text
stringlengths
1
2.05k
ypeVar("b") c = relay.TypeVar("c") ft1 = relay.FuncType([b], c, [a]) assert_vars_match(all_type_vars(ft1), [a, b, c]) ft2 = relay.FuncType([], relay.TupleType([a, b, c]), []) assert_vars_match(all_type_vars(ft2), [a, b, c]) w = relay.Var("w") x = relay.Var("x", a) y = relay.Var("y", b) z = relay.Var("z", c) f1 = relay.Function([x], y, b, [a]) assert_vars_match(all_type_vars(f1), [a, b]) f2 = relay.Function([x], relay.Let(y, x, z)) assert_vars_match(all_type_vars(f2), [a, b, c]) f3 = relay.Function([], relay.Tuple([x, y, z]), ret_type=relay.TupleType([a, b, c])) assert_vars_match(all_type_vars(f3), [a, b, c]) f4 = relay.Function([w], relay.Tuple([]), type_params=[a, b, c]) assert_vars_match(all_type_vars(f4), [a, b, c]) f5 = relay.Function([w], w) assert len(all_type_vars(f5)) == 0
import pytest
import os
import time
import numpy as np
import tvm
import tvm.testing from tvm
import relay from tvm.relay
import transform, build_module from tvm.relay.testing
import run_opt_pass from tvm.contrib
import graph_executor, pipeline_executor, pipeline_executor_build from tvm._ffi
import get_global_func from tvm.contrib
import cc as _cc def graph_split(expr, split_conf, params=None): """Splitting the graph into a list of subgraphs""" def get_dep_var(sub_var_dep): return [var for var in sub_var_dep[len(sub_var_dep) - 1]["ref_nodes"]] def parse_dependency(value, snode_dep, new_input_idx): new_args = [] need_update = False for var in value.args: is_free_var = False for dep in snode_dep[:-1]: if var in dep["nodes"]: dep["nodes"][var] += 1 dep["ref_nodes"][var] = dep["nodes"][var] is_free_var = True if is_free_var: need_update = True new_args.append(relay.var(f"data_n_{new_input_idx}", var.checked_type)) new_input_idx += 1 else: new_args.append(var) if need_update: value = tvm.relay.expr.Call( value.op, new_args, value.attrs, value.type_args, value.span ) return value, snode_dep, new_input_idx def merge_constant_expr(constant_expr, expr): if not isinstance(constant_expr.body, tvm.relay.expr.Let): return tvm.relay.expr.Let(constant_expr.var, constant_expr.value, expr) return tvm.relay.expr.Let( constant_expr.var, constant_expr.value, merge_constant_expr(constant_expr.body, expr) ) def _recursion(anf, pipeline_mods, split_conf, constant_expr): nonlocal operator_index_map nonlocal new_input_idx nonlocal snode_dep cur_node_dep = snode_dep[len(snode_dep) - 1] if isinstance(anf, tvm.relay.Function): return tvm.relay.Function( anf.params, _recursion(anf.body, pipeline_mods, split_conf, constant_expr), anf.ret_type, anf.type_params, anf.attrs, ) if isinstance
(anf, tvm.relay.expr.Let): value = anf.value if isinstance(value, tvm.relay.expr.Constant): if not constant_expr: constant_expr = tvm.relay.expr.Let(anf.var, value, anf.var) else: constant_expr = tvm.relay.expr.Let(anf.var, value, constant_expr) if isinstance(value, tvm.relay.expr.Call): new_args = [] cur_node_dep["nodes"][anf.var] = 0 value, snode_dep, new_input_idx = parse_dependency(value, snode_dep, new_input_idx) if isinstance(value.op, tvm.ir.Op): if value.op.name in operator_index_map: operator_index_map[value.op.name] += 1 else: operator_index_map[value.op.name] = 0 split_operator_name = split_conf[0]["op_name"] if split_conf else "" split_operator_index = split_conf[0]["op_index"] if split_conf else "" if ( split_conf and split_operator_name in operator_index_map and operator_index_map[split_operator_name] >= split_operator_index ): split_conf.pop(0) snode_dep.append({"nodes": {}, "ref_nodes": {}}) ann = _recursion( anf.body, pipeline_mods, split_conf, constant_expr, ) snode_dep.pop() dep_vars = get_dep_var(snode_dep) body = relay.Tuple(dep_vars) if len(dep_vars) > 1 else anf.var
if constant_expr: ann = merge_constant_expr(constant_expr, ann) ann = run_opt_pass(ann, transform.ToGraphNormalForm()) mod = tvm.IRModule.from_expr(ann) pipeline_mods.insert(0, mod) return tvm.relay.expr.Let(anf.var, value, body) return tvm.relay.expr.Let( anf.var, value, _recursion(anf.body, pipeline_mods, split_conf, constant_expr), ) else: return anf snode_dep = [{"nodes": {}, "ref_nodes": {}}] pipeline_mods = [] operator_index_map = {} new_input_idx = 0 constant_expr = None subgraph_split_conf = split_conf.copy() if params: expr = build_module.bind_params_by_name(expr, params) anf = run_opt_pass(expr, transform.ToANormalForm()) anf = run_opt_pass(anf, transform.InferType()) ann = _recursion( anf, pipeline_mods, subgraph_split_conf, constant_expr, ) ann = run_opt_pass(ann.body, transform.ToGraphNormalForm()) mod = tvm.IRModule.from_expr(ann) pipeline_mods.insert(0, mod) return pipeline_mods def get_network(): mods = [] dshape = (3, 3) data = relay.var("data_0", relay.TensorType(dshape, "float32")) data21 = relay.var("data_1", relay.TensorType(dshape, "float32")) data_net1_output_1 = relay.var("data_0", relay.TensorType(dshape, "float32")) data_net1_output_2 = relay.var("data_1", relay.TensorType(dshape, "float32")) data_net2_output_1 = relay.var("data_0", relay.TensorType(dshape, "float32")) mvalue1 = np.full((1), 1).astype("float32") mvalue2 = np.full((1), 2).astype("float32") mvalue3 = np.full((1), 3).astype("float32") mv1 = relay.Constant(tvm.nd.array(mvalue1)) mv2 = relay.Constant(tvm.nd.array(mvalue2)) mv3 = relay.Constant(tvm.nd.array(mvalue3)
