text
stringlengths
1
2.05k
import tvm from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_opt_pass
import tvm.testing
import tvm.topi.testing def test_fuse_simple(): """Simple testcase.""" def before(): x = relay.var("x", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.exp(y) w = relay.squeeze(z) return relay.Function([x], w) def expected(): x = relay.var("p", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.exp(y) w = relay.squeeze(z) f1 = relay.Function([x], w) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=(10, 20)) y = relay.Call(f1, [x]) return relay.Function([x], y) z = before() zz = run_opt_pass(z, transform.FuseOps()) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_conv2d_fuse(): """Test fusion case of conv2d""" def before(dshape): x = relay.var("x", shape=dshape) x = relay.add(x, relay.const(1, "float32")) y = relay.nn.conv2d(x, relay.var("w1"), kernel_size=(3, 3), padding=(1, 1), channels=16) y1 = relay.add(relay.const(1, "float32"), y) y = relay.add(y, y1) z2 = relay.nn.conv2d(y, relay.var("w2"), kernel_size=(1, 1), padding=(0, 0), channels=16) z3 = relay.nn.conv2d(y, relay.var("w3"), kernel_size=(3, 3), padding=(1, 1), channels=16) z = relay.add(z2, z3) return relay.Function(relay.analysis.free_vars(z), z) def expected(dshape): x = relay.var("p0", shape=dshape) y = relay.add(x, relay.const(1, "float32")) f0 = relay.Function([x], y) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("p0", shape=dshape) w = relay.var("p1") y = relay.nn.conv2d(x, w, kernel_size=(3, 3), padding=(1, 1), channels=16) y1 = relay.add(relay.const(1, "float32"), y) y = relay.add(y, y1) f1 = relay.Function([x, w], y) f1 = f1.w
ith_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("p0", shape=dshape) w = relay.var("p1") z2 = relay.nn.conv2d(x, w, kernel_size=(3, 3), padding=(1, 1), channels=16) f2 = relay.Function([x, w], z2) f2 = f2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("p0", shape=dshape) w = relay.var("p1") offset = relay.var("p2", shape=dshape) z3 = relay.nn.conv2d(x, w, kernel_size=(1, 1), padding=(0, 0), channels=16) z3 = relay.add(z3, offset) f3 = relay.Function([x, w, offset], z3) f3 = f3.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f0, [x]) y = relay.Call(f1, [y, relay.var("w1")]) z2 = relay.Call(f2, [y, relay.var("w3")]) z3 = relay.Call(f3, [y, relay.var("w2"), z2]) z = z3 return relay.Function(relay.analysis.free_vars(z), z) dshape = (1, 16, 64, 64) z = before(dshape) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_concatenate(): """Test fusion case involving concat op and Tuple node""" def before(dshape): x = relay.var("x", shape=dshape) pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) upsampled = relay.nn.upsampling(pooled, scale_h=2, scale_w=2, layout="NCHW") concat = relay.concatenate((upsampled, x), axis=1) out = relay.add(concat, relay.const(1, "float32")) return relay.Function(relay.analysis.free_vars(out), out) def expected(dshape): x = relay.var("x", shape=dshape) pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) f0 = relay.Function([x], pooled) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p0 = relay.var("p0", shape=(dshape[0],
dshape[1], dshape[2] p1 = relay.var("p1", shape=dshape) upsampled = relay.nn.upsampling(p0, scale_h=2, scale_w=2, layout="NCHW") concat = relay.concatenate((upsampled, p1), axis=1) out = relay.add(concat, relay.const(1, "float32")) f1 = relay.Function([p0, p1], out) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f0, [x]) z = relay.Call(f1, [y, x]) return relay.Function([x], z) dshape = (1, 16, 64, 64) z = before(dshape) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=0)) assert not relay.analysis.free_vars(zz) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) assert not relay.analysis.free_vars(zz) after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_tuple_root(): """Test fusion case where Tuple node is the root in its group""" def before(dshape): x = relay.var("x", shape=dshape) pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) upsampled = relay.nn.upsampling(pooled, scale_h=2, scale_w=2, layout="NCHW") out = relay.Tuple((upsampled, x)) return relay.Function(relay.analysis.free_vars(out), out) def expected(dshape): x = relay.var("x", shape=dshape) pooled = relay.nn.max_pool2d(x, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) f0 = relay.Function([x], pooled) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p0 = relay.var("p0", shape=(dshape[0], dshape[1], dshape[2] upsampled = relay.nn.upsampling(p0, scale_h=2, scale_w=2, layout="NCHW") f1 = relay.Function([p0], upsampled) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f0, [x]) z = relay.Call(f1, [y]) tup = relay.Tuple((z, x)) return relay.Function([x], t
up) dshape = (1, 16, 64, 64) z = before(dshape) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=0)) assert not relay.analysis.free_vars(zz) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) assert not relay.analysis.free_vars(zz) after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_stop_fusion(): def before(dshape): x = relay.var("x", shape=dshape) y = relay.add(x, relay.const(1, "float32")) y = relay.annotation.stop_fusion(y) z = relay.exp(y) return relay.Function([x], z) def expected(dshape): x = relay.var("p0", shape=dshape) y = relay.add(x, relay.const(1, "float32")) f1 = relay.Function([x], y) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("p01", shape=dshape) y = relay.exp(x) f2 = relay.Function([x], y) f2 = f2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f1, [x]) z = relay.Call(f2, [y]) return relay.Function([x], z) dshape = (10, 20) z = before(dshape) zz = run_opt_pass(z, transform.FuseOps()) after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_fuse_myia_regression(): def before(dshape, dtype): x = relay.var("x", shape=dshape, dtype=dtype) y = relay.var("y", shape=dshape, dtype=dtype) sb = relay.ScopeBuilder() with sb.if_scope(relay.op.greater(x, y)): sb.ret(relay.Function([], x)) with sb.else_scope(): sb.ret(relay.Function([], y)) return relay.Function([x, y], relay.Call(sb.get(), [])) def expected(dshape, dtype): x = relay.var("x", shape=dshape, dtype=dtype) y = relay.var("y", shape=dshape, dtype=dtype) sb = relay.ScopeBuilder() p1 = relay.var("p1", shape=dshape, dtype=dtype)
p2 = relay.var("p2", shape=dshape, dtype=dtype) fused_gt = relay.Function([p1, p2], relay.op.greater(p1, p2)) fused_gt = fused_gt.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) with sb.if_scope(fused_gt(x, y)): sb.ret(relay.Function([], x)) with sb.else_scope(): sb.ret(relay.Function([], y)) return relay.Function([x, y], relay.Call(sb.get(), [])) dshape = () dtype = "int64" f = before(dshape, dtype) zz = run_opt_pass(f, transform.FuseOps()) after = run_opt_pass(expected(dshape, dtype), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_fuse_tuple_get_elemwise(): def before(dim): X = relay.var("X", shape=(1, dim)) W = relay.var("W", shape=(3 * dim, dim)) matmul = relay.nn.dense(X, W) splitted = relay.split(matmul, indices_or_sections=3, axis=1) out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2]) return relay.Function([X, W], out) def expected(dim): p0 = relay.var("p0", shape=(1, dim)) p1 = relay.var("p1", shape=(3 * dim, dim)) matmul = relay.nn.dense(p0, p1) f0 = relay.Function([p0, p1], matmul) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p01 = relay.var("p01", shape=(1, 3 * dim)) splitted = relay.split(p01, indices_or_sections=3, axis=1) out = relay.sigmoid(splitted[0]) + relay.tanh(splitted[1]) * relay.exp(splitted[2]) f1 = relay.Function([p01], out) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) X = relay.var("X", shape=(1, dim)) W = relay.var("W", shape=(3 * dim, dim)) y = relay.Call(f0, [X, W]) z = relay.Call(f1, [y]) return relay.Function([X, W], z) dim = 10 z = before(dim) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=0)) assert not relay.analysis.free_vars(zz) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) asse
