat_positive_couple(): shape_x = [1, 2, 4] shape_w = [2] a = relay.var("a", shape=shape_x, dtype="int8") b = relay.var("b", shape=shape_w, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.qnn.op.dequantize(b, relay.const(6.0), relay.const(0)) op2 = relay.op.reshape(op0, (1, 4, 2)) op3 = relay.op.broadcast_to(op1, (2, 2, 2)) op4 = relay.op.nn.batch_matmul(op2, op3) expr = relay.op.erf(op4) op0 = relay.op.reshape(a, (1, 4, 2)) op1 = relay.op.broadcast_to(b, (2, 2, 2)) op3 = relay.qnn.op.qnn.batch_matmul( op0, op1, relay.const(0), relay.const(0), relay.const(2.0), relay.const(6.0) ) op4 = relay.qnn.op.qnn.dequantize(op3, relay.const(12.0), relay.const(0)) expected_expr = relay.op.erf(op4) x_n
p = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np, w_np]) def test_fq_positive_single_arg_part(): shape_x = [1, 2, 4] a = relay.var("a", shape=shape_x, dtype="int8") op0 = relay.qnn.op.dequantize(a, relay.const(2.0), relay.const(0)) op1 = relay.op.reshape(op0, (1, 4, 2)) expr = relay.op.erf(op1) op0 = relay.op.reshape(a, (1, 4, 2)) op1 = relay.qnn.op.dequantize(op0, relay.const(2.0), relay.const(0)) expected_expr = relay.op.erf(op1) x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np]) def test_fq_qat_intermediate_infertype(): shape_x = [1, 2, 4] x = relay.var("x", shape=shape_x, dtype="float32") const_0 = relay.const(np.random.uniform(size=[1, 4, 2]).astype("float32")) op0 = relay.qnn.op.quantize(x, relay.const(17.0), relay.const(0), out_dtype="int8") op1 = relay.qnn.op.dequantize(op0, relay.const(17.0), relay.const(0)) op2 = relay.op.reshape(op1, (1, 4, 2)) op3 = relay.qnn.op.quantize(op2, relay.const(10.0), relay.const(0), out_dtype="int8") op4 = relay.qnn.op.quantize(const_0, relay.const(1.0), relay.const(8), out_dtype="int8") op5 = relay.qnn.op.dequantize(op3, relay.const(10.0), relay.const(0)) op6 = relay.qnn.op.dequantize(op4, relay.const(4.0), relay.const(9)) op7 = relay.op.nn.batch_matmul(op5, op6) expr = relay.op.add(op7, relay.const(5.0)) op0 = relay.qnn.op.quantize(x, relay.const(17.0), relay.const(0), out_dtype="int8") op1 = relay.op.reshape(op0, (1, 4, 2)) op2 = relay.qnn.op.requantize( op1, relay.const(17.0), relay.const(0), relay.const(10.0), relay.const(0), out_dtype="int8" ) op3 = relay.qnn.op.quantize(const_0, relay.const(1.0), relay.const(8), out_dtype="int8") op4 = relay.qnn.op.batch_matmul( op2, op3, relay.const(0), relay.const(9), relay.co
nst(10.0), relay.const(4.0) ) op5 = relay.qnn.op.dequantize(op4, relay.const(40.0), relay.const(0)) expected_expr = relay.op.add(op5, relay.const(5.0)) x_np = np.random.randint(-128, 127, size=shape_x, dtype="int32").astype("float32") compare_expected_fq_qat_to_int(expr, expected_expr, [x_np]) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm.ir
import IRModule from tvm
import relay from tvm.relay.transform
import FastMath def test_exp(): x = relay.var("x", shape=(1, 16, 16, 16), dtype="float32") y = relay.exp(x) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) fast_mod = FastMath()(mod) assert "fast_exp" in fast_mod.astext() with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]): fast_mod = relay.optimize(mod, target="llvm", params=None) assert "fast_exp" in fast_mod[0].astext() def test_tanh(): x = relay.var("x", shape=(1, 16, 16, 16), dtype="float32") y = relay.tanh(x) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) fast_mod = FastMath()(mod) assert "fast_tanh" in fast_mod.astext() with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]): fast_mod = relay.optimize(mod, target="llvm", params=None) assert "fast_tanh" in fast_mod[0].astext() def test_erf(): x = relay.var("x", shape=(1, 16, 16, 16), dtype="float32") y = relay.erf(x) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) fast_mod = FastMath()(mod) assert "fast_erf" in fast_mod.astext() with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]): fast_mod = relay.optimize(mod, target="llvm", params=None) assert "fast_erf" in fast_mod[0].astext() def test_softmax(): x = relay.var("x", shape=(1, 16), dtype="float32") y = relay.nn.softmax(x) func = relay.Function([x], y) mod = tvm.IRModule.from_expr(func) with tvm.transform.PassContext(opt_level=3, required_pass=["FastMath"]): fast_mod = relay.optimize(mod, target="llvm") assert "nn.fast_softmax" in fast_mod[0].astext() if __name__ == "__main__": test_exp() test_tanh() test_erf() test_softmax()
import numpy as np
import pytest
import tvm
import tvm.testing from tvm
import relay from tvm.contrib
import graph_executor def compare_expected_fac(expr, expected_expr, args): mod_def = tvm.relay.transform.InferType()(tvm.IRModule.from_expr(expr)) mod_flat = tvm.relay.transform.FlattenAtrousConv()(mod_def) mod_exp = tvm.relay.transform.InferType()(tvm.IRModule.from_expr(expected_expr)) assert expr is expected_expr or not tvm.ir.structural_equal(mod_def, mod_flat) assert tvm.ir.structural_equal(mod_flat, mod_exp) result_def = ( relay.create_executor("vm", mod=mod_def, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) result_flat = ( relay.create_executor("vm", mod=mod_flat, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) result_exp = ( relay.create_executor("vm", mod=mod_exp, device=tvm.cpu(), target="llvm") .evaluate()(*args) .numpy() ) assert np.array_equal(result_def, result_flat) assert np.array_equal(result_flat, result_exp) def test_fac_block_shape_2(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = relay.nn.conv2d( data, weight, padding=[2, 2, 2, 2], dilation=[2, 2], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) compare_expected_fac(expr, expected_expr,
[x_np]) def test_fac_block_shape_4(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[4, 4], paddings=[[4, 7], [4, 7]]) op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op2, block_shape=[4, 4], crops=[[0, 3], [0, 3]]) expected_expr = relay.nn.conv2d( data, weight, padding=[4, 4, 4, 4], dilation=[4, 4], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_quantize(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="int8") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op2 = relay.qnn.op.conv2d( op1, weight, input_zero_point=relay.const(0), kernel_zero_point=relay.const(0), input_scale=relay.const(2.0), kernel_scale=relay.const(1.0), padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = relay.qnn.op.conv2d( data, weight, input_zero_point=relay.const(0)
, kernel_zero_point=relay.const(0), input_scale=relay.const(2.0), kernel_scale=relay.const(1.0), padding=[2, 2, 2, 2], dilation=[2, 2], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_surrounding(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op0 = relay.op.add(data, relay.const(1.0)) op1 = relay.nn.space_to_batch_nd(op0, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) op3 = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expr = relay.op.add(op3, relay.const(-1.0)) op0 = relay.op.add(data, relay.const(1.0)) op1 = relay.nn.conv2d( op0, weight, padding=[2, 2, 2, 2], dilation=[2, 2], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expected_expr = relay.op.add(op1, relay.const(-1.0)) compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_several(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]])
op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) op3 = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) op4 = relay.nn.space_to_batch_nd(op3, block_shape=[4, 4], paddings=[[4, 7], [4, 7]]) op5 = relay.nn.conv2d( op4, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op5, block_shape=[4, 4], crops=[[0, 3], [0, 3]]) op1 = relay.nn.conv2d( data, weight, padding=[2, 2, 2, 2], dilation=[2, 2], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expected_expr = relay.nn.conv2d( op1, weight, padding=[4, 4, 4, 4], dilation=[4, 4], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) compare_expected_fac(expr, expected_expr, [x_np]) def test__fac_only_s2b_conv(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) expr = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_only_s2b(): shape_x = [1, 5, 5, 4]
shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") expr = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_only_conv_b2s(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.conv2d( data, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op1, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_only_b2s(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") expr = relay.nn.batch_to_space_nd(data, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_op_btwn_s2b_conv(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("da
ta", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op_1_5 = relay.op.add(op1, relay.const(1.0)) op2 = relay.nn.conv2d( op_1_5, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_op_btwn_conv_b2s(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3], data_layout="NHWC", kernel_layout="HWOI", ) op_2_5 = relay.op.add(op2, relay.const(1.0)) expr = relay.nn.batch_to_space_nd(op_2_5, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) expected_expr = expr compare_expected_fac(expr, expected_expr, [x_np]) def test_fac_relay_build(): shape_x = [1, 5, 5, 4] shape_w = [3, 3, 4, 1] x_np = np.random.randint(-128, 127, size=shape_x, dtype="int8").astype("float32") w_np = np.random.randint(-128, 127, size=shape_w, dtype="int8").astype("float32") weight = relay.const(w_np) data = relay.var("data", shape=shape_x, dtype="float32") op1 = relay.nn.space_to_batch_nd(data, block_shape=[2, 2], paddings=[[2, 3], [2, 3]]) op2 = relay.nn.conv2d( op1, weight, padding=[0, 0, 0, 0], groups=4, channels=4, kernel_size=[3, 3],
data_layout="NHWC", kernel_layout="HWOI", ) expr = relay.nn.batch_to_space_nd(op2, block_shape=[2, 2], crops=[[0, 1], [0, 1]]) mod_def = tvm.relay.transform.InferType()(tvm.IRModule.from_expr(expr)) result_def = ( relay.create_executor("vm", mod=mod_def, device=tvm.cpu(), target="llvm") .evaluate()(x_np) .numpy() ) graph, lib, params = relay.build(mod_def, "llvm", params=None) rt_mod = graph_executor.create(graph, lib, device=tvm.cpu()) rt_mod.set_input("data", x_np) rt_mod.set_input(**params) rt_mod.run() result_flat = rt_mod.get_output(0).numpy() assert "space_to_batch_nd" not in graph assert "conv2d" in graph assert "batch_to_space_nd" not in graph assert np.array_equal(result_def, result_flat) if __name__ == "__main__": tvm.testing.main()
"""Test flexible shape dispatch pass"""
import numpy as np
import pytest
import tvm from tvm
import relay from tvm.relay.testing.resnet
import get_workload from tvm.relay
import vm from tvm
import runtime def test_end_to_end(): mod, params = get_workload() mod = relay.transform.FlexibleShapeDispatch(axis=0, buckets=[1, 4], auto_pad=True)(mod) exe = relay.vm.compile(mod, "llvm", params=params) vm = runtime.vm.VirtualMachine(exe, tvm.cpu()) batch_1 = np.random.normal(size=[1, 3, 224, 224]).astype("float32") assert list(vm.invoke("main", batch_1).shape) == [1, 1000] batch_4 = np.random.normal(size=[4, 3, 224, 224]).astype("float32") assert list(vm.invoke("main", batch_4).shape) == [4, 1000] batch_3 = np.random.normal(size=[3, 3, 224, 224]).astype("float32") assert list(vm.invoke("main", batch_3).shape) == [3, 1000] def test_multiple_inputs(): x = relay.var("x", shape=[10, 10], dtype="float32") w = relay.var("w", shape=[10, 10], dtype="float32") y = x + w mod = tvm.IRModule.from_expr(y) mod = relay.transform.FlexibleShapeDispatch(axis=1, buckets=[5, 10], input_indices=[0, 1])(mod) exe = relay.vm.compile(mod, "llvm") vm = runtime.vm.VirtualMachine(exe, tvm.cpu()) x_w_5 = np.random.normal(size=[10, 5]).astype("float32") assert list(vm.invoke("main", x_w_5, x_w_5).shape) == [10, 5] x_w_10 = np.random.normal(size=[10, 10]).astype("float32") assert list(vm.invoke("main", x_w_10, x_w_10).shape) == [10, 10] def test_fixed_output(): x = relay.var("x", shape=[10, 10], dtype="float32") w = relay.var("w", shape=[10, 10], dtype="float32") y = relay.nn.dense(x, w) mod = tvm.IRModule.from_expr(y) mod = relay.transform.FlexibleShapeDispatch( axis=1, buckets=[5, 7], input_indices=[0, 1], affects_output=False )(mod) exe = relay.vm.compile(mod, "llvm") vm = runtime.vm.VirtualMachine(exe, tvm.cpu()) x_w_5 = np.random.normal(size=[10, 5]).astype("float32") assert list(vm.invoke("main", x_w_5, x_w_5).shape) == [10, 10] x_w_7 = np.random.normal(size=[10, 7]).astype("float32") assert list(vm.invoke("main", x_w_7, x_w_
7).shape) == [10, 10] return def test_multiple_outputs(): x = relay.var("x", shape=[10, 10], dtype="float32") y = relay.split(x, 2, axis=1) mod = tvm.IRModule.from_expr(y.astuple()) mod = relay.transform.FlexibleShapeDispatch(axis=0, buckets=[5, 10])(mod) exe = relay.vm.compile(mod, "llvm") vm = runtime.vm.VirtualMachine(exe, tvm.cpu()) x_5 = np.random.normal(size=[5, 10]).astype("float32") result_5 = vm.invoke("main", x_5) assert list(result_5[0].shape) == [5, 5] assert list(result_5[1].shape) == [5, 5] x_10 = np.random.normal(size=[10, 10]).astype("float32") result_10 = vm.invoke("main", x_10) assert list(result_10[0].shape) == [10, 5] assert list(result_10[1].shape) == [10, 5] if __name__ == "__main__": pytest.main([__file__])
import numpy as np
import tvm
import tvm.testing from tvm
import relay from tvm.relay.backend
import Executor from tvm.relay
import transform from tvm.relay.build_module
import bind_params_by_name from tvm.relay.testing
import run_infer_type, create_workload def annot_expr(e): """Returns e wrapped with an on_device annotation.""" return relay.op.annotation.on_device(e, tvm.cpu(), constrain_result=True) def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = relay.transform.InferType()(mod) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_concatenate_const(): def before(): data = tvm.nd.array(np.array([1.0, 2.0, 3.0])) const = relay.const(data) concat = relay.op.concatenate([const, const], axis=0) func = relay.Function([], concat) return func def expected(): data = tvm.nd.array(np.array([1.0, 2.0, 3.0, 1.0, 2.0, 3.0])) const = relay.const(data) func = relay.Function([], const) return func zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(zz, zexpected) def test_fold_const(): c_data = np.array([1, 2, 3]).astype("float32") t = relay.TensorType([1, 2, 3], "float32") def before(): c = relay.const(c_data) x = relay.var("x", t) y = relay.add(c, c) y = relay.multiply(y, relay.const(2, "float32")) y = relay.add(x, y) z = relay.add(y, c) return relay.Function([x], z) def expected(): x = relay.var("x", t) c_folded = (c_data + c_data) * 2 y = relay.add(x, relay.const(c_folded)) z = relay.add(y, relay.const(c_data)) return relay.Function([x], z) with tvm.target.Target("cuda"): zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_const_with_on_device(): """Make sure on_device annotations don't get in the way of constant foldi
ng""" c_data = np.array([1, 2, 3]).astype("float32") t = relay.TensorType([1, 2, 3], "float32") def before(): c = relay.const(c_data) x = relay.var("x", t) x.virtual_device_ = tvm.cpu() y = relay.add(c, c) y = relay.multiply(y, relay.const(2, "float32")) y = relay.add(x, y) z = relay.add(y, c) f = relay.Function([x], z) f.virtual_device_ = tvm.cpu() return f def expected(): x = relay.var("x", t) x.virtual_device_ = tvm.cpu() c_folded = (c_data + c_data) * 2 y = relay.add(x, relay.const(c_folded)) z = relay.add(y, relay.const(c_data)) f = relay.Function([x], z) f.virtual_device_ = tvm.cpu() return f zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_let(): c_data = np.array(1).astype("float32") t = relay.TensorType([1], "float32") def before(): sb = relay.ScopeBuilder() x = relay.var("x", t) t1 = sb.let("t1", relay.const(c_data)) t2 = sb.let("t2", relay.add(t1, t1)) t3 = sb.let("t3", relay.add(t2, x)) sb.ret(t3) return relay.Function([x], sb.get()) def expected(): sb = relay.ScopeBuilder() x = relay.var("x", t) c_folded = c_data + c_data t3 = sb.let("t3", relay.add(relay.const(c_folded), x)) sb.ret(t3) return relay.Function([x], sb.get()) zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_let_with_on_device(): """Make sure on_device annotations don't get in the way of constant folding, and inlined constants bring their annotations with them.""" c_data = np.array(1).astype("float32") t = relay.TensorType([1], "float32") def before(): sb