) net1_output1 = relay.add(data, mv1) net1_output2 = relay.subtract(data, mv2) net1_output3 = relay.concatenate((net1_output1, net1_output2), axis=0) (net1_output3, _) = relay.split(net1_output3, indices_or_sections=2, axis=0) net1_output3 = relay.add(net1_output3, mv2) net2 = relay.add(net1_output3, mv2) net2 = relay.add(net2, data21) net2_output = relay.add(net2, mv3) net3 = relay.multiply(net2_output, mv3) net3 = relay.add(net3, net1_output2) return tvm.IRModule.from_expr(relay.Function([data, data21], relay.Tuple([net3]))), dshape def get_split_mod(): mod, dshape = get_network() split_conf = [{"op_name": "add", "op_index": 1}, {"op_name": "add", "op_index": 4}] mods = graph_split(mod["main"], split_conf) return mods, dshape def get_mannual_mod(): mods = [] dshape = (3, 3) data = relay.var("data_0", relay.TensorType(dshape, "float32")) data21 = relay.var("data_1", relay.TensorType(dshape, "float32")) data_net1_output_1 = relay.var("data_0", relay.TensorType(dshape, "float32")) data_net1_output_2 = relay.var("data_1", relay.TensorType(dshape, "float32")) data_net2_output_1 = relay.var("data_0", relay.TensorType(dshape, "float32")) mvalue1 = np.full((1), 1).astype("float32") mvalue2 = np.full((1), 2).astype("float32") mvalue3 = np.full((1), 3).astype("float32") mv1 = relay.Constant(tvm.nd.array(mvalue1)) mv2 = relay.Constant(tvm.nd.array(mvalue2)) mv3 = relay.Constant(tvm.nd.array(mvalue3)) net1_output1 = relay.add(data, mv1) net1_output2 = relay.subtract(data, mv2) net1_output3 = relay.multiply(data, mv3) net2 = relay.add(data_net1_output_1, mv2) net2 = relay.add(net2, data21) net2_output = relay.add(net2, mv3) net3 = relay.multiply(data_net2_output_1, mv3) net3 = relay.add(net3, data_net1_output_2) mods.append( tvm.IRModule.from_expr( relay.Function([data], relay.Tuple([net1_output1
, net1_output2, net1_output3])) ) ) mods.append(tvm.IRModule.from_expr(relay.Function([data_net1_output_1, data21], net2_output))) mods.append( tvm.IRModule.from_expr(relay.Function([data_net1_output_2, data_net2_output_1], net3)) ) return mods, dshape def get_manual_conf(mods, target): mod_config = {} pipe_config1 = { "mod_idx": 0, "cpu_affinity": "0", "output": [ {"output_idx": 0, "dependencies": [{"mod_idx": 1, "input_name": "data_n_0"}]}, {"output_idx": 1, "dependencies": [{"mod_idx": 2, "input_name": "data_n_2"}]}, ], } mod_config[mods[0]] = { "pipeline": pipe_config1, "target_host": None, "mod_name": "default", "build": None, "params": None, "target": target[0], "fcompile": _cc.create_shared, "dev": target[1], } pipe_config2 = { "mod_idx": 1, "cpu_affinity": "0", "output": [ {"output_idx": 0, "dependencies": [{"mod_idx": 2, "input_name": "data_n_1"}]}, ], } mod_config[mods[1]] = { "pipeline": pipe_config2, "target_host": None, "mod_name": "default", "build": None, "params": None, "target": "llvm", "fcompile": None, "dev": tvm.cpu(0), } pipe_config3 = { "mod_idx": 2, "cpu_affinity": "0", "output": [{"output_idx": 0, "dependencies": [{"global_output_index": 0}]}], } mod_config[mods[2]] = { "pipeline": pipe_config3, "target_host": None, "mod_name": "default", "build": None, "params": None, "target": "llvm", "fcompile": None, "dev": tvm.cpu(0), } return mod_config def recreate_parameters(mod): with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, "llvm") mod_customized_params = {} for key, value in lib.params.items(): new_value = value.n
umpy() + np.full(value.shape, 10).astype(value.dtype) mod_customized_params[key] = tvm.nd.array(new_value) return mod_customized_params, mod def run_modules( mod_configs, dev, target, global_input_name, global_input_data, mod_set_input, input_name, input_data, params_mod=None, params=None, ): mod_input = {} final_output = {} idx = 0 for mod in mod_configs: with tvm.transform.PassContext(opt_level=3): lib = relay.build(mod, target) m = graph_executor.GraphModule(lib["default"](dev)) if idx in mod_input: for input in mod_input[idx]: input = mod_input[idx][input] m.set_input(input["index"], input["data"]) else: m.set_input(global_input_name, global_input_data) if mod == mod_set_input: m.set_input(input_name, input_data) if params_mod == mod: m.set_input(None, None, **params) m.run() n = m.get_num_outputs() mconfig = mod_configs[mod] for output in mconfig["pipeline"]["output"]: output_data = m.get_output(output["output_idx"]).numpy() for dep in output["dependencies"]: is_global = False if "global_output_index" in dep: is_global = True name = dep["global_output_index"] else: mod_idx = dep["mod_idx"] name = dep["input_name"] if is_global: final_output[name] = output_data else: if mod_idx in mod_input: mod_input[mod_idx][name] = {"index": name, "data": output_data} else: mod_input[mod_idx] = {name: {"index": name, "data": output_data}} idx = idx + 1 return final_output def reset_cpu_affinity(affinity): config_threadpool = ge