rt not relay.analysis.free_vars(zz) after = run_opt_pass(expected(dim), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_tuple_get_root(): def before(dim): X = relay.var("X", shape=(1, 3 * dim)) W = relay.var("W", shape=(dim, dim)) splitted = relay.split(X, indices_or_sections=3, axis=1) out = relay.nn.dense(splitted[0], W) return relay.Function([X, W], out) def expected(dim): p0 = relay.var("p0", shape=(1, 3 * dim)) splitted = relay.split(p0, indices_or_sections=3, axis=1) out = splitted[0] f0 = relay.Function([p0], out) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p01 = relay.var("p01", shape=(1, dim)) p1 = relay.var("p1", shape=(dim, dim)) out = relay.nn.dense(p01, p1) f1 = relay.Function([p01, p1], out) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) X = relay.var("X", shape=(1, 3 * dim)) W = relay.var("W", shape=(dim, dim)) y = relay.Call(f0, [X]) z = relay.Call(f1, [y, W]) return relay.Function([X, W], z) dim = 10 z = before(dim) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=0)) assert not relay.analysis.free_vars(zz) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) assert not relay.analysis.free_vars(zz) after = run_opt_pass(expected(dim), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def fuse0(mod): mod = relay.transform.InferType()(mod) return relay.transform.FuseOps(fuse_opt_level=0)(mod) def fuse2(mod): mod = relay.transform.InferType()(mod) return relay.transform.FuseOps(fuse_opt_level=2)(mod) def test_tuple_intermediate(): def before(x): inj = relay.squeeze(x) y1 = relay.add(inj, relay.const(1, "float32")) tmp = relay.squeeze(inj) tmp = relay.add(tmp, relay.const(1, "float32")) y2 = relay.add(tmp, relay.const(1, "float32")) y3 = rela
y.add(inj, relay.const(1, "float32")) concat = relay.concatenate((y1, y2, y3), axis=1) out_inj = relay.squeeze(concat) out = relay.add(out_inj, relay.const(1, "float32")) return relay.Function(relay.analysis.free_vars(out), out) def expected(p0): f0 = before(p0) f1 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f1, [x]) return relay.Function([x], y) dshape = (1, 16, 64, 64) x = relay.var("x", shape=dshape) orig = before(x) fuse0(tvm.IRModule.from_expr(orig)) m = fuse2(tvm.IRModule.from_expr(orig)) relay.build(m, "llvm") after = run_opt_pass(expected(x), transform.InferType()) assert tvm.ir.structural_equal(m["main"], after) def test_tuple_consecutive(): def gen_intermediate_tuple(x): y1 = relay.add(x, relay.const(1, "float32")) y2 = relay.add(x, relay.const(1, "float32")) y3 = relay.add(x, relay.const(1, "float32")) concat = relay.concatenate((y1, y2, y3), axis=1) out = relay.add(concat, relay.const(1, "float32")) return out def gen_consecutive_tuple(x): y1 = gen_intermediate_tuple(x) y2 = gen_intermediate_tuple(x) y3 = gen_intermediate_tuple(x) concat = relay.concatenate((y1, y2, y3), axis=1) return concat def before(x): concat = gen_consecutive_tuple(x) pooled = relay.nn.max_pool2d(concat, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) out = relay.add(pooled, relay.const(1, "float32")) out2 = relay.add(out, relay.const(1, "float32")) out_tup = relay.Tuple((out, out2)) return relay.Function(relay.analysis.free_vars(out_tup), out_tup) def expected(dshape): p0 = relay.var("p0", shape=dshape) concat = gen_consecutive_tuple(p0) f0 = relay.Function([p0], concat) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p01 = relay.var("p01", shape=(1, dsh
ape[1] * 9, dshape[2], dshape[3])) pooled = relay.nn.max_pool2d(p01, pool_size=(2, 2), strides=(2, 2), padding=(0, 0)) out = relay.add(pooled, relay.const(1, "float32")) f1 = relay.Function([p01], out) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p02 = relay.var("p02", shape=(1, dshape[1] * 9, dshape[2] out = relay.add(p02, relay.const(1, "float32")) f2 = relay.Function([p02], out) f2 = f2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) y = relay.Call(f0, [x]) z = relay.Call(f1, [y]) z2 = relay.Call(f2, [z]) return relay.Function([x], relay.Tuple((z, z2))) dshape = (1, 16, 64, 64) x = relay.var("x", shape=dshape) orig = before(x) fuse0(tvm.IRModule.from_expr(orig)) m = fuse2(tvm.IRModule.from_expr(orig)) relay.build(m, "llvm") after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(m["main"], after) def test_inception_like(): def conv(data): y = relay.nn.conv2d(data, relay.var("w"), kernel_size=(3, 3), padding=(1, 1), channels=16) return relay.nn.relu(data=y) def inception_like(data): c0 = conv(data) c1 = conv(data) return relay.concatenate((c0, c1), axis=1) def before(dshape): x = relay.var("x", shape=dshape) in1 = inception_like(x) in2 = inception_like(in1) return relay.Function(relay.analysis.free_vars(in2), in2) def expected(dshape): p0 = relay.var("p0", shape=dshape) c = conv(p0) f0 = relay.Function(relay.analysis.free_vars(c), c) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p01 = relay.var("p01", shape=dshape) c = conv(p01) f1 = relay.Function(relay.analysis.free_vars(c), c) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p02 = relay.var("p02", shape=dshape) p12 = relay.var("p12", shape=
dshape) concat1 = relay.concatenate((p02, p12), axis=1) f_concat1 = relay.Function([p02, p12], concat1) f_concat1 = f_concat1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) dshape2 = (dshape[0], dshape[1] * 2, dshape[2], dshape[3]) p03 = relay.var("p03", shape=dshape2) c = conv(p03) f2 = relay.Function(relay.analysis.free_vars(c), c) f2 = f2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p04 = relay.var("p04", shape=dshape2) c = conv(p04) f3 = relay.Function(relay.analysis.free_vars(c), c) f3 = f3.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) p05 = relay.var("p05", shape=dshape) p15 = relay.var("p15", shape=dshape) concat2 = relay.concatenate((p05, p15), axis=1) f_concat2 = relay.Function([p05, p15], concat2) f_concat2 = f_concat2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=dshape) c1 = relay.Call(f0, [x, relay.var("w1")]) c2 = relay.Call(f1, [x, relay.var("w2")]) concat = relay.Call(f_concat1, [c1, c2]) c3 = relay.Call(f2, [concat, relay.var("w3")]) c4 = relay.Call(f3, [concat, relay.var("w4")]) out = relay.Call(f_concat2, [c3, c4]) return relay.Function(relay.analysis.free_vars(out), out) dshape = (1, 16, 64, 64) orig = before(dshape) fuse0(tvm.IRModule.from_expr(orig)) m = fuse2(tvm.IRModule.from_expr(orig)) relay.build(m, "llvm") after = run_opt_pass(expected(dshape), transform.InferType()) assert tvm.ir.structural_equal(m["main"], after) def test_fuse_parallel_injective(): """Test fusing parallel injective ops to an elemwise op.""" def before(): x = relay.var("x", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.squeeze(y) u = relay.transpose(y, axes=[0, 1]) w = relay.left_shift(z, u) return relay.Function([x], w) def expected(): x = relay.va
r("p", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.squeeze(y) u = relay.transpose(y, axes=[0, 1]) w = relay.left_shift(z, u) f1 = relay.Function([x], w) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=(10, 20)) y = relay.Call(f1, [x]) return relay.Function([x], y) z = before() zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=0)) assert not relay.analysis.free_vars(zz) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) assert not relay.analysis.free_vars(zz) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_immutable(): """Verify the fusion pass won't change original module.""" def before(): x = relay.var("x", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.exp(y) w = relay.squeeze(z) mod = tvm.IRModule() mod["main"] = relay.Function([x], w) return mod def expected(): x = relay.var("p", shape=(10, 20)) y = relay.add(x, relay.const(1, "float32")) z = relay.exp(y) w = relay.squeeze(z) f1 = relay.Function([x], w) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=(10, 20)) y = relay.Call(f1, [x]) mod = tvm.IRModule() mod["main"] = relay.Function([x], y) return mod mod = transform.InferType()(before()) new_mod = transform.FuseOps(fuse_opt_level=2)(mod) assert tvm.ir.structural_equal(mod, transform.InferType()(before())) assert tvm.ir.structural_equal(new_mod, transform.InferType()(expected())) def test_split(): """Test that the result is well formed.""" x = relay.var("x", shape=(6, 9)) y = relay.split(x, 3).astuple() a = relay.TupleGetItem(y, 0) b = relay.TupleGetItem(y, 1) c = relay.TupleGetItem(y, 2) mod = tvm.IRModule() mod["m
