text
stringlengths
1
2.05k
a = relay.var("a", shape=(10, 10)) b = relay.var("b", shape=(10, 10)) in_1 = relay.var("in_1", shape=(10, 10)) in_2 = relay.var("in_2", shape=(10, 10)) add_node = relay.add(in_1, in_2) relu_node = relay.nn.relu(add_node) add_relu = relay.Function([in_1, in_2], relu_node) add_relu = add_relu.with_attr("Composite", "test.add_relu") cb_1 = relay.annotation.compiler_begin(a, "test") cb_2 = relay.annotation.compiler_begin(b, "test") r = relay.Call(add_relu, [cb_1, cb_2]) ce_1 = relay.annotation.compiler_end(r, "test") f = relay.Function([a, b], ce_1) mod = tvm.IRModule.from_expr(f) return mod result = transform.AnnotateTarget("test")(before()) expected = transform.InferType()(after()) assert tvm.ir.structural_equal(expected, result) def test_double_target(): @tvm.ir.register_op_attr("nn.relu", "target.double.A") def relu(expr): return True def before(): x = relay.var("x", shape=(10, 5)) a_1 = relay.nn.relu(x) mod = tvm.IRModule.from_expr(a_1) return mod for annotate_non_call_ops in [True, False]: mod = before() mod1 = transform.AnnotateTarget("double.A", annotate_non_call_ops)(mod) mod2 = transform.AnnotateTarget("double.A", annotate_non_call_ops)(mod1) assert tvm.ir.structural_equal(mod1, mod2) def test_different_targets(): @tvm.ir.register_op_attr("nn.relu", "target.different.A") def relu(expr): return True @tvm.ir.register_op_attr("add", "target.different.B") def relu(expr): return True def before(): x = relay.var("x", shape=(10, 5)) a_1 = relay.nn.relu(x) b_1 = relay.add(a_1, a_1) mod = tvm.IRModule.from_expr(b_1) return mod for annotate_non_call_ops in [True, False]: mod = before() mod1 = transform.AnnotateTarget("different.A", annotate_non_call_ops)(mod) mod1 =
transform.AnnotateTarget("different.B", annotate_non_call_ops)(mod1) mod2 = transform.AnnotateTarget(["different.A", "different.B"], annotate_non_call_ops)(mod) assert tvm.ir.structural_equal(mod1, mod2) def test_multiple_runs(): @tvm.ir.register_op_attr("nn.relu", "target.A") def relu(expr): return True @tvm.ir.register_op_attr("add", "target.B") def add(expr): return True def before(): x = relay.var("x", shape=(10, 5)) a_1 = relay.nn.relu(x) a_2 = relay.abs(a_1) a_3 = relay.nn.relu(a_1) out = relay.add(a_2, a_3) f = relay.Function([x], out) mod = tvm.IRModule.from_expr(f) return mod for annotate_non_call_ops in [True, False]: mod = transform.AnnotateTarget("A", annotate_non_call_ops)(before()) mod = transform.AnnotateTarget("B", annotate_non_call_ops)(mod) expected = transform.AnnotateTarget(["A", "B"], annotate_non_call_ops)(before()) assert tvm.ir.structural_equal(expected, mod) def test_ends_with_tuple(): trgt = "clip" @tvm.ir.register_op_attr("clip", "target." + trgt) def relu(expr): return True def get_model(get_item): """Return a model""" a = relay.var("a", shape=(1, 16, 16, 4), dtype="uint8") z = relay.op.clip(a, 0, 255) b = relay.op.clip(z, 0, 15) c = relay.op.clip(z, 16, 31) t = relay.Tuple((c, b)) tgi = relay.TupleGetItem(t, 1) if get_item else t foo = relay.Function([a], tgi) return tvm.IRModule.from_expr(tgi) def get_expected(annotate_non_call_ops, get_item): a_ = relay.var("a", shape=(1, 16, 16, 4), dtype="uint8") a = relay.annotation.compiler_begin(a_, trgt) z = relay.op.clip(a, 0, 255) z1 = relay.annotation.compiler_end(z, trgt) z1 = relay.annotation.compiler_begin(z1, trgt) b = relay.op.clip(z1, 0, 15) b = relay.annotation.compiler_end(b, trgt) b = relay.annotation.co
mpiler_begin(b, trgt) if annotate_non_call_ops else b z2 = relay.annotation.compiler_end(z, trgt) z2 = relay.annotation.compiler_begin(z2, trgt) c = relay.op.clip(z2, 16, 31) c = relay.annotation.compiler_end(c, trgt) c = relay.annotation.compiler_begin(c, trgt) if annotate_non_call_ops else c t = relay.Tuple((c, b)) t = relay.annotation.compiler_end(t, trgt) if annotate_non_call_ops else t if get_item: t = relay.annotation.compiler_begin(t, trgt) if annotate_non_call_ops else t tgi = relay.TupleGetItem(t, 1) tgi = relay.annotation.compiler_end(tgi, trgt) if annotate_non_call_ops else tgi else: tgi = t foo = relay.Function([a_], tgi) return tvm.IRModule.from_expr(foo) for get_item in [True, False]: for annotate_non_call_ops in [False, True]: mod = get_model(get_item) mod = transform.AnnotateTarget("clip", annotate_non_call_ops)(mod) expected = transform.InferType()(get_expected(annotate_non_call_ops, get_item)) assert tvm.ir.structural_equal(expected, mod) def test_if_else(): target = "test_if_else" @tvm.ir.register_op_attr("equal", "target." + target) def relu(expr): return True @tvm.ir.register_op_attr("tanh", "target." + target) def tanh(expr): return True @tvm.ir.register_op_attr("sigmoid", "target." + target) def sigmoid(expr): return True @tvm.ir.register_op_attr("erf", "target." + target) def erf(expr): return True """Test that If-else nodes compiles correctly when surrounded by supported nodes.""" def before(): data = relay.var("data", shape=(1, 32)) eq1 = relay.var("e1", shape=[], dtype="float32") eq2 = relay.var("e2", shape=[], dtype="float32") eq = relay.equal(eq1, eq2) true_branch = relay.tanh(data) false_branch = relay.sigmoid(data) ife = relay.If(eq, true_bran
ch, false_branch) out = relay.erf(ife) func = relay.Function([data, eq1, eq2], out) mod = tvm.IRModule.from_expr(func) return mod def after(): data = relay.var("data", shape=(1, 32)) eq1 = relay.var("e1", shape=[], dtype="float32") eq2 = relay.var("e2", shape=[], dtype="float32") cb_1 = relay.annotation.compiler_begin(eq1, target) cb_2 = relay.annotation.compiler_begin(eq2, target) equality_condition = relay.equal(cb_1, cb_2) ce_1 = relay.annotation.compiler_end(equality_condition, target) cb_3 = relay.annotation.compiler_begin(data, target) true_branch = relay.tanh(cb_3) ce_2 = relay.annotation.compiler_end(true_branch, target) cb_4 = relay.annotation.compiler_begin(data, target) false_branch = relay.sigmoid(cb_4) ce_3 = relay.annotation.compiler_end(false_branch, target) if_condition = relay.If(ce_1, ce_2, ce_3) cb_5 = relay.annotation.compiler_begin(if_condition, target) erf_out = relay.erf(cb_5) ce_4 = relay.annotation.compiler_end(erf_out, target) func = relay.Function([data, eq1, eq2], ce_4) mod = tvm.IRModule.from_expr(func) return mod expected = transform.InferType()(after()) for annotate_non_call_ops in [True, False]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) assert tvm.ir.structural_equal(expected, result) def test_while_let(): target = "test_while_let" @tvm.ir.register_op_attr("less", "target." + target) def less(expr): return True @tvm.ir.register_op_attr("add", "target." + target) def add(expr): return True @tvm.ir.register_op_attr("zeros_like", "target." + target) def zeros_like(expr): return True """Test that let nodes compiles correctly when surrounded by other nodes.""" def before(): var1 = relay.var("var1", shape=(2,)) var2 = relay.
var("var2", shape=(), dtype="int32") var3 = relay.var("var3", shape=(2,)) cond = relay.less(var2, relay.const(10, dtype="int32")) loop = relay.var("while_loop") ii = var2 + relay.const(1, dtype="int32") ss = var3 + var1 true_branch = loop(ii, ss) ife = relay.If(cond, true_branch, var3) func_1 = relay.Function([var2, var3], ife) ret = relay.Let(loop, func_1, loop(relay.const(0, dtype="int32"), relay.zeros_like(var1))) func_2 = relay.Function([var1], ret) mod = tvm.IRModule.from_expr(func_2) return mod def after(annotate_non_call_ops): var1 = relay.var("var1", shape=(2,)) var2 = relay.var("var2", shape=(), dtype="int32") var3 = relay.var("var3", shape=(2,)) var4 = relay.const(10, dtype="int32") cb_1 = relay.annotation.compiler_begin(var2, target) cb_2 = relay.annotation.compiler_begin(var4, target) less_condition = relay.less(cb_1, cb_2) ce_1 = relay.annotation.compiler_end(less_condition, target) loop = relay.var("while_loop") cb_3 = relay.annotation.compiler_begin(var2, target) cb_4 = relay.annotation.compiler_begin(relay.const(1, dtype="int32"), target) add_op_1 = relay.add(cb_3, cb_4) ce_2 = relay.annotation.compiler_end(add_op_1, target) cb_5 = relay.annotation.compiler_begin(ce_2, "default") if annotate_non_call_ops else ce_2 cb_6 = relay.annotation.compiler_begin(var3, target) cb_7 = relay.annotation.compiler_begin(var1, target) add_op_2 = relay.add(cb_6, cb_7) ce_3 = relay.annotation.compiler_end(add_op_2, target) cb_8 = relay.annotation.compiler_begin(ce_3, "default") if annotate_non_call_ops else ce_3 true_branch = loop(cb_5, cb_8) ce_4 = ( relay.annotation.compiler_end(true_branch, "default") if annotate_non_call_ops else true_branch ) if_condition = relay.If(ce_1, ce_
4, var3) const_1 = relay.const(0, dtype="int32") cb_9 = ( relay.annotation.compiler_begin(const_1, "default") if annotate_non_call_ops else const_1 ) cb_10 = relay.annotation.compiler_begin(var1, target) zeros_like = relay.zeros_like(cb_10) ce_5 = relay.annotation.compiler_end(zeros_like, target) cb_11 = relay.annotation.compiler_begin(ce_5, "default") if annotate_non_call_ops else ce_5 while_condition = loop(cb_9, cb_11) ce_6 = ( relay.annotation.compiler_end(while_condition, "default") if annotate_non_call_ops else while_condition ) func_1 = relay.Function([var2, var3], if_condition) ret = relay.Let(loop, func_1, ce_6) func_2 = relay.Function([var1], ret) mod = tvm.IRModule.from_expr(func_2) return mod for annotate_non_call_ops in [False, True]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) expected = transform.InferType()(after(annotate_non_call_ops)) assert tvm.ir.structural_equal(expected, result) def test_if_free_vars(): target = "test_if_free_vars" @tvm.ir.register_op_attr("equal", "target." + target) def equal(expr): return True @tvm.ir.register_op_attr("sigmoid", "target." + target) def sigmoid(expr): return True @tvm.ir.register_op_attr("erf", "target." + target) def erf(expr): return True """Test that If-else nodes compiles correctly when surrounded by free variables""" def before(): data = relay.var("data", shape=(1, 32)) eq1 = relay.var("e1", shape=[], dtype="float32") eq2 = relay.var("e2", shape=[], dtype="float32") eq = relay.equal(eq1, eq2) true_branch = relay.zeros(shape=(1, 32), dtype="float32") false_branch = relay.sigmoid(data) ife = relay.If(eq, true_branch, false_branch) out = relay.erf(ife) func = re