t_global_func("runtime.config_threadpool") config_threadpool(-2, 0) os.sched_setaffinity(0, affinity) def test_pipe_runtime_error_check(): if pipeline_executor_build.pipeline_executor_build_enabled(): (mod1, mod2, mod3), dshape = get_split_mod() pipe_error = pipeline_executor_build.PipelineConfig() with pytest.raises(RuntimeError): pipe_error[mod1]["output"][9] with pytest.raises(RuntimeError): pipe_error[mod1]["input"]["data_9"] with pytest.raises(RuntimeError): pipe_error[mod1]["output"][0].connect(pipe_error[mod2]["input"]["data_0"]) pipe_error[mod2]["output"][0].connect(pipe_error[mod1]["input"]["data_0"]) with pytest.raises(RuntimeError): pipe_error[mod1]["output"][0].connect(pipe_error[mod1]["input"]["data_0"]) with pytest.raises(RuntimeError): pipe_error[mod1]["input"]["data_0"].connect(pipe_error[mod1]["input"]["data_0"]) with pytest.raises(RuntimeError): pipe_error[mod1]["input"]["data_0"].connect(pipe_error[mod2]["input"]["data_0"]) with pytest.raises(RuntimeError): pipe_error[mod1]["output"][0].connect(pipe_error["input"]["data_0"]) with pytest.raises(RuntimeError): pipe_error["input"]["data_0"].connect(pipe_error[mod1]["output"][0]) with pytest.raises(RuntimeError): pipe_error["output"]["0"].connect(pipe_error[mod1]["output"][0]) pipe_config = pipeline_executor_build.PipelineConfig() pipe_config[mod1].target = "llvm" pipe_config[mod1].dev = tvm.cpu(0) pipe_config["param_group"]["param_0"].connect(pipe_config[mod1]["param"]) pipe_config[mod1]["output"][0].connect(pipe_config["output"]["0"]) with tvm.transform.PassContext(opt_level=3): pipeline_mod_factory = pipeline_executor_build.build(pipe_config) pipeline_module = pipeline_executor.PipelineModule
(pipeline_mod_factory) customized_parameters, _ = recreate_parameters(mod1) with pytest.raises(RuntimeError): pipeline_module.set_params("param_0", None) with pytest.raises(RuntimeError): pipeline_module.set_params("param_1", customized_parameters) def test_pipeline(): if pipeline_executor_build.pipeline_executor_build_enabled(): target_list = tvm.testing.enabled_targets() for target in target_list: affinity = os.sched_getaffinity(0) (mod1, mod2, mod3), dshape = get_split_mod() datas = [] for i in range(5): datas.append(np.full(dshape, 3 + i).astype("float32")) pipe_config = pipeline_executor_build.PipelineConfig() customized_parameters, customized_parameters_mod = recreate_parameters(mod1) assert customized_parameters_mod == mod1 pipe_config["param_group"]["param_0"].connect(pipe_config[mod1]["param"]) pipe_config["input"]["data_a"].connect(pipe_config[mod1]["input"]["data_0"]) pipe_config["input"]["data_b"].connect(pipe_config[mod2]["input"]["data_1"]) pipe_config[mod1]["output"][0].connect(pipe_config[mod2]["input"]["data_n_0"]) pipe_config[mod1]["output"][1].connect(pipe_config[mod3]["input"]["data_n_2"]) pipe_config[mod2]["output"][0].connect(pipe_config[mod3]["input"]["data_n_1"]) pipe_config[mod3]["output"][0].connect(pipe_config["output"]["0"]) pipe_config[mod1].target = target[0] pipe_config[mod1].dev = target[1] pipe_config[mod1].cpu_affinity
= "0" pipe_config[mod1].fcompile = _cc.create_shared pipe_config[mod2].target = "llvm" pipe_config[mod2].dev = tvm.cpu(0) pipe_config[mod2].cpu_affinity = "0" pipe_config[mod3].target = "llvm" pipe_config[mod3].dev = tvm.cpu(0) pipe_config[mod3].cpu_affinity = "0" mconfig = pipe_config.get_config() assert mconfig["module_connection"] == get_manual_conf([mod1, mod2, mod3], target) with tvm.transform.PassContext(opt_level=3): pipeline_mod_factory = pipeline_executor_build.build(pipe_config) directory_path = tvm.contrib.utils.tempdir().temp_dir if not os.path.exists(directory_path): os.makedirs(directory_path) config_file_name = pipeline_mod_factory.export_library(directory_path) pipeline_module = pipeline_executor.PipelineModule(pipeline_mod_factory) assert pipeline_module pipeline_module_test = pipeline_executor.PipelineModule.load_library(config_file_name) assert pipeline_module_test.num_outputs == 1 input_map = pipeline_module_test.get_input_pipeline_map("data_b") assert input_map[0] == "1" and input_map[1] == "data_1" input_map = pipeline_module_test.get_input_pipeline_map("data_a") assert input_map[0] == "0" and input_map[1] == "data_0" module_index = pipeline_module_test.get_params_group_pipeline_map("param_0") assert module_index == 0 pipeline_module_test.set_params("param_0", customized_parameters) normal_outputs = [] for round in range(0, len(datas)): data = datas[round] wrong_output = run_modules( mconfig["module_connection"], tvm.cpu(), "llvm",
"data_0", data, mod2, "data_1", data, ) normal_output = run_modules( mconfig["module_connection"], tvm.cpu(), "llvm", "data_0", data, mod2, "data_1", data, customized_parameters_mod, customized_parameters, ) normal_outputs.append(normal_output) pipeline_module_test.set_input("data_a", tvm.nd.array(data)) pipeline_module_test.set_input("data_b", tvm.nd.array(data)) input_map = pipeline_module_test.get_input_pipeline_map("data_a") if input_map[0] == "0": input_data = pipeline_module_test.get_input("data_a") tvm.testing.assert_allclose(data, input_data.numpy()) assert pipeline_module_test.num_inputs == 2 pipeline_module_test.run() for k in range(0, len(datas)): statistic_time = 0 outputs = pipeline_module_test.get_output() while len(outputs) == 0: outputs = pipeline_module_test.get_output() statistic_time = statistic_time + 1 assert statistic_time < 5 time.sleep(1) for i in range(len(outputs)): tvm.testing.assert_allclose(normal_outputs[k][i], outputs[i].numpy()) assert not (normal_output[i] == wrong_output[i]).all() assert pipeline_module_test.num_executing_pipeline == round + 1 reset_cpu_affinity(affinity) if __name__ == "__main__": pytest.