ain"] = relay.Function([x], a + relay.RefRead(relay.RefCreate(b)) + c) mod = transform.InferType()(mod) mod = transform.FuseOps()(mod) def test_fuse_max(): """Test the constraint of number of nodes in op fusion.""" def before(n): x = relay.var("x", shape=(10, 20)) y = x for i in range(n): y = relay.exp(y) return relay.Function([x], y) def expected(n, max_fused_ops): x = relay.var("p", shape=(10, 20)) y = x for i in range(max_fused_ops): y = relay.exp(y) f1 = relay.Function([x], y) f1 = f1.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=(10, 20)) z = relay.Call(f1, [x]) xx = relay.var("pp", shape=(10, 20)) yy = xx for i in range(n - max_fused_ops): yy = relay.exp(yy) f2 = relay.Function([xx], yy) f2 = f2.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) zz = relay.Call(f2, [z]) return relay.Function([x], zz) max_fused_ops = 256 n = 300 z = before(n) zz = run_opt_pass(z, transform.FuseOps(fuse_opt_level=2)) zz = run_opt_pass(z, transform.FuseOps()) after = run_opt_pass(expected(n, max_fused_ops), transform.InferType()) assert tvm.ir.structural_equal(zz, after) max_fused_ops = 10 n = 20 z = before(n) after = run_opt_pass(expected(n, max_fused_ops), transform.InferType()) with tvm.transform.PassContext(config={"relay.FuseOps.max_depth": max_fused_ops}): zz = run_opt_pass(z, transform.FuseOps()) assert tvm.ir.structural_equal(zz, after) link_params = tvm.testing.parameter(False, True) def test_fuse_take(link_params): """Test fusion case involving concat and take""" def before(): shape = (tvm.tir.const(10, "int64"), tvm.tir.const(1, "int64")) x = relay.var("x", shape=shape) concat = relay.concatenate([x, x], axis=-1) out = relay.op.take(concat, indices=relay.const([0], dtype
="int64")) return relay.Function(relay.analysis.free_vars(out), out) def expected(link_params): shape1 = (tvm.tir.const(10, "int64"), tvm.tir.const(1, "int64")) shape2 = (tvm.tir.const(1, "int64"),) x = relay.var("x", shape=shape1) p0 = relay.var("p0", shape=shape1) p1 = relay.var("p1", shape=shape2, dtype="int64") c = relay.const([0], dtype="int64") concat = relay.concatenate([p0, p0], axis=-1) out = relay.op.take(concat, indices=c if link_params else p1) f0 = relay.Function([p0] if link_params else [p0, p1], out) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) y = relay.Call(f0, [x] if link_params else [x, c]) return relay.Function([x], y) after = run_opt_pass(expected(link_params), transform.InferType()) with tvm.transform.PassContext(opt_level=2, config={"relay.FuseOps.link_params": link_params}): m = run_opt_pass(before(), transform.InferType()) m = run_opt_pass(m, transform.FuseOps()) assert tvm.ir.structural_equal(m, after) relay.build(m, "llvm") def test_fuse_gather_nd(link_params): """Test fusion case involving concat and gather_nd""" def before(): shape = (tvm.tir.const(10, "int64"), tvm.tir.const(1, "int64")) x = relay.var("x", shape=shape) concat = relay.concatenate([x, x], axis=-1) out = relay.gather_nd(concat, indices=relay.expr.const([[0, 1], [1, 0]], dtype="int64")) return relay.Function(relay.analysis.free_vars(out), out) def expected(link_params): shape1 = (tvm.tir.const(10, "int64"), tvm.tir.const(1, "int64")) shape2 = (tvm.tir.const(2, "int64"), tvm.tir.const(2, "int64")) x = relay.var("x", shape=shape1) p0 = relay.var("p0", shape=shape1) p1 = relay.var("p1", shape=shape2, dtype="int64") c = relay.const([[0, 1], [1, 0]], dtype="int64") concat = relay.concatenate([p0, p0], axis=-1) out = relay.gather_nd(concat, indices=c if
link_params else p1) f0 = relay.Function([p0] if link_params else [p0, p1], out) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) y = relay.Call(f0, [x] if link_params else [x, c]) return relay.Function([x], y) after = run_opt_pass(expected(link_params), transform.InferType()) with tvm.transform.PassContext(opt_level=2, config={"relay.FuseOps.link_params": link_params}): m = run_opt_pass(before(), transform.InferType()) m = run_opt_pass(m, transform.FuseOps()) assert tvm.ir.structural_equal(m, after) relay.build(m, "llvm") @tvm.testing.uses_gpu def test_fuse_bcast_reduce_scalar(): """Test fusion case with broadcast and reduction involving scalar""" def before(): x = relay.var("x", shape=(), dtype="int32") less = relay.less(x, relay.const(10, dtype="int32")) z = relay.min(less) return relay.Function([x], z) def expected(): p0 = relay.var("p0", shape=(), dtype="int32") less = relay.less(p0, relay.const(10, dtype="int32")) z0 = relay.min(less) f0 = relay.Function([p0], z0) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) x = relay.var("x", shape=(), dtype="int32") f = relay.Call(f0, [x]) return relay.Function([x], f) orig = before() m = fuse2(tvm.IRModule.from_expr(orig)) for tgt, dev in tvm.testing.enabled_targets(): relay.build(m, tgt) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(m["main"], after) def test_fuse_max_diamond(): def create_diamond(x, branch_len): x1 = x x2 = x for _ in range(branch_len): x1 = relay.exp(x1) x2 = relay.exp(x2) return relay.add(x1, x2) def before(branch_len, num_diamond): x = relay.var("x", shape=(10, 20)) out = x for _ in range(num_diamond): out = create_diamond(out, branch_len) return relay.Function([x], out)
def after(branch_len, num_diamond): def create_diamond_func(inp): inp_var = relay.var("p", shape=(10, 20)) d = create_diamond(inp_var, branch_len) f = relay.Function([inp_var], d) f = f.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) return relay.Call(f, [inp]) inp = relay.var("x", shape=(10, 20)) out = inp for _ in range(num_diamond): out = create_diamond_func(out) return relay.Function([inp], out) branch_len = 5 max_fused_ops = branch_len * 2 + 1 num_diamond = 3 with tvm.transform.PassContext(config={"relay.FuseOps.max_depth": max_fused_ops}): fused = run_opt_pass(before(branch_len, num_diamond), transform.FuseOps()) expected = run_opt_pass(after(branch_len, num_diamond), transform.InferType()) assert tvm.ir.structural_equal(fused, expected) def test_fuse_dynamic_squeeze_slice_take(): input_data = [ np.random.random([1, 2, 4]).astype("float32"), np.array([0]).astype("int64"), ] x = relay.var("p0107", shape=(relay.Any(), relay.Any(), 4), dtype="float32") take_val = relay.var("p166", shape=(relay.Any(),), dtype="int64") squeeze = relay.op.squeeze(x, axis=[0]) strided_slice = relay.op.strided_slice( squeeze, begin=[0, 0], end=[15130, 2147483647], strides=[1, 1] ) take = relay.op.take(strided_slice, take_val, axis=0) mod = tvm.IRModule.from_expr(take) result = relay.create_executor("vm", mod=mod, device=tvm.cpu(), target="llvm").evaluate()( *input_data ) np_result = np.squeeze(input_data[0][:, input_data[1][0], :], axis=0) assert np.allclose(result.numpy(), np_result) @tvm.testing.uses_gpu def test_fuse_softmax(): """Test if softmax can be fused with following ops.""" channel_size = 16 def before(): x = relay.var("x", shape=(16, channel_size)) softmax = relay.nn.softmax(x) out = relay.cast(softmax, "float16") return relay.Fu
nction([x], out) def expected(): p0 = relay.var("p0", shape=(16, channel_size)) softmax = relay.nn.softmax(p0) out = relay.cast(softmax, "float16") x = relay.var("x", shape=(16, channel_size)) f0 = relay.Function([p0], out) f0 = f0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) y = relay.Call(f0, [x]) return relay.Function([x], y) orig = before() m = fuse2(tvm.IRModule.from_expr(orig)) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(m["main"], after) inp = np.random.randn(16, channel_size).astype("float32") ref = tvm.topi.testing.softmax_python(inp).astype("float16") for tgt, dev in tvm.testing.enabled_targets(): ex = relay.create_executor("graph", mod=m, device=dev, target=tgt) result = ex.evaluate()(inp).numpy() tvm.testing.assert_allclose(result, ref, rtol=1e-4, atol=1e-4) if __name__ == "__main__": pytest.main([__pfile__])
import collections
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.relay
import GlobalVar from tvm.relay.analysis
import free_vars, free_type_vars from tvm.relay
import create_executor, transform from tvm.relay.transform
import gradient from tvm.relay.prelude
import Prelude from tvm.relay.testing
import ( make_nat_expr, run_infer_type, check_grad, rand, count_ops, )
import tvm.relay.op as op def test_fo_id(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x) func = run_infer_type(func) back_func = run_infer_type(gradient(func, mode="first_order")) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), x.numpy()) tvm.testing.assert_allclose(grad.numpy(), np.ones_like(x.numpy())) def test_id(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), x.numpy()) tvm.testing.assert_allclose(grad.numpy(), np.ones_like(x.numpy())) def test_relu(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], op.nn.relu(x)) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) def test_add(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x + x) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), 2 * x.numpy()) tvm.testing.a