= relay.ScopeBuilder() x = relay.var("x", t) x.virtual_device_ = tvm.cpu() t1 = sb.let("t1", annot_expr(relay.const(c_data))) t2 = sb.let("t2", annot_expr(relay.add(t1, t1))) t3 = sb.let("t3", annot_expr(relay.add(t2, x))) sb.ret(t3) f = relay.Function([x], sb.get()) f.virtual_device_ = tvm.cpu() return f def expected(): sb = relay.ScopeBuilder() x = relay.var("x", t) x.virtual_device_ = tvm.cpu() c_folded = c_data + c_data t3 = sb.let("t3", annot_expr(relay.add(annot_expr(relay.const(c_folded)), x))) sb.ret(t3) f = relay.Function([x], sb.get()) f.virtual_device_ = tvm.cpu() return f zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_tuple(): c_data = np.array(1).astype("float32") t = relay.TensorType([1], "float32") def before(): c = relay.const(c_data) x = relay.var("x", t) y = relay.Tuple([x, c]) z = relay.add(y[1], c) z = relay.add(z, y[0]) return relay.Function([x], z) def expected(): c = relay.const(c_data + c_data) x = relay.var("x", t) z = relay.add(c, x) return relay.Function([x], z) zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_concat(): c_data = np.array([[1, 2, 3]]).astype("float32") def before(): a = relay.const(c_data) b = relay.const(c_data) y = relay.concatenate((a, b), axis=0) return relay.Function([], y) def expected(): y_data = np.concatenate((c_data, c_data), axis=0) y = relay.const(y_data) return relay.Function([], y) zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(e
xpected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_if(): cond_data = np.array(1).astype("bool") x_data = np.array([[1, 2, 3]]).astype("float32") def before(): a = relay.const(cond_data) x = relay.const(x_data) y = relay.const(x_data) iff = relay.If(a, x + y, x - y) return relay.Function([], iff) def expected(): y_data = x_data + x_data y = relay.const(y_data) return relay.Function([], y) zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) cond_data = np.array(0).astype("bool") def before(): a = relay.const(cond_data) x = relay.const(x_data) y = relay.const(x_data) iff = relay.If(a, x + y, x - y) return relay.Function([], iff) def expected(): y_data = x_data - x_data y = relay.const(y_data) return relay.Function([], y) zz = run_opt_pass(before(), transform.FoldConstant()) zexpected = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_shape_of(): c_shape = (8, 9, 10) def before(dtype): x = relay.var("x", shape=c_shape, dtype="float32") y = relay.var("y", shape=c_shape, dtype="float32") z = relay.shape_of(x + y, dtype) return relay.Function([x, y], z) def expected(dtype): x = relay.var("x", shape=c_shape, dtype="float32") y = relay.var("y", shape=c_shape, dtype="float32") z = relay.const(np.array(c_shape).astype(dtype), dtype=dtype) func = relay.Function([x, y], z) return func for dtype in ["int32", "float32"]: zz = run_opt_pass(before(dtype), transform.FoldConstant()) zexpected = run_opt_pass(expected(dtype), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_ndarray_size()
: c_shape = (8, 9, 10) def before(dtype): x = relay.var("x", shape=c_shape, dtype="float32") y = relay.var("y", shape=c_shape, dtype="float32") z = relay.ndarray_size(x + y, dtype) return relay.Function([x, y], z) def expected(dtype): x = relay.var("x", shape=c_shape, dtype="float32") y = relay.var("y", shape=c_shape, dtype="float32") z = relay.const(np.size(np.zeros(c_shape)), dtype=dtype) func = relay.Function([x, y], z) mod = tvm.IRModule.from_expr(func) return mod["main"] for dtype in ["int32", "float32"]: zz = run_opt_pass(before(dtype), transform.FoldConstant()) zexpected = run_opt_pass(expected(dtype), transform.InferType()) tvm.ir.assert_structural_equal(zz, zexpected) def test_fold_batch_norm(): def expected(): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.const(np.zeros((16, 3, 3, 3))) bias = relay.const(np.zeros((16, 1, 1))) conv = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) add = relay.add(conv, bias) return relay.Function(relay.analysis.free_vars(add), add) remove_bn_pass = tvm.transform.Sequential( [ relay.transform.InferType(), relay.transform.SimplifyInference(), relay.transform.FoldConstant(), relay.transform.FoldScaleAxis(), ] ) data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") conv = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean, bn_mvar) def initializer(_, param): param = np.zeros(param.shape)
mod, params = create_workload(bn_output[0], initializer) mod["main"] = bind_params_by_name(mod["main"], params) with tvm.transform.PassContext(opt_level=3): mod = remove_bn_pass(mod) expect = run_infer_type(expected()) tvm.ir.assert_structural_equal(mod["main"], expect) def test_fold_dropout(): def before(): data = relay.const(np.arange(10).astype(np.float32)) dropout = relay.nn.dropout(data) add = dropout + relay.const(1.0) return relay.Function(relay.analysis.free_vars(add), add) passes = tvm.transform.Sequential( [ relay.transform.InferType(), relay.transform.FoldConstant(), ] ) before_mod = tvm.IRModule.from_expr(before()) with tvm.transform.PassContext(opt_level=3): after_mod = passes(before_mod) tvm.ir.assert_structural_equal(run_infer_type(before_mod["main"]), after_mod["main"]) def test_fold_qnn_const(): def before(): add = relay.qnn.op.add( relay.const(np.ones((2, 3), dtype="uint8"), dtype="uint8"), relay.const(np.ones((2, 3), dtype="uint8"), dtype="uint8"), lhs_scale=relay.const(2.0), lhs_zero_point=relay.const(0), rhs_scale=relay.const(2.0), rhs_zero_point=relay.const(0), output_scale=relay.const(1.0), output_zero_point=relay.const(0), ) a = relay.var("a", shape=[2, 3], dtype="float32") dense = relay.qnn.op.dense( relay.qnn.op.quantize(a, relay.const(1.0), relay.const(0)), add, input_zero_point=relay.const(0), kernel_zero_point=relay.const(0), input_scale=relay.const(2.0), kernel_scale=relay.const(2.0), units=None, ) b = relay.var("b", shape=[2], dtype="float32") bias = relay.qnn.op.add( dense, relay.qnn.op.quantize(b, relay.const(1.0), relay.const(0), out_dtype="int32"),
lhs_scale=relay.const(2.0), lhs_zero_point=relay.const(0), rhs_scale=relay.const(2.0), rhs_zero_point=relay.const(0), output_scale=relay.const(1.0), output_zero_point=relay.const(0), ) return relay.Function([a, b], bias) def expected(): a = relay.var("a", shape=[2, 3], dtype="float32") dense = relay.qnn.op.dense( relay.qnn.op.quantize(a, relay.const(1.0), relay.const(0)), relay.const(np.array([[4, 4, 4], [4, 4, 4]], dtype="uint8"), dtype="uint8"), input_zero_point=relay.const(0), kernel_zero_point=relay.const(0), input_scale=relay.const(2.0), kernel_scale=relay.const(2.0), units=None, ) b = relay.var("b", shape=[2], dtype="float32") bias = relay.qnn.op.add( dense, relay.qnn.op.quantize(b, relay.const(1.0), relay.const(0), out_dtype="int32"), lhs_scale=relay.const(2.0), lhs_zero_point=relay.const(0), rhs_scale=relay.const(2.0), rhs_zero_point=relay.const(0), output_scale=relay.const(1.0), output_zero_point=relay.const(0), ) return relay.Function([a, b], bias) a = run_opt_pass(before(), transform.FoldConstant()) b = run_opt_pass(before(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) a = run_opt_pass(before(), transform.FoldConstant(fold_qnn=True)) b = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) def test_fold_quantize(): t = relay.TensorType([1, 2, 3], "int8") def before(): data = tvm.nd.array(np.array([1.0, 2.0, 3.0], dtype="float32")) const_fp = relay.const(data, dtype="float32") const_i8 = relay.qnn.op.quantize( const_fp, output_scale=relay.const(0.5), output_zero_point=relay.const(0) ) x = relay.var("x", t) sub = relay.op.subtra