main([__file__])
import pytest
import tvm
import tvm.relay
import tvm.testing from tvm.relay.testing
import run_infer_type @tvm.testing.parametrize_targets def test_threefry_repeatability(target, dev): key1 = tvm.relay.random.threefry_key(1) rand1 = tvm.relay.random.threefry_generate(key1, (12,)) out_key1, out1 = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], rand1)), target=target, device=dev ).evaluate()() key2 = tvm.relay.random.threefry_key(1) rand2 = tvm.relay.random.threefry_generate(key2, (12,)) out_key2, out2 = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], rand2)), target=target, device=dev ).evaluate()() assert ( out1.numpy() == out2.numpy() ).all(), "Generate on same seed should have the same output random numbers" assert ( out_key1.numpy() == out_key2.numpy() ).all(), "Generate on same seed should have the same next keys" @tvm.testing.parametrize_targets def test_threefry_split(target, dev): key = tvm.relay.random.threefry_key(1) left, right = tvm.relay.TupleWrapper(tvm.relay.random.threefry_split(key), 2) _, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(left, (16,)), 2) _, rand2 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(right, (16,)), 2) out1, out2 = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], tvm.relay.Tuple((rand1, rand2)))), target=target, device=dev, ).evaluate()() assert ( out1.numpy() != out2.numpy() ).any(), "Generate after split should not have the same output" @tvm.testing.parametrize_targets def test_threefry_sequential_generate(target, dev): key = tvm.relay.random.threefry_key(1) key, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (4,)), 2) _, rand2 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (4,)), 2) out1, out2 = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], tvm.relay.Tuple((rand1, ran
d2)))), target=target, device=dev, ).evaluate()() assert ( out1.numpy() != out2.numpy() ).any(), "Sequential generates should not have the same output" @tvm.testing.parametrize_targets def test_threefry_sequential_generate_remaining(target, dev): key = tvm.relay.random.threefry_key(1) key, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (7,)), 2) _, rand2 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (7,)), 2) out1, out2 = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], tvm.relay.Tuple((rand1, rand2)))), target=target, device=dev, ).evaluate()() assert ( out1.numpy()[-3:] != out2.numpy()[-3:] ).any(), "Sequential generates should not have the same output" def test_threefry_generate_infer(): oshape = (12,) key_type = tvm.relay.TensorType([10], dtype="uint64") gen_type = tvm.relay.TensorType(oshape, dtype="uint64") expected_type = tvm.relay.TupleType([key_type, gen_type]) key = tvm.relay.random.threefry_key(1) rand1 = tvm.relay.random.threefry_generate(key, oshape) f = tvm.relay.Function([], rand1) f = run_infer_type(f) assert tvm.ir.structural_equal(f.ret_type, expected_type) def test_threefry_split_infer(): key_type = tvm.relay.TensorType([10], dtype="uint64") expected_type = tvm.relay.TupleType([key_type, key_type]) key = tvm.relay.random.threefry_key(1) out_keys = tvm.relay.random.threefry_split(key) f = tvm.relay.Function([], out_keys) f = run_infer_type(f) assert tvm.ir.structural_equal(f.ret_type, expected_type) def test_uniform_infer(): oshape = (12,) odtypes = ["float32", "float64"] for odtype in odtypes: key_type = tvm.relay.TensorType([10], dtype="uint64") gen_type = tvm.relay.TensorType(oshape, dtype=odtype) expected_type = tvm.relay.TupleType([key_type, gen_type]) key = tvm.relay.random.threefry_key(1)
rand1 = tvm.relay.random.uniform(key, oshape, odtype) f = tvm.relay.Function([], rand1) f = run_infer_type(f) assert tvm.ir.structural_equal(f.ret_type, expected_type) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_threefry_generate_infer_fail(): fake_key = tvm.relay.const([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype="uint64") rand1 = tvm.relay.random.threefry_generate(fake_key, (12,)) f = tvm.relay.Function([], rand1) f = run_infer_type(f) @pytest.mark.xfail(raises=tvm.error.TVMError) def test_threefry_split_infer_fail(): fake_key = tvm.relay.const([1, 2, 3, 4, 5, 6, 7, 8, 9], dtype="uint64") out_keys = tvm.relay.random.threefry_split(fake_key) f = tvm.relay.Function([], out_keys) f = run_infer_type(f) @tvm.testing.requires_llvm def test_threefry_generate_out_size(): key = tvm.relay.random.threefry_key(1) key, rand1 = tvm.relay.TupleWrapper(tvm.relay.random.threefry_generate(key, (5,)), 2) out = tvm.relay.create_executor( "vm", tvm.IRModule.from_expr(tvm.relay.Function([], rand1)), target=tvm.target.Target("llvm"), device=tvm.device("cpu"), ).evaluate()() if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.relay.testing
import to_python, run_as_python from tvm.relay.prelude
import Prelude from tvm.runtime.container
import ADT from tvm.relay.backend.interpreter
