text
stringlengths
1
2.05k
import tvm.relay.testing
import tvm.relay.op as reg from tvm
import relay from tvm
import runtime as tvm_runtime from tvm.relay
import transform from tvm.relay.testing
import byoc from tvm.contrib
import utils from tvm.relay.expr_functor
import ExprMutator from tvm.relay.op.annotation
import compiler_begin, compiler_end from tvm.relay.op.contrib.register
import get_pattern_table from tvm.relay.build_module
import bind_params_by_name @transform.function_pass(opt_level=0) class AllowedListAnnotator: def __init__(self, op_list, compiler): assert isinstance(op_list, (list, tuple, set)) self.op_list = op_list self.compiler = compiler def transform_function(self, func, mod, dev): annotator = self
class Annotator(tvm.relay.ExprMutator): def visit_call(self, call): op_name = call.op.name if op_name in annotator.op_list: new_args = [] for arg in call.args: ann = compiler_begin(super().visit(arg), annotator.compiler) new_args.append(ann) new_call = relay.Call(call.op, new_args, call.attrs, call.type_args) return compiler_end(new_call, annotator.compiler) else: return super().visit_call(call) return Annotator().visit(func)
class WholeGraphAnnotator(ExprMutator): """ An annotator that creates a compiler for an entire graph. """ def __init__(self, compiler): super(WholeGraphAnnotator, self).__init__() self.compiler = compiler self.last_call = True def visit_call(self, call): curr_last = self.last_call self.last_call = False params = [] for arg in call.args: param = super().visit(arg) if isinstance(param, relay.expr.Var): param = compiler_begin(param, self.compiler) params.append(param) new_call = relay.Call(call.op, params, call.attrs) if curr_last: new_call = compiler_end(new_call, self.compiler) return new_call
class MobileNetAnnotator(ExprMutator): """ Annotate mobilenet until global_avg_pool. """ def __init__(self, compiler): super(MobileNetAnnotator, self).__init__() self.compiler = compiler self.compiler_open = False def visit_call(self, call): if call.op.name == "nn.global_avg_pool2d": self.compiler_open = True compiler_open = self.compiler_open params = [] for arg in call.args: param = super().visit(arg) if call.op.name == "nn.global_avg_pool2d": param = compiler_end(param, self.compiler) if compiler_open and isinstance(param, relay.expr.Var): param = compiler_begin(param, self.compiler) params.append(param) new_call = relay.Call(call.op, params, call.attrs) return new_call def check_result( mod, map_inputs, out_shape, result, tol=1e-5, target="llvm", device=tvm.cpu(), params=None, runtime=Runtime("cpp"), ): if sys.platform == "win32": print("Skip test on Windows for now") return def update_lib(lib): test_dir = os.path.dirname(os.path.realpath(os.path.expanduser(__file__))) source_dir = os.path.join(test_dir, "..", "..", "..") contrib_path = os.path.join(source_dir, "src", "runtime", "contrib") kwargs = {} kwargs["options"] = ["-O2", "-std=c++17", "-I" + contrib_path] tmp_path = utils.tempdir() lib_name = "lib.so" lib_path = tmp_path.relpath(lib_name) lib.export_library(lib_path, fcompile=False, **kwargs) lib = tvm_runtime.load_module(lib_path) return lib def check_vm_result(): te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): exe = relay.vm.compile(mod, target=target, params=params) code, lib = exe.save() lib = update_lib(lib) exe = tvm_runtime.vm.Executable.load_exec(code, lib) vm = tvm_runti
me.vm.VirtualMachine(exe, device) outs = vm.run(**map_inputs) outs = outs if isinstance(outs, tvm_runtime.container.ADT) else [outs] results = result if isinstance(result, list) else [result] for out, ref in zip(outs, results): tvm.testing.assert_allclose(out.numpy(), ref, rtol=tol, atol=tol) def check_graph_executor_result(): te_compiler.get().clear() with tvm.transform.PassContext(opt_level=3): json, lib, param = relay.build(mod, target=target, params=params, runtime=runtime) lib = update_lib(lib) rt_mod = tvm.contrib.graph_executor.create(json, lib, device) for name, data in map_inputs.items(): rt_mod.set_input(name, data) rt_mod.set_input(**param) rt_mod.run() out_shapes = out_shape if isinstance(out_shape, list) else [out_shape] results = result if isinstance(result, list) else [result] for idx, shape in enumerate(out_shapes): out = tvm.nd.empty(shape, device=device) out = rt_mod.get_output(idx, out) tvm.testing.assert_allclose(out.numpy(), results[idx], rtol=tol, atol=tol) check_vm_result() check_graph_executor_result() def test_multi_node_compiler(): x = relay.var("x", shape=(10, 10)) w0 = relay.var("w0", shape=(10, 10)) w1 = relay.var("w1", shape=(10, 10)) w2 = relay.var("w2", shape=(10, 10)) w3 = relay.var("w3", shape=(10, 10)) w4 = relay.var("w4", shape=(10, 10)) w5 = relay.var("w5", shape=(10, 10)) w6 = relay.var("w6", shape=(10, 10)) w7 = relay.var("w7", shape=(10, 10)) z0 = relay.add(x, w0) p0 = relay.subtract(z0, w1) q0 = relay.multiply(p0, w2) z1 = relay.add(x, w3) p1 = relay.subtract(z1, w4) q1 = relay.multiply(p1, w5) z2 = relay.add(x, w6) q2 = relay.subtract(z2, w7) r = relay.concatenate((q0, q1, q2), axis=0) f = relay.Function([x, w0, w1, w2, w3, w4, w5, w6, w7], r) mod = tvm.IRModule() an
n = byoc.CcompilerAnnotator() mod["main"] = ann.visit(f) mod = transform.PartitionGraph()(mod) mod = transform.InferType()(mod) x_data = np.random.rand(10, 10).astype("float32") w_data = [] for _ in range(8): w_data.append(np.random.rand(10, 10).astype("float32")) map_inputs = {"w{}".format(i): w_data[i] for i in range(8)} map_inputs["x"] = x_data targets = [("llvm", Runtime("cpp")), ("c", Runtime("crt", {"system-lib": True}))] for tgt, rt in targets: check_result( mod, map_inputs, (30, 10), np.concatenate( ( ((x_data + w_data[0]) - w_data[1]) * w_data[2], ((x_data + w_data[3]) - w_data[4]) * w_data[5], x_data + w_data[6] - w_data[7], ), axis=0, ), target=tgt, runtime=rt, ) def test_extern_ccompiler_single_op(): @transform.function_pass(opt_level=0) class MyAnnotator: def transform_function(self, func, mod, dev):
class Annotator(tvm.relay.ExprMutator): def visit_call(self, call): new_args = [] for arg in call.args: ann = compiler_begin(self.visit(arg), "ccompiler") new_args.append(ann) new_call = relay.Call(call.op, new_args) return compiler_end(new_call, "ccompiler") return Annotator().visit(func) x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) z = x + y f = relay.Function([x, y], z) x_data = np.random.rand(8, 8).astype("float32") y_data = np.random.rand(8, 8).astype("float32") mod = tvm.IRModule() mod["main"] = f mod = MyAnnotator()(mod) mod = transform.PartitionGraph()(mod) check_result(mod, {"x": x_data, "y": y_data}, (8, 8), x_data + y_data) def set_func_attr(func, compile_name, symbol_name): func = func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func = func.with_attr("Compiler", compile_name) func = func.with_attr("global_symbol", symbol_name) return func def test_extern_ccompiler_default_ops(): def expected(): mod = tvm.IRModule() x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) add = x0 + y0 func = relay.Function([x0, y0], add) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0") mod[glb_0] = func add_call = relay.Call(glb_0, [x, y]) p0 = relay.var("p0", shape=(8, 8)) log = relay.log(p0) exp = relay.exp(p0) concat = relay.concatenate([log, exp], axis=0) fused_func = relay.Function([p0], concat) fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) fused_call
= relay.Call(fused_func, [add_call]) main = relay.Function([x, y], fused_call) mod["main"] = main mod = transform.InferType()(mod) return mod x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) add = x + y log = relay.log(add) exp = relay.exp(add) concat = relay.concatenate([log, exp], axis=0) f = relay.Function([x, y], concat) mod = tvm.IRModule() mod["main"] = f mod = AllowedListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod) mod = transform.PartitionGraph()(mod) fused_mod = transform.FuseOps(2)(mod) expected_mod = expected() assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True) x_data = np.random.rand(8, 8).astype("float32") y_data = np.random.rand(8, 8).astype("float32") np_add = x_data + y_data res = np.concatenate([np.log(np_add), np.exp(np_add)]) check_result(mod, {"x": x_data, "y": y_data}, (16, 8), res) def test_extern_compiler_sanitized_ops(): def expected(): mod = tvm.IRModule() x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) add = x0 + y0 func = relay.Function([x0, y0], add) func = set_func_attr(func, "unsanitary-name++", "tvmgen_default_unsanitary_name___main_0") glb_0 = relay.GlobalVar("tvmgen_default_unsanitary_name___main_0") mod[glb_0] = func add_call = relay.Call(glb_0, [x, y]) p0 = relay.var("p0", shape=(8, 8)) log = relay.log(p0) exp = relay.exp(p0) concat = relay.concatenate([log, exp], axis=0) fused_func = relay.Function([p0], concat) fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) fused_call = relay.Call(fused_func, [add_call]) main = relay.Function([x, y], fused_call) mod["main"] = main mod = transform.InferType()(mod) retur
n mod x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) add = x + y log = relay.log(add) exp = relay.exp(add) concat = relay.concatenate([log, exp], axis=0) f = relay.Function([x, y], concat) mod = tvm.IRModule() mod["main"] = f mod = AllowedListAnnotator(["add", "subtract", "multiply"], "unsanitary-name++")(mod) mod = transform.PartitionGraph()(mod) fused_mod = transform.FuseOps(2)(mod) expected_mod = expected() assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True) def test_extern_ccompiler_multiple_functions(): def expected(): mod = tvm.IRModule() x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) add = x0 + y0 func = relay.Function([x0, y0], add) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0") mod[glb_0] = func add_call = relay.Call(glb_0, [x, y]) p0 = relay.var("p0", shape=(8, 8)) log = relay.log(p0) exp = relay.exp(p0) concat = relay.concatenate([log, exp], axis=0) fused_func = relay.Function([p0], concat) fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) fused_call = relay.Call(fused_func, [add_call]) main = relay.Function([x, y], fused_call) mod["main"] = main a = relay.var("a", shape=(16, 16)) b = relay.var("b", shape=(16, 16)) a0 = relay.var("a0", shape=(16, 16)) b0 = relay.var("b0", shape=(16, 16)) add = a0 + b0 func = relay.Function([a0, b0], add) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_subfunction_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_subfunction_0") mod[glb_0] = func add_call = relay.Call(glb_0, [