lay.Function([data, eq1, eq2], out) mod = tvm.IRModule.from_expr(func) return mod def after(): data = relay.var("data", shape=(1, 32)) eq1 = relay.var("e1", shape=[], dtype="float32") eq2 = relay.var("e2", shape=[], dtype="float32") cb_1 = relay.annotation.compiler_begin(eq1, target) cb_2 = relay.annotation.compiler_begin(eq2, target) equality_condition = relay.equal(cb_1, cb_2) ce_1 = relay.annotation.compiler_end(equality_condition, target) true_branch = relay.zeros(shape=(1, 32), dtype="float32") cb_3 = relay.annotation.compiler_begin(data, target) false_branch = relay.sigmoid(cb_3) ce_2 = relay.annotation.compiler_end(false_branch, target) if_condition = relay.If(ce_1, true_branch, ce_2) cb_4 = relay.annotation.compiler_begin(if_condition, target) erf_out = relay.erf(cb_4) ce_3 = relay.annotation.compiler_end(erf_out, target) func = relay.Function([data, eq1, eq2], ce_3) mod = tvm.IRModule.from_expr(func) return mod for annotate_non_call_ops in [True, False]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) expected = transform.InferType()(after()) assert tvm.ir.structural_equal(expected, result) def test_free_vars_zeros(): target = "test_free_vars_zeros" """Test that free variables compile correctly on their own""" def before(): func = relay.Function([], relay.zeros(shape=(0), dtype="float32")) mod = tvm.IRModule.from_expr(func) return mod def after(): func = relay.Function([], relay.zeros(shape=(0), dtype="float32")) mod = tvm.IRModule.from_expr(func) return mod result = transform.AnnotateTarget(target)(before()) expected = transform.InferType()(after()) assert tvm.ir.structural_equal(expected, result) def test_empty_tuple(): target = "test_empty_tuple" """An empty tuple shoul
d behave just like a call with no args (see above test).""" def before(): func = relay.Function([], relay.Tuple([])) mod = tvm.IRModule.from_expr(func) return mod def after(): func = relay.Function([], relay.Tuple([])) mod = tvm.IRModule.from_expr(func) return mod for annotate_non_call_ops in [True, False]: result = transform.AnnotateTarget(target, annotate_non_call_ops)(before()) expected = transform.InferType()(after()) assert tvm.ir.structural_equal(expected, result) if __name__ == "__main__": test_extern_dnnl() test_composite_function() test_multiple_ends() test_type_propagation() test_tuple() test_multiple_runs() test_if_else() test_while_let() test_if_free_vars() test_free_vars_zeros() test_different_targets() test_double_target() test_ends_with_tuple() test_ref_create_read_write() test_empty_tuple()
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.relay
import testing from tvm.relay.expr
import Call from tvm.topi.utils
import get_const_tuple def quantize_and_build(out, skip_conv_layers=[]): f = relay.Function(relay.analysis.free_vars(out), out) mod, params = testing.create_workload(f) with relay.quantize.qconfig(skip_conv_layers=skip_conv_layers): qmod = relay.quantize.quantize(mod, params) relay.build(qmod, "llvm", params=params) return qmod def test_mul_rewrite(): """a test case where rhs of mul is not constant""" data = relay.var("data", shape=(1, 16, 64, 64)) multiplier = relay.sigmoid(relay.var("data", shape=(1, 16, 1, 1))) conv = relay.nn.conv2d( data, relay.var("weight"), kernel_size=(3, 3), padding=(1, 1), channels=16 ) act = relay.nn.relu(data=conv) quantize_and_build(act * multiplier) pool = relay.nn.global_avg_pool2d(data=act) quantize_and_build(act * pool) def test_skip_conv(): data = relay.var("data", shape=(1, 16, 64, 64)) np_weight = np.random.rand(16, 16, 3, 3) conv0_weight = relay.Constant(tvm.nd.array(np_weight)).astype("float32") conv1_weight = relay.Constant(tvm.nd.array(np_weight)).astype("float32") multiplier = relay.sigmoid(relay.var("data", shape=(1, 16, 1, 1))) conv0 = relay.nn.conv2d(data, conv0_weight, kernel_size=(3, 3), padding=(1, 1), channels=16) act0 = relay.nn.relu(data=conv0) conv1 = relay.nn.conv2d(act0, conv1_weight, kernel_size=(3, 3), padding=(1, 1), channels=16) act1 = relay.nn.relu(data=conv1) quantize_and_build(act1 * multiplier) quantize_and_build(act1 * multiplier, skip_conv_layers=[0]) quantize_and_build(act1 * multiplier, skip_conv_layers=[1]) quantize_and_build(act1 * multiplier, skip_conv_layers=[0, 1]) def test_stop_quantize(): data = relay.var("data", shape=(1, 16, 64, 64)) np_weight0 = np.random.rand(16, 16, 3, 3) conv0_weight = relay.Constant(tvm.nd.array(np_weight0)).astype("float32") np_weight1 = np.random.rand(16, 16, 1, 1) conv1_weight = relay.Constant(tvm.nd.array(np_weight1)).astype("float32") multiplier = rela
y.sigmoid(relay.var("data", shape=(1, 16, 1, 1))) conv0 = relay.nn.conv2d(data, conv0_weight, kernel_size=(3, 3), padding=(1, 1), channels=16) act0 = relay.nn.relu(data=conv0) pool = relay.nn.global_avg_pool2d(data=act0) conv1 = relay.nn.conv2d(pool, conv1_weight, kernel_size=(1, 1), padding=(0, 0), channels=16) act1 = relay.nn.relu(data=conv1) quantize_and_build(act1 * multiplier) def test_batch_flatten_rewrite(): data = relay.var("data", shape=(1, 16, 64, 64), dtype="float32") out = relay.nn.conv2d( data, relay.var("weight"), kernel_size=(3, 3), padding=(1, 1), channels=16 ) out = relay.nn.batch_flatten(out) qmod = quantize_and_build(out) def _check_batch_flatten(node): if isinstance(node, Call): if node.op.name == "nn.batch_flatten": assert node.checked_type.dtype == "int8" relay.analysis.post_order_visit(qmod["main"], _check_batch_flatten) def test_batch_matmul_rewrite(): data = relay.var("data", shape=(1, 4, 16, 16)) data2 = relay.sigmoid(relay.var("data", shape=(4, 16, 64))) out = relay.nn.conv2d(data, relay.var("weight"), kernel_size=(3, 3), padding=(1, 1), channels=8) out = relay.nn.batch_flatten(out) out = relay.reshape(out, [1, 32, 64]) out = relay.nn.batch_matmul(out, data2) qmod = quantize_and_build(out) def _check_batch_matmul(node): if isinstance(node, Call): if node.op.name in ["nn.batch_matmul", "nn.conv2d"]: assert node.checked_type.dtype == "int32" elif node.op.name == "nn.batch_flatten": assert node.checked_type.dtype == "int8" relay.analysis.post_order_visit(qmod["main"], _check_batch_matmul) def get_calibration_dataset(mod, input_name): dataset = [] input_shape = [int(x) for x in mod["main"].checked_type.arg_types[0].shape] for i in range(5): data = np.random.uniform(size=input_shape) dataset.append({input_name: data}) return dataset @p
ytest.mark.parametrize("create_target", [True, False]) def test_calibrate_target(create_target): mod, params = testing.synthetic.get_workload() dataset = get_calibration_dataset(mod, "data") with relay.quantize.qconfig(calibrate_mode="kl_divergence"): if create_target: with tvm.target.Target("llvm"): relay.quantize.quantize(mod, params, dataset) else: relay.quantize.quantize(mod, params, dataset) def test_calibrate_memory_bound(): mod, params = testing.synthetic.get_workload() dataset = get_calibration_dataset(mod, "data")
import multiprocessing num_cpu = multiprocessing.cpu_count() with relay.quantize.qconfig(calibrate_mode="kl_divergence", calibrate_chunk_by=num_cpu): relay.quantize.quantize(mod, params, dataset) def test_calibrate_percentile(): mod, params = testing.synthetic.get_workload() dataset = get_calibration_dataset(mod, "data") with relay.quantize.qconfig(calibrate_mode="percentile"): relay.quantize.quantize(mod, params, dataset) BASE_CFG = { "skip_conv_layers": [], "skip_dense_layers": False, "dtype_input": "int8", "dtype_weight": "int8", "dtype_activation": "int32", } def gen_rand_tvm(tt, low, high): if "int" in tt.dtype: data_np = np.random.randint(low, high, size=get_const_tuple(tt.shape), dtype=tt.dtype) elif "float" in tt.dtype: data_np = np.random.uniform(low, high, size=get_const_tuple(tt.shape)).astype(tt.dtype) else: assert False, "unknown dtype" return tvm.nd.array(data_np, device=tvm.cpu(0)) def verify_partition_fails(mod, params): with relay.quantize.qconfig(**BASE_CFG, partition_conversions="enabled"): partitioned_mod = relay.quantize.quantize(mod, params) try: with relay.quantize.qconfig(**BASE_CFG, partition_conversions="fully_integral"): partitioned_mod = relay.quantize.quantize(mod, params) raise RuntimeError("partitioning should have failed") except AssertionError: pass def verify_partition(mod, params): with relay.quantize.qconfig(**BASE_CFG, paritition_conversions="disabled"): unpartitioned_mod = relay.quantize.quantize(mod, params) assert ( len(unpartitioned_mod.get_global_vars()) == 1 ), "unpartitioned module should only have one function" with relay.quantize.qconfig(**BASE_CFG, partition_conversions="fully_integral"): partitioned_mod = relay.quantize.quantize(mod, params) params = [gen_rand_tvm(param.type_annotation, 0, 1) for param in partitioned_mod["main"].params
] def _eval_mod(mod): return relay.create_executor("vm", device=tvm.cpu(0), target="llvm", mod=mod).evaluate()( *params ) partitioned_mod_result = _eval_mod(partitioned_mod) unpartitioned_mod_result = _eval_mod(unpartitioned_mod) tvm.testing.assert_allclose(unpartitioned_mod_result.numpy(), partitioned_mod_result.numpy()) def test_add_partition(): mod = tvm.parser.parse( """ def @main( %x: Tensor[(10, 10), float32], %y: Tensor[(10, 10), float32]) { add(%x, %y) } """ ) params = {} verify_partition_fails(mod, params) def test_conv2d_partition(): mod = tvm.parser.parse( """ def @main( %x: Tensor[(1, 4, 16, 16), float32], %w: Tensor[(4, 4, 3, 3), float32]) -> Tensor[(1, 4, 16, 16), float32] { nn.conv2d(%x, %w, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]) } """ ) weight_ty = mod["main"].params[1].checked_type params = {"w": gen_rand_tvm(weight_ty, 0, 1)} verify_partition(mod, params) def test_multiple_arg_conversions_partition(): mod = tvm.parser.parse( """ def @main( %x1: Tensor[(1, 4, 16, 16), float32], %w1: Tensor[(4, 4, 3, 3), float32], %x2: Tensor[(1, 4, 16, 16), float32], %w2: Tensor[(4, 4, 3, 3), float32] ) -> Tensor[(1, 4, 16, 16), float32] { %0 = nn.conv2d(%x1, %w1, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]); %1 = nn.conv2d(%x2, %w2, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]); add(%0, %1) } """ ) w1_ty = mod["main"].params[1].checked_type w2_ty = mod["main"].params[3].checked_type params = {"w1": gen_rand_tvm(w1_ty, 0, 1), "w2": gen_rand_tvm(w2_ty, 0, 1)} verify_partition(mod, params) def test_unquantizable_prefix_partition(): mod = tvm.parser.parse( """ def @main( %x: Tensor[(1, 4, 16, 16), f
loat32], %b: Tensor[(4), float32], %w: Tensor[(4, 4, 3, 3), float32]) -> Tensor[(1, 4, 16, 16), float32] { %0 = nn.bias_add(%x, %b); nn.conv2d(%0, %w, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]) } """ ) bias_ty = mod["main"].params[1].checked_type weight_ty = mod["main"].params[2].checked_type params = {"b": gen_rand_tvm(bias_ty, 0, 1), "w": gen_rand_tvm(weight_ty, 0, 1)} verify_partition_fails(mod, params) def test_unquantizable_core_partition(): mod = tvm.parser.parse( """ def @main( %x1: Tensor[(1, 4, 16, 16), float32], %w1: Tensor[(4, 4, 3, 3), float32], %b: Tensor[(4), float32], %w2: Tensor[(4, 4, 3, 3), float32]) -> Tensor[(1, 4, 16, 16), float32] { %0 = nn.conv2d(%x1, %w1, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]); %1 = nn.bias_add(%0, %b); nn.conv2d(%1, %w2, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]) } """ ) w1_ty = mod["main"].params[1].checked_type bias_ty = mod["main"].params[2].checked_type w2_ty = mod["main"].params[3].checked_type params = { "w1": gen_rand_tvm(w1_ty, 0, 1), "w2": gen_rand_tvm(w2_ty, 0, 1), "b": gen_rand_tvm(bias_ty, 0, 1), } verify_partition_fails(mod, params) def test_unquantizable_suffix_partition(): mod = tvm.parser.parse( """ def @main( %x: Tensor[(1, 4, 16, 16), float32], %w: Tensor[(4, 4, 3, 3), float32], %b: Tensor[(4), float32]) -> Tensor[(1, 4, 16, 16), float32] { %0 = nn.conv2d(%x, %w, padding=[1, 1, 1, 1], channels=4, kernel_size=[3, 3]); nn.bias_add(%0, %b) } """ ) weight_ty = mod["main"].params[1].checked_type bias_ty = mod["main"].params[2].checked_type params = {"w": gen_rand_tvm(weight_ty, 0, 1), "b": gen_rand_tvm(bias_ty, 0, 1)} verify_partition_fa