ct(x, const_i8) func = relay.Function([x], sub) return func def expected(): data = tvm.nd.array(np.array([2, 4, 6], dtype="int8")) const_i8 = relay.const(data, dtype="int8") x = relay.var("x", t) sub = relay.op.subtract(x, const_i8) func = relay.Function([x], sub) return func a = run_opt_pass(before(), transform.FoldConstant()) b = run_opt_pass(before(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) a = run_opt_pass(before(), transform.FoldConstant(fold_qnn=True)) b = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) def test_fold_qnn_conv2d_qnn_mul(): def before(): dtype = "uint8" op0 = relay.qnn.op.conv2d( relay.const(np.ones((1, 1, 2, 2), dtype=dtype), dtype=dtype), relay.const(np.ones((1, 1, 2, 2), dtype=dtype), dtype=dtype), input_zero_point=relay.const(0, "int32"), kernel_zero_point=relay.const(0, "int32"), input_scale=relay.const(1.0, "float32"), kernel_scale=relay.const(1.0, "float32"), kernel_size=(2, 2), channels=1, ) op = relay.qnn.op.mul( op0, relay.const(np.array([10], dtype="int32"), dtype="int32"), relay.const(1.0, dtype="float32"), relay.const(0, dtype="int32"), relay.const(1.0, dtype="float32"), relay.const(0, dtype="int32"), relay.const(1.0, dtype="float32"), relay.const(0, dtype="int32"), ) func = relay.Function([], op) return func def expected(): data = relay.const(np.array([[[[40]]]], dtype="int32"), dtype="int32") func = relay.Function([], data) return func a = run_opt_pass(before(), transform.FoldConstant()) b = run_opt_pass(before(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) a = run_opt_pass(before(), transform.Fold
Constant(fold_qnn=True)) b = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) def test_fold_requantize(): def before(): data = tvm.nd.array(np.array([1, 2, 3], dtype="int8")) const_i8 = relay.const(data, dtype="int8") op = relay.qnn.op.requantize( const_i8, input_scale=relay.const(2.0, dtype="float32"), input_zero_point=relay.const(1, dtype="int32"), output_scale=relay.const(1.0, dtype="float32"), output_zero_point=relay.const(1, dtype="int32"), ) x = relay.var("x", relay.TensorType([3], "int8")) add = relay.op.add(op, x) func = relay.Function([x], add) return func def expected(): data = tvm.nd.array(np.array([1, 3, 5], dtype="int8")) const_i8 = relay.const(data, dtype="int8") x = relay.var("x", relay.TensorType([3], "int8")) add = relay.op.add(const_i8, x) func = relay.Function([x], add) return func a = run_opt_pass(before(), transform.FoldConstant()) b = run_opt_pass(before(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) a = run_opt_pass(before(), transform.FoldConstant(fold_qnn=True)) b = run_opt_pass(expected(), transform.InferType()) tvm.ir.assert_structural_equal(a, b) def test_pass_link_params(): """ This test checks ensures that proper executor is passed to interpreter instance The test will fail if FoldConstant does not override the executor due to "int8" is not supported in ScheduleBuilder """ def expr(): z = relay.const(10, dtype="int8") return relay.cast(z, dtype="int32") mod = tvm.IRModule.from_expr(expr()) mod = tvm.relay.transform.InferType()(mod) mod = mod.with_attr("executor", Executor("aot", {"link-params": True})) mod = tvm.relay.transform.FoldConstant()(mod) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_opt_pass
import numpy as np def test_simplify_conv_pad(): convs = [relay.nn.conv1d, relay.nn.conv2d, relay.nn.conv3d] def validate(ndim, pad_width, pad_value, pad_mode, orig_padding, layout, no_fold=False): if layout[1] == "C": shape = [1, 3] + [10] * ndim wshape = [8, 3] + [3] * ndim elif layout[-1] == "C": shape = [1] + [10] * ndim + [3] wshape = [8] + [3] * ndim + [3] else: raise ValueError("This test only supports NC* and N*C") x = relay.var("x", shape=shape, dtype="float32") w = relay.var("w", shape=wshape, dtype="float32") pad = relay.nn.pad(x, pad_width, pad_value, pad_mode) if layout[1] == "C": conv = convs[ndim - 1](pad, w, padding=orig_padding) else: conv = convs[ndim - 1]( pad, w, padding=orig_padding, data_layout=layout, kernel_layout="DHWIO"[3 - ndim :] ) if pad_mode == "constant" and pad_value == 0: new_padding = [] for j in range(2): for i in range(len(pad_width)): if layout[i] in ["D", "H", "W"]: new_padding.append(pad_width[i][j]) for i in range(len(new_padding)): new_padding[i] += orig_padding[i] if layout[1] == "C": after = convs[ndim - 1](x, w, padding=new_padding) else: after = convs[ndim - 1]( x, w, padding=new_padding, data_layout=layout, kernel_layout="DHWIO"[3 - ndim :] ) else: after = conv zz = run_opt_pass(conv, transform.FoldExplicitPadding()) expected = run_opt_pass(after, transform.InferType()) assert tvm.ir.structural_equal(zz, expected) mod1 = tvm.IRModule.from_expr(conv) mod2 = tvm.IRModule.from_expr(zz) if not no_fold: op_freqs = relay.analysis.list_op_freqs(mod2) assert "nn.pad" not in op_freqs
with tvm.transform.PassContext(): func1 = relay.create_executor( "vm", mod=mod1, device=tvm.cpu(), target="llvm" ).evaluate() func2 = relay.create_executor("vm", mod=mod2, device=tvm.cpu(), target="llvm").evaluate() x_np = np.random.rand(*shape).astype("float32") w_np = np.random.rand(*wshape).astype("float32") result1 = func1(x_np, w_np) result2 = func2(x_np, w_np) tvm.testing.assert_allclose(result1.numpy(), result2.numpy(), rtol=1e-5, atol=1e-5) for orig_pad in [[0, 0], [2, 0], [0, 2]]: for i_pad in [[0, 0], [1, 1], [1, 0]]: for ndim in [1, 2, 3]: for channels_last in [0, 1]: if channels_last: layout = "NDHWC" layout = layout[0:1] + layout[4 - ndim : 4] + layout[-1:] padding = [[0, 0]] + [i_pad] * ndim + [[0, 0]] else: layout = "NCDHW" layout = layout[0:2] + layout[5 - ndim :] padding = [[0, 0]] * 2 + [i_pad] * ndim validate(ndim, padding, 0, "constant", orig_pad * ndim, layout) ndim = 2 validate( ndim, [[0, 0]] * 2 + [i_pad] * ndim, 1, "constant", orig_pad * ndim, "NCHW", no_fold=True ) validate(ndim, [[0, 0]] * 2 + [i_pad] * ndim, 0, "edge", orig_pad * ndim, "NCHW", no_fold=True) def get_min_value(dtype): if np.issubdtype(dtype, np.floating): return np.finfo(dtype).min elif np.issubdtype(dtype, np.integer): return np.iinfo(dtype).min else: raise ValueError("Cannot get min value for dtypes that are not integer or not floating") def test_simplify_pool_pad(): max_pools = [relay.nn.max_pool1d, relay.nn.max_pool2d, relay.nn.max_pool3d] avg_pools = [relay.nn.avg_pool1d, relay.nn.avg_pool2d, relay.nn.avg_pool3d] def validate( pools, ndim, pad_width, pad_v
alue, orig_padding, layout, pool_size, pad_mode="constant", dtype="float32", no_fold=False, **kwargs, ): pad_value_const = relay.const(pad_value, dtype=dtype) if layout[1] == "C": shape = [1, 3] + [10] * ndim elif layout[-1] == "C": shape = [1] + [10] * ndim + [3] else: raise ValueError("This test only supports NC* and N*C") x = relay.var("x", shape=shape, dtype=dtype) pad = relay.nn.pad(x, pad_width, pad_value_const, pad_mode) if layout[1] == "C": pool = pools[ndim - 1](pad, padding=orig_padding, pool_size=pool_size, **kwargs) else: pool = pools[ndim - 1]( pad, padding=orig_padding, layout=layout, pool_size=pool_size, **kwargs ) if pools == max_pools: foldable_pad_value = get_min_value(dtype) else: foldable_pad_value = 0 if pad_mode == "constant" and pad_value == foldable_pad_value: new_padding = [] for j in range(2): for i in range(len(pad_width)): if layout[i] in ["D", "H", "W"]: new_padding.append(pad_width[i][j]) for i in range(len(new_padding)): new_padding[i] += orig_padding[i] if pools == avg_pools and all(v == 0 for v in orig_padding): kwargs["count_include_pad"] = True if layout[1] == "C": after = pools[ndim - 1](x, padding=new_padding, pool_size=pool_size, **kwargs) else: after = pools[ndim - 1]( x, padding=new_padding, layout=layout, pool_size=pool_size, **kwargs ) else: after = pool zz = run_opt_pass(pool, transform.FoldExplicitPadding()) expected = run_opt_pass(after, transform.InferType()) assert tvm.ir.structural_e