a, b]) p0 = relay.var("p0", shape=(16, 16)) log = relay.log(p0) exp = relay.exp(p0) concat = relay.concatenate([log, exp], axis=0) fused_func = relay.Function([p0], concat) fused_func = fused_func.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) fused_call = relay.Call(fused_func, [add_call]) sunfunction = relay.Function([a, b], fused_call) mod["subfunction"] = sunfunction mod = transform.InferType()(mod) return mod x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) add = x + y log = relay.log(add) exp = relay.exp(add) concat = relay.concatenate([log, exp], axis=0) f = relay.Function([x, y], concat) mod = tvm.IRModule() mod["main"] = f a = relay.var("a", shape=(16, 16)) b = relay.var("b", shape=(16, 16)) add = a + b log = relay.log(add) exp = relay.exp(add) concat = relay.concatenate([log, exp], axis=0) f2 = relay.Function([a, b], concat) mod["subfunction"] = f2 mod = AllowedListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod) mod = transform.PartitionGraph()(mod) fused_mod = transform.FuseOps(2)(mod) expected_mod = expected() assert tvm.ir.structural_equal(fused_mod, expected_mod, map_free_vars=True) x_data = np.random.rand(8, 8).astype("float32") y_data = np.random.rand(8, 8).astype("float32") np_add = x_data + y_data res = np.concatenate([np.log(np_add), np.exp(np_add)]) check_result(mod, {"x": x_data, "y": y_data}, (16, 8), res) def test_extern_ccompiler(): x = relay.var("x", shape=(2, 2)) y = relay.var("y", shape=(2, 2)) z = x + x p = y * y f = relay.Function([x, y], p - z) x_data = np.random.rand(2, 2).astype("float32") y_data = np.random.rand(2, 2).astype("float32") mod = tvm.IRModule() mod["main"] = f mod = AllowedListAnnotator(["add", "subtract", "multiply"], "ccompiler")(mod) mod = transform.PartitionGraph()(mod) ch
eck_result(mod, {"x": x_data, "y": y_data}, (2, 2), (y_data * y_data) - (x_data + x_data)) def test_extern_dnnl(): if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 1, 3, 3) def expected(): data0 = relay.var("data", shape=(ishape), dtype=dtype) input0 = relay.var("input", shape=(w1shape), dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data0, input0, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, input0, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) func = relay.Function([data0, input0], out) func = set_func_attr(func, "dnnl", "tvmgen_default_dnnl_main_0") glb_var = relay.GlobalVar("tvmgen_default_dnnl_main_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data = relay.var("data", shape=(ishape), dtype=dtype) weight = relay.var("input", shape=(w1shape), dtype=dtype) main_f = relay.Function([data, weight], glb_var(data, weight)) mod["main"] = main_f mod = transform.InferType()(mod) return mod def get_func(): data = relay.var("data", shape=(ishape), dtype=dtype) weight1 = relay.var("weight1", shape=(w1shape), dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) return relay.Function([data, weight1], out) mod = tvm.IRModule() mod["main"] = WholeGraphAnnotator("dnnl").visit(get_func()) mod = transform.Partit
ionGraph()(mod) mod = transform.InferType()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) ref_mod = tvm.IRModule() ref_mod["main"] = get_func() i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()( i_data, w1_data ) check_result( mod, {"data": i_data, "weight1": w1_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5 ) def test_extern_tachikoma(): if not tvm.get_global_func("relay.ext.tachikoma", True): print("skip because Tachikoma codegen is not available") return dtype = "float32" ishape = (1, 32, 14, 14) w1shape = (32, 1, 3, 3) def expected(): data0 = relay.var("data", shape=(ishape), dtype=dtype) input0 = relay.var("input", shape=(w1shape), dtype=dtype) depthwise_conv2d_1 = relay.nn.conv2d( data0, input0, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, input0, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) func = relay.Function([data0, input0], out) func = set_func_attr(func, "tachikoma", "tvmgen_default_tachikoma_main_0") glb_var = relay.GlobalVar("tvmgen_default_tachikoma_main_0") mod = tvm.IRModule() mod[glb_var] = func mod = transform.InferType()(mod) data = relay.var("data", shape=(ishape), dtype=dtype) weight = relay.var("input", shape=(w1shape), dtype=dtype) main_f = relay.Function([data, weight], glb_var(data, weight)) mod["main"] = main_f mod = transform.InferType()(mod) return mod def get_func(): data = relay.var("data", shape=(ishape), dtype=dtype) weight1 = relay.var("weight1", shape=(w1shape), dtype=dtype) depthwise_co
nv2d_1 = relay.nn.conv2d( data, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) depthwise_conv2d_2 = relay.nn.conv2d( depthwise_conv2d_1, weight1, kernel_size=(3, 3), padding=(1, 1), groups=32 ) out = relay.add(depthwise_conv2d_1, depthwise_conv2d_2) return relay.Function([data, weight1], out) mod = tvm.IRModule() mod["main"] = WholeGraphAnnotator("tachikoma").visit(get_func()) mod = transform.PartitionGraph()(mod) mod = transform.InferType()(mod) assert tvm.ir.structural_equal(mod, expected(), map_free_vars=True) ref_mod = tvm.IRModule() ref_mod["main"] = get_func() i_data = np.random.uniform(0, 1, ishape).astype(dtype) w1_data = np.random.uniform(0, 1, w1shape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu()).evaluate()( i_data, w1_data ) check_result( mod, {"data": i_data, "weight1": w1_data}, (1, 32, 14, 14), ref_res.numpy(), tol=1e-5 ) def test_extern_dnnl_mobilenet(): if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return dtype = "float32" ishape = (1, 3, 224, 224) ref_mod, params = relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32") mod = transform.AnnotateTarget(["dnnl"])(ref_mod) mod = transform.MergeCompilerRegions()(mod) mod = transform.PartitionGraph()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **params ) te_compiler.get().clear() check_result(mod, {"data": i_data}, (1, 1000), ref_res.numpy(), tol=1e-5, params=params) def test_extern_tachikoma_mobilenet(): if not tvm.get_global_func("relay.ext.tachikoma", True): print("skip because Tachikoma codegen is not available") return dtype = "float32" ishape = (1, 3, 224, 224) ref_mod, params
= relay.testing.mobilenet.get_workload(batch_size=1, dtype="float32") mod = transform.AnnotateTarget(["tachikoma"])(ref_mod) mod = transform.MergeCompilerRegions()(mod) mod = transform.PartitionGraph()(mod) i_data = np.random.uniform(0, 1, ishape).astype(dtype) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **params ) te_compiler.get().clear() check_result(mod, {"data": i_data}, (1, 1000), ref_res.numpy(), tol=1e-5, params=params) def test_function_lifting(): def partition(): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32")) conv = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn_output = relay.nn.batch_norm(conv, bn_gamma, bn_beta, bn_mmean, bn_mvar) func = relay.Function( [data, weight, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output.astuple() ) mod = tvm.IRModule() mod["main"] = func mod = relay.transform.InferType()(mod) op_list = ["nn.batch_norm", "nn.conv2d"] mod = AllowedListAnnotator(op_list, "test_compiler")(mod) opt_pass = tvm.transform.Sequential( [ transform.InferType(), transform.PartitionGraph(), transform.SimplifyInference(), transform.FoldConstant(), transform.AlterOpLayout(), ] ) with tvm.transform.PassContext(opt_level=3): mod = opt_pass(mod) return mod def expected(): data0 =
relay.var("data0", relay.TensorType((1, 16, 224, 224), "float32")) mod = tvm.IRModule() bn_gamma = relay.var("bn_gamma1", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta1", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean1", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var1", relay.TensorType((16,), "float32")) bn = relay.nn.batch_norm(data0, bn_gamma, bn_beta, bn_mmean, bn_mvar) func0 = relay.Function([data0, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn.astuple()) func0 = set_func_attr(func0, "test_compiler", "tvmgen_default_test_compiler_main_2") gv0 = relay.GlobalVar("tvmgen_default_test_compiler_main_2") mod[gv0] = func0 mod = transform.InferType()(mod) data1 = relay.var("data1", relay.TensorType((1, 3, 224, 224), "float32")) weight1 = relay.var("weight1", relay.TensorType((16, 3, 3, 3), "float32")) conv = relay.nn.conv2d( data=data1, weight=weight1, kernel_size=(3, 3), channels=16, padding=(1, 1) ) func1 = relay.Function([data1, weight1], conv) func1 = set_func_attr(func1, "test_compiler", "tvmgen_default_test_compiler_main_0") gv1 = relay.GlobalVar("tvmgen_default_test_compiler_main_0") mod[gv1] = func1 mod = transform.InferType()(mod) data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma0 = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta0 = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean0 = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar0 = relay.var("bn_var", relay.TensorType((16,), "float32")) call1 = gv1(data, weight) call0 = gv0(call1, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0) mod["main"] = relay.Function( [data, weight, bn_gamma0, b
n_beta0, bn_mmean0, bn_mvar0], call0 ) mod = transform.InferType()(mod) return mod partitioned = partition() ref_mod = expected() assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_function_lifting_inline(): def partition(): data = relay.var("data", relay.TensorType((1, 16, 224, 224), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var", relay.TensorType((16,), "float32")) bn_output = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar) func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], bn_output.astuple()) mod = tvm.IRModule() mod["main"] = func op_list = ["nn.batch_norm", "nn.conv2d"] mod = AllowedListAnnotator(op_list, "test_compiler")(mod) opt_pass = tvm.transform.Sequential( [ transform.InferType(), transform.PartitionGraph(), transform.SimplifyInference(), transform.FoldConstant(), transform.AlterOpLayout(), transform.Inline(), ] ) with tvm.transform.PassContext(opt_level=3): mod = opt_pass(mod) return mod def expected(): data0 = relay.var("data0", relay.TensorType((1, 16, 224, 224), "float32")) mod = tvm.IRModule() bn_gamma = relay.var("bn_gamma1", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta1", relay.TensorType((16,), "float32")) bn_mmean = relay.var("bn_mean1", relay.TensorType((16,), "float32")) bn_mvar = relay.var("bn_var1", relay.TensorType((16,), "float32")) bn = relay.nn.batch_norm(data0, bn_gamma, bn_beta, bn_mmean, bn_mvar) func0 = relay.Function([data0, bn_ga