ils(mod, params) def test_left_shift_negative(): data = relay.var("data", shape=(1, 16, 64, 64)) weight = relay.const(np.full((16, 16, 3, 3), 256.0)) conv2d = relay.nn.conv2d(data, weight, kernel_size=(3, 3), padding=(1, 1), channels=16) relu = relay.nn.relu(conv2d) mod = tvm.IRModule.from_expr(relu) with tvm.transform.PassContext(opt_level=3): with relay.quantize.qconfig( calibrate_mode="global_scale", global_scale=8.0, skip_conv_layers=None ): qnn_mod = relay.quantize.quantize(mod)
class OpFinder(relay.ExprVisitor): def __init__(self, op_name): super(OpFinder, self).__init__() self._op_name = op_name self.ops = list() def visit_call(self, call): super().visit_call(call) if call.op.name == self._op_name: self.ops.append(call) opf = OpFinder("left_shift") opf.visit(qnn_mod["main"]) assert len(opf.ops) > 0, 'Broken case, can\'t find any "left_shift" operators.' for left_shift_op in opf.ops: shift_amount = left_shift_op.args[1].data.numpy() assert shift_amount >= 0, "Shift amount must be non-negative." def test_dense_conv2d_rewrite(): n, c, h, w = 1, 16, 64, 64 data = relay.var("data", relay.TensorType((n, c, h, w))) inp = relay.var("inp", relay.TensorType((n, c * h * w))) weight_T = relay.const(np.random.random((n, c * h * w)), dtype="float32") bias = relay.const(np.random.random((n,)), dtype="float32") conv_w = relay.const(np.random.random((16, 16, 3, 3)), dtype="float32") dense_o = relay.nn.dense(inp, weight_T) linear_o = relay.nn.bias_add(dense_o, bias) conv2d_o = relay.nn.conv2d(data, conv_w, kernel_size=(3, 3), padding=(1, 1), channels=16) result = relay.Tuple((linear_o, conv2d_o)) mod = tvm.IRModule.from_expr(result) with tvm.transform.PassContext(opt_level=3): with relay.quantize.qconfig( calibrate_mode="global_scale", global_scale=8.0, skip_dense_layer=False ): qnn_mod = relay.quantize.quantize(mod) def _check_dense(node): if isinstance(node, Call): if node.op.name == "nn.dense": assert node.args[0].checked_type.dtype == "int8" assert node.args[1].checked_type.dtype == "int8" assert node.checked_type.dtype == "int32" if node.op.name == "nn.conv2d": assert node.args[0].checked_type.dtype == "float32" assert node.args[1].checked_type.dtype == "float32"
assert node.checked_type.dtype == "float32" relay.analysis.post_order_visit(qnn_mod["main"], _check_dense) if __name__ == "__main__": test_mul_rewrite() test_batch_flatten_rewrite() test_batch_matmul_rewrite() test_calibrate_target(False) test_calibrate_target(True) test_calibrate_memory_bound() test_calibrate_percentile() test_add_partition() test_conv2d_partition() test_multiple_arg_conversions_partition() test_unquantizable_prefix_partition() test_unquantizable_core_partition() test_unquantizable_suffix_partition() test_left_shift_negative() test_dense_conv2d_rewrite() test_skip_conv() test_stop_quantize()
import tvm from tvm
import te
import tvm.relay as relay
import tvm.relay.transform as _transform def test_canonicalize_cast(): def before(data, conv_weight, bias1, bias2): x = relay.nn.conv2d( data, conv_weight, channels=16, kernel_size=(3, 3), padding=(1, 1), out_dtype="int8" ) x1 = relay.cast(x, dtype="int32") y1 = relay.add(x1, bias1) y2 = relay.add(x1, bias2) y = relay.add(y1, y2) return relay.Function([data, conv_weight, bias1, bias2], y) def expected(data, conv_weight, bias1, bias2): x = relay.nn.conv2d( data, conv_weight, channels=16, kernel_size=(3, 3), padding=(1, 1), out_dtype="int8" ) x1 = relay.cast(x, dtype="int32") x2 = relay.cast(x, dtype="int32") y1 = relay.add(x1, bias1) y2 = relay.add(x2, bias2) y = relay.add(y1, y2) return relay.Function([data, conv_weight, bias1, bias2], y) def check(shape): data = relay.var("data", shape=shape, dtype="int8") conv_weight = relay.var("weight") bias1 = relay.var("bias1", shape=(16, 1, 1), dtype="int32") bias2 = relay.var("bias2", shape=(16, 1, 1), dtype="int32") y = before(data, conv_weight, bias1, bias2) mod = tvm.IRModule.from_expr(y) seq = tvm.transform.Sequential( [_transform.InferType(), _transform.CanonicalizeCast(), _transform.InferType()] ) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) y = mod["main"] y_expected = expected(data, conv_weight, bias1, bias2) gv = relay.GlobalVar("expected") mod[gv] = y_expected mod = _transform.InferType()(mod) y_expected = mod["expected"] assert tvm.ir.structural_equal(y, y_expected) check((1, 16, 7, 7)) if __name__ == "__main__": test_canonicalize_cast()
import tvm from tvm
import te from tvm
import relay from tvm.relay.analysis
import check_kind
import pytest def test_typevar_kind(): tp1 = relay.TypeVar("tp1", relay.TypeKind.Type) tp2 = relay.TypeVar("tp2", relay.TypeKind.ShapeVar) tp3 = relay.TypeVar("tp3", relay.TypeKind.Constraint) assert check_kind(tp1) == relay.TypeKind.Type assert check_kind(tp2) == relay.TypeKind.ShapeVar assert check_kind(tp3) == relay.TypeKind.Constraint def test_tuple_kind(): tp = relay.TypeVar("tp", relay.TypeKind.Type) tt = relay.TensorType(tvm.runtime.convert([1, 2, 3]), "float32") tf = relay.FuncType( tvm.runtime.convert([]), tt, tvm.runtime.convert([]), tvm.runtime.convert([]) ) fields = tvm.runtime.convert([tp, tf, tt]) tup_ty = relay.TupleType(fields) assert check_kind(tup_ty) == relay.TypeKind.Type def test_func_kind(): tp1 = relay.TypeVar("tp1", relay.TypeKind.Type) tp2 = relay.TypeVar("tp2", relay.TypeKind.Type) shape = tvm.runtime.convert([1, 2, 3]) dtype = "float32" tensor_type = relay.TensorType(shape, dtype) tr = relay.TypeRelation(None, tvm.runtime.convert([tensor_type, tp1]), 1, None) type_params = tvm.runtime.convert([tp1, tp2]) type_constraints = tvm.runtime.convert([tr]) arg_types = tvm.runtime.convert([tp1, tensor_type]) ret_type = relay.TupleType(tvm.runtime.convert([tp2, tensor_type])) tf = relay.FuncType(arg_types, ret_type, type_params, type_constraints) assert check_kind(tf) == relay.TypeKind.Type def test_ref_kind(): tt = relay.TensorType(tvm.runtime.convert([1, 2, 3]), "float32") ft = relay.FuncType( tvm.runtime.convert([]), tt, tvm.runtime.convert([]), tvm.runtime.convert([]) ) rt1 = relay.RefType(tt) assert check_kind(rt1) == relay.TypeKind.Type rt2 = relay.RefType(ft) assert check_kind(rt2) == relay.TypeKind.Type rt3 = relay.RefType(relay.TupleType([rt1, rt2])) assert check_kind(rt3) == relay.TypeKind.Type def test_relation_kind(): tp = relay.TypeVar("tp", relay.TypeKind.Type) tt = relay.TensorType(t
vm.runtime.convert([1, 2, 3]), "float32") tf = relay.FuncType( tvm.runtime.convert([]), tt, tvm.runtime.convert([]), tvm.runtime.convert([]) ) args = tvm.runtime.convert([tf, tt, tp]) tr = relay.TypeRelation(None, args, 2, None) assert check_kind(tr) == relay.TypeKind.Constraint def test_global_typevar_kind(): v1 = relay.GlobalTypeVar("gtv1", relay.TypeKind.AdtHandle) v2 = relay.GlobalTypeVar("gtv2", relay.TypeKind.Type) assert check_kind(v1) == relay.TypeKind.AdtHandle assert check_kind(v2) == relay.TypeKind.Type def test_typecall_kind(): gtv = relay.GlobalTypeVar("gtv") mod = tvm.IRModule() data = relay.TypeData(gtv, [], []) mod[gtv] = data empty_call = relay.TypeCall(gtv, []) assert check_kind(empty_call, mod) == relay.TypeKind.Type new_mod = tvm.IRModule() tv = relay.TypeVar("tv") new_data = relay.TypeData(gtv, [tv], []) new_mod[gtv] = new_data call = relay.TypeCall(gtv, [relay.TupleType([])]) assert check_kind(call, new_mod) == relay.TypeKind.Type @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_tuple_kind(): tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar) tp2 = relay.TypeVar("tp2", relay.TypeKind.BaseType) tp3 = relay.TypeVar("tp3", relay.TypeKind.Constraint) fields = tvm.runtime.convert([tp1, tp2, tp3]) tup_ty = relay.TupleType(fields) check_kind(tup_ty) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_func_kind(): tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar) tp2 = relay.TypeVar("tp2", relay.TypeKind.BaseType) tp3 = relay.TypeVar("tp3", relay.TypeKind.Constraint) type_params = tvm.runtime.convert([tp1, tp2, tp3]) type_constraints = tvm.runtime.convert([]) arg_types = tvm.runtime.convert([tp1, tp2]) ret_type = tp3 tf = relay.FuncType(arg_types, ret_type, type_params, type_constraints) check_kind(tf) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_ref_kind(): tp = relay.TypeVar("tp", r
elay.TypeKind.ShapeVar) rt = relay.RefType(tp) check_kind(rt) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_invalid_relation_kind(): tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar) tp2 = relay.TypeVar("tp2", relay.TypeKind.BaseType) tp3 = relay.TypeVar("tp3", relay.TypeKind.Constraint) args = tvm.runtime.convert([tp1, tp2, tp3]) func = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Broadcast") tr = relay.TypeRelation(func, args, 2, None) check_kind(tr) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_typecall_invalid_callee(): gtv = relay.GlobalTypeVar("v1", relay.TypeKind.Type) check_kind(relay.TypeCall(gtv, [])) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_typecall_invalid_args(): mod = tvm.IRModule() gtv = relay.GlobalTypeVar("v1") data = relay.TypeData(gtv, [], []) mod[gtv] = data check_kind(relay.TypeCall(gtv, [data])) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_typecall_invalid_num_args(): mod = tvm.IRModule() gtv = relay.GlobalTypeVar("v1") tv = relay.TypeVar("tv") data = relay.TypeData(gtv, [tv], []) mod[gtv] = data check_kind(relay.TypeCall(gtv, [])) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_func_with_invalid_ret_type(): tp1 = relay.TypeVar("tp1", relay.TypeKind.Type) tp2 = relay.TypeVar("tp2", relay.TypeKind.ShapeVar) tf = relay.FuncType( tvm.runtime.convert([tp1]), tp2, tvm.runtime.convert([tp1, tp2]), tvm.runtime.convert([]) ) check_kind(tf) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_func_with_invalid_arg_types(): tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar) tp2 = relay.TypeVar("tp2", relay.TypeKind.Type) tf = relay.FuncType( tvm.runtime.convert([tp1]), tp2, tvm.runtime.convert([tp1, tp2]), tvm.runtime.convert([]) ) check_kind(tf) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_func_with_invalid_tuple(): tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar
) ret_type = relay.TupleType(tvm.runtime.convert([tp1, tp1, tp1])) tf = relay.FuncType( tvm.runtime.convert([]), ret_type, tvm.runtime.convert([tp1]), tvm.runtime.convert([]) ) check_kind(tf) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_func_with_invalid_relation(): tp1 = relay.TypeVar("tp1", relay.TypeKind.Type) tp2 = relay.TypeVar("tp2", relay.TypeKind.ShapeVar) tp3 = relay.TypeVar("tp3", relay.TypeKind.Constraint) func = tvm.ir.EnvFunc.get("tvm.relay.type_relation.Identity") tr = relay.TypeRelation(func, tvm.runtime.convert([tp2, tp3]), 1, None) tf = relay.FuncType( tvm.runtime.convert([tp1]), tp1, tvm.runtime.convert([tp1, tp2, tp3]), tvm.runtime.convert([tr]), ) check_kind(tf) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_tuple_with_invalid_func(): tensor_type = relay.TensorType(tvm.runtime.convert([1, 2, 3]), "float32") tp1 = relay.TypeVar("tp1", relay.TypeKind.ShapeVar) tf = relay.FuncType( tvm.runtime.convert([]), tp1, tvm.runtime.convert([tp1]), tvm.runtime.convert([]) ) tup_ty = relay.TupleType(tvm.runtime.convert([tensor_type, tf])) check_kind(tup_ty) if __name__ == "__main__": test_tuple_kind() test_func_kind() test_ref_kind() test_relation_kind() test_global_typevar_kind() test_typecall_kind() test_invalid_tuple_kind() test_invalid_func_kind() test_invalid_ref_kind() test_invalid_relation_kind() test_typecall_invalid_callee() test_typecall_invalid_args() test_typecall_invalid_num_args() test_func_with_invalid_ret_type() test_func_with_invalid_arg_types() test_func_with_invalid_tuple() test_func_with_invalid_relation() test_tuple_with_invalid_func()
import tvm
import tvm.testing
import pytest from tvm.relay.transform
import CollagePartition, InferType, CapturePostDfsIndexInSpans from tvm.target
import make_compilation_config from tvm.relay.collage
import MockCostEstimator from unittest.mock
import patch from tvm.relay.dataflow_pattern
import is_op, wildcard def test_pattern_table(): def relu_pattern(): return is_op("nn.relu")(wildcard()) def add_pattern(): return is_op("add")(wildcard(), wildcard()) def concatenate_pattern(): return is_op("concatenate")(wildcard()) def predicate(expr): return True return [ ("relu", relu_pattern(), predicate), ("add", add_pattern(), predicate), ("concatenate", concatenate_pattern(), predicate), ] def _mock_get_pattern_table(target): if target == "example_target_hook": return test_pattern_table() def run_collage( input_mod, targets, cost_estimator, expected_mod, tvm_max_depth=8, byoc_max_depth=8 ): ctxt = { "relay.collage.tvm_max_depth": tvm_max_depth, "relay.collage.byoc_max_depth": byoc_max_depth, } expected_mod = InferType()(expected_mod) pass_ctxt = tvm.transform.PassContext(config=ctxt) with pass_ctxt: config = make_compilation_config(pass_ctxt, targets) actual_mod = InferType()(input_mod) actual_mod = CapturePostDfsIndexInSpans()(actual_mod) actual_mod = CollagePartition(config, cost_estimator)(actual_mod) if not tvm.ir.structural_equal(actual_mod, expected_mod, map_free_vars=True): print("Input module:") print(input_mod) print("Actual module:") print(actual_mod) print("Expected module:") print(expected_mod) tvm.ir.assert_structural_equal(actual_mod, expected_mod, map_free_vars=True) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_partition_single_op_llvm(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { nn.relu(%x) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { nn.relu(%x) }
""" expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 1, "example_target_hook": 2, } ) run_collage(mod, targets, cost_estimator, expected_mod) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_partition_single_op_byoc(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { nn.relu(%x) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %0(%FunctionVar_0) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { @collage_example_target_hook_nn_relu(%x) } """ expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, } ) run_collage(mod, targets, cost_estimator, expected_mod) @pytest.mark.parametrize("byoc_max_depth", [1, 3]) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_partition_diamond_valid_topology(mock_get_pattern_table, byoc_max_depth): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = abs(%0); %2 = nn.relu(%1); add(%1, %2) } """ mod = tvm.parser.fromtext(mod_txt) expected_3_txt = """
def @collage_example_target_hook_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %0(%FunctionVar_0) } def @collage_example_target_hook_nn_relu_add(%FunctionVar_02: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu_add") -> Tensor[(10, 10), float32] { %1 = fn (%FunctionVar_04: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_04) }; %2 = %1(%FunctionVar_02); %3 = fn (%FunctionVar_03: Tensor[(10, 10), float32], %FunctionVar_1: Tensor[(10, 10), float32], Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_03, %FunctionVar_1) }; %3(%FunctionVar_02, %2) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %4 = @collage_example_target_hook_nn_relu(%x); %5 = abs(%4); @collage_example_target_hook_nn_relu_add(%5) } """ expected_1_txt = """ def @collage_example_target_hook(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_01: Tensor[(10, 10), float32], %FunctionVar_1: Tensor[(10, 10), float32], Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_01, %FunctionVar_1) }; %2(%FunctionVar_0, %1) } def @collage_example_target_hook_nn_relu(%FunctionVar_03: Tenso
r[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu") -> Tensor[(10, 10), float32] { %3 = fn (%FunctionVar_04: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_04) }; %3(%FunctionVar_03) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %4 = @collage_example_target_hook_nn_relu(%x); %5 = abs(%4); @collage_example_target_hook(%5) } """ expected_mod = tvm.parser.fromtext(expected_1_txt if byoc_max_depth == 1 else expected_3_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, } ) run_collage( mod, targets, cost_estimator, expected_mod, tvm_max_depth=1, byoc_max_depth=byoc_max_depth ) @pytest.mark.parametrize("tvm_max_depth", [1, 2, 3]) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_tvm_max_depth(mock_get_pattern_table, tvm_max_depth): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); nn.relu(%1) } """ mod = tvm.parser.fromtext(mod_txt) expected_txts = { 1: """ def @collage_example_target_hook(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_03: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_03) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) };
%3 = %2(%1); %4 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %4(%3) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { @collage_example_target_hook(%x) } """, 2: """ def @collage_example_target_hook_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %0(%FunctionVar_0) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %1 = @collage_example_target_hook_nn_relu(%x); %2 = nn.relu(%1); nn.relu(%2) } """, 3: """ def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %0 = nn.relu(%x); %1 = nn.relu(%0); nn.relu(%1) } """, } expected_mod = tvm.parser.fromtext(expected_txts[tvm_max_depth]) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 100, "example_target_hook": 99, } ) run_collage( mod, targets, cost_estimator, expected_mod, tvm_max_depth=tvm_max_depth, byoc_max_depth=1 ) @pytest.mark.parametrize("byoc_max_depth", [1, 2, 3]) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_byoc_max_depth(mock_get_pattern_table, byoc_max_depth): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); nn.relu(%1)
} """ mod = tvm.parser.fromtext(mod_txt) expected_txts = { 1: """ def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %0 = nn.relu(%x); %1 = nn.relu(%0); nn.relu(%1) } """, 2: """ def @collage_example_target_hook_nn_relu_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %2(%1) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %3 = nn.relu(%x); @collage_example_target_hook_nn_relu_nn_relu(%3) } """, 3: """ def @collage_example_target_hook_nn_relu_nn_relu_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu_nn_relu_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_03: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_03) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %3 = %2(%1); %4 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %4(%3) }
def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { @collage_example_target_hook_nn_relu_nn_relu_nn_relu(%x) } """, } expected_mod = tvm.parser.fromtext(expected_txts[byoc_max_depth]) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 99, "example_target_hook": 100, } ) run_collage( mod, targets, cost_estimator, expected_mod, tvm_max_depth=1, byoc_max_depth=byoc_max_depth ) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_partition_output_tuple(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); %2 = abs(%1); (%0, %1, %2) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook") -> (Tensor[(10, 10), float32], Tensor[(10, 10), float32]) { %0 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %3 = %2(%1); (%1, %3) } def @main(%x: Tensor[(10, 10), float32]) -> (Tensor[(10, 10), float32], Tensor[(10, 10), float32], Tensor[(10, 10), float32]) { %4 = @collage_example_target_hook(%x); %5 = %4.1; %6 = %4.0; %7 = abs(%5); (%6, %5, %7) } """ expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_
hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, } ) run_collage(mod, targets, cost_estimator, expected_mod, tvm_max_depth=2, byoc_max_depth=2) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_partition_intermediate_tuple(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); %2 = (%0, %1); concatenate(%2) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook(%FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook") -> (Tensor[(10, 10), float32], Tensor[(10, 10), float32]) { %0 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_01) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_02: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %3 = %2(%1); (%1, %3) } def @collage_example_target_hook_concatenate(%FunctionVar_03: (Tensor[(10, 10), float32], Tensor[(10, 10), float32]), Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_concatenate") -> Tensor[(20, 10), float32] { %4 = fn (%FunctionVar_04: (Tensor[(10, 10), float32], Tensor[(10, 10), float32]), Composite="concatenate") -> Tensor[(20, 10), float32] { concatenate(%FunctionVar_04) }; %4(%FunctionVar_03) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(20, 10), float32] { %5 = @collage_example_target_hook(%x); %6 = %5.0; %7 = %5.1; %8 = (%6, %7); @collage_example_target_hook_concatenate(%8) } """ expected_mod = tvm.parser.fromtext(
expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, } ) run_collage(mod, targets, cost_estimator, expected_mod, tvm_max_depth=3, byoc_max_depth=5) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_fusion_benefit(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); %2 = abs(%x); %3 = nn.relu(%2); %4 = add(%1, %3); %5 = nn.relu(%4); abs(%5) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook_nn_relu_nn_relu_nn_relu_add_nn_relu(%FunctionVar_0: Tensor[(10, 10), float32], %FunctionVar_1: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu_nn_relu_nn_relu_add_nn_relu") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_04: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_04) }; %1 = %0(%FunctionVar_0); %2 = fn (%FunctionVar_03: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_03) }; %3 = fn (%FunctionVar_05: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_05) }; %4 = %2(%1); %5 = %3(%FunctionVar_1); %6 = fn (%FunctionVar_02: Tensor[(10, 10), float32], %FunctionVar_11: Tensor[(10, 10), float32], Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_02, %FunctionVar_11) }; %7 = %6(%4, %5); %8 = fn (%FunctionVar_01: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%Functi