ssert_allclose(grad.numpy(), 2 * np.ones_like(x.numpy())) def test_check_grad(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], x + y) check_grad(func) def test_temp_add(): scope = relay.ScopeBuilder() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = scope.let("y", x + x) scope.ret(y + y) func = relay.Function([x], scope.get()) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), 4 * x.numpy()) tvm.testing.assert_allclose(grad.numpy(), 4 * np.ones_like(x.numpy())) def test_sub(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x - x) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), np.zeros_like(x.numpy())) tvm.testing.assert_allclose(grad.numpy(), np.zeros_like(x.numpy())) def test_broadcast_add(): shape1 = (3, 4, 1) shape2 = (1, 5) dtype = "float32" x_nd = rand(dtype, *shape1) y_nd = rand(dtype, *shape2) x_np = x_nd.numpy() y_np = y_nd.numpy() expected_forward = x_np + y_np t1 = relay.TensorType(shape1, dtype) t2 = relay.TensorType(shape2, dtype) x = relay.var("x", t1) y = relay.var("y", t2) func = relay.Function([x, y], x + y) func = run_infer_type(func) full_func = run_infer_type(gradient(func)) assert full_func
.checked_type == relay.FuncType( [t1, t2], relay.TupleType( [relay.TensorType(expected_forward.shape, dtype), relay.TupleType([t1, t2])] ), ) forward, (grad_x, grad_y) = create_executor().evaluate(full_func)(x_nd, y_nd) tvm.testing.assert_allclose(forward.numpy(), expected_forward) tvm.testing.assert_allclose( grad_x.numpy(), np.ones_like(expected_forward).sum(axis=2, keepdims=True) ) tvm.testing.assert_allclose( grad_y.numpy(), np.ones_like(expected_forward).sum(axis=(0, 1), keepdims=True).squeeze(axis=0), ) def test_broadcast_subtract(): shape1 = (3, 4, 1) shape2 = (1, 5) dtype = "float32" x_nd = rand(dtype, *shape1) y_nd = rand(dtype, *shape2) x_np = x_nd.numpy() y_np = y_nd.numpy() expected_forward = x_np - y_np t1 = relay.TensorType(shape1, dtype) t2 = relay.TensorType(shape2, dtype) x = relay.var("x", t1) y = relay.var("y", t2) func = relay.Function([x, y], x - y) func = run_infer_type(func) full_func = run_infer_type(gradient(func)) assert full_func.checked_type == relay.FuncType( [t1, t2], relay.TupleType( [relay.TensorType(expected_forward.shape, dtype), relay.TupleType([t1, t2])] ), ) forward, (grad_x, grad_y) = create_executor().evaluate(full_func)(x_nd, y_nd) tvm.testing.assert_allclose(forward.numpy(), expected_forward) tvm.testing.assert_allclose( grad_x.numpy(), np.ones_like(expected_forward).sum(axis=2, keepdims=True) ) tvm.testing.assert_allclose( grad_y.numpy(), -np.ones_like(expected_forward).sum(axis=(0, 1), keepdims=True).squeeze(axis=0), ) def _test_tuple(mode): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) z = relay.var("z", t) if mode == "higher_order": tup = relay.Var("tup") func = relay.Function( [x, y, z], relay.L
et( tup, relay.Tuple([x, y, z]), relay.TupleGetItem(tup, 0) + relay.TupleGetItem(tup, 1) - relay.TupleGetItem(tup, 2), ), ) else: tup = relay.Tuple([x, y, z]) func = relay.Function( [x, y, z], relay.TupleGetItem(tup, 0) + relay.TupleGetItem(tup, 1) - relay.TupleGetItem(tup, 2), ) func = run_infer_type(func) back_func = run_infer_type(gradient(func, mode=mode)) assert back_func.checked_type == relay.FuncType( [t, t, t], relay.TupleType([t, relay.TupleType([t, t, t])]) ) x_nd = rand(dtype, *shape) y_nd = rand(dtype, *shape) z_nd = rand(dtype, *shape) x_np = x_nd.numpy() y_np = y_nd.numpy() z_np = z_nd.numpy() expected_forward = x_np + y_np - z_np forward, (grad_x, grad_y, grad_z) = create_executor().evaluate(back_func)(x_nd, y_nd, z_nd) tvm.testing.assert_allclose(forward.numpy(), expected_forward) tvm.testing.assert_allclose(grad_x.numpy(), np.ones_like(grad_x.numpy())) tvm.testing.assert_allclose(grad_y.numpy(), np.ones_like(grad_y.numpy())) tvm.testing.assert_allclose(grad_z.numpy(), -1 * np.ones_like(grad_z.numpy())) def _test_tuple_argument(mode): shape = (2, 3) dtype = "float32" tensor_type = relay.TensorType(shape, dtype) fields = 3 tuple_type = relay.TupleType([tensor_type] * fields) tup = relay.var("tup", type_annotation=tuple_type) body = relay.TupleGetItem(tup, 0) for i in range(1, fields): body = relay.add(body, relay.TupleGetItem(tup, i)) func = relay.Function([tup], body) func = run_infer_type(func) back_func = run_infer_type(gradient(func, mode=mode)) xs = [rand(dtype, *shape) for _ in range(fields)] xs_np = np.array([x.numpy() for x in xs]) expected_forward = np.sum(xs_np, axis=0) forward, grad = create_executor().evaluate(back_func)(tuple(xs)) tvm.testing.assert_allclose(forward.numpy(), expected_
forward) for field in grad[0]: tvm.testing.assert_allclose(field.numpy(), np.ones_like(field.numpy())) def test_tuple(): _test_tuple("higher_order") def test_tuple_first_order(): _test_tuple("first_order") @pytest.mark.xfail(raises=tvm.error.TVMError) def test_tuple_argument(): _test_tuple_argument("higher_order") def test_tuple_argument_first_order(): _test_tuple_argument("first_order") def test_pow(): mod = tvm.IRModule() p = Prelude(mod) p.mod.import_from_std("nat.rly") nat_iterate = mod.get_global_var("nat_iterate") shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) double = relay.Function([x], x + x) i = relay.var("i", t) func = relay.Function([i], nat_iterate(double, make_nat_expr(p, 3))(i)) mod["main"] = func mod = transform.InferType()(mod) mod["main"] = gradient(mod["main"], mod=mod) m = transform.InferType()(mod) back_func = m["main"] assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) i_nd = rand(dtype, *shape) forward, (grad_i,) = create_executor(mod=mod).evaluate(back_func)(i_nd) tvm.testing.assert_allclose(forward.numpy(), 8 * i_nd.numpy()) tvm.testing.assert_allclose(grad_i.numpy(), 8 * np.ones_like(grad_i.numpy())) def test_ref(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) r = relay.Var("r") u = relay.Var("u") body = relay.RefRead(r) body = relay.Let(u, relay.RefWrite(r, relay.RefRead(r) + relay.RefRead(r)), body) body = relay.Let(r, relay.RefCreate(x), body) func = relay.Function([x], body) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x_nd = rand(dtype, *shape) forward, (grad_x,) = create_executor().evaluate(back_func)(x_nd) tvm.testing.assert_allclose(f
orward.numpy(), 2 * x_nd.numpy()) tvm.testing.assert_allclose(grad_x.numpy(), 2 * np.ones_like(grad_x.numpy())) def test_square_second_order(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x * x) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) y = relay.var("y", t) back_func_adjusted = relay.Function( [y], relay.TupleGetItem(relay.TupleGetItem(back_func(y), 1), 0) ) back_func_adjusted = run_infer_type(back_func_adjusted) back_back_func = run_infer_type(gradient(back_func_adjusted)) assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x_nd = rand(dtype, *shape) forward, (grad_x,) = create_executor().evaluate(back_back_func)(x_nd) tvm.testing.assert_allclose(forward.numpy(), 2 * x_nd.numpy()) tvm.testing.assert_allclose(grad_x.numpy(), 2 * np.ones_like(grad_x.numpy())) def test_if(): x = relay.var("x", shape=(1, 16, 64, 64)) y = relay.var("y", shape=(1, 16, 64, 64)) cond = relay.var("cond", shape=(), dtype="uint1") net = relay.If(cond, x, y) net = relay.log(net) func = relay.Function(free_vars(net), net) func = run_infer_type(func) net = gradient(func, mode="higher_order") net = run_infer_type(net) def test_grad_tuple(): scope = relay.ScopeBuilder() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = scope.let("y", x + x) scope.ret(relay.Tuple([y + y, y])) func = relay.Function([x], scope.get()) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) assert back_func.checked_type == relay.FuncType( [t], relay.TupleType([relay.TupleType([t, t]), relay.TupleType([t])]) ) x = rand(dtype, *shape) (forward_four, forward_two), (grad,) = create_executor().evaluate(back_func)(x) tvm.testing.assert_allclose(forward_four.numpy(), 4 * x.numpy(