mma, bn_beta, bn_mmean, bn_mvar], bn.astuple()) func0 = set_func_attr(func0, "test_compiler", "tvmgen_default_test_compiler_main_0") data = relay.var("data", relay.TensorType((1, 16, 224, 224), "float32")) bn_gamma0 = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta0 = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mmean0 = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_mvar0 = relay.var("bn_var", relay.TensorType((16,), "float32")) call0 = func0(data, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0) mod["main"] = relay.Function([data, bn_gamma0, bn_beta0, bn_mmean0, bn_mvar0], call0) mod = transform.InferType()(mod) return mod partitioned = partition() ref_mod = expected() assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_constant_propagation(): ones = np.ones(shape=(8, 8), dtype="float32") def expected(): mod = tvm.IRModule() y = relay.var("y", shape=(8, 8)) x0 = relay.const(ones) y0 = relay.var("y0", shape=(8, 8)) add = x0 + y0 func = relay.Function([y0], add) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0") mod[glb_0] = func mod = relay.transform.InferType()(mod) add_call = relay.Call(glb_0, [y]) log = relay.log(add_call) main = relay.Function([y], log) mod["main"] = main mod = relay.transform.InferType()(mod) return mod x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) add = x + y log = relay.log(add) f = relay.Function([x, y], log) f = bind_params_by_name(f, {"x": tvm.nd.array(ones)}) mod = tvm.IRModule() mod["main"] = f mod = AllowedListAnnotator(["add"], "ccompiler")(mod) mod = transform.PartitionGraph()(mod) mod = relay.transform.InferType()(mod)
expected_mod = expected() expected_mod = relay.transform.InferType()(expected_mod) assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True) y_data = np.random.rand(8, 8).astype("float32") np_add = ones + y_data check_result(mod, {"y": y_data}, (8, 8), np.log(np_add)) def test_multiple_outputs(): def create_graph(): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_var = relay.var("bn_var", relay.TensorType((16,), "float32")) data_cb = compiler_begin(data, "test_target") weight_cb = compiler_begin(weight, "test_target") bn_gamma_cb = compiler_begin(bn_gamma, "test_target") bn_beta_cb = compiler_begin(bn_beta, "test_target") bn_mean_cb = compiler_begin(bn_mean, "test_target") bn_var_cb = compiler_begin(bn_var, "test_target") conv_o = relay.nn.conv2d( data=data_cb, weight=weight_cb, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn_o = relay.nn.batch_norm(conv_o, bn_gamma_cb, bn_beta_cb, bn_mean_cb, bn_var_cb) relu_o = relay.nn.relu(bn_o[0]) relu_o_ce = compiler_end(relu_o, "test_target") bn_omean = bn_o[1] rebn_omean_ce = compiler_end(bn_omean, "test_target") bn_ovar = bn_o[2] bn_ovar_ce = compiler_end(bn_ovar, "test_target") dummy_mean_abs = relay.abs(rebn_omean_ce) dummy_ovar_abs = relay.abs(bn_ovar_ce) dummy_tuple = relay.Tuple((relu_o_ce, dummy_mean_abs, dummy_ovar_abs)) func = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], dummy_tuple) return func def expected(): mod = tvm.IRModule() data = rela
y.var("test_target_0_i0", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("test_target_0_i1", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("test_target_0_i2", relay.TensorType((16,), "float32")) bn_beta = relay.var("test_target_0_i3", relay.TensorType((16,), "float32")) bn_mean = relay.var("test_target_0_i4", relay.TensorType((16,), "float32")) bn_var = relay.var("test_target_0_i5", relay.TensorType((16,), "float32")) conv_o = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn_o = relay.nn.batch_norm(conv_o, bn_gamma, bn_beta, bn_mean, bn_var) relu_o = relay.nn.relu(bn_o[0]) tuple_o = relay.Tuple((relu_o, bn_o[1], bn_o[2])) func0 = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_var], tuple_o) func0 = set_func_attr(func0, "test_target", "tvmgen_default_test_target_main_0") gv0 = relay.GlobalVar("tvmgen_default_test_target_main_0") mod[gv0] = func0 mod = relay.transform.InferType()(mod) data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight", relay.TensorType((16, 3, 3, 3), "float32")) bn_gamma = relay.var("bn_gamma", relay.TensorType((16,), "float32")) bn_beta = relay.var("bn_beta", relay.TensorType((16,), "float32")) bn_mean = relay.var("bn_mean", relay.TensorType((16,), "float32")) bn_var = relay.var("bn_var", relay.TensorType((16,), "float32")) f0_o = gv0(data, weight, bn_gamma, bn_beta, bn_mean, bn_var) f0_relu_o = relay.TupleGetItem(f0_o, 0) f0_mean_o = relay.TupleGetItem(f0_o, 1) f0_var_o = relay.TupleGetItem(f0_o, 2) f0_mean_abs = relay.abs(f0_mean_o) f0_var_abs = relay.abs(f0_var_o) main_tuple = relay.Tuple((f0_relu_o, f0_mean_abs, f0_var_abs)) func = relay.Function([data, weight, bn_gamma, bn_beta, bn_mean, bn_
var], main_tuple) mod["main"] = func mod = relay.transform.InferType()(mod) return mod mod = tvm.IRModule() mod["main"] = create_graph() ref_mod = expected() partitioned = transform.PartitionGraph()(mod) assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_mixed_single_multiple_outputs(): def create_graph(): data = relay.var("data", shape=(10, 10)) cb_1 = compiler_begin(data, "test_target") O_1 = relay.abs(cb_1) ce_2 = compiler_end(O_1, "test_target") O_2 = relay.nn.relu(O_1) ce_3 = compiler_end(O_2, "test_target") X = relay.tanh(ce_2) cb_3 = compiler_begin(ce_3, "test_target") cb_4 = compiler_begin(X, "test_target") O_3 = relay.add(cb_3, cb_4) ce_4 = compiler_end(O_3, "test_target") func = relay.Function([data], ce_4) return func def expected(): mod = tvm.IRModule() f1_cb1 = relay.var("test_target_0_i0", shape=(10, 10)) f1_O_1 = relay.abs(f1_cb1) f1_O_2 = relay.nn.relu(f1_O_1) f1_out = relay.Tuple((f1_O_2, f1_O_1)) func1 = relay.Function([f1_cb1], f1_out) func1 = set_func_attr(func1, "test_target", "tvmgen_default_test_target_main_0") gv1 = relay.GlobalVar("tvmgen_default_test_target_main_0") mod[gv1] = func1 mod = relay.transform.InferType()(mod) f2_cb3 = relay.var("test_target_1_i0", shape=(10, 10)) f2_cb4 = relay.var("test_target_1_i1", shape=(10, 10)) f2_O_3 = relay.add(f2_cb3, f2_cb4) func0 = relay.Function([f2_cb3, f2_cb4], f2_O_3) func0 = set_func_attr(func0, "test_target", "tvmgen_default_test_target_main_1") gv0 = relay.GlobalVar("tvmgen_default_test_target_main_1") mod[gv0] = func0 mod = relay.transform.InferType()(mod) data = relay.var("data", shape=(10, 10)) tuple_out = gv1(data) ce_2 = relay.TupleGetItem(tuple_out,
1) ce_3 = relay.TupleGetItem(tuple_out, 0) X = relay.tanh(ce_2) ce_4 = gv0(ce_3, X) func = relay.Function([data], ce_4) mod["main"] = func mod = relay.transform.InferType()(mod) return mod mod = tvm.IRModule() mod["main"] = create_graph() mod = transform.InferType()(mod) ref_mod = expected() partitioned = transform.PartitionGraph()(mod) assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_dnnl_fuse(): dnnl_patterns = get_pattern_table("dnnl") for pattern in dnnl_patterns: if pattern[0] == "dnnl.conv2d_bias_relu": conv2d_bias_relu_pat = pattern elif pattern[0] == "dnnl.conv2d_bias_sigmoid": conv2d_bias_sigmoid_pat = pattern elif pattern[0] == "dnnl.conv2d_bias": conv2d_bias_pat = pattern elif pattern[0] == "dnnl.conv2d_relu": conv2d_relu_pat = pattern elif pattern[0] == "dnnl.conv2d_sigmoid": conv2d_sigmoid_pat = pattern elif pattern[0] == "dnnl.conv2d_bias_sum": conv2d_bias_sum_pat = pattern elif pattern[0] == "dnnl.conv2d_bias_sum_relu": conv2d_bias_sum_relu_pat = pattern def get_blocks( prefix, data, in_channel, out_channel, include_bias_add=True, include_bn=True, include_sigmoid=False, ): weight = relay.var(prefix + "weight") bias = relay.var(prefix + "bias") bn_gamma = relay.var(prefix + "bn_gamma") bn_beta = relay.var(prefix + "bn_beta") bn_mmean = relay.var(prefix + "bn_mean") bn_mvar = relay.var(prefix + "bn_var") layer = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1) ) if include_bias_add: layer = relay.nn.bias_add(layer, bias) if include_bn: bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar
) layer = bn_output[0] if include_sigmoid: layer = relay.sigmoid(layer) layer = relay.nn.relu(layer) return layer def get_net(include_bias_add=True, include_bn=True, include_sigmoid=False): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) block1 = get_blocks("block1_", data, 3, 8, include_bias_add, include_bn, include_sigmoid) block2 = get_blocks("block2_", block1, 8, 8, False, False, include_sigmoid) return relay.Function(relay.analysis.free_vars(block2), block2) def get_partitoned_mod(mod, params, pattern_table): mod["main"] = bind_params_by_name(mod["main"], params) remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) remove_linear_pass = tvm.transform.Sequential( [ transform.SimplifyExpr(), transform.FoldConstant(), ] ) composite_partition = tvm.transform.Sequential( [ transform.CanonicalizeOps(), remove_bn_pass, remove_linear_pass, transform.MergeComposite(pattern_table), transform.AnnotateTarget("dnnl"), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): return composite_partition(mod) def test_detect_pattern( pattern_table, include_bias_add, include_bn, include_sigmoid, num_expected_partition ): net = get_net(include_bias_add, include_bn, include_sigmoid) mod, params = tvm.relay.testing.create_workload(net) mod = get_partitoned_mod(mod, params, pattern_table) assert len(mod.functions) - 1 == num_expected_partition
def test_sum_pattern(pattern_table, num_expected_partition): def get_conv2d_bn_sum_relu( x_shape=(1, 32, 8, 8), k_shape=(16, 32, 3, 3), sum_shape=(1, 16, 6, 6), dtype="float32", ): x = relay.var("x", shape=(x_shape), dtype=dtype) kernel = relay.const(np.random.randint(0, 1, k_shape).astype(dtype)) bias = relay.var("bias", shape=(k_shape[0],), dtype=dtype) beta = relay.const(np.zeros(k_shape[0]).astype(dtype)) gamma = relay.const(np.ones(k_shape[0]).astype(dtype)) moving_mean = relay.const(np.zeros(k_shape[0]).astype(dtype)) moving_var = relay.const(np.ones(k_shape[0]).astype(dtype)) sum_data = relay.var("data1", shape=sum_shape, dtype=dtype) dic = {"x": x_shape, "bias": (k_shape[0],), "sum_data": sum_shape} param_lst = ["bias", "sum_data"] conv = relay.nn.conv2d( x, kernel, channels=k_shape[0], kernel_size=k_shape[2:4], ) conv_bias = relay.nn.bias_add(conv, bias) conv_bias_bn, _, _ = relay.nn.batch_norm( conv_bias, gamma=gamma, beta=beta, moving_mean=moving_mean, moving_var=moving_var, axis=1, center=True, scale=True, epsilon=1e-5, ) conv_bias_bn_sum = relay.add(conv_bias_bn, sum_data) return relay.nn.relu(conv_bias_bn_sum), dic, param_lst net, dic, param_lst = get_conv2d_bn_sum_relu() net = tvm.IRModule.from_expr(net) params = {x: np.random.uniform(-1, 1, dic[x]).astype("float32") for x in param_lst} mod = get_partitoned_mod(net, params, pattern_table) assert len(mod.functions) - 1 == num_expected_partition def test_partition(): test_detect_pattern([conv2d_bias_relu_pat],