onVar_01) }; %8(%7) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %9 = abs(%x); %10 = @collage_example_target_hook_nn_relu_nn_relu_nn_relu_add_nn_relu(%x, %9); abs(%10) } """ expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 5, "example_target_hook": 6, } ) run_collage(mod, targets, cost_estimator, expected_mod, tvm_max_depth=1, byoc_max_depth=5) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_double_residual(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = abs(%0); %2 = add(%0, %1); add(%1, %2) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook_add_add(%FunctionVar_0: Tensor[(10, 10), float32], %FunctionVar_1: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_add_add") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_02: Tensor[(10, 10), float32], %FunctionVar_12: Tensor[(10, 10), float32], Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_02, %FunctionVar_12) }; %1 = %0(%FunctionVar_1, %FunctionVar_0); %2 = fn (%FunctionVar_01: Tensor[(10, 10), float32], %FunctionVar_11: Tensor[(10, 10), float32], Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_01, %FunctionVar_11) }; %2(%FunctionVar_0, %1) } def @collage_example_target_hook_nn_relu(%FunctionVar_03: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu") -> Tensor[(10, 10), float32] { %3 = fn (%
FunctionVar_04: Tensor[(10, 10), float32], Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_04) }; %3(%FunctionVar_03) } def @main(%x: Tensor[(10, 10), float32]) -> Tensor[(10, 10), float32] { %4 = @collage_example_target_hook_nn_relu(%x); %5 = abs(%4); @collage_example_target_hook_add_add(%5, %4) } """ expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, } ) run_collage(mod, targets, cost_estimator, expected_mod, tvm_max_depth=4, byoc_max_depth=4) @patch("tvm.relay.op.contrib.get_pattern_table", wraps=_mock_get_pattern_table) def test_pruning_heuristic(mock_get_pattern_table): mod_txt = """ def @main(%x: Tensor[(10, 10), float32]) { %0 = nn.relu(%x); %1 = nn.relu(%0); %2 = add(%0, %1); add(%1, %2) } """ mod = tvm.parser.fromtext(mod_txt) expected_txt = """ def @collage_example_target_hook_nn_relu_nn_relu_add_add( %FunctionVar_0: Tensor[(10, 10), float32], Primitive=1, Compiler="example_target_hook", global_symbol="collage_example_target_hook_nn_relu_nn_relu_add_add") -> Tensor[(10, 10), float32] { %0 = fn (%FunctionVar_03: Tensor[(10, 10), float32] , Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_03) }; %1 = %0(%FunctionVar_0) ; %2 = fn (%FunctionVar_02: Tensor[(10, 10), float32] , Composite="relu") -> Tensor[(10, 10), float32] { nn.relu(%FunctionVar_02) }; %3 = %2(%1); %4 = fn (%FunctionVar_04: Tensor[(10, 10), float32] , %FunctionVar_11: Tensor[(10, 10), float32] , Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_04, %Func
tionVar_11) }; %5 = %4(%1, %3); %6 = fn (%FunctionVar_01: Tensor[(10, 10), float32] , %FunctionVar_1: Tensor[(10, 10), float32] , Composite="add") -> Tensor[(10, 10), float32] { add(%FunctionVar_01, %FunctionVar_1) }; %6(%3, %5) } def @main(%x: Tensor[(10, 10), float32] ) -> Tensor[(10, 10), float32] { @collage_example_target_hook_nn_relu_nn_relu_add_add(%x) } """ expected_mod = tvm.parser.fromtext(expected_txt) targets = [ tvm.target.Target("llvm"), tvm.target.Target("example_target_hook"), ] cost_estimator = MockCostEstimator( { "llvm": 2, "example_target_hook": 1, }, max_estimates=2, ) run_collage(mod, targets, cost_estimator, expected_mod, tvm_max_depth=4, byoc_max_depth=4) if __name__ == "__main__": tvm.testing.main()
import tvm from tvm
import relay from tvm.relay
import transform def run_opt_pass(expr, opt_pass): "runs the opt_pass on the expr of a function the function" assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = tvm.relay.transform.InferType()(mod) mod = opt_pass(mod) return mod["main"] def test_combine_parallel_batch_matmul(): """Simple testcase.""" def before(x, w1, w2, w3): args = [x, w1, w2, w3] y1 = relay.nn.batch_matmul(x, w1) y2 = relay.nn.batch_matmul(x, w2) y3 = relay.nn.batch_matmul(x, w3) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def expected(x, w1, w2, w3): s1 = w1.type_annotation.shape[1] s2 = w2.type_annotation.shape[1] s3 = w3.type_annotation.shape[1] args = [x, w1, w2, w3] w = relay.concatenate((w1, w2, w3), axis=1) y = relay.nn.batch_matmul(x, w) y1 = relay.strided_slice( y, begin=[0, 0, 0], end=[-1, -1, s1], strides=[1, 1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, 0, s1], end=[-1, -1, s2], strides=[1, 1, 1], slice_mode="size" ) y3 = relay.strided_slice( y, begin=[0, 0, s1 + s2], end=[-1, -1, s3], strides=[1, 1, 1], slice_mode="size" ) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def check(b, i, j, k): x = relay.var("x", shape=(b, i, k)) w1 = relay.var("w1", shape=(b, j, k)) w2 = relay.var("w2", shape=(b, j, k)) w3 = relay.var("w3", shape=(b, j, k)) y_before = before(x, w1, w2, w3) y = run_opt_pass(y_before, transform.CombineParallelBatchMatmul(min_num_branches=2)) y_expected = expected(x, w1, w2, w3) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(2, 3, 5, 4) check(1, 100, 200, 300) def test_combine_parallel_batch_matmul_biasadd(): """S
imple testcase with bias""" def before(x, w1, w2, w3, b1, b2, b3): args = [x, w1, w2, w3, b1, b2, b3] y1 = relay.nn.batch_matmul(x, w1) y2 = relay.nn.batch_matmul(x, w2) y3 = relay.nn.batch_matmul(x, w3) y1 = relay.add(y1, b1) y2 = relay.add(y2, b2) y3 = relay.add(y3, b3) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def expected(x, w1, w2, w3, b1, b2, b3): s1 = w1.type_annotation.shape[1] s2 = w2.type_annotation.shape[1] s3 = w3.type_annotation.shape[1] args = [x, w1, w2, w3, b1, b2, b3] w = relay.concatenate((w1, w2, w3), axis=1) b = relay.concatenate((b1, b2, b3), axis=-1) y = relay.nn.batch_matmul(x, w) y = relay.add(y, b) y1 = relay.strided_slice( y, begin=[0, 0, 0], end=[-1, -1, s1], strides=[1, 1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, 0, s1], end=[-1, -1, s2], strides=[1, 1, 1], slice_mode="size" ) y3 = relay.strided_slice( y, begin=[0, 0, s1 + s2], end=[-1, -1, s3], strides=[1, 1, 1], slice_mode="size" ) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def check(b, i, j, k): x = relay.var("x", shape=(b, i, k)) w1 = relay.var("w1", shape=(b, j, k)) w2 = relay.var("w2", shape=(b, j, k)) w3 = relay.var("w3", shape=(b, j, k)) b1 = relay.var("b1", shape=(j,)) b2 = relay.var("b2", shape=(j,)) b3 = relay.var("b3", shape=(j,)) y_before = before(x, w1, w2, w3, b1, b2, b3) y = run_opt_pass(y_before, transform.CombineParallelBatchMatmul(min_num_branches=2)) y_expected = expected(x, w1, w2, w3, b1, b2, b3) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(2, 3, 5, 4) check(1, 100, 200, 300) if __name__ == "__main__": te
st_combine_parallel_batch_matmul() test_combine_parallel_batch_matmul_biasadd()
import tvm from tvm
import relay from tvm.relay
import transform def run_combine_parallel(expr, min_num_branches=3): mod = tvm.IRModule.from_expr(expr) mod = transform.CombineParallelConv2D(min_num_branches)(mod) return mod["main"] def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = tvm.relay.transform.InferType()(mod) mod = opt_pass(mod) return mod["main"] def test_combine_parallel_conv2d(): """Simple testcase.""" def before(x, w1, w2, w3, w4): args = [x, w1, w2, w3, w4] y1 = relay.nn.conv2d(x, w1) y2 = relay.nn.conv2d(x, w2) y3 = relay.nn.conv2d(x, w3) y4 = relay.nn.conv2d(x, w4) y5 = relay.nn.max_pool2d(x) y = relay.Tuple((y1, y2, y3, y4, y5)) return relay.Function(args, y) def expected(x, w1, w2, w3, w4, channels1, channels2, channels3, channels4): args = [x, w1, w2, w3, w4] w = relay.concatenate((w1, w2, w4), axis=0) y = relay.nn.conv2d(x, w, channels=channels1 + channels2 + channels4) y1 = relay.strided_slice( y, begin=[0, 0], end=[-1, channels1], strides=[1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, channels1], end=[-1, channels2], strides=[1, 1], slice_mode="size" ) y3 = relay.nn.conv2d(x, w3) y4 = relay.strided_slice( y, begin=[0, channels1 + channels2], end=[-1, channels4], strides=[1, 1], slice_mode="size", ) y5 = relay.nn.max_pool2d(x) y = relay.Tuple((y1, y2, y3, y4, y5)) return relay.Function(args, y) def check(x_shape, channels1, channels2, channels3, channels4): x = relay.var("x", shape=x_shape) in_c = x_shape[1] w1 = relay.var("w1", shape=(channels1, in_c, 1, 1)) w2 = relay.var("w2", shape=(channels2, in_c, 1, 1)) w3 = relay.var("w3", shape=(channels3, in_c, 3, 3)) w4 = relay.var("w4",
shape=(channels4, in_c, 1, 1)) y_before = before(x, w1, w2, w3, w4) y = run_opt_pass(y_before, transform.CombineParallelConv2D(min_num_branches=2)) y_expected = expected(x, w1, w2, w3, w4, channels1, channels2, channels3, channels4) y_expected = run_opt_pass(y_expected, transform.InferType()) assert tvm.ir.structural_equal(y, y_expected, map_free_vars=True) check((1, 4, 16, 16), 4, 4, 4, 4) check((1, 4, 16, 16), 4, 8, 4, 7) def test_combine_parallel_conv2d_scale_relu(): """Testcase of combining conv2d + scale + relu""" def before(x, w1, w2, scale1, scale2, bias): args = [x, w1, w2, scale1, scale2, bias] y1 = relay.nn.conv2d(x, w1) y1 = relay.multiply(y1, scale1) y1 = relay.nn.relu(y1) y2 = relay.nn.conv2d(x, w2) y2 = relay.multiply(y2, scale2) y2 = relay.nn.relu(y2) y2 = relay.add(y2, bias) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, scale1, scale2, bias, channels1, channels2): args = [x, w1, w2, scale1, scale2, bias] w = relay.concatenate((w1, w2), axis=0) scale = relay.concatenate((scale1, scale2), axis=0) y = relay.nn.conv2d(x, w, channels=channels1 + channels2) y = relay.multiply(y, scale) y = relay.nn.relu(y) y1 = relay.strided_slice( y, begin=[0, 0], end=[-1, channels1], strides=[1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, channels1], end=[-1, channels2], strides=[1, 1], slice_mode="size" ) y2 = relay.add(y2, bias) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def check(x_shape, channels1, channels2): x = relay.var("x", shape=x_shape) in_c = x_shape[1] w1 = relay.var("w1", shape=(channels1, in_c, 1, 1)) w2 = relay.var("w2", shape=(channels2, in_c, 1, 1)) scale1 = relay.var("scale1", shape=(channels1, 1, 1)) scale2 =