import RefValue, ConstructorValue def seq(*exprs): ret = exprs[0] for expr in exprs[1:]: ret = relay.Let(relay.var("_"), ret, expr) return ret def init_box_adt(mod): box = relay.GlobalTypeVar("box") a = relay.TypeVar("a") box_ctor = relay.Constructor("box", [a], box) mod[box] = relay.TypeData(box, [a], [box_ctor]) return (box, box_ctor) def assert_tensor_value(candidate, val): assert isinstance(candidate, tvm.nd.NDArray) assert np.array_equal(candidate.numpy(), np.array(val)) def assert_adt_len(candidate, fields): assert isinstance(candidate, ADT) assert len(candidate) == fields def assert_constructor_value(candidate, constructor, fields): assert isinstance(candidate, ConstructorValue) assert candidate.tag == constructor.tag assert len(candidate.fields) == fields def test_create_empty_tuple(): empty = relay.Tuple([]) tup_val = run_as_python(empty) assert_adt_len(tup_val, 0) def test_create_scalar(): scalar = relay.const(1) tensor_val = run_as_python(scalar) print(type(tensor_val)) assert_tensor_value(tensor_val, 1) def test_create_tensor(): tensor = relay.const([[1, 1], [2, 2]]) tensor_val = run_as_python(tensor) assert_tensor_value(tensor_val, [[1, 1], [2, 2]]) def test_create_nested_tuple(): relay_tup = relay.Tuple( [relay.const(1), relay.const(2), relay.Tuple([relay.const(3), relay.const(4)])] ) tup_val = run_as_python(relay_tup) assert_adt_len(tup_val, 3) for i in range(2): assert_tensor_value(tup_val[i], i + 1) assert_adt_len(tup_val[2], 2) for i in range(2): assert_tensor_value(tup_val[2][i], i + 3) def test_tuple_get_item(): relay_tup = relay.Tuple( [relay.const(1), relay.const(2), relay.Tuple([relay.const(3), relay.const(4)])] ) for i in range(2): index = relay.TupleGetItem(relay_tup, i) val = run_as_python(index) assert_tensor_value(val, i + 1) for i in range(2):
index = relay.TupleGetItem(relay.TupleGetItem(relay_tup, 2), i) val = run_as_python(index) assert_tensor_value(val, i + 3) def test_create_let(): v = relay.Var("v") let = relay.Let(v, relay.Tuple([]), relay.Tuple([v, v])) tup_val = run_as_python(let) assert_adt_len(tup_val, 2) assert_adt_len(tup_val[0], 0) assert_adt_len(tup_val[1], 0) def test_create_ref(): relay_ref = relay.RefCreate(relay.Tuple([])) ref_val = run_as_python(relay_ref) assert isinstance(ref_val, RefValue) assert_adt_len(ref_val.value, 0) def test_ref_read(): v = relay.Var("v") assign = relay.Let(v, relay.RefCreate(relay.Tuple([])), relay.RefRead(v)) read_val = run_as_python(assign) assert_adt_len(read_val, 0) def test_ref_write(): v = relay.Var("v") initial_write = relay.Let( v, relay.RefCreate(relay.Tuple([relay.const(1)])), relay.RefWrite(v, relay.Tuple([relay.const(2)])), ) write_val = run_as_python(initial_write) assert_adt_len(write_val, 0) w = relay.Var("w") read_after_write = relay.Let( v, relay.RefCreate(relay.Tuple([relay.const(1)])), relay.Let( w, relay.RefCreate(relay.RefRead(v)), seq( relay.RefWrite(v, relay.Tuple([relay.const(2)])), relay.Tuple([relay.RefRead(w), relay.RefRead(v)]), ), ), ) read_val = run_as_python(read_after_write) assert_adt_len(read_val, 2) assert_adt_len(read_val[0], 1) assert_adt_len(read_val[1], 1) assert_tensor_value(read_val[0][0], 1) assert_tensor_value(read_val[1][0], 2) def test_if(): true_cond = relay.const(True) false_cond = relay.const(False) v = relay.Var("v") true_branch = seq(relay.RefWrite(v, relay.const(1)), relay.RefRead(v)) false_branch = seq(relay.RefWrite(v, relay.const(2)), relay.RefRead(v)) true_expr = relay.Let( v, relay.RefCreate(relay.const(0)), relay.If(true_cond
, true_branch, false_branch) ) false_expr = relay.Let( v, relay.RefCreate(relay.const(0)), relay.If(false_cond, true_branch, false_branch) ) true_val = run_as_python(true_expr) assert_tensor_value(true_val, 1) false_val = run_as_python(false_expr) assert_tensor_value(false_val, 2) def test_local_function(): v = relay.Var("v") ident = relay.Function([v], v) f = relay.Var("f") call1 = relay.Let(f, ident, f(relay.Tuple([]))) call2 = relay.Let(f, ident, f(relay.const(2))) call_val1 = run_as_python(call1) assert_adt_len(call_val1, 0) call_val2 = run_as_python(call2) assert_tensor_value(call_val2, 2) def test_global_function(): mod = tvm.IRModule() ident = relay.GlobalVar("ident") a = relay.TypeVar("a") v = relay.Var("v", a) mod[ident] = relay.Function([v], v, a, [a]) call1 = ident(relay.const(1)) call2 = ident(relay.Tuple([relay.const(2), relay.const(2)])) call_val1 = run_as_python(call1, mod) assert_tensor_value(call_val1, 1) call_val2 = run_as_python(call2, mod) assert_adt_len(call_val2, 2) assert_tensor_value(call_val2[0], 2) assert_tensor_value(call_val2[1], 2) def test_constructor(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) init_box_int = box_ctor(relay.const(1)) box_val_int = run_as_python(init_box_int, mod) assert_constructor_value(box_val_int, box_ctor, 1) assert_tensor_value(box_val_int.fields[0], 1) init_box_tup = box_ctor(relay.Tuple([])) box_val_tup = run_as_python(init_box_tup, mod) assert_constructor_value(box_val_tup, box_ctor, 1) assert_adt_len(box_val_tup.fields[0], 0) def test_match_wildcard(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) v = relay.Var("v") match = relay.Let( v, box_ctor(relay.Tuple([])), relay.Match(v, [relay.Clause(relay.PatternWildcard(), relay.const(1))]), ) match_val = run_as_python(match, mod) assert_tensor_value(match_val