False, True, False, 3) test_detect_pattern([conv2d_relu_pat], False, True, False, 4) test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, False, 2) test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], True, True, False, 2) test_detect_pattern([conv2d_relu_pat], False, False, False, 2) test_detect_pattern([conv2d_bias_relu_pat], False, False, False, 4) test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, True, 7) test_detect_pattern([conv2d_bias_pat, conv2d_relu_pat], True, True, True, 6) test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_relu_pat], True, True, True, 5) test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_sigmoid_pat], True, True, True, 4) test_sum_pattern([conv2d_bias_sum_pat], 2) test_sum_pattern([conv2d_bias_sum_relu_pat], 1) def test_partition_mobilenet(): mod, params = relay.testing.mobilenet.get_workload() mod = get_partitoned_mod(mod, params, dnnl_patterns) assert len(mod.functions) - 1 == 30 def test_exec(mod, params, ref_mod, ref_params, out_shape): ishape = (1, 3, 224, 224) i_data = np.random.randn(*ishape).astype(np.float32) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **ref_params ) te_compiler.get().clear() mod = get_partitoned_mod(mod, params, dnnl_patterns) check_result(mod, {"data": i_data}, out_shape, ref_res.numpy(), tol=1e-5, params=params) test_partition() test_partition_mobilenet() if not tvm.get_global_func("relay.ext.dnnl", True): print("skip because DNNL codegen is not available") return net = get_net() mod, params = tvm.relay.testing.create_workload(net) ref_mod, ref_params = tvm.relay.testing.create_workload
(net) test_exec(mod, params, ref_mod, ref_params, (1, 8, 224, 224)) mod, params = relay.testing.mobilenet.get_workload() ref_mod, ref_params = relay.testing.mobilenet.get_workload() test_exec(mod, params, ref_mod, ref_params, (1, 1000)) def test_tachikoma_fuse(): tachikoma_patterns = get_pattern_table("tachikoma") ( conv2d_bias_relu_pat, conv2d_bias_sigmoid_pat, conv2d_bias_pat, conv2d_relu_pat, conv2d_sigmoid_pat, ) = ( tachikoma_patterns[3], tachikoma_patterns[15], tachikoma_patterns[21], tachikoma_patterns[27], tachikoma_patterns[39], ) def get_blocks( prefix, data, in_channel, out_channel, include_bias_add=True, include_bn=True, include_sigmoid=False, ): weight = relay.var(prefix + "weight") bias = relay.var(prefix + "bias") bn_gamma = relay.var(prefix + "bn_gamma") bn_beta = relay.var(prefix + "bn_beta") bn_mmean = relay.var(prefix + "bn_mean") bn_mvar = relay.var(prefix + "bn_var") layer = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1) ) if include_bias_add: layer = relay.nn.bias_add(layer, bias) if include_bn: bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar) layer = bn_output[0] if include_sigmoid: layer = relay.sigmoid(layer) layer = relay.nn.relu(layer) return layer def get_net(include_bias_add=True, include_bn=True, include_sigmoid=False): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) block1 = get_blocks("block1_", data, 3, 8, include_bias_add, include_bn, include_sigmoid) block2 = get_blocks("block2_", block1, 8, 8, False, False, include_sigmoid) return relay.Function(relay.analysis.free_vars(block2),
block2) def get_partitoned_mod(mod, params, pattern_table): mod["main"] = bind_params_by_name(mod["main"], params) remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) remove_linear_pass = tvm.transform.Sequential( [ transform.SimplifyExpr(), transform.FoldConstant(), ] ) composite_partition = tvm.transform.Sequential( [ transform.CanonicalizeOps(), remove_bn_pass, remove_linear_pass, transform.MergeComposite(pattern_table), transform.AnnotateTarget("tachikoma"), transform.PartitionGraph(), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): return composite_partition(mod) def test_detect_pattern( pattern_table, include_bias_add, include_bn, include_sigmoid, num_expected_partition ): net = get_net(include_bias_add, include_bn, include_sigmoid) mod, params = tvm.relay.testing.create_workload(net) mod = get_partitoned_mod(mod, params, pattern_table) assert len(mod.functions) - 1 == num_expected_partition def test_partition(): test_detect_pattern([conv2d_bias_relu_pat], False, True, False, 3) test_detect_pattern([conv2d_relu_pat], False, True, False, 4) test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, False, 2) test_detect_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], True, True, False, 2) test_detect_pattern([conv2d_relu_pat], False, False, False, 2) test_detect_pattern([conv2d_bias_relu_pat], False, False, False, 4) test_detec
t_pattern([conv2d_bias_relu_pat, conv2d_relu_pat], False, True, True, 7) test_detect_pattern([conv2d_bias_pat, conv2d_relu_pat], True, True, True, 6) test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_relu_pat], True, True, True, 5) test_detect_pattern([conv2d_bias_sigmoid_pat, conv2d_sigmoid_pat], True, True, True, 4) def test_partition_mobilenet(): mod, params = relay.testing.mobilenet.get_workload() mod = get_partitoned_mod(mod, params, tachikoma_patterns) assert len(mod.functions) - 1 == 29 def test_exec(mod, params, ref_mod, ref_params, out_shape): ishape = (1, 3, 224, 224) i_data = np.random.randn(*ishape).astype(np.float32) ref_res = relay.create_executor("graph", mod=ref_mod, device=tvm.cpu(0)).evaluate()( i_data, **ref_params ) te_compiler.get().clear() mod = get_partitoned_mod(mod, params, tachikoma_patterns) check_result(mod, {"data": i_data}, out_shape, ref_res.numpy(), tol=1e-5, params=params) test_partition() test_partition_mobilenet() if not tvm.get_global_func("relay.ext.tachikoma", True): print("skip because tachikoma codegen is not available") return net = get_net() mod, params = tvm.relay.testing.create_workload(net) ref_mod, ref_params = tvm.relay.testing.create_workload(net) test_exec(mod, params, ref_mod, ref_params, (1, 8, 224, 224)) mod, params = relay.testing.mobilenet.get_workload() ref_mod, ref_params = relay.testing.mobilenet.get_workload() test_exec(mod, params, ref_mod, ref_params, (1, 1000)) def test_multiple_use_of_an_output(): def expected_same_output_region(): mod = tvm.IRModule() x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) z = relay.var("z", shape=(8, 8)) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) log = relay.log(x0)
sub = x0 - y0 mul = log * sub func = relay.Function([x0, y0], mul) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0") mod[glb_0] = func mod = transform.InferType()(mod) add = x + y call = relay.Call(glb_0, [add, z]) main = relay.Function([x, y, z], call) mod["main"] = main mod = transform.InferType()(mod) return mod def expected_different_output_region(): mod = tvm.IRModule() x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) z = relay.var("z", shape=(8, 8)) i0 = relay.var("i0", shape=(8, 8)) log = relay.log(i0) func = relay.Function([i0], log) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_0") glb_0 = relay.GlobalVar("tvmgen_default_ccompiler_main_0") mod[glb_0] = func mod = transform.InferType()(mod) x0 = relay.var("x0", shape=(8, 8)) y0 = relay.var("y0", shape=(8, 8)) sub = x0 - y0 func = relay.Function([x0, y0], sub) func = set_func_attr(func, "ccompiler", "tvmgen_default_ccompiler_main_1") glb_1 = relay.GlobalVar("tvmgen_default_ccompiler_main_1") mod[glb_1] = func mod = transform.InferType()(mod) add = x + y call_log = relay.Call(glb_0, [add]) call_sub = relay.Call(glb_1, [add, z]) main = relay.Function([x, y, z], call_log * call_sub) mod["main"] = main mod = transform.InferType()(mod) return mod def get_mod(): x = relay.var("x", shape=(8, 8)) y = relay.var("y", shape=(8, 8)) z = relay.var("z", shape=(8, 8)) add = x + y sub = add - z log = relay.log(add) sub1 = log * sub f = relay.Function([x, y, z], sub1) mod = tvm.IRModule() mod["main"] = f return mod
def test_same_output_region(): mod = get_mod() mod = AllowedListAnnotator(["subtract", "log", "multiply"], "ccompiler")(mod) mod = transform.MergeCompilerRegions()(mod) mod = transform.PartitionGraph()(mod) expected_mod = expected_same_output_region() assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True) def test_different_output_region(): mod = get_mod() mod = AllowedListAnnotator(["subtract", "log"], "ccompiler")(mod) mod = transform.MergeCompilerRegions()(mod) mod = transform.PartitionGraph()(mod) expected_mod = expected_different_output_region() assert tvm.ir.structural_equal(mod, expected_mod, map_free_vars=True) test_same_output_region() test_different_output_region() def test_duplicate_outputs(): target = "test_duplicate_outputs" @tvm.ir.register_op_attr("abs", "target." + target) def abs(expr): return True def create_graph(): data = relay.var("data", shape=(10, 10)) x = relay.abs(data) out_1 = relay.nn.relu(x) out_2 = relay.tanh(x) out_3 = relay.log(x) out = relay.Tuple([out_1, out_2, out_3]) func = relay.Function([data], out) return func def expected(): mod = tvm.IRModule() f0_i0 = relay.var(target + "_0_i0", shape=(10, 10)) f0_o0 = relay.abs(f0_i0) func0 = relay.Function([f0_i0], f0_o0) func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Compiler", target) func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0") gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0") mod[gv0] = func0 mod = transform.InferType()(mod) data = relay.var("data", shape=(10, 10)) function_out = gv0(data) out_1 = relay.nn.relu(function_out)
out_2 = relay.tanh(function_out) out_3 = relay.log(function_out) out = relay.Tuple([out_1, out_2, out_3]) func = relay.Function([data], out) mod["main"] = func mod = transform.InferType()(mod) return mod mod = tvm.IRModule() mod["main"] = create_graph() seq = tvm.transform.Sequential( [ transform.AnnotateTarget(target), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) ref_mod = expected() partitioned = seq(mod) assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_duplicate_merge_and_tuplegetitem(): target = "test_duplicate_merge_and_tuplegetitem" @tvm.ir.register_op_attr("nn.batch_norm", "target." + target) def batch_norm(expr): return True @tvm.ir.register_op_attr("nn.relu", "target." + target) def relu(expr): return True def create_graph(): data = relay.var("data", shape=(10, 10)) bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") x = relay.nn.batch_norm(data, bn_gamma, bn_beta, bn_mmean, bn_mvar) out_1 = relay.nn.relu(x[0]) bn_out_1 = x[1] out_2 = relay.tanh(bn_out_1) out_3 = relay.log(bn_out_1) out = relay.Tuple([out_1, out_2, out_3]) func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], out) return func def expected(): mod = tvm.IRModule() f0_i0 = relay.var(target + "_0_i0", shape=(10, 10)) f0_i1 = relay.var(target + "_0_i1") f0_i2 = relay.var(target + "_0_i2") f0_i3 = relay.var(target + "_0_i3") f0_i4 = relay.var(target + "_0_i4") f0_n0 = relay.nn.batch_norm(f0_i0, f0_i1, f0_i2, f0_i3, f0_i4) f0_n1 = f0_n0[1] f0_n2 = relay.nn.relu(f0_n0[0]) f0_o0 = relay.Tuple([f0_n2, f0_n1]) func0 = relay.F