relay.var("scale2", shape=(channels2, 1, 1)) bias = relay.var("bias", shape=(channels2, 1, 1)) y_before = before(x, w1, w2, scale1, scale2, bias) y = run_opt_pass(y_before, transform.CombineParallelConv2D(min_num_branches=2)) y_expected = expected(x, w1, w2, scale1, scale2, bias, channels1, channels2) y_expected = run_opt_pass(y_expected, transform.InferType()) assert tvm.ir.structural_equal(y, y_expected, map_free_vars=True) check((1, 4, 16, 16), 4, 8) def test_combine_parallel_conv2d_scale(): """Testcase of un-combinable scale""" def before(x, w1, w2, scale1, scale2): args = [x, w1, w2, scale1, scale2] y1 = relay.nn.conv2d(x, w1) y1 = relay.multiply(y1, scale1) y2 = relay.nn.conv2d(x, w2) y2 = relay.multiply(y2, scale2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, scale1, scale2, channels1, channels2): args = [x, w1, w2, scale1, scale2] w = relay.concatenate((w1, w2), axis=0) y = relay.nn.conv2d(x, w, channels=channels1 + channels2) y1 = relay.strided_slice( y, begin=[0, 0], end=[-1, channels1], strides=[1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, channels1], end=[-1, channels2], strides=[1, 1], slice_mode="size" ) y1 = relay.multiply(y1, scale1) y2 = relay.multiply(y2, scale2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def check(x_shape, channels1, channels2): x = relay.var("x", shape=x_shape) in_c = x_shape[1] w1 = relay.var("w1", shape=(channels1, in_c, 1, 1)) w2 = relay.var("w2", shape=(channels2, in_c, 1, 1)) scale1 = relay.var("scale1", shape=(1,)) scale2 = relay.var("scale2", shape=(1,)) y_before = before(x, w1, w2, scale1, scale2) y = run_opt_pass(y_before, transform.CombineParallelConv2D(min_num_branches=2)) y_expected = ex
pected(x, w1, w2, scale1, scale2, channels1, channels2) y_expected = run_opt_pass(y_expected, transform.InferType()) assert tvm.ir.structural_equal(y, y_expected, map_free_vars=True) check((1, 4, 16, 16), 4, 8) def test_combine_parallel_conv2d_multiple_blocks(): def before(x, w, repeat): args = [x, w] y = x for i in range(repeat): y1 = relay.nn.conv2d(y, w) y2 = relay.nn.conv2d(y, w) y = relay.concatenate((y1, y2), axis=1) return relay.Function(args, y) def expected(x, w, channels, repeat): args = [x, w] y = x for i in range(repeat): w_concat = relay.concatenate((w, w), axis=0) y = relay.nn.conv2d(y, w_concat, channels=channels * 2) y1 = relay.strided_slice( y, begin=[0, 0], end=[-1, channels], strides=[1, 1], slice_mode="size" ) y2 = relay.strided_slice( y, begin=[0, channels], end=[-1, channels], strides=[1, 1], slice_mode="size" ) y = relay.concatenate((y1, y2), axis=1) return relay.Function(args, y) def check(x_shape, repeat): x = relay.var("x", shape=x_shape) in_c = x_shape[1] out_c = in_c w = relay.var("w", shape=(out_c, in_c, 1, 1)) y_before = before(x, w, repeat) y = run_opt_pass(y_before, transform.CombineParallelConv2D(min_num_branches=2)) y_expected = expected(x, w, out_c, repeat) y_expected = run_opt_pass(y_expected, transform.InferType()) assert tvm.ir.structural_equal(y, y_expected, map_free_vars=True) check((1, 4, 16, 16), 4) if __name__ == "__main__": test_combine_parallel_conv2d() test_combine_parallel_conv2d_scale_relu() test_combine_parallel_conv2d_scale() test_combine_parallel_conv2d_multiple_blocks()
import tvm from tvm
import te from tvm
import relay from tvm.relay
import transform def run_combine_parallel(expr, min_num_branches=3, to_batch=True): mod = tvm.IRModule.from_expr(expr) mod = transform.CombineParallelDense(min_num_branches, to_batch)(mod) return mod["main"] def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = tvm.relay.transform.InferType()(mod) mod = opt_pass(mod) return mod["main"] def test_combine_parallel_dense(): """Simple testcase. One dense cannot be combined due to shape mismatch""" def before(x, w1, w2, w3, w4): args = [x, w1, w2, w3, w4] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x, w2) y3 = relay.nn.dense(x, w3) y4 = relay.nn.dense(x, w4) y = relay.Tuple((y1, y2, y3, y4)) return relay.Function(args, y) def expected(x, w1, w2, w3, w4): args = [x, w1, w2, w3, w4] x_stacked = relay.stack((x, x, x), axis=0) w = relay.stack((w1, w2, w4), axis=0) y = relay.nn.batch_matmul(x_stacked, w) (y1, y2, y4) = relay.split(y, 3) y1 = relay.squeeze(y1, [0]) y2 = relay.squeeze(y2, [0]) y4 = relay.squeeze(y4, [0]) y3 = relay.nn.dense(x, w3) y = relay.Tuple((y1, y2, y3, y4)) return relay.Function(args, y) def check(i, j, k): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(j, k)) w3 = relay.var("w3", shape=(j + 1, k)) w4 = relay.var("w4", shape=(j, k)) y_before = before(x, w1, w2, w3, w4) y = run_opt_pass(y_before, transform.CombineParallelDense(min_num_branches=2)) y_expected = expected(x, w1, w2, w3, w4) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4) check(100, 200, 300) def test_combine_parallel_dense_biasadd(): """Testcase of combinin
g dense + 1d biasadd""" def before(x, w1, w2, b1, b2): args = [x, w1, w2, b1, b2] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x, w2) y1 = relay.add(y1, b1) y2 = relay.add(y2, b2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, b1, b2, is_2d_bias): args = [x, w1, w2, b1, b2] x_stacked = relay.stack((x, x), axis=0) w = relay.stack((w1, w2), axis=0) y = relay.nn.batch_matmul(x_stacked, w) if not is_2d_bias: b1 = relay.expand_dims(b1, 0) b2 = relay.expand_dims(b2, 0) b = relay.stack((b1, b2), axis=0) y = relay.add(y, b) (y1, y2) = relay.split(y, 2) y1 = relay.squeeze(y1, [0]) y2 = relay.squeeze(y2, [0]) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def check(i, j, k, is_2d_bias): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(j, k)) if is_2d_bias: b1 = relay.var("b1", shape=(i, j)) b2 = relay.var("b2", shape=(i, j)) else: b1 = relay.var("b1", shape=(j,)) b2 = relay.var("b2", shape=(j,)) y_before = before(x, w1, w2, b1, b2) y = run_opt_pass(y_before, transform.CombineParallelDense(min_num_branches=2)) y_expected = expected(x, w1, w2, b1, b2, is_2d_bias) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4, False) check(100, 200, 300, False) check(3, 5, 4, True) check(100, 200, 300, True) def test_combine_parallel_dense_biasadd_scale_reshape(): """Testcase of combining dense + 1d biasadd + multiply with non-fused reshape""" def before(x, w1, w2, b1, b2, scale1, scale2, newshape): args = [x, w1, w2, b1, b2, scale1, scale2] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x,
w2) y1 = relay.add(y1, b1) y2 = relay.add(y2, b2) y1 = relay.multiply(y1, scale1) y2 = relay.multiply(y2, scale2) y1 = relay.reshape(y1, newshape=newshape) y2 = relay.reshape(y2, newshape=newshape) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, b1, b2, scale1, scale2, newshape): args = [x, w1, w2, b1, b2, scale1, scale2] x_stacked = relay.stack((x, x), axis=0) w = relay.stack((w1, w2), axis=0) y = relay.nn.batch_matmul(x_stacked, w) b1 = relay.expand_dims(b1, 0) b2 = relay.expand_dims(b2, 0) b = relay.stack((b1, b2), axis=0) y = relay.add(y, b) scale1 = relay.expand_dims(scale1, 0) scale2 = relay.expand_dims(scale2, 0) scale = relay.stack((scale1, scale2), axis=0) y = relay.multiply(y, scale) (y1, y2) = relay.split(y, 2) y1 = relay.squeeze(y1, [0]) y2 = relay.squeeze(y2, [0]) y1 = relay.reshape(y1, newshape=newshape) y2 = relay.reshape(y2, newshape=newshape) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def check(i, j, k, scale1, scale2, newshape): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(j, k)) b1 = relay.var("b1", shape=(j,)) b2 = relay.var("b2", shape=(j,)) scale1 = relay.var("scale1", shape=(1,)) scale2 = relay.var("scale2", shape=(1,)) y_before = before(x, w1, w2, b1, b2, scale1, scale2, newshape) y = run_opt_pass(y_before, transform.CombineParallelDense(min_num_branches=2)) y_expected = expected(x, w1, w2, b1, b2, scale1, scale2, newshape) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4, 0.5, 0.25, (1, 1, 15)) check(100, 200, 300, 0.5, 0.25, (1, 1, 20000)) def test_combine_parallel_dense_f
lat(): """Simple testcase. All matmul of different output dim can be combined""" def before(x, w1, w2, w3): args = [x, w1, w2, w3] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x, w2) y3 = relay.nn.dense(x, w3) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def expected(x, w1, w2, w3, j): args = [x, w1, w2, w3] w_stacked = relay.concatenate((w1, w2, w3), axis=0) y = relay.nn.dense(x, w_stacked, units=6 * j) strides = [1, 1] y1 = relay.strided_slice(y, begin=[0, 0], end=[-1, j], strides=strides, slice_mode="size") y2 = relay.strided_slice( y, begin=[0, j], end=[-1, 2 * j], strides=strides, slice_mode="size" ) y3 = relay.strided_slice( y, begin=[0, 3 * j], end=[-1, 3 * j], strides=strides, slice_mode="size" ) y = relay.Tuple((y1, y2, y3)) return relay.Function(args, y) def check(i, j, k): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(2 * j, k)) w3 = relay.var("w3", shape=(3 * j, k)) y_before = before(x, w1, w2, w3) combine_pass = transform.CombineParallelDense(min_num_branches=3, to_batch=False) y = run_opt_pass(y_before, combine_pass) y_expected = expected(x, w1, w2, w3, j) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4) check(100, 200, 300) def test_combine_parallel_dense_flat_biasadd(): """Testcase of combining dense + 1d biasadd with different out dims""" def before(x, w1, w2, b1, b2): args = [x, w1, w2, b1, b2] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x, w2) y1 = relay.add(y1, b1) y2 = relay.add(y2, b2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, b1, b2, j, bias_shape1, bias_sh
ape2): args = [x, w1, w2, b1, b2] w_stacked = relay.concatenate((w1, w2), axis=0) y = relay.nn.dense(x, w_stacked, units=3 * j) n_out_dims = max(len(bias_shape1), 2) if len(bias_shape1) == 0: b1 = relay.repeat(relay.expand_dims(b1, -1), j, 0) elif bias_shape1[-1] == 1: b1 = relay.repeat(b1, j, len(bias_shape1) - 1) if len(bias_shape2) == 0: b2 = relay.repeat(relay.expand_dims(b2, -1), 2 * j, 0) elif bias_shape2[-1] == 1: b2 = relay.repeat(b2, 2 * j, len(bias_shape2) - 1) b = relay.concatenate((b1, b2), axis=max(0, len(bias_shape1) - 1)) y = relay.add(y, b) begin = [0 for _ in range(n_out_dims - 1)] end = [-1 for _ in range(n_out_dims - 1)] strides = [1 for _ in range(n_out_dims)] y1 = relay.strided_slice( y, begin=begin + [0], end=end + [j], strides=strides, slice_mode="size" ) y2 = relay.strided_slice( y, begin=begin + [j], end=end + [2 * j], strides=strides, slice_mode="size" ) return relay.Function(args, relay.Tuple((y1, y2))) def check(i, j, k, bias_shape1, bias_shape2): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(2 * j, k)) b1 = relay.var("b1", shape=bias_shape1) b2 = relay.var("b2", shape=bias_shape2) y_before = before(x, w1, w2, b1, b2) combine_pass = transform.CombineParallelDense(min_num_branches=2, to_batch=False) y = run_opt_pass(y_before, combine_pass) y_expected = expected(x, w1, w2, b1, b2, j, bias_shape1, bias_shape2) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4, (), ()) check(3, 5, 4, (1,), (1,)) check(3, 5, 4, (5,), (1,)) check(3, 5, 4, (1,), (10,)) check(3, 5, 4, (3, 1), (3, 1)) check(3, 5, 4, (3, 5), (3, 10)) check(3