)) tvm.testing.assert_allclose(forward_two.numpy(), 2 * x.numpy()) tvm.testing.assert_allclose(grad.numpy(), 4 * np.ones_like(x.numpy())) def test_concat(): shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) rt = relay.TensorType((10, 20), dtype) x = relay.var("x", t) y = op.concatenate([x, x], axis=1) func = relay.Function([x], y) func = run_infer_type(func) back_func = run_infer_type(gradient(func)) tvm.ir.assert_structural_equal( back_func.checked_type, relay.FuncType([t], relay.TupleType([rt, relay.TupleType([t])])) ) def test_no_duplication(): x = tvm.relay.Var("x", type_annotation=tvm.relay.TensorType([12, 12])) y = tvm.relay.Var("y", type_annotation=tvm.relay.TensorType([12, 12])) xy = tvm.relay.nn.dense(x, y) m = tvm.relay.sum(xy, keepdims=True) s = tvm.relay.sum(xy - m) fn = tvm.relay.Function([x, y], s) fn = run_infer_type(fn) gr = tvm.relay.transform.gradient(fn, mode="first_order") counts = count_ops(gr) assert counts["nn.dense"] == 3, "We expect 3 dense (1 forward, two backward)" def test_no_duplication_tuples(): x = tvm.relay.Var("x", type_annotation=tvm.relay.TensorType([12, 12])) y = tvm.relay.Var("y", type_annotation=tvm.relay.TensorType([12, 12])) xy = tvm.relay.nn.dense(x, y) t = relay.Tuple([xy, xy]) m = tvm.relay.sum(xy, keepdims=True) s = tvm.relay.sum(relay.TupleGetItem(t, 0) - m) fn = tvm.relay.Function([x, y], s) fn = run_infer_type(fn) gr = tvm.relay.transform.gradient(fn, mode="first_order") counts = count_ops(gr) assert counts["nn.dense"] == 3, "We expect 3 dense (1 forward, two backward)" def test_global_function(): m = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.Var("x", t) d = GlobalVar("double") m[d] = relay.Function([x], x + x) y = relay.Var("y", t) q = GlobalVar("q") m[q] = relay.Function([y], d(d(y))) g = Gl
obalVar("grad") m = tvm.relay.transform.InferType()(m) m[g] = tvm.relay.transform.gradient(q, m) m = tvm.relay.transform.InferType()(m) back_func = m[g] assert back_func.checked_type == relay.FuncType([t], relay.TupleType([t, relay.TupleType([t])])) x = rand(dtype, *shape) forward, (grad,) = create_executor(mod=m).evaluate(back_func)(x) tvm.testing.assert_allclose(forward.numpy(), 4 * x.numpy()) tvm.testing.assert_allclose(grad.numpy(), 4 * np.ones_like(x.numpy())) if __name__ == "__main__": pytest.main([__file__])
import tvm from tvm
import relay def get_recursive_count_loop(): mod = tvm.IRModule({}) sum_up = relay.GlobalVar("sum_up") i = relay.var("i", shape=[], dtype="int32") sb = relay.ScopeBuilder() with sb.if_scope(relay.equal(i, relay.const(0, dtype="int32"))): sb.ret(i) with sb.else_scope(): one_less = relay.subtract(i, relay.const(1, dtype="int32")) rec_call = relay.Call(sum_up, [one_less]) sb.ret(relay.add(rec_call, i)) func = relay.Function([i], sb.get(), ret_type=relay.TensorType([], "int32")) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) mod[sum_up] = func iarg = relay.var("i", shape=[], dtype="int32") mod["main"] = relay.Function([iarg], sum_up(iarg)) return mod, sum_up def test_call_chain_inline_leaf(): """Test when only leaf call is inlined. The call graph is like the following: main / \ g1 g2 / g11(inline) """ def get_mod(): mod = tvm.IRModule({}) x11 = relay.var("x11", shape=(3, 5)) g11 = relay.GlobalVar("g11") fn11 = relay.Function([x11], x11) fn11 = fn11.with_attr("Inline", tvm.tir.IntImm("int32", 1)) mod[g11] = fn11 x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1 + g11(x1)) fn1 = relay.Function([x1, y1], sb.get()) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1
, p2, p3], call_fn1 * call_fn2) return mod def expected(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1 + x1) fn1 = relay.Function([x1, y1], sb.get()) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_call_chain_inline_multiple_levels(): """Test when only leaf call is inlined. The call graph is like the following: main / \ g1(inline) g2 / g11(inline) """ def get_mod(): mod = tvm.IRModule({}) x11 = relay.var("x11", shape=(3, 5)) g11 = relay.GlobalVar("g11") fn11 = relay.Function([x11], x11) fn11 = fn11.with_attr("Inline", tvm.tir.IntImm("int32", 1)) mod[g11] = fn11 x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1 + g11(x1)) fn1 = relay.Function([x1, y1], sb.get()) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder()
sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod def expected(): mod = tvm.IRModule({}) x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = p0 + p1 + p0 call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_call_chain_inline_multiple_levels_extern_compiler(): """Test when only leaf call is inlined. The call graph is like the following: main / \ g1(inline) g2 / g11(inline, external compiler) """ def get_mod(): mod = tvm.IRModule({}) x11 = relay.var("x11", shape=(3, 5)) g11 = relay.GlobalVar("g11") fn11 = relay.Function([x11], x11) fn11 = fn11.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn11 = fn11.with_attr("Compiler", "a") mod[g11] = fn11 x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1 + g11(x1)) fn1 = relay.Function([x1, y1], sb.get()) fn1 =
fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod def expected(): mod = tvm.IRModule({}) x11 = relay.var("x11", shape=(3, 5)) fn11 = relay.Function([x11], x11) fn11 = fn11.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn11 = fn11.with_attr("Compiler", "a") x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = p0 + p1 + fn11(p0) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_recursive_call_with_global(): def get_mod(): mod = tvm.IRModule({}) x = relay.var("x", shape=[], dtype="int32") fn0 = relay.Function([x], x) fn0 = fn0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) gx = relay.GlobalVar("gx") mod[gx] = fn0 sum_up = relay.GlobalVar("sum_up") i = relay.var("i", sha
pe=[], dtype="int32") sb = relay.ScopeBuilder() with sb.if_scope(relay.equal(i, relay.const(0, dtype="int32"))): sb.ret(i) with sb.else_scope(): one_less = relay.subtract(i, relay.const(1, dtype="int32")) global_call = gx(i) rec_call = relay.Call(sum_up, [one_less]) + global_call sb.ret(relay.add(rec_call, i)) func = relay.Function([i], sb.get(), ret_type=relay.TensorType([], "int32")) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) mod[sum_up] = func iarg = relay.var("i", shape=[], dtype="int32") mod["main"] = relay.Function([iarg], sum_up(iarg)) return mod def expected(): mod = tvm.IRModule({}) sum_up = relay.GlobalVar("sum_up") i = relay.var("i", shape=[], dtype="int32") sb = relay.ScopeBuilder() with sb.if_scope(relay.equal(i, relay.const(0, dtype="int32"))): sb.ret(i) with sb.else_scope(): one_less = relay.subtract(i, relay.const(1, dtype="int32")) rec_call = relay.Call(sum_up, [one_less]) + i sb.ret(relay.add(rec_call, i)) func = relay.Function([i], sb.get(), ret_type=relay.TensorType([], "int32")) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) mod[sum_up] = func iarg = relay.var("i", shape=[], dtype="int32") mod["main"] = relay.Function([iarg], sum_up(iarg)) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_recursive_called(): mod, sum_up = get_recursive_count_loop() iarg = relay.var("i", shape=[], dtype="int32") mod["main"] = relay.Function([iarg], sum_up(iarg)) ref_mod = mod mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, ref_mod, map_free_vars=True) def test_recursive_not_called(): def get_mod(): mod, sum_up = get_recursive_count_loop()
x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) x1 = relay.var("x1", shape=(2, 2)) fn1 = relay.Function([x1], x1) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 mod["main"] = relay.Function([x, y], x + y + g1(x)) return mod def expected(): mod, sum_up = get_recursive_count_loop() x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) mod["main"] = relay.Function([x, y], x + y + x) return mod mod = get_mod() mod = relay.transform.Inline()(mod) ref_mod = expected() assert tvm.ir.structural_equal(mod, ref_mod, map_free_vars=True) def test_recursive_not_called_extern_compiler(): def get_mod(): mod, sum_up = get_recursive_count_loop() x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) x1 = relay.var("x1", shape=(2, 2)) fn1 = relay.Function([x1], x1) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") g1 = relay.GlobalVar("g1") mod[g1] = fn1 mod["main"] = relay.Function([x, y], x + y + g1(x)) return mod def expected(): mod, sum_up = get_recursive_count_loop() x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) x1 = relay.var("x1", shape=(2, 2)) fn1 = relay.Function([x1], x1) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") mod["main"] = relay.Function([x, y], x + y + fn1(x)) return mod mod = get_mod() mod = relay.transform.Inline()(mod) ref_mod = expected() assert tvm.ir.structural_equal(mod, ref_mod, map_free_vars=True) def test_globalvar_as_call_arg(): def get_mod(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.