unction([f0_i0, f0_i1, f0_i2, f0_i3, f0_i4], f0_o0) func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Compiler", target) func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0") gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0") mod[gv0] = func0 mod = transform.InferType()(mod) data = relay.var("data", shape=(10, 10)) bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") function_out = gv0(data, bn_gamma, bn_beta, bn_mmean, bn_mvar) get_out0 = relay.TupleGetItem(function_out, 0) get_out1 = relay.TupleGetItem(function_out, 1) out_2 = relay.tanh(get_out1) out_3 = relay.log(get_out1) out = relay.Tuple([get_out0, out_2, out_3]) func = relay.Function([data, bn_gamma, bn_beta, bn_mmean, bn_mvar], out) mod["main"] = func mod = transform.InferType()(mod) return mod mod = tvm.IRModule() mod["main"] = create_graph() mod = transform.InferType()(mod) seq = tvm.transform.Sequential( [ transform.AnnotateTarget(target), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) ref_mod = expected() partitioned = seq(mod) assert tvm.ir.structural_equal(partitioned, ref_mod, map_free_vars=True) def test_constant_tuples(): @tvm.ir.register_op_attr("qnn.concatenate", "target.const_tuples") def add(expr): return True def create_graph(): a = relay.var("a", shape=(10, 10), dtype="uint8") b = relay.var("b", shape=(10, 10), dtype="uint8") a1 = relay.abs(a) zeroi = relay.const(1, "int32") zerof = relay.const(0, "float32") con = relay.qnn.op.concatenate( (a1, b),
input_scales=(zerof, zerof), input_zero_points=(zeroi, zeroi), output_scale=zerof, output_zero_point=zeroi, axis=1, ) f = relay.Function([a, b], con) mod = tvm.IRModule.from_expr(f) mod = transform.InferType()(mod) return mod seq = tvm.transform.Sequential( [ transform.AnnotateTarget("const_tuples"), transform.InferType(), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) partitioned = seq(create_graph()) concat = partitioned["tvmgen_default_const_tuples_main_0"].body assert type(concat.args[1]) == relay.Tuple assert type(concat.args[2]) == relay.Tuple assert type(concat.args[3]) == relay.Constant assert type(concat.args[4]) == relay.Constant def test_flatten_tuple_output(): target = "test_flatten_tuple_output" @tvm.ir.register_op_attr("split", "target." + target) def split(expr): return True @tvm.ir.register_op_attr("abs", "target." + target) def abs(expr): return True def create_graph(): a = relay.var("a", shape=(10, 10), dtype="uint8") a_split = relay.split(a, 2) a_split_0 = relay.TupleGetItem(a_split.astuple(), 0) a_split_0_abs = relay.abs(a_split_0) a_con = relay.concatenate(a_split, 0) a_split_0_relu = relay.nn.relu(a_split_0_abs) out = relay.Tuple((a_con, a_split_0_relu)) f = relay.Function([a], out) mod = tvm.IRModule.from_expr(f) mod = transform.InferType()(mod) return mod def expected(): mod = tvm.IRModule() f0_i0 = relay.var(target + "_0_i0", shape=(10, 10), dtype="uint8") a_split = relay.split(f0_i0, 2) a_split_0 = relay.TupleGetItem(a_split.astuple(), 0) a_split_1 = relay.TupleGetItem(a_split.astuple(), 1) a_split_abs_in = relay.TupleGetItem(a_split.astuple(), 0) abs = relay.abs(a_split_abs_
in) tuple_out = relay.Tuple((a_split_0, a_split_1, abs)) func0 = relay.Function([f0_i0], tuple_out) func0 = func0.with_attr("Primitive", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Inline", tvm.tir.IntImm("int32", 1)) func0 = func0.with_attr("Compiler", target) func0 = func0.with_attr("global_symbol", "tvmgen_default_" + target + "_main_0") gv0 = relay.GlobalVar("tvmgen_default_" + target + "_main_0") mod[gv0] = func0 mod = transform.InferType()(mod) data = relay.var("a", shape=(10, 10), dtype="uint8") f_out = gv0(data) f_out_0 = relay.TupleGetItem(f_out, 0) f_out_1 = relay.TupleGetItem(f_out, 1) tuple = relay.Tuple((f_out_0, f_out_1)) concat = relay.concatenate(tuple, 0) f_out_2 = relay.TupleGetItem(f_out, 2) relu = relay.nn.relu(f_out_2) ret_tuple = relay.Tuple((concat, relu)) mod["main"] = relay.Function([data], ret_tuple) mod = transform.InferType()(mod) return mod seq = tvm.transform.Sequential( [ transform.AnnotateTarget(target), transform.MergeCompilerRegions(), transform.PartitionGraph(), ] ) partitioned = seq(create_graph()) partitioned = transform.InferType()(partitioned) expected_mod = transform.InferType()(expected()) assert tvm.ir.structural_equal(partitioned, expected_mod, map_free_vars=True) def test_tuple_output_exec(): """Test C codegen and runtime for a subgraph with a tuple output""" a = relay.var("a", shape=(10, 10), dtype="float32") b = relay.var("b", shape=(10, 10), dtype="float32") ba = relay.annotation.compiler_begin(a, "ccompiler") bb = relay.annotation.compiler_begin(b, "ccompiler") add = relay.add(ba, bb) sub = relay.subtract(ba, bb) out = relay.Tuple((add, sub)) eout = relay.annotation.compiler_end(out, "ccompiler") func = relay.Function([a, b], eout) mod = tvm.IRModule() mo
d["main"] = func mod = transform.InferType()(mod) mod = transform.PartitionGraph()(mod) a_data = np.random.rand(10, 10).astype("float32") b_data = np.random.rand(10, 10).astype("float32") check_result( mod, {"a": a_data, "b": b_data}, [(10, 10), (10, 10)], [(a_data + b_data), (a_data - b_data)], ) def test_extern_opt(): def Optimize(mod): return relay.transform.FoldConstant()(mod) tvm.register_func("relay.ext.test_target.optimize", Optimize) x = relay.var("x", shape=(2, 2)) y0 = relay.var("y0", shape=(2, 2)) y1 = relay.var("y1", shape=(2, 2)) yy0 = relay.annotation.compiler_begin(y0, "test_target") yy1 = relay.annotation.compiler_begin(y1, "test_target") z = yy0 + yy1 end = relay.annotation.compiler_end(z, "test_target") f = relay.Function([x, y0, y1], end * x) c = np.ones(shape=(2, 2), dtype="float32") f = bind_params_by_name(f, {"y0": tvm.nd.array(c), "y1": tvm.nd.array(c)}) mod = tvm.IRModule() mod["main"] = f mod = transform.InferType()(mod) mod = transform.PartitionGraph()(mod) try: t0 = mod["tvmgen_default_test_target_main_0"] except: raise KeyError("test_target_main_0 not found") assert isinstance(t0.body, relay.Constant) expected = np.empty([2, 2]) expected.fill(2) tvm.testing.assert_allclose(t0.body.data.numpy(), expected, rtol=1e-5, atol=1e-5) def test_preserve_type_import(): """Test to make sure type definition and imports are preserved during the BYOC pipeline.""" from tvm.relay.prelude
import Prelude, StaticTensorArrayOps def run(dtype, shape): mod = tvm.IRModule() p = Prelude(mod) static_tensor_array_ops = StaticTensorArrayOps(p, dtype, shape) static_tensor_array_ops.register() tensor_array = p.get_global_var_static("tensor_array", dtype, shape) tensor = p.get_tensor_ctor_static("tensor_constructor", dtype, shape) write = p.get_global_var_static("tensor_array_write", dtype, shape) gather = p.get_global_var_static("tensor_array_gather", dtype, shape) v = relay.var("v") indice = relay.var("indice") init_tensor_array = tensor_array(relay.const(3)) tensor_array1 = write(init_tensor_array, relay.const(0), tensor(v)) tensor_array2 = write(tensor_array1, relay.const(1), tensor(v)) tensor_array3 = write(tensor_array2, relay.const(2), tensor(v)) out = gather(tensor_array3, indice) mod["main"] = relay.Function([v, indice], out) mod = transform.RemoveUnusedFunctions()(mod) mod = transform.PartitionGraph()(mod) run("float32", [2, 3]) def test_not_bind_constant(): def get_net(prefix, data, out_channel): weight = relay.var(prefix + "weight") bn_gamma = relay.var(prefix + "bn_gamma") bn_beta = relay.var(prefix + "bn_beta") bn_mmean = relay.var(prefix + "bn_mean") bn_mvar = relay.var(prefix + "bn_var") layer = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1) ) bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar) out = relay.nn.relu(bn_output[0]) return relay.Function(relay.analysis.free_vars(out), out) def get_partitoned_mod(mod, params, pattern_table, bind_constants): mod["main"] = bind_params_by_name(mod["main"], params) remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(),
transform.FoldConstant(), transform.FoldScaleAxis(), ] ) composite_partition = tvm.transform.Sequential( [ remove_bn_pass, transform.MergeComposite(pattern_table), transform.AnnotateTarget("tachikoma"), transform.PartitionGraph(bind_constants=bind_constants), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): return composite_partition(mod) data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) net = get_net("block_", data, 8) mod, params = tvm.relay.testing.create_workload(net) mod = get_partitoned_mod(mod, params, get_pattern_table("tachikoma"), bind_constants=True) len(mod["main"].body.args) == 1 mod = get_partitoned_mod(mod, params, get_pattern_table("tachikoma"), bind_constants=False) len(mod["main"].body.args) == 3 def test_not_bind_constant_tachikoma(): def get_net(prefix, data, out_channel): weight = relay.var(prefix + "weight") bn_gamma = relay.var(prefix + "bn_gamma") bn_beta = relay.var(prefix + "bn_beta") bn_mmean = relay.var(prefix + "bn_mean") bn_mvar = relay.var(prefix + "bn_var") layer = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=out_channel, padding=(1, 1) ) bn_output = relay.nn.batch_norm(layer, bn_gamma, bn_beta, bn_mmean, bn_mvar) out = relay.nn.relu(bn_output[0]) return relay.Function(relay.analysis.free_vars(out), out) def get_partitoned_mod(mod, params, pattern_table, bind_constants): mod["main"] = bind_params_by_name(mod["main"], params) remove_bn_pass = tvm.transform.Sequential( [ transform.InferType(), transform.SimplifyInference(), transform.FoldConstant(), transform.FoldScaleAxis(), ] ) co
mposite_partition = tvm.transform.Sequential( [ remove_bn_pass, transform.MergeComposite(pattern_table), transform.AnnotateTarget("tachikoma"), transform.PartitionGraph(bind_constants=bind_constants), ] ) with tvm.transform.PassContext(opt_level=3, disabled_pass=["AlterOpLayout"]): return composite_partition(mod) data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) net = get_net("block_", data, 8) mod, params = tvm.relay.testing.create_workload(net) mod = get_partitoned_mod(mod, params, get_pattern_table("tachikoma"), bind_constants=True) len(mod["main"].body.args) == 1 mod = get_partitoned_mod(mod, params, get_pattern_table("tachikoma"), bind_constants=False) len(mod["main"].body.args) == 3 if __name__ == "__main__": test_multi_node_compiler() test_extern_ccompiler_single_op() test_extern_ccompiler_default_ops() test_extern_ccompiler_multiple_functions() test_extern_ccompiler() test_extern_dnnl() test_extern_tachikoma() test_extern_dnnl_mobilenet() test_extern_tachikoma_mobilenet() test_function_lifting() test_function_lifting_inline() test_constant_propagation() test_multiple_outputs() test_mixed_single_multiple_outputs() test_dnnl_fuse() test_tachikoma_fuse() test_multiple_use_of_an_output() test_duplicate_outputs() test_duplicate_merge_and_tuplegetitem() test_constant_tuples() test_flatten_tuple_output() test_tuple_output_exec() test_extern_opt() test_not_bind_constant() test_not_bind_constant_tachikoma()
"""Unit tests for the PlanDevices pass. We check: - The pass alone given the expected AST, though we need to manually run InferTypes. - The pass is idempotent. - Execution on the VM backend yields the correct result."""