, 1) def test_match_var(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) v = relay.Var("v") w = relay.Var("w") match = relay.Let( v, box_ctor(relay.const(1)), relay.Match(v, [relay.Clause(relay.PatternVar(w), w)]) ) match_val = run_as_python(match, mod) assert_constructor_value(match_val, box_ctor, 1) assert_tensor_value(match_val.fields[0], 1) def test_match_pattern(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) v = relay.Var("v") w = relay.Var("w") match = relay.Let( v, box_ctor(relay.const(1)), relay.Match( v, [relay.Clause(relay.PatternConstructor(box_ctor, [relay.PatternVar(w)]), w)] ), ) match_val = run_as_python(match, mod) assert_tensor_value(match_val, 1) def test_nested_match_pattern(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) v = relay.Var("v") w = relay.Var("w") match = relay.Let( v, box_ctor(box_ctor(relay.const(2))), relay.Match( v, [ relay.Clause( relay.PatternConstructor( box_ctor, [relay.PatternConstructor(box_ctor, [relay.PatternVar(w)])] ), w, ) ], ), ) match_val = run_as_python(match, mod) assert_tensor_value(match_val, 2) def test_match_order(): mod = tvm.IRModule() box, box_ctor = init_box_adt(mod) v = relay.Var("v") w = relay.Var("w") match = relay.Let( v, box_ctor(box_ctor(relay.const(2))), relay.Match( v, [ relay.Clause(relay.PatternWildcard(), relay.const(1)), relay.Clause( relay.PatternConstructor( box_ctor, [relay.PatternConstructor(box_ctor, [relay.PatternVar(w)])] ), w, ), ], ), ) ma
tch_val = run_as_python(match, mod) assert_tensor_value(match_val, 1) def test_local_recursion(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = p.mod.get_type("List") v = relay.Var("v") h = relay.Var("h") t = relay.Var("t") f = relay.Var("f") let = relay.Let( f, relay.Function( [v], relay.Match( v, [ relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(h), relay.PatternVar(t)]), cons(h, f(t)), ), relay.Clause(relay.PatternConstructor(nil, []), nil()), ], ), ), f(cons(relay.const(1), cons(relay.const(2), cons(relay.const(3), nil())))), ) val = run_as_python(let, mod) assert_constructor_value(val, cons, 2) assert_tensor_value(val.fields[0], 1) assert_constructor_value(val.fields[1], cons, 2) assert_tensor_value(val.fields[1].fields[0], 2) assert_constructor_value(val.fields[1].fields[1], cons, 2) assert_tensor_value(val.fields[1].fields[1].fields[0], 3) assert_constructor_value(val.fields[1].fields[1].fields[1], nil, 0) def test_global_recursion(): mod = tvm.IRModule() p = Prelude(mod) rlist, cons, nil = p.mod.get_type("List") copy = relay.GlobalVar("copy") a = relay.TypeVar("a") v = relay.Var("v", rlist(a)) h = relay.Var("h") t = relay.Var("t") copy_def = relay.Function( [v], relay.Match( v, [ relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(h), relay.PatternVar(t)]), cons(h, copy(t)), ), relay.Clause(relay.PatternConstructor(nil, []), nil()), ], ), rlist(a), [a], ) mod[copy] = copy_def call1 = copy_def(cons(relay.const(1), cons(relay.const(2), nil()))) val1 = ru
n_as_python(call1, mod) assert_constructor_value(val1, cons, 2) assert_tensor_value(val1.fields[0], 1) assert_constructor_value(val1.fields[1], cons, 2) assert_tensor_value(val1.fields[1].fields[0], 2) assert_constructor_value(val1.fields[1].fields[1], nil, 0) call2 = copy_def(cons(relay.Tuple([]), nil())) val2 = run_as_python(call2, mod) assert_constructor_value(val2, cons, 2) assert_adt_len(val2.fields[0], 0) assert_constructor_value(val2.fields[1], nil, 0) def test_higher_order_call(): h = relay.Var("h") f = relay.Var("f") x = relay.Var("x") ho_anon = relay.Let( h, relay.Function([f], f(relay.Tuple([]))), h(relay.Function([x], relay.const(1))) ) anon_val = run_as_python(ho_anon) assert_tensor_value(anon_val, 1) g = relay.Var("g") ho_named = relay.Let( h, relay.Function([f], f(relay.Tuple([]))), relay.Let(g, relay.Function([x], relay.const(2)), h(g)), ) named_val = run_as_python(ho_named) assert_tensor_value(named_val, 2) def test_match_effect_exactly_once(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = p.mod.get_type("List") r = relay.Var("r") data = seq(relay.RefWrite(r, cons(relay.Tuple([]), relay.RefRead(r))), relay.RefRead(r)) match = relay.Let( r, relay.RefCreate(nil()), relay.Match( data, [ relay.Clause(relay.PatternConstructor(nil, []), relay.const(0)), relay.Clause( relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternConstructor(nil, [])] ), relay.const(1), ), relay.Clause(relay.PatternWildcard(), relay.const(2)), ], ), ) match_val = run_as_python(match, mod) assert_tensor_value(match_val, 1) def test_arbitrary_let_nesting(): mod = tvm.IRModule() p = Prelude(mod)