qual(zz, expected) mod1 = tvm.IRModule.from_expr(pool) mod2 = tvm.IRModule.from_expr(zz) if not no_fold: op_freqs = relay.analysis.list_op_freqs(mod2) assert "nn.pad" not in op_freqs with tvm.transform.PassContext(): func1 = relay.create_executor( "vm", mod=mod1, device=tvm.cpu(), target="llvm" ).evaluate() func2 = relay.create_executor("vm", mod=mod2, device=tvm.cpu(), target="llvm").evaluate() x_np = np.random.rand(*shape).astype(dtype) result1 = func1(x_np) result2 = func2(x_np) tvm.testing.assert_allclose(result1.numpy(), result2.numpy(), rtol=1e-5, atol=1e-5) float_min_val = get_min_value("float32") for orig_pad in [[0, 0], [2, 0]]: for i_pad in [[1, 1], [1, 0]]: for ndim in [1, 2, 3]: for channels_last in [0, 1]: if channels_last: layout = "NDHWC" layout = layout[0:1] + layout[4 - ndim : 4] + layout[-1:] padding = [[0, 0]] + [i_pad] * ndim + [[0, 0]] else: layout = "NCDHW" layout = layout[0:2] + layout[5 - ndim :] padding = [[0, 0]] * 2 + [i_pad] * ndim validate(max_pools, ndim, padding, float_min_val, orig_pad * ndim, layout, 2) validate(max_pools, 1, [[0, 0], [0, 0], [0, 0]], float_min_val, [2, 0], "NCW", 2) int_min_val = get_min_value("uint8") validate( max_pools, 2, [[0, 0], [0, 0], [0, 2], [2, 0]], int_min_val, [2, 0, 0, 0], "NCHW", 2, dtype="uint8", ) validate( avg_pools, 2, [[0, 0], [0, 0], [0, 2], [2, 0]], 0, [0, 0, 1, 0], "NCHW", 2, count_include_pad=True, ) validate(avg_pools, 2, [[0, 0], [0, 0], [0, 2], [2, 0]], 0, [0, 0, 0, 0], "NCH
W", 2) validate( avg_pools, 2, [[0, 0], [0, 0], [0, 2], [2, 0]], 0, [0, 0, 0, 0], "NCHW", 2, no_fold=True ) validate(max_pools, 1, [[0, 0], [0, 0], [0, 2]], 0, [0, 0], "NCHW", 2, no_fold=True) validate(avg_pools, 1, [[0, 0], [0, 0], [0, 2]], 1, [0, 0], "NCHW", 2, no_fold=True) validate( avg_pools, 1, [[0, 0], [0, 0], [0, 2]], 0, [0, 0], "NCHW", 2, pad_mode="edge", no_fold=True ) def test_fold_pad_qconv2d(): def before(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") input_zero_point = 10 pad = relay.nn.pad(x, [[0, 0], [1, 1], [1, 1], [0, 0]], pad_value=input_zero_point) return relay.qnn.op.conv2d( pad, weight, relay.const(input_zero_point, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(0, 0), data_layout="NHWC", kernel_layout="HWIO", ) def expected(): x = relay.var("x", shape=(1, 56, 56, 64), dtype="int8") weight = relay.var("weight", shape=(3, 3, 64, 64), dtype="int8") input_zero_point = 10 return relay.qnn.op.conv2d( x, weight, relay.const(input_zero_point, "int32"), relay.const(1, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) a = run_opt_pass(before(), relay.transform.FoldExplicitPadding()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b, map_free_vars=True), "Actual = \n" + str(a) def test_pad_qconv2d_no_fold(): def get_expr(): x = relay.var("x", shape=(1,
1, 2, 2), dtype="int8") weight = relay.var("weight", shape=(1, 1, 2, 2), dtype="int8") pad_value = 1 input_zero_point = 0 pad = relay.nn.pad(x, [[0, 0], [0, 0], [1, 1], [1, 1]], pad_value=pad_value) return relay.qnn.op.conv2d( pad, weight, relay.const(input_zero_point, "int32"), relay.const(0, "int32"), relay.const(1, "float32"), relay.const(1, "float32"), channels=1, kernel_size=(2, 2), padding=(0, 0), ) a = run_opt_pass(get_expr(), relay.transform.FoldExplicitPadding()) b = run_opt_pass(get_expr(), transform.InferType()) assert tvm.ir.structural_equal(a, b, map_free_vars=True), ( "\nActual = \n" + str(a) + "\nExpected = \n" + str(b) ) if __name__ == "__main__": test_simplify_conv_pad() test_simplify_pool_pad() test_fold_pad_qconv2d() test_pad_qconv2d_no_fold()
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import create_workload from tvm.relay.build_module
import bind_params_by_name def initializer(_, param): param = np.zeros(param.shape) def _get_positive_scale(size): return np.random.uniform(0.5, 1, size=size).astype("float32") def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_fold_fwd_simple(): """Simple testcase.""" def before(x, conv_weight, in_bias, in_scale, channels, blocking): args = [x, conv_weight, in_bias] x = relay.multiply(x, in_scale) x = relay.nn.relu(x) x = relay.add(x, in_bias) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW2i{}o".format(blocking[1]) if blocking else "OIHW", ) return relay.Function(args, y) def expected(x, conv_weight, in_bias, in_scale, in_channels, channels, blocking): args = [x, conv_weight, in_bias] if blocking: squeezed_scale = relay.squeeze(in_scale, axis=[0, 2, 3]) x = relay.nn.relu(x) in_bias = relay.divide( in_bias, relay.reshape(squeezed_scale, (1, in_channels ) x = relay.add(x, in_bias) conv_weight = relay.multiply( conv_weight, relay.reshape(squeezed_scale, (1, in_channels ) else: squeezed_scale = relay.squeeze(in_scale, axis=[1, 2]) x = relay.nn.relu(x) in_bias = relay.divide( in_bias, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=2) ) x = relay.add(x, in_bias) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, nu
m_newaxis=2) ) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW2i{}o".format(blocking[1]) if blocking else "OIHW", ) return relay.Function(args, y) def check(shape, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: in_channels = shape[1] * shape[4] in_bias = relay.var("in_bias", shape=(1, in_channels in_scale = relay.const( _get_positive_scale((1, in_channels ) else: in_channels = shape[1] in_bias = relay.var("in_bias", shape=(in_channels, 1, 1)) in_scale = relay.const(_get_positive_scale((in_channels, 1, 1))) y1 = before(x, weight, in_bias, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) y1_expected = expected(x, weight, in_bias, in_scale, in_channels, channels, blocking) y1_folded = run_opt_pass(y1_folded, transform.InferType()) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 2, None) check((2, 2, 10, 10, 2), 8, (2, 4)) def test_fold_fwd_dual_path(): """scale axis being consumed by two consumers""" def before(x, conv_weight, in_bias, in_scale, channels, blocking): args = [x, conv_weight, in_bias] x = relay.multiply(in_scale, x) x = relay.nn.relu(x) x = relay.subtract(x, in_bias) y1 = relay.nn.conv2d( x, conv_weight, channels=channe
ls, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO", groups=channels, padding=(1, 1), ) y2 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO", groups=channels, padding=(1, 1), ) z = relay.add(y1, y2) return relay.Function(args, z) def expected(x, conv_weight, in_bias, in_scale, channels, blocking): args = [x, conv_weight, in_bias] x = relay.nn.relu(x) if blocking: _in_scale = relay.reshape( in_scale, (1, 1, 1, channels ) else: _in_scale = in_scale in_bias = relay.divide(in_bias, _in_scale) x = relay.subtract(x, in_bias) if blocking: _in_scale = relay.reshape( in_scale, (1, 1, 1, channels ) y1 = relay.nn.conv2d( x, relay.multiply(conv_weight, _in_scale), channels=channels, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO", groups=channels, padding=(1, 1), ) if blocking: _in_scale = relay.reshape( in_scale, (1, 1, 1, channels ) y2 = relay.nn.conv2d( x, relay.multiply(conv_weight, _in_scale), channels=channels, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "H