import tvm from tvm
import relay from tvm.script
import tir as T
import tvm.testing
import numpy as np
import os HOST_DEVICE = tvm.device("cpu") HOST_TARGET = tvm.target.Target("llvm") CPU_DEVICE = tvm.device("cpu") CPU_TARGET = tvm.target.Target("llvm").with_host(HOST_TARGET) GPU_DEVICE = tvm.device("cuda") GPU_TARGET = tvm.target.Target("cuda").with_host(HOST_TARGET) TARGETS = [CPU_TARGET, GPU_TARGET] HOST = tvm.target.VirtualDevice(HOST_DEVICE, HOST_TARGET) CPU = tvm.target.VirtualDevice(CPU_DEVICE, CPU_TARGET) GPU = tvm.target.VirtualDevice(GPU_DEVICE, GPU_TARGET) DEFAULT = GPU CPU_SCOPE_A = tvm.target.VirtualDevice(CPU_DEVICE, CPU_TARGET, memory_scope="scopeA") CPU_SCOPE_B = tvm.target.VirtualDevice(CPU_DEVICE, CPU_TARGET, memory_scope="scopeB") CTXT = tvm.transform.PassContext(config={"relay.fallback_device_type": DEFAULT.device_type_int}) core = tvm.IRModule() core.import_from_std("core.rly") recover_virtual_device_map = tvm._ffi.get_global_func("relay.transform.RecoverVirtualDeviceMap") def rewrite_and_assert(in_mod, expected_mod): """Manually run the pass and assert it's structurally equals to the expected.""" config = tvm.target.make_compilation_config(CTXT, TARGETS) actual_mod = relay.transform.InferType()(in_mod) actual_mod = relay.transform.PlanDevices(config)(actual_mod) actual_mod = relay.transform.InferType()(actual_mod) expected_mod = relay.transform.InferType()(expected_mod) if not tvm.ir.structural_equal(actual_mod, expected_mod, True): print("Input module:") print(in_mod) print("Expected module:") print(expected_mod) print("Actual module:") print(actual_mod) tvm.ir.assert_structural_equal(actual_mod, expected_mod, True) def eval_and_assert(in_mod: tvm.IRModule, reference_func, args): """Test the standard compilation flow gives us a function which agrees with the Numpy reference implementation.""" if not tvm.runtime.enabled("cuda"): print("Not evaluating since GPU is not available") return with tvm.transform.PassContext(opt_level=3): com
piled = relay.create_executor( "vm", mod=in_mod, device=GPU_DEVICE, target=GPU_TARGET ).evaluate() actual = compiled(*args).numpy() expected = reference_func(*args) tvm.testing.assert_allclose(actual, expected) def rand(shape): return np.random.rand(*shape).astype("float32") def rands(shape, n): return [rand(shape) for i in range(n)] def exercise(in_mod: tvm.IRModule, expected_mod: tvm.IRModule, reference_func, args): """Test in_mod against expected_mod and reference_func using args.""" rewrite_and_assert(in_mod, expected_mod) rewrite_and_assert(expected_mod, expected_mod) if not (reference_func is None) and not (args is None): eval_and_assert(in_mod, reference_func, args) def test_plain(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = add(%c, %d); subtract(%0, %1) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = add(%c, %d); subtract(%0, %1) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exer
cise(input(), expected(), ref, rands((5, 7), 4)) def test_left_add_on_cpu(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = add(%c, %d); subtract(%1, %2) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device= meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device= meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %3 = add(%c, %d); subtract(%2, %3) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_left_add_on_cpu_via_copy(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b);
%1 = device_copy(%0, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %2 = add(%c, %d); subtract(%1, %2) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %3 = add(%c, %d); subtract(%2, %3) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_left_add_on_cpu_via_copy_as_map(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = device_copy(%0, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %2 = add(%c, %d); subtract(%1, %2) } """, "from_string", None, metatable, ) config = tvm.target.make_compilation_config(CTXT, TARGETS, HOST_TARGET) actual_
mod = relay.transform.InferType()(input()) actual_mod = relay.transform.PlanDevices(config)(actual_mod) actual_mod = relay.transform.CapturePostDfsIndexInSpans()(actual_mod) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %3 = add(%c, %d); subtract(%2, %3) } """, "from_string", None, metatable, ) tvm.ir.assert_structural_equal(actual_mod, expected(), True) raw_map = recover_virtual_device_map(actual_mod, actual_mod["main"]) map = {e.span.line: d.device_type for e, d in raw_map.items()} expected_map = { 0: CPU.device_type, 1: CPU.device_type, 2: GPU.device_type, 3: GPU.device_type, 8: CPU.device_type, 9: CPU.device_type, 10: GPU.device_type, 11: GPU.device_type,
12: GPU.device_type, 13: GPU.device_type, } assert map == expected_map def test_both_adds_on_cpu(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = add(%c, %d); %2 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %3 = on_device(%1, virtual_device=meta[VirtualDevice][0]); subtract(%2, %3) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = add(%c, %d); %3 = on_device(%2, virtual_device=meta[VirtualDevice][0], constrain_result=True); %4 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %5 = device_copy(%3, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); subtract(%4, %5) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_sharing(): metatable = {"Vi
rtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = on_device(%0, virtual_device=meta[VirtualDevice][0]); subtract(%1, %2) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %3 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %4 = device_copy(%2, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); subtract(%3, %4) } """, "from_string", None, metatable, ) def ref(a, b): x = np.add(a, b) return np.subtract(x, x) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_let_on_cpu(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { let %l = add(%a, %b); let %r = add(%c, %d); %0 = on_device(%l, virtual_device=meta[VirtualDevice][0]); subtract(%0, %r)
} """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%a, %b); let %l = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); let %r = on_device(add(%c, %d), virtual_device=meta[VirtualDevice][1], constrain_result=True); %1 = device_copy(%l, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); subtract(%1, %r) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_func_param_on_cpu(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { let %f = fn (%x, %y) { %0 = add(%x, %y); on_device(%0, virtual_device=meta[VirtualDevice][0]) }; %1 = %f(%a, %b); %2 = add(%c, %d); subtract(%1, %2) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5,
7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { let %f = fn (%x {virtual_device=meta[VirtualDevice][0]}, %y {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][0]) { add(%x, %y) }; %0 = %f(%a, %b); %1 = add(%c, %d); subtract(%0, %1) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_func_result_on_cpu(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { let %f = fn (%x, %y) { add(%x, %y) }; %0 = %f(%a, %b); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = add(%c, %d); subtract(%1, %2) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { let %f = fn (%x
{virtual_device=meta[VirtualDevice][0]}, %y {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][0]) { add(%x, %y) }; %1 = %f(%a, %b); %2 = on_device(%1, virtual_device=meta[VirtualDevice][0], constrain_result=True); %3 = device_copy(%2, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %4 = add(%c, %d); subtract(%3, %4) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.add(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_higher_order(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32]) { let %f = fn (%g) { fn (%a) { %0 = on_device(%a, virtual_device=meta[VirtualDevice][0]); %1 = %g(%0); add(%1, %x) } }; let %h = fn (%b) { negative(%b) }; %2 = %f(%h); %3 = %2(%y); subtract(%x, %3) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { let %f = fn (%g {virtual_device=meta[VirtualDevice][1]}, virtual_device=meta[VirtualDevice][1]) { fn (%a {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][1]) { %0 = device
_copy(%a, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %1 = %g(%0); add(%1, %x) } }; let %h = fn (%b {virtual_device=meta[VirtualDevice][1]}, virtual_device=meta[VirtualDevice][1]) { negative(%b) }; %2 = %f(%h); %3 = %2(%y); subtract(%x, %3) } """, "from_string", None, metatable, ) def ref(x, y): def f(g): return lambda a: np.add(g(a), x) def h(b): return np.negative(b) return np.subtract(x, f(h)(y)) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_function_in_tuple(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32]) { let %f = fn (%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32]) { %0 = on_device(%b, virtual_device=meta[VirtualDevice][0]); add(%a, %0) }; let %t = (%f, %x); %1 = %t.1; %2 = %t.0; %2(%1, %y) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { let %f = fn (%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { add(%a, %b) }; let %t =
on_device((%f, %x), virtual_device=meta[VirtualDevice][0], constrain_result=True); %0 = %t.1; %1 = %t.0; %1(%0, %y) } """, "from_string", None, metatable, ) def ref(x, y): return np.add(x, y) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_device_copy(): const = rand((5, 7)) metatable = {"VirtualDevice": [CPU, GPU], "relay.Constant": [relay.const(const)]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32]) { %0 = device_copy(%x, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); add(%0, meta[relay.Constant][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = device_copy(%x, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); add(%0, meta[relay.Constant][0]) } """, "from_string", None, metatable, ) def ref(x): return np.add(x, const) exercise(input(), expected(), ref, rands((5, 7), 1)) def test_shape_of(): metatable = {"VirtualDevice": [HOST, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(?, ?), float32]) { %0 = on_device(%x, virtual_device=meta[VirtualDevice][1], constrain_result=True); vm.shape_of(%0, dtype="int64") } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse(
""" def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(?, ?), float32], virtual_device=meta[VirtualDevice][0]) { vm.shape_of(%x, dtype="int64") } """, "from_string", None, metatable, ) def ref(x): return x.shape exercise(input(), expected(), ref, rands((5, 7), 1)) def test_alloc_storage(): metatable = {"VirtualDevice": [HOST, GPU]} def input(): return tvm.parser.parse( """ def @main(%size: int64, %alignment: int64) { memory.alloc_storage(%size, %alignment, virtual_device=meta[VirtualDevice][1]) } """, "from_string", core, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%size {virtual_device=meta[VirtualDevice][0]}: int64, %alignment {virtual_device=meta[VirtualDevice][0]}: int64, virtual_device=meta[VirtualDevice][1]) { memory.alloc_storage(%size, %alignment, virtual_device=meta[VirtualDevice][1]) } """, "from_string", core, metatable, ) exercise(input(), expected(), None, None) def test_alloc_tensor(): shape = np.array([3, 2]) metatable = { "VirtualDevice": [HOST, GPU], "relay.Constant": [relay.const(shape, dtype="int64")], } def input(): return tvm.parser.parse( """ def @main(%sto: Storage[]) { memory.alloc_tensor(%sto, 0, meta[relay.Constant][0], const_shape=meta[relay.Constant][0], assert_shape=[]) } """, "from_string", core, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%sto {v
irtual_device=meta[VirtualDevice][1]}: Storage[], virtual_device=meta[VirtualDevice][1]) { %0 = on_device(0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %1 = on_device(meta[relay.Constant][0], virtual_device=meta[VirtualDevice][0], constrain_result=True); memory.alloc_tensor(%sto, %0, %1, const_shape=meta[relay.Constant][0], assert_shape=[]) } """, "from_string", core, metatable, ) exercise(input(), expected(), None, None) def test_reshape_tensor(): newshape = [2, 4, 2] metatable = { "VirtualDevice": [HOST, GPU], "relay.Constant": [relay.const(newshape, dtype="int64")], } def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(2, 8), float32]) { vm.reshape_tensor(%x, meta[relay.Constant][0], newshape=[2, 4, 2]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(2, 8), float32], virtual_device=meta[VirtualDevice][1]) { %0 = on_device(meta[relay.Constant][0], virtual_device=meta[VirtualDevice][0], constrain_result=True); vm.reshape_tensor(%x, %0, newshape=[2, 4, 2]) } """, "from_string", None, metatable, ) def ref(x): return np.reshape(x, newshape) exercise(input(), expected(), ref, rands((2, 8), 1)) def test_dynamic_input(): metatable = {"VirtualDevice": [GPU]} def input(): return tvm.parser.parse( """ def @main(%x0: Tensor[(?, ?), float32], %x1: Tensor[(?, ?), float32]) { add(%x0, %x1) } """, "from_string", None, me