x = relay.Var("x") r = relay.Var("r") y = relay.Var("y") z = relay.Var("z") expr = relay.Tuple( [ relay.Let(x, relay.Tuple([relay.const(1), relay.const(2)]), relay.TupleGetItem(x, 1)), relay.Let( r, relay.RefCreate(relay.const(1)), seq(relay.RefWrite(r, relay.const(3)), relay.RefRead(r)), ), relay.Let(y, p.id(relay.Let(z, relay.const(4), z)), y), ] ) tup_val = run_as_python(expr, mod) assert_adt_len(tup_val, 3) assert_tensor_value(tup_val[0], 2) assert_tensor_value(tup_val[1], 3) assert_tensor_value(tup_val[2], 4) def test_ref_execution_order(): x = relay.Var("x") y = relay.Var("y") f = relay.Var("f") r = relay.Var("r") expr = relay.Let( f, relay.Function([x, y], x), relay.Let( r, relay.RefCreate(relay.const(1)), relay.Tuple( [ relay.RefRead(r), seq(relay.RefWrite(r, relay.const(2)), relay.RefRead(r)), seq(relay.RefWrite(r, relay.const(3)), relay.RefRead(r)), f( seq(relay.RefWrite(r, relay.const(4)), relay.RefRead(r)), seq(relay.RefWrite(r, relay.const(5)), relay.RefRead(r)), ), relay.RefRead(r), ] ), ), ) tup_val = run_as_python(expr) assert_adt_len(tup_val, 5) assert_tensor_value(tup_val[0], 1) assert_tensor_value(tup_val[1], 2) assert_tensor_value(tup_val[2], 3) assert_tensor_value(tup_val[3], 4) assert_tensor_value(tup_val[4], 5) def test_op_add(): add = relay.add(relay.const(1), relay.const(2)) add_val = run_as_python(add) assert_tensor_value(add_val, 3)
def test_op_stack(): def verify_stack(dshapes, axis): x_data = [np.random.normal(size=shape).astype("int32") for shape in dshapes] ref_res = np.stack(x_data, axis=axis) args = [] for data in x_data: args.append(relay.const(data)) call = relay.stack(relay.Tuple(args), axis) call_val = run_as_python(call) type(call_val) assert_tensor_value(call_val, ref_res) verify_stack([(2,), (2,), (2,)], -1) verify_stack([(2,), (2,), (2,)], 0) verify_stack([(2, 2, 4), (2, 2, 4), (2, 2, 4)], 1) verify_stack([(2, 2, 3, 4), (2, 2, 3, 4), (2, 2, 3, 4), (2, 2, 3, 4)], -1) def test_split(): def verify_split(shape, indices_or_sections, axis=0): x = np.random.normal(size=shape).astype("float32") ref_res = np.split(x, indices_or_sections, axis=axis) call = relay.split(relay.const(x), indices_or_sections, axis=axis) call_val = run_as_python(call) assert_adt_len(call_val, len(ref_res)) for i in range(len(ref_res)): assert_tensor_value(call_val[i], ref_res[i]) verify_split((2, 3), 2) verify_split((5, 3), [3]) verify_split((5, 9, 3), [3, 4], 1) verify_split((5, 5, 2, 2), 5, 1) verify_split((5, 5, 2, 2), 5, 0) def test_batch_norm(): def verify_batch_norm(shapes): data = [np.absolute(np.random.normal(size=shape).astype("float32")) for shape in shapes] relay_args = [relay.const(arg) for arg in data] eps = 1e-5 def reference(x, gamma, beta, moving_mean, moving_var): return (x - moving_mean) / np.sqrt(moving_var + eps) * gamma + beta ref_res = reference(*data) call = relay.nn.batch_norm(*relay_args, epsilon=eps)[0] call_val = run_as_python(call) assert isinstance(call_val, tvm.nd.NDArray) tvm.testing.assert_allclose(call_val.numpy(), ref_res, atol=eps, rtol=eps) verify_batch_norm([(10, 20), (20,), (20,), (20,), (20,)]) verify_batch_norm([(2
0, 10), (10,), (10,), (10,), (10,)]) verify_batch_norm([(10, 50), (50,), (50,), (50,), (50,)]) verify_batch_norm([(30, 40), (40,), (40,), (40,), (40,)])
import tvm from tvm
import relay from tvm.relay.transform
import recast def test_recast_simple(): """Recast a single convolution operator.""" def before(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) c = relay.nn.conv2d(x, w, padding=(1, 1), out_dtype="float32") return relay.Function([x, w], c) def expected(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) x_int = relay.cast(x, "int8") w_int = relay.cast(w, "int8") c = relay.nn.conv2d(x_int, w_int, padding=(1, 1), out_dtype="int32") c_float = relay.cast(c, "float32") return relay.Function([x, w], c_float) pre = before() post = recast(pre, "int8", "int32") expected = expected() assert tvm.ir.structural_equal(expected, post) def test_recast_medium(): """Recast a slightly larger graph.""" def before(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) c = relay.nn.conv2d(x, w, padding=(1, 1), out_dtype="float32") w2 = relay.var("w2", shape=[8, 8, 3, 3]) c2 = relay.nn.conv2d(c, w2, padding=(1, 1), out_dtype="float32") return relay.Function([x, w, w2], c2) def expected(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) x_int = relay.cast(x, "int8") w_int = relay.cast(w, "int8") c = relay.nn.conv2d(x_int, w_int, padding=(1, 1), out_dtype="int32") c_float = relay.cast(c, "float32") w2 = relay.var("w2", shape=[8, 8, 3, 3]) w2_int = relay.cast(w2, "int8") c_float_int = relay.cast(c_float, "int8") c2 = relay.nn.conv2d(c_float_int, w2_int, padding=(1, 1), out_dtype="int32") c2_float = relay.cast(c2, "float32") return relay.Function([x, w, w2], c2_float) pre = before() post = recast(pre, "int8", "int32") expected = expected() assert tvm.ir.structural_equal(expected, post) def test_recast_skip(): """Recast a graph