, 5, 4, (3, 1), (3, 10)) check(3, 5, 4, (3, 5), (3, 1)) check(3, 5, 4, (9, 3, 5), (9, 3, 10)) check(3, 5, 4, (9, 3, 5), (9, 3, 1)) check(3, 5, 4, (9, 3, 1), (9, 3, 10)) def test_combine_parallel_dense_flat_biasadd_scale_reshape(): """Testcase of combining dense with different out dims following bias add, scale, reshape ops """ def before(x, w1, w2, b1, b2, scale1, scale2, newshape1, newshape2): args = [x, w1, w2, b1, b2, scale1, scale2] y1 = relay.nn.dense(x, w1) y2 = relay.nn.dense(x, w2) y1 = relay.add(y1, b1) y2 = relay.add(y2, b2) y1 = relay.multiply(y1, scale1) y2 = relay.multiply(y2, scale2) y1 = relay.reshape(y1, newshape=newshape1) y2 = relay.reshape(y2, newshape=newshape2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def expected(x, w1, w2, b1, b2, scale1, scale2, newshape1, newshape2, j): args = [x, w1, w2, b1, b2, scale1, scale2] w_stacked = relay.concatenate((w1, w2), axis=0) y = relay.nn.dense(x, w_stacked, units=3 * j) b = relay.concatenate((b1, b2), axis=0) y = relay.add(y, b) scale1 = relay.repeat(scale1, j, 0) scale2 = relay.repeat(scale2, 2 * j, 0) scale = relay.concatenate((scale1, scale2), axis=0) y = relay.multiply(y, scale) strides = [1, 1] y1 = relay.strided_slice(y, begin=[0, 0], end=[-1, j], strides=strides, slice_mode="size") y2 = relay.strided_slice( y, begin=[0, j], end=[-1, 2 * j], strides=strides, slice_mode="size" ) y1 = relay.reshape(y1, newshape=newshape1) y2 = relay.reshape(y2, newshape=newshape2) y = relay.Tuple((y1, y2)) return relay.Function(args, y) def check(i, j, k, scale1, scale2, newshape1, newshape2): x = relay.var("x", shape=(i, k)) w1 = relay.var("w1", shape=(j, k)) w2 = relay.var("w2", shape=(2 * j, k)) b1 = relay.var("b1", shape=(j,)) b2 =
relay.var("b2", shape=(2 * j,)) scale1 = relay.var("scale1", shape=(1,)) scale2 = relay.var("scale2", shape=(1,)) y_before = before(x, w1, w2, b1, b2, scale1, scale2, newshape1, newshape2) combine_pass = transform.CombineParallelDense(min_num_branches=2, to_batch=False) y = run_opt_pass(y_before, combine_pass) y_expected = expected(x, w1, w2, b1, b2, scale1, scale2, newshape1, newshape2, j) y_expected = run_opt_pass(y_expected, transform.InferType()) tvm.ir.assert_structural_equal(y, y_expected, map_free_vars=True) check(3, 5, 4, 0.5, 0.25, (1, 1, 15), (1, 1, 30)) check(100, 200, 300, 0.5, 0.25, (1, 1, 20000), (1, 1, 40000)) if __name__ == "__main__": test_combine_parallel_dense() test_combine_parallel_dense_biasadd() test_combine_parallel_dense_biasadd_scale_reshape() test_combine_parallel_dense_flat() test_combine_parallel_dense_flat_biasadd() test_combine_parallel_dense_flat_biasadd_scale_reshape()
"""Test alter op layout pass"""
import pytest
import tvm from tvm
import relay, te from tvm.relay
import analysis, transform from tvm.relay.op
import op as reg from tvm.relay.op
import register_alter_op_layout from tvm.relay.transform.infer_layout_utils
import InferCorrectLayoutOutput def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_no_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): return before() a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_binary_no_convert_layout(): def before(): x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(1, 2)) return relay.Function( [x, y], relay.qnn.op.add( x, y, lhs_scale=relay.const(0.0156863, "float32"), lhs_zero_point=relay.const(127, "int32"), rhs_scale=relay.const(0.0117647, "float32"), rhs_zero_point=relay.const(85, "int32"), output_scale=relay.const(0.0235294, "float32"), output_zero_point=relay.const(128, "int32"), ), ) def expected(): return before() a = before() a = run_opt_pass(a, transform.ConvertLayout({})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn
.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "OIHW") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_nhwc_convert_layout(): def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) x = relay.layout_transform(x, "NCHW", "NHWC") weight = relay.layout_transform(weight, "OIHW", "HWIO") y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.layout_transform(y, "NHWC", "NCHW"
) y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_transpose_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d_transpose( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "IOHW") y = relay.nn.conv2d_transpose(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(relay.analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d_transpose": ["NCHW", "IOHW"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_bias_pool_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.bias_add(y, bias, axis=3) y = rel
ay.Tuple([y])[0] y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NHWC") y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "OIHW") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) bias = relay.expand_dims(bias, axis=0, num_newaxis=3) bias = relay.layout_transform(bias, "NHWC", "NCHW") y = relay.add(y, bias) y = relay.Tuple([y])[0] y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2)) y = relay.cast(y, "int32") y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_bias_pool_uses_specified_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.bias_add(y, bias, axis=3) y = relay.Tuple([y])[0] y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NHWC") y = relay.cast(y, "int32") y = relay.nn.batch_flatte
n(y) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) bias = relay.var("bias", shape=(64,)) weight = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") weight = relay.layout_transform(weight, "HWIO", "OIHW") y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) bias = relay.expand_dims(bias, axis=0, num_newaxis=3) bias = relay.layout_transform(bias, "NHWC", "NCHW") y = relay.add(y, bias) y = relay.Tuple([y])[0] y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout="NHWC", out_layout="NHWC") y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass( a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "OIHW"], "nn.max_pool2d": ["NHWC"]}), ) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) def test_conv_concat_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 64)) weight2 = relay.var("weight2", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y1 = relay.nn.conv2d( y, weight2, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) ret = relay.concatenate([y, y1], axis=3) y = relay.Function(analysis.free_vars(
ret), ret) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 64)) weight2 = relay.var("weight2", shape=(3, 3, 64, 64)) weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") y = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(y, weight1, channels=64, kernel_size=(3, 3), padding=(1, 1)) y1 = relay.nn.conv2d(y, weight2, channels=64, kernel_size=(3, 3), padding=(1, 1)) ret = relay.concatenate([y, y1], axis=1) ret = relay.layout_transform(ret, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(ret), ret) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_deformable_conv_bias_pool_convert_layout(): def before(N, CI, H, W, CO, KH, KW, layout): if layout == "NCHW": data_shape = (N, CI, H, W) weight_shape = (CO, CI, KH, KW) kernel_layout = "OIHW" else: data_shape = (N, H, W, CI) weight_shape = (KH, KW, CI, CO) kernel_layout = "HWIO" bias_shape = (CO,) data = relay.var("data", shape=data_shape, dtype="float32") offset = relay.var("offset") weight = relay.var("weight", shape=weight_shape, dtype="float32") bias = relay.var("bias", shape=bias_shape, dtype="float32") y = relay.nn.deformable_conv2d( data, offset, weight, kernel_size=(KH, KW), channels=CO, data_layout=layout, kernel_layout=kernel_layout, ) y = relay.nn.bias_add(y, bias, axis=-1 if layout == "NHWC" else 1) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2),
layout=layout) y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y def expected(N, CI, H, W, CO, KH, KW, OH, OW, src_layout, dst_layout): layout_map = {"src": {}, "dst": {}} if src_layout == "NCHW": nchw = layout_map["src"] nhwc = layout_map["dst"] else: nchw = layout_map["dst"] nhwc = layout_map["src"] nchw["data_layout"] = "NCHW" nchw["data_shape"] = (N, CI, H, W) nchw["offset_shape"] = (N, KH * KW * 2, OH, OW) nchw["weight_shape"] = (CO, CI, KH, KW) nchw["kernel_layout"] = "OIHW" nhwc["data_layout"] = "NHWC" nhwc["data_shape"] = (N, H, W, CI) nhwc["offset_shape"] = (N, OH, OW, KH * KW * 2) nhwc["weight_shape"] = (KH, KW, CI, CO) nhwc["kernel_layout"] = "HWIO" bias_shape = (CO,) data = relay.var("data", shape=layout_map["src"]["data_shape"], dtype="float32") offset = relay.var("offset", shape=layout_map["src"]["offset_shape"], dtype="float32") weight = relay.var("weight", shape=layout_map["src"]["weight_shape"], dtype="float32") bias = relay.var("bias", shape=bias_shape, dtype="float32") data = relay.layout_transform( data, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] ) offset = relay.layout_transform( offset, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] ) weight = relay.layout_transform( weight, layout_map["src"]["kernel_layout"], layout_map["dst"]["kernel_layout"] ) y = relay.nn.deformable_conv2d( data, offset, weight, kernel_size=(KH, KW), channels=CO, data_layout=layout_map["dst"]["data_layout"], kernel_layout=layout_map["dst"]["kernel_layout"], ) if layout_map["src"]["data_layout"] == "N
HWC": bias = relay.expand_dims(bias, axis=0, num_newaxis=3) else: bias = relay.expand_dims(bias, axis=1, num_newaxis=2) bias = relay.expand_dims(bias, axis=0) bias = relay.layout_transform( bias, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] ) y = relay.add(y, bias) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout=layout_map["dst"]["data_layout"]) y = relay.cast(y, "int32") y = relay.layout_transform( y, layout_map["dst"]["data_layout"], layout_map["src"]["data_layout"] ) y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y a = before(1, 3, 224, 224, 32, 3, 3, "NHWC") a = run_opt_pass(a, transform.ConvertLayout({"nn.deformable_conv2d": ["NCHW", "default"]})) b = run_opt_pass( expected(1, 3, 224, 224, 32, 3, 3, 222, 222, "NHWC", "NCHW"), transform.InferType() ) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) a = before(1, 3, 224, 224, 32, 3, 3, "NCHW") a = run_opt_pass(a, transform.ConvertLayout({"nn.deformable_conv2d": ["NHWC", "default"]})) b = run_opt_pass( expected(1, 3, 224, 224, 32, 3, 3, 222, 222, "NCHW", "NHWC"), transform.InferType() ) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_deformable_conv_bias_pool_uses_specified_convert_layout(): def before(N, CI, H, W, CO, KH, KW, layout): if layout == "NCHW": data_shape = (N, CI, H, W) weight_shape = (CO, CI, KH, KW) kernel_layout = "OIHW" else: data_shape = (N, H, W, CI) weight_shape = (KH, KW, CI, CO) kernel_layout = "HWIO" bias_shape = (CO,) data = relay.var("data", shape=data_shape, dtype="float32") offset = relay.var("offset") weight = relay.var("weight", shape=weight_shape, dtype="float32") b