tatable, ) def expected(): return tvm.parser.parse( """ def @main(%x0 {virtual_device=meta[VirtualDevice][0]}: Tensor[(?, ?), float32], %x1 {virtual_device=meta[VirtualDevice][0]}: Tensor[(?, ?), float32], virtual_device=meta[VirtualDevice][0]) { add(%x0, %x1) } """, "from_string", None, metatable, ) def ref(x0, x1): return np.add(x0, x1) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_redundant_annotation(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32], %z: Tensor[(5, 7), float32]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = subtract(%1, %z); %3 = on_device(%0, virtual_device=meta[VirtualDevice][0]); add(%2, %3) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %z {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %3 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %4 = subtract(%2, %z); %5 = device_copy(%3, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[
VirtualDevice][1]); add(%4, %5) } """, "from_string", None, metatable, ) def ref(x, y, z): a = np.add(x, y) return np.add(np.subtract(a, z), a) exercise(input(), expected(), ref, rands((5, 7), 3)) def test_annotate_expr(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32], %z: Tensor[(5, 7), float32]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][1]); %2 = subtract(%1, %z); on_device(%2, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %z {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][1], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); subtract(%2, %z) } """, "from_string", None, metatable, ) def ref(x, y, z): return np.subtract(np.add(x, y), z) exercise(input(), expected(), ref, rands((5, 7), 3)) def test_annotate_all(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32], %z: Tensor[(5, 7), float32]) { %0 =
add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = subtract(%1, %z); on_device(%2, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %z {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = add(%x, %y); subtract(%0, %z) } """, "from_string", None, metatable, ) def ref(x, y, z): return np.subtract(np.add(x, y), z) exercise(input(), expected(), ref, rands((5, 7), 3)) def test_conv_network(): r"""The network and devices are as follows: data1 data2 <--- CPU | | conv2d conv2d <--- CPU \ / \ / add <--- GPU | conv2d <--- CPU | <result> <--- CPU """ metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%data1: Tensor[(1, 64, 56, 56), float32], %data2: Tensor[(1, 64, 56, 56), float32], %weight: Tensor[(64, 64, 3, 3), float32]) { %0 = nn.conv2d(%data1, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %1 = nn.conv2d(%data2, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %2 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %3 = on_device(%1, virtual_device=meta[VirtualDevice][0]); %4 = add(%2, %3); %5 = on_device(%4, virtual_device=meta[VirtualDevice][1]);
%6 = nn.conv2d(%5, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); on_device(%6, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%data1 {virtual_device=meta[VirtualDevice][0]}: Tensor[(1, 64, 56, 56), float32], %data2 {virtual_device=meta[VirtualDevice][0]}: Tensor[(1, 64, 56, 56), float32], %weight {virtual_device=meta[VirtualDevice][0]}: Tensor[(64, 64, 3, 3), float32], virtual_device=meta[VirtualDevice][0]) { %0 = nn.conv2d(%data1, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = nn.conv2d(%data2, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]); %3 = on_device(%2, virtual_device=meta[VirtualDevice][0], constrain_result=True); %4 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %5 = device_copy(%3, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %6 = add(%4, %5); %7 = on_device(%6, virtual_device=meta[VirtualDevice][1], constrain_result=True); %8 = device_copy(%7, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); nn.conv2d(%8, %weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) } """, "from_string", None, metatable, ) exercise(input(), expected(), None, None) def test_tuple_get_item(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(3, 3, 4), float
32]) { let %t = split(%x, indices_or_sections=3); %0 = on_device(%t, virtual_device=meta[VirtualDevice][0]); %1 = on_device(%t, virtual_device=meta[VirtualDevice][0]); %2 = %0.0; %3 = %1.1; %4 = subtract(%2, %3); on_device(%4, virtual_device=meta[VirtualDevice][1]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(3, 3, 4), float32], virtual_device=meta[VirtualDevice][1]) { %0 = split(%x, indices_or_sections=3); let %t = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %1 = %t.0; %2 = on_device(%1, virtual_device=meta[VirtualDevice][0], constrain_result=True); %3 = %t.1; %4 = on_device(%3, virtual_device=meta[VirtualDevice][0], constrain_result=True); %5 = device_copy(%2, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %6 = device_copy(%4, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); subtract(%5, %6) } """, "from_string", None, metatable, ) def ref(x): t = np.split(x, 3) return np.subtract(t[0], t[1]) exercise(input(), expected(), ref, rands((3, 3, 4), 1)) def test_propogation(): r""" The network and devices are as follows: x <--- CPU | negative <--- CPU / \ negative negative <--- GPU \ / add <--- GPU | negative <--- CPU | <result> <---
CPU """ metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32]) { %0 = negative(%x); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %2 = negative(%1); %3 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %4 = negative(%3); %5 = on_device(%2, virtual_device=meta[VirtualDevice][1]); %6 = on_device(%4, virtual_device=meta[VirtualDevice][1]); %7 = add(%5, %6); %8 = on_device(%7, virtual_device=meta[VirtualDevice][1]); %9 = negative(%8); on_device(%9, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = negative(%x); %1 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %3 = on_device(%0, virtual_device=meta[VirtualDevice][0], constrain_result=True); %4 = device_copy(%3, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %5 = negative(%2); %6 = negative(%4); %7 = add(%5, %6); %8 = on_device(%7, virtual_device=meta[VirtualDevice][1], constrain_result=True); %9 = device_copy(%8, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); negative(%9) } """, "from_string", None, metatable, )
def ref(x): y = np.negative(x) return np.negative(np.add(np.negative(y), np.negative(y))) exercise(input(), expected(), ref, rands((5, 7), 1)) def test_fusible_network(): r""" The network is as follows: x y <--- GPU \ / add <--- GPU / \ negative \ <--- CPU \ \ \ negative <--- GPU \ / add <--- GPU | negative <--- CPU | <result> <--- CPU """ metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][1]); %2 = negative(%1); %3 = on_device(%2, virtual_device=meta[VirtualDevice][0]); %4 = negative(%0); %5 = add(%3, %4); %6 = on_device(%5, virtual_device=meta[VirtualDevice][1]); %7 = negative(%6); on_device(%7, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = add(%x, %y); %1 = on_device(%0, virtual_device=meta[VirtualDevice][1], constrain_result=True); %2 = device_copy(%1, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); %3 = negative(%2); %4 = on_device(%3, virtual_device=meta[VirtualDevice
][0], constrain_result=True); %5 = device_copy(%4, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); %6 = negative(%0); %7 = add(%5, %6); %8 = on_device(%7, virtual_device=meta[VirtualDevice][1], constrain_result=True); %9 = device_copy(%8, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); negative(%9) } """, "from_string", None, metatable, ) def ref(x, y): z = np.add(x, y) return np.negative(np.add(np.negative(z), np.negative(z))) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_unpropagatable_graph(): r"""The network is as follows: a b <--- CPU \ / \ / c d <--- GPU \ / \ / add \ / <--- CPU \ \ / \ multiply <--- GPU \ / subtract <--- CPU | <result> <--- CPU """ metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a, %b); %1 = multiply(%c, %d); %2 = on_device(%0, virtual_device=meta[VirtualDevice][0]); %3 = on_device(%1, virtual_device=meta[VirtualDevice][1]); %4 = subtract(%2, %3); on_device(%4, virtual_device=meta[VirtualDevice][0]) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%a {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32]
, %c {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %d {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = multiply(%c, %d); %1 = on_device(%0, virtual_device=meta[VirtualDevice][1], constrain_result=True); %2 = add(%a, %b); %3 = device_copy(%1, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][0]); subtract(%2, %3) } """, "from_string", None, metatable, ) def ref(a, b, c, d): return np.subtract(np.add(a, b), np.multiply(c, d)) exercise(input(), expected(), ref, rands((5, 7), 4)) def test_conditional(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: bool, %y: Tensor[(5, 7), float32], %z: Tensor[(5, 7), float32]) { let %f = fn (%a) { %0 = on_device(%y, virtual_device=meta[VirtualDevice][0], constrain_result=True); add(%a, %0) }; let %g = fn (%a1) { subtract(%a1, %y) }; let %h = if (%x) { %f } else { %g }; %h(%z) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][0]}: bool, %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %z {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { let %f = fn (%a {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][0]) { add(%a, %y)
}; let %g = fn (%a1 {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][0]) { subtract(%a1, %y) }; let %h = on_device(if (%x) { %f } else { %g }, virtual_device=meta[VirtualDevice][0], constrain_result=True); %h(%z) } """, "from_string", None, metatable, ) def ref(x, y, z): def f(a): return np.add(a, y) def g(a): return np.subtract(a, y) h = f if x else g return h(z) exercise(input(), expected(), ref, [True, rand((5, 7)), rand((5, 7))]) def test_global(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @f(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32]) -> Tensor[(5, 7), float32] { %0 = on_device(%b, virtual_device=meta[VirtualDevice][0]); add(%a, %0) } def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32]) -> Tensor[(5, 7), float32] { @f(%y, %x) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @f(%a {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) -> Tensor[(5, 7), float32] { %0 = device_copy(%b, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); add(%a, %0) } def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) -
> Tensor[(5, 7), float32] { @f(%y, %x) } """, "from_string", None, metatable, ) def ref(x, y): def f(a, b): return np.add(a, b) return f(x, y) exercise(input(), expected(), ref, rands((5, 7), 2)) def test_ref(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ def @main(%x: Tensor[(5, 7), float32], %y: Tensor[(5, 7), float32]) { let %r = ref(%x); %0 = on_device(%y, virtual_device=meta[VirtualDevice][0]); ref_write(%r, %0); %1 = ref_read(%r); add(%x, %1) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { let %r = on_device(ref(%x), virtual_device=meta[VirtualDevice][1], constrain_result=True); %0 = device_copy(%y, src_virtual_device=meta[VirtualDevice][0], dst_virtual_device=meta[VirtualDevice][1]); on_device(ref_write(%r, %0), virtual_device=meta[VirtualDevice][1], constrain_result=True); %1 = ref_read(%r); add(%x, %1) } """, "from_string", None, metatable, ) def ref(x, y): r = {"value": x} r["value"] = y return np.add(x, r["value"]) exercise(input(), expected(), None, None) def test_adt(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): return tvm.parser.parse( """ type List[A] { Cons(A, List[A]), Nil, }
def @main(%x : Tensor[(5, 7), float32], %y : Tensor[(5, 7), float32]) { %0 = on_device(%y, virtual_device=meta[VirtualDevice][0], constrain_result=True); %1 = Nil; %2 = Cons(%0, %1); let %l = Cons(%x, %2); match? (%l) { Cons(%z, _) => %z } } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ type List[A] { Cons(A, List[A]), Nil, } def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], %y {virtual_device=meta[VirtualDevice][0]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][0]) { %0 = Nil; %1 = Cons(%y, %0); let %l = on_device(Cons(%x, %1), virtual_device=meta[VirtualDevice][0], constrain_result=True); match? (%l) { Cons(%z, _) => %z } } """, "from_string", None, metatable, ) def ref(x, y): l = [x, y] return l[0] exercise(input(), expected(), ref, rands((5, 7), 2)) def test_free_on_device(): """Tests that the 'free' form of on_device (ie with constrain_body=False) can be used to allow a device_copy to be inserted if necessary, but otherwise does not prevent the flow of device information.""" metatable = { "VirtualDevice": [ CPU, CPU_SCOPE_A, CPU_SCOPE_B, ] } def input(): return tvm.parser.parse( """ def @on_scope_b(%x {virtual_device=meta[VirtualDevice][2]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][2]) -> Tensor[(5, 7), float32] { %x } def @main(%a {virtual_device=meta[Vir