WIO", groups=channels, padding=(1, 1), ) z = relay.add(y1, y2) return relay.Function(args, z) def check(dshape, channels, blocking): x = relay.var("x", shape=dshape) if blocking: in_channels = dshape[3] * dshape[4] wshape = (3, 3, 1, channels weight = relay.var("weight", shape=wshape) in_bias = relay.var("in_bias", shape=(in_channels in_scale = relay.const(_get_positive_scale((in_channels else: in_channels = dshape[-1] wshape = (3, 3, 1, channels) weight = relay.var("weight", shape=wshape) in_bias = relay.var("in_bias", shape=(in_channels,)) in_scale = relay.const( _get_positive_scale( in_channels, ) ) assert in_channels == channels y1 = before(x, weight, in_bias, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_expected = expected(x, weight, in_bias, in_scale, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 3), 3, None) check((2, 4, 10, 2, 2), 4, (2, 2)) def test_fold_fwd_fail(): """testcase where we canont fold""" def before(x, conv_weight, in_bias, in_scale, channels, blocking): x = relay.multiply(x, in_scale) xx = relay.nn.leaky_relu(x, alpha=0.1) y1 = relay.nn.conv2d( xx, conv_weight, channels=channels, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking el
se "HWIO", padding=(1, 1), ) z = relay.add(y1, x) return relay.Function(relay.analysis.free_vars(z), z) def check(shape, channels, blocking): x = relay.var("x", shape=shape) if blocking: in_channels = shape[3] * shape[4] in_bias = relay.var("in_bias", shape=(in_channels in_scale = relay.const(_get_positive_scale((in_channels else: in_channels = shape[-1] in_bias = relay.var("in_bias", shape=(in_channels,)) in_scale = relay.const(_get_positive_scale(size=(in_channels,))) assert in_channels == channels weight = relay.var("weight") y1 = before(x, weight, in_bias, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) assert tvm.ir.structural_equal(y1, y1_folded) check((2, 11, 10, 4), 4, None) check((2, 11, 10, 2, 2), 4, (2, 2)) def test_fold_fwd_relu_fail(): """testcase where we canont fold because scale can not pass relu""" def before(x, conv_weight, in_bias, in_scale, channels, blocking): x = relay.multiply(x, in_scale) xx = relay.nn.relu(x) y1 = relay.nn.conv2d( xx, conv_weight, channels=channels, kernel_size=(3, 3), data_layout="NHWC{}c".format(blocking[0]) if blocking else "NHWC", kernel_layout="HWIO1i{}o".format(blocking[1]) if blocking else "HWIO", padding=(1, 1), ) z = relay.add(y1, x) return relay.Function(relay.analysis.free_vars(z), z) def check(shape, channels, blocking, in_scale): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: in_channels = shape[3] * shape[4] in_bias = relay.var("in_bias", shape=(1, in_channels else: in_channels = shape[-1] in_bias = relay.var("in_bias
", shape=(in_channels,)) assert in_channels == channels y1 = before(x, weight, in_bias, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) assert tvm.ir.structural_equal(y1, y1_folded) in_scale = relay.var("in_scale", shape=(4,)) check((2, 11, 10, 4), 4, None, in_scale) in_scale = relay.const(-_get_positive_scale((4,))) check((2, 11, 10, 4), 4, None, in_scale) in_scale = relay.var("in_scale", shape=(1, 1, 1, 2, 2)) check((2, 11, 10, 2, 2), 4, (2, 2), in_scale) in_scale = relay.const(-_get_positive_scale((1, 1, 1, 2, 2))) check((2, 11, 10, 2, 2), 4, (2, 2), in_scale) def test_fold_fwd_let_fail(): """testcase where we canont fold""" def before(x, conv_weight, in_bias, in_scale, channels): args = [x, conv_weight, in_bias] x = relay.multiply(x, in_scale) x = relay.nn.relu(x) x = relay.add(x, in_bias) x_var = relay.Var("x_var") y1 = relay.nn.conv2d( x_var, conv_weight, channels=channels, kernel_size=(3, 3), data_layout="NHWC", kernel_layout="HWIO", padding=(1, 1), ) z = relay.add(y1, x) let = relay.Let(x_var, x, z) return relay.Function(args, let) def check(shape, channels): x = relay.var("x", shape=shape) in_channels = shape[-1] in_bias = relay.var("in_bias", shape=(in_channels,)) in_scale = relay.const(_get_positive_scale(size=(in_channels,))) assert in_channels == channels weight = relay.var("weight") y1 = before(x, weight, in_bias, in_scale, channels) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) assert tvm.ir.structural_equal(y1, y1_folded) check((2, 11, 10, 4), 4) def test_fold_fwd_negative_scale(): """Testcase of fol
ding negative scale""" def before(x, conv_weight, in_scale, channels, blocking): args = [x, conv_weight] x = relay.multiply(x, in_scale) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW4i{}o".format(blocking[1]) if blocking else "OIHW", ) return relay.Function(args, y) def expected(x, conv_weight, in_scale, in_channels, channels, blocking): args = [x, conv_weight] if blocking: squeezed_scale = relay.squeeze(in_scale, axis=[0, 2, 3]) conv_weight = relay.multiply( conv_weight, relay.reshape(squeezed_scale, (1, in_channels ) else: squeezed_scale = relay.squeeze(in_scale, axis=[1, 2]) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=2) ) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW4i{}o".format(blocking[1]) if blocking else "OIHW", ) return relay.Function(args, y) def check(shape, channels, blocking): x = relay.var("x", shape=shape) if blocking: in_channels = shape[1] * shape[4] in_scale = relay.const(-_get_positive_scale((1, shape[1], 1, 1, shape[4]))) else: in_channels = shape[1] in_scale = relay.const(-_get_positive_scale((in_channels, 1, 1))) weight = relay.var("weight") y1 = before(x, weight, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x i
n y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) y1_expected = expected(x, weight, in_scale, in_channels, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 4, None) check((2, 2, 10, 10, 2), 8, (2, 2)) def test_fold_fwd_dense(): """dense testcase.""" def before(x, weight, in_bias, in_scale): args = [x, weight, in_bias] x = relay.multiply(x, in_scale) x = relay.nn.relu(x) x = relay.add(x, in_bias) y = relay.nn.dense(x, weight) return relay.Function(args, y) def expected(x, weight, in_bias, in_scale): args = [x, weight, in_bias] x = relay.nn.relu(x) in_bias = relay.divide(in_bias, in_scale) x = relay.add(x, in_bias) weight = relay.multiply(weight, in_scale) y = relay.nn.dense(x, weight) return relay.Function(args, y) def check(data_shape, weight_shape): x = relay.var("x", shape=data_shape) weight = relay.var("weight", shape=weight_shape) in_channels = data_shape[1] in_bias = relay.var("in_bias", shape=(in_channels,)) in_scale = relay.const(_get_positive_scale((in_channels,))) y1 = before(x, weight, in_bias, in_scale) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) y1_expected = expected(x, weight, in_bias, in_scale) y1_folded = run_opt_pass(y1_folded, transform.InferType()) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4), (3, 4)) check((3, 5), (4, 5)) def test_fold_bwd_simple(): """Simple testcase.""" def before(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [
x, conv_weight, out_bias] if blocking: out_bias = relay.reshape(out_bias, (1, channels else: out_bias = relay.expand_dims(out_bias, axis=1, num_newaxis=2) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y = relay.add(y, out_bias) y = relay.nn.relu(y) if blocking: out_scale = relay.reshape(out_scale, (1, channels y = relay.multiply(y, out_scale) return relay.Function(args, y) def expected(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] if blocking: out_bias = relay.reshape(out_bias, (1, channels out_scale = relay.reshape(out_scale, (1, channels squeezed_scale = relay.squeeze(out_scale, axis=[0, 2, 3]) conv_weight = relay.multiply( conv_weight, relay.reshape(squeezed_scale, (channels ) else: out_bias = relay.expand_dims(out_bias, axis=1, num_newaxis=2) squeezed_scale = relay.squeeze(out_scale, axis=[1, 2]) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) if blocking: out_bias = relay.multiply( out_bias, relay.reshape(squeezed_scale, (1, channels )
else: out_bias = relay.multiply( out_bias, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=2) ) y = relay.add(y, out_bias) y = relay.nn.relu(y) return relay.Function(args, y) def check(shape, in_channels, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") out_bias = relay.var("out_bias", shape=(channels,)) if blocking: out_scale = relay.const(_get_positive_scale((channels,))) else: out_scale = relay.const(_get_positive_scale((channels, 1, 1))) y1 = before(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 4, 8, None) check((2, 2, 10, 10, 16), 32, 64, (16, 16)) def test_fold_bwd_dual_path(): """Dual path testcase.""" def before(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] y1 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if
blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y2 = relay.nn.relu(y2) y = relay.add(y1, y2) y = relay.multiply(y, out_scale) return relay.Function(args, y) def expected(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] if not blocking: out_bias = relay.expand_dims(out_bias, axis=1, num_newaxis=2) squeezed_scale = relay.squeeze(out_scale, axis=[1, 2]) def fold_conv_weight(): if blocking: return relay.multiply( conv_weight, relay.reshape( squeezed_scale, (channels ), ) else: return relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y1 = relay.nn.conv2d( x, fold_conv_weight(), channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( x, fold_conv_weight(), channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y2 = relay.nn.relu(y2) y = relay.add(y1, y2) return relay.Function(args, y) def check(shape, in_channels, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: out_bias = relay.var("out_bias", shape=(channels out_scale = relay.const(
_get_positive_scale((channels ) else: out_bias = relay.var("out_bias", shape=(channels,)) out_scale = relay.const(_get_positive_scale((channels, 1, 1))) y1 = before(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 4, 8, None) check((2, 2, 10, 10, 2), 4, 8, (2, 2)) def test_fold_bwd_simple_constant(): def before(data, weight, out_bias, channels): y = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) y = relay.add(y, out_bias) c2 = relay.const(2.0) y = relay.nn.relu(y) y = relay.multiply(y, c2) mod, params = create_workload(y, initializer) mod["main"] = bind_params_by_name(mod["main"], params) return mod def expected(data, weight, out_bias, channels): y0 = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) y0 = relay.add(y0, out_bias) y0 = relay.nn.relu(y0) mod, params = create_workload(y0, initializer) mod["main"] = bind_params_by_name(mod["main"], params) return mod def check(shape, channels): x = relay.var("data", relay.TensorType(shape, "float32")) weight = relay.var("weight") out_bias = relay.var("in_bias", shape=(channels, 1, 1)) y0 = before(x, weight, out_bias, channels) remove_last_multiply = tvm.transform.Sequential( [
relay.transform.InferType(), relay.transform.FoldScaleAxis(), ] ) with tvm.transform.PassContext(opt_level=3): y0 = remove_last_multiply(y0) _expect = expected(x, weight, out_bias, channels) tvm.ir.assert_structural_equal(y0, _expect) check((1, 3, 200, 200), 16) def test_fold_bwd_dual_consumer(): def before(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] y0 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y0 = relay.multiply(y0, out_scale) y0 = relay.nn.relu(y0) y1 = relay.nn.conv2d( y0, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y1 = relay.multiply(y1, out_scale) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( y0, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y2 = relay.multiply(y2, out_scale) y2 = relay.nn.relu(y2) y = relay.add(y1, y2) return relay.Function(args, y) def expected(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] def fold_conv_weight(): squeezed_scale = relay.squeeze(out_scale, axis=
[1, 2]) if blocking: return relay.multiply( conv_weight, relay.reshape( squeezed_scale, (channels ), ) else: return relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y0 = relay.nn.conv2d( x, fold_conv_weight(), channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y0 = relay.nn.relu(y0) y1 = relay.nn.conv2d( y0, fold_conv_weight(), channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( y0, fold_conv_weight(), channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y2 = relay.nn.relu(y2) y = relay.add(y1, y2) return relay.Function(args, y) def check(shape, in_channels, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: out_bias = relay.var("out_bias", shape=(channels out_scale = relay.const( _get_positive_scale((channels ) else: out_bias = relay.var("out_bias", shape=(channels,)) out_scale = relay.const(_get_positive_scale((channels, 1, 1)))
y1 = before(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 4, 4, None) check((2, 2, 10, 10, 2), 4, 4, (2, 2)) def test_fold_bwd_fail(): """Dual path testcase.""" def fail1(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] y1 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", out_layout="CNHW{}c".format(blocking[1]) if blocking else "CNHW", ) y2 = relay.nn.relu(y2) y = relay.add(y1, y2) y = relay.multiply(y, out_scale) return relay.Function(args, y) def fail2(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] y1 = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padd
ing=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y2 = relay.nn.relu(y1) y1 = relay.multiply(y1, out_scale) y = relay.add(y1, y2) return relay.Function(args, y) def check(shape, in_channels, channels, blocking, fbefore): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: out_bias = relay.var("out_bias", shape=(channels out_scale = relay.const( _get_positive_scale((channels ) else: out_bias = relay.var("out_bias", shape=(channels, 1, 1)) out_scale = relay.const(_get_positive_scale((channels, 1, 1))) y1 = fbefore(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) assert tvm.ir.structural_equal(y1_folded, y1) check((4, 4, 10, 10), 4, 4, None, fail1) check((2, 2, 10, 10, 2), 4, 4, (2, 2), fail1) check((4, 4, 10, 10), 4, 4, None, fail2) check((4, 2, 10, 10, 2), 4, 4, (2, 2), fail2) def test_fold_bwd_relu_fail(): """testcase where we canont fold because scale can not pass relu""" def before(x, conv_weight, out_scale, channels, blocking): y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y = relay.nn.relu(y) y = relay.multiply(x, out_scale) return relay.Function(relay.analysis.free_vars(y), y) def check(shape, channels, blocking, out_scale): x = relay.var("x", shape=shape) in_channels = shape[1] weight =
relay.var("weight") y1 = before(x, weight, out_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) assert tvm.ir.structural_equal(y1, y1_folded) out_scale = relay.var("in_scale", shape=(4, 1, 1)) check((4, 4, 10, 10), 4, None, out_scale) out_scale = relay.const(np.random.uniform(size=(4, 1, 1), low=-1.0, high=0.0)).astype("float32") check((4, 4, 10, 10), 4, None, out_scale) out_scale = relay.var("in_scale", shape=(1, 2, 1, 1, 2)) check((4, 2, 10, 10, 2), 4, (2, 2), out_scale) out_scale = relay.const(np.random.uniform(size=(1, 2, 1, 1, 2), low=-1.0, high=0.0)).astype( "float32" ) check((4, 2, 10, 10, 2), 4, (2, 2), out_scale) def test_fold_bwd_negative_scale(): """Testcase of folding negative scale""" def before(x, conv_weight, out_scale, channels, blocking): args = [x, conv_weight] y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) y = relay.multiply(y, out_scale) return relay.Function(args, y) def expected(x, conv_weight, out_scale, channels, blocking): args = [x, conv_weight] if blocking: squeezed_scale = relay.squeeze(out_scale, axis=[0, 2, 3]) conv_weight = relay.multiply( conv_weight, relay.reshape(squeezed_scale, (channels ) else: squeezed_scale = relay.squeeze(out_scale, axis=[1, 2]) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y = relay.nn.conv2d( x, conv_weight, channels=channels,
kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW{}c".format(blocking[0]) if blocking else "NCHW", kernel_layout="OIHW1i{}o".format(blocking[1]) if blocking else "OIHW", ) return relay.Function(args, y) def check(shape, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: out_scale = relay.const( -_get_positive_scale((1, channels ) else: out_scale = relay.const(-_get_positive_scale((channels, 1, 1))) y1 = before(x, weight, out_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_scale, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 8, None) check((2, 2, 10, 10, 2), 8, (2, 2)) def test_fold_bwd_dense(): """dense testcase.""" def before(x, weight, in_bias, in_scale): args = [x, weight, in_bias] x = relay.nn.dense(x, weight) x = relay.add(x, in_bias) x = relay.nn.relu(x) y = relay.multiply(x, in_scale) return relay.Function(args, y) def expected(x, weight, in_bias, in_scale): args = [x, weight, in_bias] scale = relay.expand_dims(in_scale, axis=1) weight = relay.multiply(weight, scale) x = relay.nn.dense(x, weight) bias = relay.multiply(in_bias, in_scale) x = relay.add(x, bias) y = relay.nn.relu(x) return relay.Function(args, y) def check(data_shape, weight_shape): x = relay.var("x", shape=data_shape) weight = relay.var("weight", shape=weight_shape)
out_channels = weight_shape[0] in_bias = relay.var("in_bias", shape=(out_channels,)) in_scale = relay.const(_get_positive_scale((out_channels,))) y1 = before(x, weight, in_bias, in_scale) y1 = run_opt_pass(y1, transform.InferType()) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, in_bias, in_scale) y1_folded = run_opt_pass(y1_folded, transform.InferType()) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4), (3, 4)) check((3, 5), (4, 5)) def test_fold_bwd_bias_add(): """bias add testcase.""" def before(x, conv_weight, out_bias, out_scale, channels): args = [x, conv_weight, out_bias] y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.bias_add(y, out_bias) y = relay.nn.relu(y) y = relay.multiply(y, out_scale) return relay.Function(args, y) def expected(x, conv_weight, out_bias, out_scale, channels): args = [x, conv_weight, out_bias] squeezed_scale = relay.squeeze(out_scale, axis=[1, 2]) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y = relay.nn.conv2d( x, conv_weight, channels=channels, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) out_bias = relay.multiply(out_bias, squeezed_scale) y = relay.nn.bias_add(y, out_bias) y = relay.nn.relu(y) return relay.Function(args, y) def check(shape, channels): x = relay.var("x", shape=shape) weight = relay.var("weight")
out_bias = relay.var("out_bias", shape=(channels,)) out_scale = relay.const(_get_positive_scale((channels, 1, 1))) y1 = before(x, weight, out_bias, out_scale, channels) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_bias, out_scale, channels) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10), 4) def test_fold_fwd_conv3d(): """Conv3d testcase.""" def before(x, conv_weight, in_bias, in_scale, channels, blocking): args = [x, conv_weight, in_bias] x = relay.multiply(x, in_scale) x = relay.nn.relu(x) x = relay.add(x, in_bias) y = relay.nn.conv3d( x, conv_weight, channels=channels, kernel_size=(3, 3, 3), padding=(1, 1, 1), data_layout="NCDHW{}c".format(blocking[0]) if blocking else "NCDHW", kernel_layout="OIDHW2i{}o".format(blocking[1]) if blocking else "OIDHW", ) return relay.Function(args, y) def expected(x, conv_weight, in_bias, in_scale, in_channels, channels, blocking): args = [x, conv_weight, in_bias] if blocking: squeezed_scale = relay.squeeze(in_scale, axis=[0, 2, 3, 4]) x = relay.nn.relu(x) in_bias = relay.divide( in_bias, relay.reshape( squeezed_scale, (1, in_channels ), ) x = relay.add(x, in_bias) conv_weight = relay.multiply( conv_weight, relay.reshape(squeezed_scale, (1, in_channels ) else: squeezed_scale = relay.squeeze(in_scale, axis=[1, 2, 3]) x = relay
.nn.relu(x) in_bias = relay.divide( in_bias, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) x = relay.add(x, in_bias) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y = relay.nn.conv3d( x, conv_weight, channels=channels, kernel_size=(3, 3, 3), padding=(1, 1, 1), data_layout="NCDHW{}c".format(blocking[0]) if blocking else "NCDHW", kernel_layout="OIDHW2i{}o".format(blocking[1]) if blocking else "OIDHW", ) return relay.Function(args, y) def check(shape, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") if blocking: in_channels = shape[1] * shape[-1] in_bias = relay.var( "in_bias", shape=(1, in_channels ) in_scale = relay.const( _get_positive_scale((1, in_channels ) else: in_channels = shape[1] in_bias = relay.var("in_bias", shape=(in_channels, 1, 1, 1)) in_scale = relay.const(_get_positive_scale((in_channels, 1, 1, 1))) y1 = before(x, weight, in_bias, in_scale, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.ForwardFoldScaleAxis()) y1_expected = expected(x, weight, in_bias, in_scale, in_channels, channels, blocking) y1_folded = run_opt_pass(y1_folded, transform.InferType()) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10, 10), 2, None) check((2, 2, 10, 10, 10, 2), 8, (2, 4)) def test_fold_bwd_conv3d(): """Conv3d testcas
e.""" def before(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] if blocking: out_bias = relay.reshape(out_bias, (1, channels else: out_bias = relay.expand_dims(out_bias, axis=1, num_newaxis=3) y = relay.nn.conv3d( x, conv_weight, channels=channels, kernel_size=(3, 3, 3), padding=(1, 1, 1), data_layout="NCDHW{}c".format(blocking[0]) if blocking else "NCDHW", kernel_layout="OIDHW1i{}o".format(blocking[1]) if blocking else "OIDHW", ) y = relay.add(y, out_bias) y = relay.nn.relu(y) if blocking: out_scale = relay.reshape(out_scale, (1, channels y = relay.multiply(y, out_scale) return relay.Function(args, y) def expected(x, conv_weight, out_bias, out_scale, in_channels, channels, blocking): args = [x, conv_weight, out_bias] if blocking: out_bias = relay.reshape(out_bias, (1, channels out_scale = relay.reshape(out_scale, (1, channels squeezed_scale = relay.squeeze(out_scale, axis=[0, 2, 3, 4]) conv_weight = relay.multiply( conv_weight, relay.reshape( squeezed_scale, (channels ), ) else: out_bias = relay.expand_dims(out_bias, axis=1, num_newaxis=3) squeezed_scale = relay.squeeze(out_scale, axis=[1, 2, 3]) conv_weight = relay.multiply( conv_weight, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=4) ) y = relay.nn.conv3d( x, conv_weight, channels=channels, kernel_size=(3, 3, 3), padding=(1, 1, 1), data_layout="NCDHW{}c".format(blocking[0]) if blocking else "NCDHW", kernel_layout="OIDHW1i{}o".format(blocking[1]) if blocking else "OIDHW",
) if blocking: out_bias = relay.multiply( out_bias, relay.reshape(squeezed_scale, (1, channels ) else: out_bias = relay.multiply( out_bias, relay.expand_dims(squeezed_scale, axis=1, num_newaxis=3) ) y = relay.add(y, out_bias) y = relay.nn.relu(y) return relay.Function(args, y) def check(shape, in_channels, channels, blocking): x = relay.var("x", shape=shape) weight = relay.var("weight") out_bias = relay.var("out_bias", shape=(channels,)) if blocking: out_scale = relay.const(_get_positive_scale((channels,))) else: out_scale = relay.const(_get_positive_scale((channels, 1, 1, 1))) y1 = before(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1 = run_opt_pass(y1, transform.InferType()) type_dict = {x.name_hint: x.checked_type for x in y1.params} weight = relay.var("weight", type_dict["weight"]) y1_folded = run_opt_pass(y1, transform.BackwardFoldScaleAxis()) y1_expected = expected(x, weight, out_bias, out_scale, in_channels, channels, blocking) y1_expected = run_opt_pass(y1_expected, transform.InferType()) assert tvm.ir.structural_equal(y1_folded, y1_expected) check((2, 4, 10, 10, 10), 4, 8, None) check((2, 2, 10, 10, 10, 16), 32, 64, (16, 16)) if __name__ == "__main__": test_fold_fwd_simple() test_fold_fwd_dual_path() test_fold_fwd_fail() test_fold_fwd_relu_fail() test_fold_fwd_negative_scale() test_fold_fwd_dense() test_fold_bwd_simple_constant() test_fold_bwd_simple() test_fold_bwd_dual_path() test_fold_bwd_dual_consumer() test_fold_bwd_fail() test_fold_bwd_relu_fail() test_fold_bwd_negative_scale() test_fold_bwd_dense() test_fold_bwd_bias_add() test_fold_fwd_conv3d() test_fold_bwd_conv3d()
import numpy as np
import pytest