ias = relay.var("bias", shape=bias_shape, dtype="float32") y = relay.nn.deformable_conv2d( data, offset, weight, kernel_size=(KH, KW), channels=CO, data_layout=layout, kernel_layout=kernel_layout, ) y = relay.nn.bias_add(y, bias, axis=-1 if layout == "NHWC" else 1) y = relay.nn.relu(y) y = relay.nn.max_pool2d(y, pool_size=(2, 2), layout=layout) y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y def expected(N, CI, H, W, CO, KH, KW, OH, OW, src_layout, dst_layout, max_pool_layout=None): layout_map = {"src": {}, "dst": {}} if src_layout == "NCHW": nchw = layout_map["src"] nhwc = layout_map["dst"] else: nchw = layout_map["dst"] nhwc = layout_map["src"] nchw["data_layout"] = "NCHW" nchw["data_shape"] = (N, CI, H, W) nchw["offset_shape"] = (N, KH * KW * 2, OH, OW) nchw["weight_shape"] = (CO, CI, KH, KW) nchw["kernel_layout"] = "OIHW" nhwc["data_layout"] = "NHWC" nhwc["data_shape"] = (N, H, W, CI) nhwc["offset_shape"] = (N, OH, OW, KH * KW * 2) nhwc["weight_shape"] = (KH, KW, CI, CO) nhwc["kernel_layout"] = "HWIO" bias_shape = (CO,) data = relay.var("data", shape=layout_map["src"]["data_shape"], dtype="float32") offset = relay.var("offset", shape=layout_map["src"]["offset_shape"], dtype="float32") weight = relay.var("weight", shape=layout_map["src"]["weight_shape"], dtype="float32") bias = relay.var("bias", shape=bias_shape, dtype="float32") data = relay.layout_transform( data, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] ) offset = relay.layout_transform( offset, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] )
weight = relay.layout_transform( weight, layout_map["src"]["kernel_layout"], layout_map["dst"]["kernel_layout"] ) y = relay.nn.deformable_conv2d( data, offset, weight, kernel_size=(KH, KW), channels=CO, data_layout=layout_map["dst"]["data_layout"], kernel_layout=layout_map["dst"]["kernel_layout"], ) if layout_map["src"]["data_layout"] == "NHWC": bias = relay.expand_dims(bias, axis=0, num_newaxis=3) else: bias = relay.expand_dims(bias, axis=1, num_newaxis=2) bias = relay.expand_dims(bias, axis=0) bias = relay.layout_transform( bias, layout_map["src"]["data_layout"], layout_map["dst"]["data_layout"] ) y = relay.add(y, bias) y = relay.nn.relu(y) if max_pool_layout != layout_map["dst"]["data_layout"]: y = relay.layout_transform(y, layout_map["dst"]["data_layout"], max_pool_layout) y = relay.nn.max_pool2d( y, pool_size=(2, 2), layout=max_pool_layout, out_layout=max_pool_layout ) y = relay.cast(y, "int32") y = relay.nn.batch_flatten(y) y = relay.Function(analysis.free_vars(y), y) return y a = before(1, 3, 224, 224, 32, 3, 3, "NHWC") a = run_opt_pass( a, transform.ConvertLayout( {"nn.deformable_conv2d": ["NCHW", "default"], "nn.max_pool2d": ["NHWC"]} ), ) b = run_opt_pass( expected(1, 3, 224, 224, 32, 3, 3, 222, 222, "NHWC", "NCHW", max_pool_layout="NHWC"), transform.InferType(), ) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) a = before(1, 3, 224, 224, 32, 3, 3, "NCHW") a = run_opt_pass( a, transform.ConvertLayout( {"nn.deformable_conv2d": ["NHWC", "default"], "nn.max_pool2d": ["NCHW"]} ), ) b = run_opt_pass(
expected(1, 3, 224, 224, 32, 3, 3, 222, 222, "NCHW", "NHWC", max_pool_layout="NCHW"), transform.InferType(), ) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) def test_dual_path_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(3, 3, 32, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y1 = relay.nn.conv2d( y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y1 = relay.nn.relu(y1) y2 = relay.nn.batch_flatten(y) ret = relay.Tuple([y1, y2]) y = relay.Function(analysis.free_vars(ret), ret) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(3, 3, 32, 32)) weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") y = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(y, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y1 = relay.nn.conv2d(y, weight2, channels=32, kernel_size=(3, 3), padding=(1, 1)) y1 = relay.nn.relu(y1) y1 = relay.layout_transform(y1, "NCHW", "NHWC") y2 = relay.layout_transform(y, "NCHW", "NHWC") y2 = relay.nn.batch_flatten(y2) ret = relay.Tuple([y1, y2]) y = relay.Function(analysis.free_vars(ret), ret) return y a = before() a = run_opt_pass(a, transfo
rm.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_bn_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) gamma = relay.var("gamma") beta = relay.var("beta") mean = relay.var("mean") variance = relay.var("variance") y, _, _ = relay.nn.batch_norm(y, gamma, beta, mean, variance, axis=3) return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) has_lt = list() find_op = lambda x: has_lt.append( isinstance(x, tvm.relay.expr.Call) and x.op.name == "layout_transform" and x.attrs.src_layout == "NCHW" and x.attrs.dst_layout == "NHWC" ) relay.analysis.post_order_visit(a, find_op) has_lt = list(filter(lambda x: x, has_lt)) assert len(has_lt) == 1 def test_slice_like_convert_layout(): def verify_slice_like(after, expected_axes): has_expected = list() checker = lambda x: has_expected.append( isinstance(x, tvm.relay.expr.Call) and x.op.name == "slice_like" and str(x.attrs.axes) == str(expected_axes) ) relay.analysis.post_order_visit(after, checker) assert any(has_expected) def func_nhwc(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC",
kernel_layout="HWIO", ) out = relay.slice_like(y, y, axes=[1, 2]) return relay.Function(analysis.free_vars(out), out) after = run_opt_pass(func_nhwc(), transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) verify_slice_like(after, [2, 3]) def func_nchw(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(32, 64, 3, 3)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) out = relay.slice_like(y, y, axes=[2, 3]) return relay.Function(analysis.free_vars(out), out) after = run_opt_pass(func_nchw(), transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) verify_slice_like(after, [1, 2]) def func_vars(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) z = relay.var("y", shape=(1, 56, 56, 32)) out = relay.slice_like(y, z, axes=[1, 2]) return relay.Function(analysis.free_vars(out), out) after = run_opt_pass(func_vars(), transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) verify_slice_like(after, [1, 2]) def test_transpose_convert_layout(): def verify_transpose(after, expected_axes, expected_transform_cnt): has_expected = list() checker = lambda x: has_expected.append( isinstance(x, tvm.relay.expr.Call) and x.op.name == "transpose" and str(x.attrs.axes) == str(expected_axes) ) relay.analysis.post_order_visit(after, checker) assert any(has_expected), after is_transform = list() check
er = lambda x: is_transform.append( 1 if isinstance(x, tvm.relay.expr.Call) and x.op.name == "layout_transform" else 0 ) relay.analysis.post_order_visit(after, checker) assert ( sum(is_transform) == expected_transform_cnt ), "Expected %s layout_transform, but get\n%s" % (expected_transform_cnt, after) def nhwc_to_nchw(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) z = relay.var("z", shape=(56, 56, 32)) out = relay.add(y, z) out = relay.transpose(out, axes=[0, 3, 1, 2]) out = relay.nn.batch_flatten(out) func = relay.Function(analysis.free_vars(out), out) return run_opt_pass(func, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) verify_transpose(nhwc_to_nchw(), [0, 1, 2, 3], 3) def nchw_to_nhwc(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(32, 64, 3, 3)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) z = relay.var("z", shape=(32, 56, 56)) out = relay.add(y, z) out = relay.transpose(out, axes=[0, 2, -1, 1]) out = relay.nn.batch_flatten(out) func = relay.Function(analysis.free_vars(out), out) return run_opt_pass(func, transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) verify_transpose(nchw_to_nhwc(), [0, 1, 2, 3], 3) def default_axes(): x = relay.var("x", shape=(1, 64, 56, 56)) weight1 = relay.var("weight1", shape=(32, 64, 3, 3)) y = relay.nn.conv2d( x, weig
ht1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NCHW", kernel_layout="OIHW", ) z = relay.var("z", shape=(32, 56, 56)) out = relay.add(y, z) out = relay.transpose(out) func = relay.Function(analysis.free_vars(out), out) return run_opt_pass(func, transform.ConvertLayout({"nn.conv2d": ["NHWC", "default"]})) verify_transpose(default_axes(), [2, 1, 3, 0], 3) def test_resnet_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(1, 1, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y2 = relay.nn.conv2d( x, weight2, channels=32, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO" ) y2 = relay.nn.relu(y2) y = y + y2 y = relay.nn.global_max_pool2d(y, layout="NHWC") return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(1, 1, 64, 32)) weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y2 = relay.nn.conv2d(x, weight2, channels=32, kernel_size=(1, 1)) y2 = relay.nn.relu(y2) y = y + y2 y = relay.nn.global_max_pool2d(y) y = relay.layout_transform(y, "NCHW", "NHWC") return relay.Function(analysis.free_vars(y), y)
a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_resnet_pool_uses_specified_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(1, 1, 64, 32)) y = relay.nn.conv2d( x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.nn.relu(y) y2 = relay.nn.conv2d( x, weight2, channels=32, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO" ) y2 = relay.nn.relu(y2) y = y + y2 y = relay.nn.global_max_pool2d(y, layout="NHWC") return relay.Function(analysis.free_vars(y), y) def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) weight1 = relay.var("weight1", shape=(3, 3, 64, 32)) weight2 = relay.var("weight2", shape=(1, 1, 64, 32)) weight1 = relay.layout_transform(weight1, "HWIO", "OIHW") weight2 = relay.layout_transform(weight2, "HWIO", "OIHW") x = relay.layout_transform(x, "NHWC", "NCHW") y = relay.nn.conv2d(x, weight1, channels=32, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y2 = relay.nn.conv2d(x, weight2, channels=32, kernel_size=(1, 1)) y2 = relay.nn.relu(y2) y = y + y2 y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.nn.global_max_pool2d(y, layout="NHWC", out_layout="NHWC") return relay.Function(analysis.free_vars(y), y) a = before() a = run_opt_pass( a, transform.ConvertLayout( {"nn.conv2d": ["NCHW", "default"], "nn.global_max_pool2d": ["NHWC"]} ), ) b = run_opt_pass(expected(), tr
ansform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) + "\n\n Expected = \n" + str(b) def test_scalar_convert_layout(): def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) y = relay.add(y, relay.const(1, "float32")) y = relay.Function(analysis.free_vars(y), y) return y def expected(): x = relay.var("x", shape=(1, 56, 56, 64)) w = relay.var("weight", shape=(3, 3, 64, 64)) x = relay.layout_transform(x, "NHWC", "NCHW") w = relay.layout_transform(w, "HWIO", "OIHW") y = relay.nn.conv2d(x, w, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.add(y, relay.const(1.0, "float32")) y = relay.layout_transform(y, "NCHW", "NHWC") y = relay.Function(analysis.free_vars(y), y) return y a = before() a = run_opt_pass(a, transform.ConvertLayout({"nn.conv2d": ["NCHW", "default"]})) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_conv_ln_convert_layout(): """Check that layout transforms are propagated through ln.""" def before(): x = relay.var("x", shape=(1, 56, 56, 64)) weight = relay.var("weight", shape=(3, 3, 64, 64)) y = relay.nn.conv2d( x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1), data_layout="NHWC", kernel_layout="HWIO", ) dtype = "float32" beta = relay.var("beta", relay.TensorType((64,), dtype)) gamma = relay.var("gamma", relay.TensorType((64,), dtype)) y = relay.nn.layer_norm(y, gamma, beta, axis=3) y = relay.Function(