ScopeBuilder() sb.ret(x1 + y1) fn1 = relay.Function([x1, y1], sb.get()) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod def expected(): p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = p0 + p1 call_fn2 = p2 - p3 mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_globalvar_as_call_arg_extern_compiler(): def get_mod(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1) fn1 = relay.Function([x1, y1], sb.get()) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm
("int32", 1)) fn2 = fn2.with_attr("Compiler", "b") g2 = relay.GlobalVar("g2") mod[g2] = fn2 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod def expected(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1) fn1 = relay.Function([x1, y1], sb.get()) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn2 = fn2.with_attr("Compiler", "b") p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = relay.Call(fn1, [p0, p1]) call_fn2 = relay.Call(fn2, [p2, p3]) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_inline_globalvar_without_args(): def get_mod(): mod = tvm.IRModule({}) fn1 = relay.Function([], relay.const(1)) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn2 = relay.Function([], relay.const(2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") g2 = relay.GlobalVar("g2") mod[g1] = fn1 mod = relay.transform.I
nferType()(mod) mod[g2] = fn2 p = relay.var("p", "bool") mod["main"] = relay.Function([p], relay.Call(relay.If(p, g1, g2), [])) return relay.transform.InferType()(mod) def expected(): mod = tvm.IRModule({}) fn1 = relay.Function([], relay.const(1)) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn2 = relay.Function([], relay.const(2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) p = relay.var("p", "bool") mod["main"] = relay.Function([p], relay.Call(relay.If(p, fn1, fn2), [])) return relay.transform.InferType()(mod) mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_inline_globalvar_without_args_extern_compiler(): def get_mod(): mod = tvm.IRModule({}) fn1 = relay.Function([], relay.const(1)) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") fn2 = relay.Function([], relay.const(2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn2 = fn2.with_attr("Compiler", "b") g1 = relay.GlobalVar("g1") g2 = relay.GlobalVar("g2") mod[g1] = fn1 mod[g2] = fn2 p = relay.var("p", "bool") mod["main"] = relay.Function([p], relay.Call(relay.If(p, g1, g2), [])) return mod def expected(): mod = tvm.IRModule({}) fn1 = relay.Function([], relay.const(1)) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn1 = fn1.with_attr("Compiler", "a") fn2 = relay.Function([], relay.const(2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn2 = fn2.with_attr("Compiler", "b") p = relay.var("p", "bool") mod["main"] = relay.Function([p], relay.Call(relay.If(p, fn1, fn2), [])) return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.struct
ural_equal(mod, expected(), map_free_vars=True) def test_globalvar_called_by_multiple_functions(): """Test when only leaf call is inlined. The call graph is like the following: main g0 / \ / g1 g2(inline) """ def get_mod(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1) fn1 = relay.Function([x1, y1], sb.get()) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) sb1 = relay.ScopeBuilder() sb1.ret(x2 - y2) fn2 = relay.Function([x2, y2], sb1.get()) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 x0 = relay.var("x0", shape=(3, 5)) y0 = relay.var("y0", shape=(3, 5)) z0 = relay.var("z0", shape=(3, 5)) fn0 = relay.Function([x0, y0, z0], g2(x0, y0) + z0) g0 = relay.GlobalVar("g0") mod[g0] = fn0 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn1 = g1(p0, p1) call_fn2 = g2(p2, p3) mod["main"] = relay.Function([p0, p1, p2, p3], call_fn1 * call_fn2) return mod def expected(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) sb = relay.ScopeBuilder() sb.ret(x1 + y1) fn1 = relay.Function([x1, y1], sb.get()) g1 = relay.GlobalVar("g1") mod[g1] = fn1 p0 = relay.var("p0", shape=(3, 5)) p1 = relay.var("p1", shape=(3, 5)) p2 = relay.var("p2", shape=(3, 5)) p3 = relay.var("p3", shape=(3, 5)) call_fn2 = p2 - p3 mod["main"] = relay.Function([p0, p1, p2, p3], g1(p0,
p1) * call_fn2) x0 = relay.var("x0", shape=(3, 5)) y0 = relay.var("y0", shape=(3, 5)) z0 = relay.var("z0", shape=(3, 5)) fn0 = relay.Function([x0, y0, z0], x0 - y0 + z0) g0 = relay.GlobalVar("g0") mod[g0] = fn0 return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_entry_with_inline(): """Test entry function with inline The call graph is like the following: g1(inline) g2(inline) """ def get_mod(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + y1) fn1 = fn1.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - y2) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, get_mod(), map_free_vars=True) def test_callee_not_inline(): """Test entry function with inline The call graph is like the following: main | g2(inline) | g1 """ def get_mod(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + y1) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - g1(x2, y2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn
2 return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, get_mod(), map_free_vars=True) def test_callee_not_inline_leaf_inline(): """Test entry function with inline The call graph is like the following: main | g2(inline) | g1 | g0(inline) """ def get_mod(): mod = tvm.IRModule({}) x0 = relay.var("x0", shape=(3, 5)) y0 = relay.var("y0", shape=(3, 5)) fn0 = relay.Function([x0, y0], x0 * y0) fn0 = fn0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g0 = relay.GlobalVar("g0") mod[g0] = fn0 x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + g0(x1, y1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - g1(x2, y2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 return mod def expected(): mod = tvm.IRModule({}) x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + x1 * y1) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - g1(x2, y2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) def test_callee_not_inline_leaf_inline_extern_compiler(): """Test entry function with inline The call graph is l
ike the following: main | g2(inline) | g1 | g0(inline, external compiler) """ def get_mod(): mod = tvm.IRModule({}) x0 = relay.var("x0", shape=(3, 5)) y0 = relay.var("y0", shape=(3, 5)) fn0 = relay.Function([x0, y0], x0 * y0) fn0 = fn0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn0 = fn0.with_attr("Compiler", "aa") g0 = relay.GlobalVar("g0") mod[g0] = fn0 x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + g0(x1, y1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - g1(x2, y2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 return mod def expected(): mod = tvm.IRModule({}) x0 = relay.var("x0", shape=(3, 5)) y0 = relay.var("y0", shape=(3, 5)) fn0 = relay.Function([x0, y0], x0 * y0) fn0 = fn0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) fn0 = fn0.with_attr("Compiler", "aa") x1 = relay.var("x1", shape=(3, 5)) y1 = relay.var("y1", shape=(3, 5)) fn1 = relay.Function([x1, y1], x1 + fn0(x1, y1)) g1 = relay.GlobalVar("g1") mod[g1] = fn1 x2 = relay.var("x2", shape=(3, 5)) y2 = relay.var("y2", shape=(3, 5)) fn2 = relay.Function([x2, y2], x2 - g1(x2, y2)) fn2 = fn2.with_attr("Inline", tvm.tir.IntImm("int32", 1)) g2 = relay.GlobalVar("g2") mod[g2] = fn2 return mod mod = get_mod() mod = relay.transform.Inline()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) if __name__ == "__main__": pytest.main()
""" Instrument test cases. """
import pytest
import tvm
import tvm.relay from tvm.relay
import op from tvm.ir.instrument
import PassTimingInstrument, pass_instrument def get_test_model(): x, y, z = [tvm.relay.var(c, shape=(3, 4), dtype="float32") for c in "xyz"] e1 = op.add(x, y) e2 = op.subtract(x, z) e3 = op.multiply(e1, e1 / e2) return tvm.IRModule.from_expr(e3 + e2) def test_pass_timing_instrument(): pass_timing = PassTimingInstrument() tvm.transform.PassContext.current().override_instruments([pass_timing]) mod = get_test_model() mod = tvm.relay.transform.AnnotateSpans()(mod) mod = tvm.relay.transform.ToANormalForm()(mod) mod = tvm.relay.transform.InferType()(mod) profiles = pass_timing.render() assert "AnnotateSpans" in profiles assert "ToANormalForm" in profiles assert "InferType" in profiles tvm.transform.PassContext.current().override_instruments(None) mod = get_test_model() mod = tvm.relay.transform.AnnotateSpans()(mod) mod = tvm.relay.transform.ToANormalForm()(mod) mod = tvm.relay.transform.InferType()(mod) profiles = pass_timing.render() assert profiles == "" instrument_definition_type = tvm.testing.parameter("decorator", "subclass") def test_custom_instrument(instrument_definition_type): class BaseTest: def __init__(self): self.events = [] def enter_pass_ctx(self): self.events.append("enter ctx") def exit_pass_ctx(self): self.events.append("exit ctx") def run_before_pass(self, mod, info): self.events.append("run before " + info.name) def run_after_pass(self, mod, info): self.events.append("run after " + info.name) if instrument_definition_type == "decorator": MyTest = pass_instrument(BaseTest) elif instrument_definition_type == "subclass":
class MyTest(BaseTest, tvm.ir.instrument.PassInstrument): def __init__(self): BaseTest.__init__(self) tvm.ir.instrument.PassInstrument.__init__(self) mod = get_test_model() my_test = MyTest() with tvm.transform.PassContext(instruments=[my_test]): mod = tvm.relay.transform.InferType()(mod) assert ( "enter ctx" "run before InferType" "run after InferType" "exit ctx" == "".join(my_test.events) ) def test_disable_pass(): @pass_instrument class CustomPI: def __init__(self): self.events = [] def should_run(self, mod, info): if "InferType" not in info.name: return False return True def run_before_pass(self, mod, info): self.events.append(info.name) mod = get_test_model() custom_pi = CustomPI() with tvm.transform.PassContext(instruments=[custom_pi]): mod = tvm.relay.transform.AnnotateSpans()(mod) mod = tvm.relay.transform.ToANormalForm()(mod) mod = tvm.relay.transform.InferType()(mod) assert "InferType" == "".join(custom_pi.events) def test_multiple_instrument(): @pass_instrument class SkipPass: def __init__(self, skip_pass_name): self.skip_pass_name = skip_pass_name def should_run(self, mod, info): if self.skip_pass_name in info.name: return False return True skip_annotate = SkipPass("AnnotateSpans") skip_anf = SkipPass("ToANormalForm") @pass_instrument class PrintPassName: def __init__(self): self.events = [] def run_before_pass(self, mod, info): self.events.append(info.name) mod = get_test_model() print_pass_name = PrintPassName() with tvm.transform.PassContext(instruments=[skip_annotate, skip_anf, print_pass_name]): mod = tvm.relay.transform.AnnotateSpans()(mod) mod = tvm.relay.transform.ToANormal