tualDevice][0]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][2]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = @on_scope_b(on_device(%a, virtual_device=meta[VirtualDevice][0], constrain_body=False)); %1 = @on_scope_b(on_device(%b, virtual_device=meta[VirtualDevice][0], constrain_body=False)); %2 = @on_scope_b(on_device(%c, virtual_device=meta[VirtualDevice][0], constrain_body=False)); %3 = add(add(%0, %1), %2); on_device(%3, virtual_device=meta[VirtualDevice][0], constrain_body=False) } """, "from_string", None, metatable, ) def expected(): return tvm.parser.parse( """ def @on_scope_b(%x {virtual_device=meta[VirtualDevice][2]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][2]) -> Tensor[(5, 7), float32] { %x } def @main(%a {virtual_device=meta[VirtualDevice][2]}: Tensor[(5, 7), float32], %b {virtual_device=meta[VirtualDevice][1]}: Tensor[(5, 7), float32], %c {virtual_device=meta[VirtualDevice][2]}: Tensor[(5, 7), float32], virtual_device=meta[VirtualDevice][1]) { %0 = @on_scope_b(%a); %1 = device_copy(%b, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][2]); %2 = @on_scope_b(%1); %3 = @on_scope_b(%c); %4 = add(add(%0, %2), %3); %5 = on_device(%4, virtual_device=meta[VirtualDevice][2], constrain_result=True); device_copy(%5, src_virtual_device=meta[VirtualDevice][2], dst_virtual_device=meta[VirtualDevice][1]) } """, "from_string", None, metatable, )
exercise(input(), expected(), None, None) def test_lowered(): """ Tests propagation of memory scopes from PrimFuncs and insertion of device_copies to mediate any scope changes. """ @T.prim_func def input_gem(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [128, 128], scope="scopeA") B = T.match_buffer(b, [128, 128], scope="") C = T.match_buffer(c, [128, 128], scope="scopeB") D = T.match_buffer(d, [128, 128], scope="scopeA") for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): D[vi, vj] = C[vi, vj] D[vi, vj] = D[vi, vj] + A[vi, vk] * B[vj, vk] @T.prim_func def expected_gem(a: T.handle, b: T.handle, c: T.handle, d: T.handle) -> None: A = T.match_buffer(a, [128, 128], scope="scopeA") B = T.match_buffer(b, [128, 128], scope="scopeB") C = T.match_buffer(c, [128, 128], scope="scopeB") D = T.match_buffer(d, [128, 128], scope="scopeA") for i, j, k in T.grid(128, 128, 128): with T.block("update"): vi, vj, vk = T.axis.remap("SSR", [i, j, k]) with T.init(): D[vi, vj] = C[vi, vj] D[vi, vj] = D[vi, vj] + A[vi, vk] * B[vj, vk] metatable = { "VirtualDevice": [ CPU, CPU_SCOPE_A, CPU_SCOPE_B, ] } gem_ty = relay.FuncType( [ relay.TensorType((128, 128), "float32"), relay.TensorType((128, 128), "float32"), relay.TensorType((128, 128), "float32"), ], relay.TensorType((128, 128), "float32"), ) gem_gv = relay.GlobalVar("gem", type_annot=gem_ty) def input(): mod = tvm.ir.IRModule() mod[gem_gv] = input_gem return tvm.parser.parse( """
def @main(%x {virtual_device=meta[VirtualDevice][0]}: Tensor[(128, 128), float32], %y {virtual_device=meta[VirtualDevice][2]}: Tensor[(128, 128), float32], %z {virtual_device=meta[VirtualDevice][1]}: Tensor[(128, 128), float32], virtual_device=meta[VirtualDevice][2]) { call_lowered(@gem, (%x, %y, %z)) } """, "from_string", mod, metatable, ) def expected(): mod = tvm.ir.IRModule() mod[gem_gv] = expected_gem return tvm.parser.parse( """ def @main(%x {virtual_device=meta[VirtualDevice][1]}: Tensor[(128, 128), float32], %y {virtual_device=meta[VirtualDevice][2]}: Tensor[(128, 128), float32], %z {virtual_device=meta[VirtualDevice][1]}: Tensor[(128, 128), float32], virtual_device=meta[VirtualDevice][2]) { %0 = device_copy(%z, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][2]); %1 = on_device(%0, virtual_device=meta[VirtualDevice][2], constrain_result=True); %2 = call_lowered(@gem, (%x, %y, %1)); %3 = on_device(%2, virtual_device=meta[VirtualDevice][1], constrain_result=True); device_copy(%3, src_virtual_device=meta[VirtualDevice][1], dst_virtual_device=meta[VirtualDevice][2]) } """, "from_string", mod, metatable, ) exercise(input(), expected(), None, None) def test_stack_overflow(): metatable = {"VirtualDevice": [CPU, GPU]} def input(): tmp = "test_stack_overflow_input.txt" mod = """ def @main(%a: Tensor[(5, 7), float32], %b: Tensor[(5, 7), float32], %c: Tensor[(5, 7), float32], %d: Tensor[(5, 7), float32]) { %0 = add(%a,
%b); %1 = add(%c, %d); """ end = 1555 for i in range(2, end): s1 = "\n\t" + "%" + str(i) + " = add(%" + str(i - 1) + ", %" + str(i - 2) + ");" mod += s1 mod += "\n\t" + "add(%" + str(end - 1) + ", %" + str(end - 2) + ")" mod += "\n\t}" return tvm.parser.parse( mod, "from_string", None, metatable, ) config = tvm.target.make_compilation_config(CTXT, TARGETS) actual_mod = relay.transform.InferType()(input()) actual_mod = relay.transform.PlanDevices(config)(actual_mod) relay.transform.InferType()(actual_mod) def test_primitive(): """Annotations on Primitive functions should be accepted, even though the body of the Primitive function is not considered during PlanDevices.""" global_virtual_device = tvm.target.VirtualDevice(memory_scope="global") texture_virtual_device = tvm.target.VirtualDevice(memory_scope="global.texture") metatable = { "VirtualDevice": [ global_virtual_device, texture_virtual_device, ] } mod = tvm.parser.parse( """ def @main(%data1: Tensor[(1, 32, 40, 40), float32], %data2: Tensor[(1, 32, 40, 40), float32]) { %0 = fn (%a, Primitive=1) { layout_transform(%a, src_layout="NCHW", dst_layout="NCHW4c") }; %1 = %0(%data1); %3 = %0(%data2); %5 = fn (%a {virtual_device=meta[VirtualDevice][0]}, %b {virtual_device=meta[VirtualDevice][0]}, virtual_device=meta[VirtualDevice][1], Primitive=1) { add(%a, %b) }; %6 = %5(%1, %3); %10 = fn (%a, virtual_device=meta[VirtualDevice][0], Primitive=1) { layout_transform(%a, src_layout="NCHW4c", dst_layout="NCHW") }; %10(%6) } """, "
from_string", None, metatable, ) print(mod) config = tvm.target.make_compilation_config(CTXT, GPU_TARGET) mod = relay.transform.InferType()(mod) mod = relay.transform.PlanDevices(config)(mod) print(mod) if __name__ == "__main__": tvm.testing.main()
"""Test legalize pass"""
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.contrib
import graph_executor from tvm.relay
import transform, analysis from tvm.relay.testing.temp_op_attr
import TempOpAttr def alpha_equal(x, y): """ Wrapper around alpha equality which ensures that the hash function respects equality. """ x = x["main"] y = y["main"] return tvm.ir.structural_equal(x, y) and tvm.ir.structural_hash(x) == tvm.ir.structural_hash(y) def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_qnn_legalize(): """Test directly replacing an operator with a new one""" def before(): x = relay.var("x", shape=(1, 64, 56, 56), dtype="int8") y = relay.qnn.op.requantize( x, input_scale=relay.const(1, "float32"), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(1, "float32"), output_zero_point=relay.const(0, "int32"), out_dtype="int8", ) y = relay.Function([x], y) return y def legalize_qnn_requantize(attrs, inputs, types): data = inputs[0] data = relay.add(relay.const(0, "int8"), data) y = relay.qnn.op.requantize( data, input_scale=relay.const(1, "float32"), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(1, "float32"), output_zero_point=relay.const(0, "int32"), out_dtype="int8", ) return y def expected(): x = relay.var("x", shape=(1, 64, 56, 56), dtype="int8") y = relay.add(relay.const(0, "int8"), x) z = relay.qnn.op.requantize( y, input_scale=relay.const(1, "float32"), input_zero_point=relay.const(0, "int32"), output_scale=relay.const(1, "float32"), output_zero_point=relay.const(0, "int32"), out_dtype="int8",
) z = relay.Function([x], z) return z a = before() with TempOpAttr("qnn.requantize", "FTVMQnnLegalize", legalize_qnn_requantize): a = run_opt_pass(a, relay.transform.Legalize()) b = run_opt_pass(before(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) a = run_opt_pass(a, relay.qnn.transform.Legalize()) b = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(a, b), "Actual = \n" + str(a) def test_qnn_legalize_qnn_conv2d(): def _get_mod(data_dtype, kernel_dtype): data_shape = (1, 64, 256, 256) kernel_shape = (128, 64, 3, 3) data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=kernel_shape, dtype=kernel_dtype) func = relay.qnn.op.conv2d( data, kernel, input_zero_point=relay.const(1, "int32"), kernel_zero_point=relay.const(1, "int32"), input_scale=relay.const(1.0, "float32"), kernel_scale=relay.const(1.0, "float32"), kernel_size=(3, 3), channels=kernel_shape[0], strides=(1, 1), dilation=(1, 1), out_dtype="int32", data_layout="NCHW", kernel_layout="OIHW", ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) return mod for dtype in ("uint8", "int8"): mod = _get_mod(dtype, dtype) with tvm.target.Target("llvm -mcpu=skylake-avx512"): mod = relay.transform.InferType()(mod) legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn.conv2d" in legalized_mod.astext() with tvm.target.Target( "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+v8.2a,+dotprod" ):
legalized_mod = relay.qnn.transform.Legalize()(mod) assert tvm.ir.structural_equal(mod, legalized_mod) with tvm.target.Target("llvm"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("llvm -device=arm_cpu -mtriple=aarch64-linux-gnu"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() mod = _get_mod("uint8", "int8") with tvm.target.Target("llvm -mcpu=skylake-avx512"): mod = relay.transform.InferType()(mod) legalized_mod = relay.qnn.transform.Legalize()(mod) assert tvm.ir.structural_equal(mod, legalized_mod) with tvm.target.Target( "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+v8.2a,+dotprod" ): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn.conv2d" in legalized_mod.astext() with tvm.target.Target("llvm"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("llvm -device=arm_cpu -mtriple=aarch64-linux-gnu"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("cuda"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" in legalized_mod.astext() def test_qnn_legalize_qnn_dense(): def _get_mod(data_dtype, kernel_dtype): data_shape = (10, 3) kernel_shape = (20, 3) data = relay.var("data", shape=data_shape, dtype=data_dtype) kernel = relay.var("kernel", shape=ker
nel_shape, dtype=kernel_dtype) func = relay.qnn.op.dense( data, kernel, input_zero_point=relay.const(1, "int32"), kernel_zero_point=relay.const(1, "int32"), input_scale=relay.const(1, "float32"), kernel_scale=relay.const(1, "float32"), units=kernel_shape[0], out_dtype="int32", ) mod = relay.Function(relay.analysis.free_vars(func), func) mod = tvm.IRModule.from_expr(mod) return mod for dtype in ("uint8", "int8"): mod = _get_mod(dtype, dtype) with tvm.target.Target("llvm -mcpu=skylake-avx512"): mod = relay.transform.InferType()(mod) legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn.dense" in legalized_mod.astext() with tvm.target.Target( "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+v8.2a,+dotprod" ): legalized_mod = relay.qnn.transform.Legalize()(mod) assert tvm.ir.structural_equal(mod, legalized_mod) with tvm.target.Target("llvm"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("llvm -device=arm_cpu -mtriple=aarch64-linux-gnu"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() mod = _get_mod("uint8", "int8") with tvm.target.Target("llvm -mcpu=skylake-avx512"): mod = relay.transform.InferType()(mod) legalized_mod = relay.qnn.transform.Legalize()(mod) assert tvm.ir.structural_equal(mod, legalized_mod) with tvm.target.Target( "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu -mattr=+v8.2a,+dot
prod" ): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn.dense" in legalized_mod.astext() with tvm.target.Target("llvm"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("llvm -device=arm_cpu -mtriple=aarch64-linux-gnu"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" not in legalized_mod.astext() with tvm.target.Target("cuda"): legalized_mod = relay.qnn.transform.Legalize()(mod) assert "cast" in legalized_mod.astext() and "qnn" in legalized_mod.astext() if __name__ == "__main__": test_qnn_legalize() test_qnn_legalize_qnn_conv2d() test_qnn_legalize_qnn_dense()
import pytest
import tvm from tvm
import te from tvm
import relay from tvm.relay