Form()(mod) mod = tvm.relay.transform.InferType()(mod) assert "InferType" == "".join(print_pass_name.events) def test_instrument_pass_counts(): @pass_instrument class PassesCounter: def __init__(self): self.run_before_count = 0 self.run_after_count = 0 def __clear(self): self.run_before_count = 0 self.run_after_count = 0 def enter_pass_ctx(self): self.__clear() def exit_pass_ctx(self): self.__clear() def run_before_pass(self, mod, info): self.run_before_count = self.run_before_count + 1 def run_after_pass(self, mod, info): self.run_after_count = self.run_after_count + 1 mod = get_test_model() passes_counter = PassesCounter() with tvm.transform.PassContext(instruments=[passes_counter]): tvm.relay.build(mod, "llvm") assert passes_counter.run_after_count != 0 assert passes_counter.run_after_count == passes_counter.run_before_count assert passes_counter.run_before_count == 0 assert passes_counter.run_after_count == 0 def test_list_pass_configs(): configs = tvm.transform.PassContext.list_configs() assert len(configs) > 0 assert "relay.backend.use_auto_scheduler" in configs.keys() assert configs["relay.backend.use_auto_scheduler"]["type"] == "IntImm" def test_enter_pass_ctx_exception(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def enter_pass_ctx(self): events.append(self.id + " enter ctx") def exit_pass_ctx(self): events.append(self.id + " exit ctx") @pass_instrument
class PIBroken(PI): def __init__(self, id): super().__init__(id) def enter_pass_ctx(self): events.append(self.id + " enter ctx") raise RuntimeError("Just a dummy error") pass_ctx = tvm.transform.PassContext(instruments=[PI("%1"), PIBroken("%2"), PI("%3")]) with pytest.raises(tvm.error.TVMError) as cm: with pass_ctx: pass assert "Just a dummy error" in str(cm.execption) assert "%1 enter ctx" "%2 enter ctx" "%1 exit ctx" == "".join(events) cur_pass_ctx = tvm.transform.PassContext.current() assert pass_ctx != cur_pass_ctx assert not cur_pass_ctx.instruments def test_enter_pass_ctx_exception_global(): @pass_instrument class PIBroken: def enter_pass_ctx(self): raise RuntimeError("Just a dummy error") cur_pass_ctx = tvm.transform.PassContext.current() with pytest.raises(tvm.error.TVMError) as cm: cur_pass_ctx.override_instruments([PIBroken()]) assert "Just a dummy error" in str(cm.exception) assert not cur_pass_ctx.instruments def test_exit_pass_ctx_exception(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def exit_pass_ctx(self): events.append(self.id + " exit ctx") @pass_instrument
class PIBroken(PI): def __init__(self, id): super().__init__(id) def exit_pass_ctx(self): events.append(self.id + " exit ctx") raise RuntimeError("Just a dummy error") pass_ctx = tvm.transform.PassContext(instruments=[PI("%1"), PIBroken("%2"), PI("%3")]) with pytest.raises(tvm.error.TVMError) as cm: with pass_ctx: pass assert "Just a dummy error" in str(cm.exception) assert "%1 exit ctx" "%2 exit ctx" == "".join(events) cur_pass_ctx = tvm.transform.PassContext.current() assert pass_ctx != cur_pass_ctx assert not cur_pass_ctx.instruments def test_exit_pass_ctx_exception_global(): @pass_instrument class PIBroken: def exit_pass_ctx(self): raise RuntimeError("Just a dummy error") cur_pass_ctx = tvm.transform.PassContext.current() with pytest.raises(tvm.error.TVMError) as cm: cur_pass_ctx.override_instruments([PIBroken()]) cur_pass_ctx.override_instruments([PIBroken()]) assert "Just a dummy error" in str(cm.exception) assert not cur_pass_ctx.instruments def test_pass_exception(): events = [] @pass_instrument class PI: def enter_pass_ctx(self): events.append("enter_pass_ctx") def exit_pass_ctx(self): events.append("exit_pass_ctx") def should_run(self, mod, info): events.append("should_run") return True def run_before_pass(self, mod, info): events.append("run_before_pass") def run_after_pass(self, mod, info): events.append("run_after_pass") @tvm.transform.module_pass(opt_level=2) def transform(mod, ctx): events.append("transform pass") raise RuntimeError("Just a dummy error") return mod mod = get_test_model() with pytest.raises(tvm.error.TVMError) as cm: with tvm.transform.PassContext(instruments=[PI()]): mod = transform(mod) assert "Just a dummy
error" in str(cm.exception) assert ( "enter_pass_ctx" "should_run" "run_before_pass" "transform pass" "exit_pass_ctx" == "".join(events) ) def test_should_run_exception(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def enter_pass_ctx(self): events.append(self.id + " enter_pass_ctx") def exit_pass_ctx(self): events.append(self.id + " exit_pass_ctx") def should_run(self, mod, info): events.append(self.id + " should_run") raise RuntimeError("Just a dummy error") return True def run_before_pass(self, mod, info): events.append(self.id + " run_before_pass") def run_after_pass(self, mod, info): events.append(self.id + " run_after_pass") @tvm.transform.module_pass(opt_level=2) def transform(mod, ctx): events.append("transform pass") return mod mod = get_test_model() with pytest.raises(tvm.error.TVMError) as cm: with tvm.transform.PassContext(instruments=[PI("%1"), PI("%2")]): mod = transform(mod) assert "Just a dummy error" in str(cm.exception) assert ( "%1 enter_pass_ctx" "%2 enter_pass_ctx" "%1 should_run" "%1 exit_pass_ctx" "%2 exit_pass_ctx" == "".join(events) ) def test_run_before_exception(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def enter_pass_ctx(self): events.append(self.id + " enter_pass_ctx") def exit_pass_ctx(self): events.append(self.id + " exit_pass_ctx") def should_run(self, mod, info): events.append(self.id + " should_run") return True def run_before_pass(self, mod, info): events.append(self.id + " run_before_pass") raise RuntimeError("Just a dummy error") def run_aft
er_pass(self, mod, info): events.append(self.id + " run_after_pass") @tvm.transform.module_pass(opt_level=2) def transform(mod, ctx): events.append("transform pass") return mod mod = get_test_model() with pytest.raises(tvm.error.TVMError) as cm: with tvm.transform.PassContext(instruments=[PI("%1"), PI("%2")]): mod = transform(mod) assert "Just a dummy error" in str(cm.exception) assert ( "%1 enter_pass_ctx" "%2 enter_pass_ctx" "%1 should_run" "%2 should_run" "%1 run_before_pass" "%1 exit_pass_ctx" "%2 exit_pass_ctx" == "".join(events) ) def test_run_after_exception(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def enter_pass_ctx(self): events.append(self.id + " enter_pass_ctx") def exit_pass_ctx(self): events.append(self.id + " exit_pass_ctx") def should_run(self, mod, info): events.append(self.id + " should_run") return True def run_before_pass(self, mod, info): events.append(self.id + " run_before_pass") def run_after_pass(self, mod, info): events.append(self.id + " run_after_pass") raise RuntimeError("Just a dummy error") @tvm.transform.module_pass(opt_level=2) def transform(mod, ctx): events.append("transform pass") return mod x, y = [tvm.relay.var(c, shape=(3, 4), dtype="float32") for c in "xy"] mod = tvm.IRModule.from_expr(tvm.relay.add(x, y)) with pytest.raises(tvm.error.TVMError) as cm: with tvm.transform.PassContext(instruments=[PI("%1"), PI("%2")]): mod = transform(mod) assert "Just a dummy error" in str(cm.exception) assert ( "%1 enter_pass_ctx" "%2 enter_pass_ctx" "%1 should_run" "%2 should_run" "%1 run_before_pass" "%2 run_before_pass" "transfor
m pass" "%1 run_after_pass" "%1 exit_pass_ctx" "%2 exit_pass_ctx" == "".join(events) ) def test_instrument_call_sequence(): events = [] @pass_instrument class PI: def __init__(self, id): self.id = id def enter_pass_ctx(self): events.append(self.id + " enter_pass_ctx") def exit_pass_ctx(self): events.append(self.id + " exit_pass_ctx") def should_run(self, mod, info): events.append(" " + self.id + " should_run") return True def run_before_pass(self, mod, info): events.append(" " + self.id + " run_before_pass") def run_after_pass(self, mod, info): events.append(" " + self.id + " run_after_pass") @tvm.transform.module_pass(opt_level=2) def transform1(mod, ctx): events.append(" transform1 pass") return mod @tvm.transform.module_pass(opt_level=2) def transform2(mod, ctx): events.append(" transform2 pass") return mod mod = get_test_model() with tvm.transform.PassContext(instruments=[PI("%1"), PI("%2")]): mod = transform1(mod) mod = transform2(mod) assert ( "%1 enter_pass_ctx" "%2 enter_pass_ctx" " %1 should_run" " %2 should_run" " %1 run_before_pass" " %2 run_before_pass" " transform1 pass" " %1 run_after_pass" " %2 run_after_pass" " %1 should_run" " %2 should_run" " %1 run_before_pass" " %2 run_before_pass" " transform2 pass" " %1 run_after_pass" " %2 run_after_pass" "%1 exit_pass_ctx" "%2 exit_pass_ctx" == "".join(events) )
import numpy as np
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.relay
import transform def test_basic(): mod = tvm.IRModule() x2 = relay.var("x2", shape=(10, 5)) y2 = relay.var("y2", shape=(1, 5)) level2_func = relay.Function([x2, y2], relay.op.add(x2, y2)) x1 = relay.var("x1", shape=(10, 5)) y1 = relay.var("y1", shape=(1, 5)) level1_func = relay.Function([x1, y1], level2_func(x1, y1)) mod["main"] = level1_func mod = relay.transform.InferType()(mod) new_mod = transform.LambdaLift()(mod) assert len(new_mod.functions) == 2 def test_closure(): mod = tvm.IRModule() x = relay.var("x", shape=(2,)) y = relay.var("y", shape=(2,)) inner_func = relay.Function([x], x + y) outer_func = relay.Function([y], inner_func) clo = outer_func(relay.ones(shape=(2,), dtype="float32")) mod["main"] = relay.Function([], relay.Call(clo, [relay.zeros(shape=(2,), dtype="float32")])) mod = relay.transform.InferType()(mod) new_mod = transform.LambdaLift()(mod) assert len(new_mod.functions) == 3 def test_recursive(): mod = tvm.IRModule() x = relay.var("x", shape=(2,)) i = relay.var("i", shape=(), dtype="int32") s = relay.var("s", shape=(2,)) cond = i < relay.const(10, dtype="int32") loop = relay.var("while_loop") sb = relay.scope_builder.ScopeBuilder() with sb.if_scope(cond): ii = i + relay.const(1, dtype="int32") ss = s + x sb.ret(loop(ii, ss)) with sb.else_scope(): sb.ret(s) func = relay.Function([i, s], sb.get()) ret = relay.Let( loop, func, loop(relay.const(0, dtype="int32"), relay.zeros(shape=(2,), dtype="float32")) ) mod["main"] = relay.Function([x], ret) mod = relay.transform.InferType()(mod) new_mod = transform.LambdaLift()(mod) assert len(new_mod.functions) == 2 if __name__ == "__main__": pytest.main()
import numpy as np
import tvm from tvm
import relay from tvm.relay
import create_executor, transform from tvm.relay.testing
import rand, run_infer_type
import tvm.testing from tvm.testing
import assert_allclose def test_tc(): """Simple testcase, check that transformation typechecks.""" mod = tvm.IRModule() shape = (20, 20) dtype = "float32" t = relay.TensorType(shape, dtype) x1 = relay.var("x1", t) x2 = relay.var("x2", t) y = relay.Function([x1, x2], (x1 - x2) * x2) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) assert mod["main"].checked_type == relay.FuncType([t, t], t) def test_add(): """Simple add testcase. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + x) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + x.numpy()) def test_add_tuple(): """Add elements of tuple. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" tensor_type = relay.TensorType(shape, dtype) t = relay.TupleType([tensor_type, tensor_type]) x = relay.var("x", t) y = relay.Function([x], relay.TupleGetItem(x, 0) + relay.TupleGetItem(x, 1)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) mod = tvm.transform.PrintIR(show_meta_data=True)(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], tensor_type) x = (rand(dtype, *shape), rand(dtype, *shape)) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x[0].numpy() + x[1].numpy()) def test_mult(): """Simple multiplication testcase. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (15, 15) dtype = "float32" t = relay.
TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x * x) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() * x.numpy()) def test_ret_tuple(): """Test tuple return type. Check types and semantic equivalence.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], relay.Tuple([x, x * relay.const(2.0)])) func = run_infer_type(func) mod["main"] = func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) func = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], relay.TupleType([t, t])) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(func)(x) assert_allclose(y[0].numpy(), x.numpy()) assert_allclose(y[1].numpy(), x.numpy() * 2.0) def test_add_broadcast(): """Test adding matrices of different size. Check types and semantic equivalence.""" mod = tvm.IRModule() shape1 = (3, 4, 1) shape2 = (1, 5) dtype = "float32" t1 = relay.TensorType(shape1, dtype) t2 = relay.TensorType(shape2, dtype) x1 = relay.var("x1", t1) x2 = relay.var("x2", t2) func = relay.Function([x1, x2], x1 + x2) func = run_infer_type(func) mod["main"] = func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) func = mod["main"] x1_np = rand(dtype, *shape1).numpy() x2_np = rand(dtype, *shape2).numpy() expected_forward = x1_np + x2_np expected_forward_type = relay.TensorType(expected_forward.shape, dtype) assert mod["main"].checked_type == relay.FuncType([t1, t2], expected_forward_type) forward = create_executor(mod=mod).evaluate(func)(x1_np, x2_np) a
ssert_allclose(forward.numpy(), expected_forward) def test_reverse_ad_identity(): """Simple test with reverse mode ad.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) func = relay.Function([x], x) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t], relay.TupleType([t, relay.TupleType([t])]) ) x = rand(dtype, *shape) (forward), (grad,) = create_executor(mod=mod).evaluate(back_func)(x) assert_allclose(forward.numpy(), x.numpy()) assert_allclose(grad.numpy(), np.ones_like(x.numpy())) def test_multivar_reverse_ad(): """Simple test with multivariate reverse mode ad.""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_partial_eval(): """Test transformation following reverse mode ad and PartialEval""" mod = tvm.IRModule() shape = (10, 10
) dtype = "float32" t = relay.TensorType(shape, dtype) func = relay.Function([], relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func mod = transform.InferType()(mod) back_func = mod["main"] transform.PartialEvaluate()(mod) def test_after_partial_eval(): """Test transformation following reverse mode ad and PartialEval""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], (x * y) * relay.const(np.ones(shape, dtype))) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func) mod["main"] = back_func back_func = mod["main"] seq = tvm.transform.Sequential( [ transform.PartialEvaluate(), transform.InferType(), transform.LazyGradientInit(), transform.InferType(), transform.DeadCodeElimination(), transform.InferType(), ] ) mod = seq(mod) assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_before_partial_eval(): """Test transformation before PartialEval""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.var("y", t) func = relay.Function([x, y], x * y) func = run_infer_type(func) back_func = transform.gradient(func) back_func = run_infer_type(back_func)
mod["main"] = back_func seq = tvm.transform.Sequential( [ transform.LazyGradientInit(), transform.PartialEvaluate(), transform.InferType(), transform.DeadCodeElimination(), transform.InferType(), ] ) mod = seq(mod) back_func = mod["main"] assert mod["main"].checked_type == relay.FuncType( [t, t], relay.TupleType([t, relay.TupleType([t, t])]) ) x = rand(dtype, *shape) y = rand(dtype, *shape) (forward), (grad_x, grad_y,) = create_executor(mod=mod).evaluate( back_func )(x, y) assert_allclose(forward.numpy(), x.numpy() * y.numpy()) assert_allclose(grad_x.numpy(), y.numpy()) assert_allclose(grad_y.numpy(), x.numpy()) def test_zeros(): """Simple test using "zeros" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.zeros(shape, dtype)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy()) def test_ones(): """Simple test using "ones" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.ones(shape, dtype)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + np.ones_like(x.numpy())) def test_zeros_like(): """Simple test using "zeros_like" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32"
t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.zeros_like(x)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy()) def test_ones_like(): """Simple test using "ones_like" op""" mod = tvm.IRModule() shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) y = relay.Function([x], x + relay.ones_like(x)) mod["main"] = y mod = transform.InferType()(mod) mod = transform.LazyGradientInit()(mod) y = mod["main"] assert mod["main"].checked_type == relay.FuncType([t], t) x = rand(dtype, *shape) y = create_executor(mod=mod).evaluate(y)(x) assert_allclose(y.numpy(), x.numpy() + np.ones_like(x.numpy())) if __name__ == "__main__": tvm.testing.main()
"""Test legalize pass"""
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.contrib
import graph_executor from tvm.relay
import transform, analysis from tvm.relay.testing.temp_op_attr
import TempOpAttr def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_legalize(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def legalize_conv2d(attrs, inputs, types): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y with TempOpAttr("nn.conv2d", "FTVMLegalize", legalize_conv2d): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_legalize_none(): """Test doing nothing by returning 'None'""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.nn.global_max_pool2d(x) y = relay.Function([x], y) return y called = [False] def legalize_conv2d(attrs, inputs, types): called[0] = True return None with TempOpAttr("nn.global_max_pool2d", "FTVMLega
lize", legalize_conv2d): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(before(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) assert called[0] def test_legalize_multiple_ops(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d(x, weight, channels=64, kernel_size=(3, 3), padding=(1, 1)) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y def legalize_conv2d(attrs, inputs, types): data, weight = inputs weight = relay.multiply(weight, relay.const(2.0, "float32")) return relay.nn.conv2d(data, weight, **attrs) def legalize_relu(attrs, inputs, types): data = inputs[0] add = relay.add(tvm.relay.const(0, "float32"), data) return relay.nn.relu(add) def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) weight = relay.var("weight", shape=(64, 64, 3, 3)) y = relay.nn.conv2d( x, relay.multiply(weight, relay.const(2.0, "float32")), channels=64, kernel_size=(3, 3), padding=(1, 1), ) y = relay.add(tvm.relay.const(0, "float32"), y) y = relay.nn.relu(y) y = relay.Function([x, weight], y) return y with TempOpAttr("nn.conv2d", "FTVMLegalize", legalize_conv2d): with TempOpAttr("nn.relu", "FTVMLegalize", legalize_relu): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_legalize_multi_input(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.var("y", shape=(1, 64, 56, 20))
z = relay.var("z", shape=(1, 64, 56, 10)) func = relay.concatenate([x, y, z], axis=3) func = relay.Function([x, y, z], func) return func def legalize_concatenate(attrs, inputs, types): assert len(inputs) == 1 assert isinstance(inputs[0], tvm.relay.expr.Tuple) assert len(types) == 2 assert isinstance(types[0], tvm.relay.ty.TupleType) assert isinstance(types[1], tvm.relay.ty.TensorType) return None def expected(): x = relay.var("x", shape=(1, 64, 56, 56)) y = relay.var("y", shape=(1, 64, 56, 20)) z = relay.var("z", shape=(1, 64, 56, 10)) func = relay.concatenate([x, y, z], axis=3) func = relay.Function([x, y, z], func) return func with TempOpAttr("concatenate", "FTVMLegalize", legalize_concatenate): a = before() a = run_opt_pass(a, transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) if __name__ == "__main__": test_legalize() test_legalize_none() test_legalize_multiple_ops() test_legalize_multi_input()
"""Test legalize pass"""
import numpy as np
import tvm from tvm
import te from tvm
import topi from tvm