using skip layers.""" def before(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) c = relay.nn.conv2d(x, w, padding=(1, 1), out_dtype="float32") w2 = relay.var("w2", shape=[8, 8, 3, 3]) c2 = relay.nn.conv2d(c, w2, padding=(1, 1), out_dtype="float32") return relay.Function([x, w, w2], c2) def expected(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) c = relay.nn.conv2d(x, w, padding=(1, 1), out_dtype="float32") w2 = relay.var("w2", shape=[8, 8, 3, 3]) w2_int = relay.cast(w2, "int8") c_int = relay.cast(c, "int8") c2 = relay.nn.conv2d(c_int, w2_int, padding=(1, 1), out_dtype="int32") c2_float = relay.cast(c2, "float32") return relay.Function([x, w, w2], c2_float) pre = before() post = recast(pre, "int8", "int32", skip_layers=[0]) expected = expected() assert tvm.ir.structural_equal(expected, post) def test_recast_concat(): def before(): x = relay.var("x", shape=[1, 4]) y = relay.var("y", shape=[1, 4]) t = relay.Tuple([x, y]) c = relay.op.concatenate(t, axis=1) return relay.Function([x, y], c) def expected(): xv = relay.var("x", shape=[1, 4]) yv = relay.var("y", shape=[1, 4]) x = relay.cast(xv, "float16") y = relay.cast(yv, "float16") t = relay.Tuple([x, y]) c = relay.op.concatenate(t, axis=1) c = relay.cast(c, "float32") return relay.Function([xv, yv], c) pre = before() post = recast(pre, "float16", "float32", ops=["concatenate"]) expected = expected() assert tvm.ir.structural_equal(expected, post) def test_recast_relu(): """Recast a ReLU operator which does not have attributes.""" def before(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) c = relay.nn.conv2d(x, w, padding=(1, 1), out_dtype="float32") r
= relay.nn.relu(c) return relay.Function([x, w], r) def expected(): x = relay.var("x", shape=[8, 8, 8, 8]) w = relay.var("w", shape=[8, 8, 3, 3]) x_fp16 = relay.cast(x, "float16") w_fp16 = relay.cast(w, "float16") c = relay.nn.conv2d(x_fp16, w_fp16, padding=(1, 1), out_dtype="float16") c_float32 = relay.cast(c, "float32") c_float16 = relay.cast(c_float32, "float16") r = relay.nn.relu(c_float16) r_float32 = relay.cast(r, "float32") return relay.Function([x, w], r_float32) pre = before() post = recast(pre, "float16", "float16", ops=["nn.conv2d", "nn.relu"]) expected = expected() assert tvm.ir.structural_equal(expected, post) if __name__ == "__main__": test_recast_simple() test_recast_medium() test_recast_skip() test_recast_concat() test_recast_relu()
import numpy as np
import tvm from tvm
import te
import tvm.testing from tvm
import relay from tvm
import autotvm from tvm
import topi from tvm.relay.backend
import te_compiler from tvm.relay.testing
import run_infer_type from tvm.relay.testing.temp_op_attr
import TempOpAttr @autotvm.register_topi_compute("test/conv2d_1") def _compute_conv2d_1(cfg, input, filter, strides, padding, dilation, out_dtype): return topi.nn.conv2d_nchw(input, filter, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("test/conv2d_1") def _schedule_conv2d_1(cfg, outs): return topi.generic.schedule_conv2d_nchw(outs) @autotvm.register_topi_compute("test/conv2d_2") def _compute_conv2d_2(cfg, input, filter, strides, padding, dilation, out_dtype): return topi.nn.conv2d_nchw(input, filter, strides, padding, dilation, out_dtype) @autotvm.register_topi_schedule("test/conv2d_2") def _schedule_conv2d_2(cfg, outs): return topi.generic.schedule_conv2d_nchw(outs) def _compute_conv2d_3(input, filter, strides, padding, dilation, out_dtype): return topi.nn.conv2d_nchw(input, filter, strides, padding, dilation, out_dtype) def _schedule_conv2d_3(outs): return topi.generic.schedule_conv2d_nchw(outs) @tvm.target.override_native_generic_func("test_conv2d_strategy") def _tmp_strategy(attrs, inputs, out_type, target): strategy = relay.op.OpStrategy() strategy.add_implementation( relay.op.strategy.wrap_compute_conv2d(_compute_conv2d_1), relay.op.strategy.wrap_topi_schedule(_schedule_conv2d_1), name="conv2d_1", plevel=10, ) strategy.add_implementation( relay.op.strategy.wrap_compute_conv2d(_compute_conv2d_2), relay.op.strategy.wrap_topi_schedule(_schedule_conv2d_2), name="conv2d_2", plevel=15, ) ic = inputs[0].shape[1] with tvm.te.SpecializedCondition(ic >= 16): strategy.add_implementation( relay.op.strategy.wrap_compute_conv2d(_compute_conv2d_3), relay.op.strategy.wrap_topi_schedule(_schedule_conv2d_3), name="conv2d_3", plevel=20, ) return strategy def _create_record(task_name, dshape, wshape, target, cost): args = [te.placeholder(dshape), te.placeholder(wshape), (1, 1), (1, 1, 1, 1), (1, 1), "
float32"] task = autotvm.task.create(task_name, args, target) cfg = autotvm.ConfigEntity(0, None, {}, []) cfg.cost = cost inp = autotvm.MeasureInput(target=target, task=task, config=cfg) result = autotvm.MeasureResult(costs=(cost,), error_no=0, all_cost=-1, timestamp=-1) return (inp, result) def test_get_valid_implementations(): target = tvm.target.Target("llvm") def _get_impls(dshape, wshape): data = relay.var("data", shape=dshape) weight = relay.var("wshape", shape=wshape) out = relay.nn.conv2d(data, weight, padding=(1, 1)) out = run_infer_type(out) return relay.backend.te_compiler.get_valid_implementations( relay.op.get("nn.conv2d"), out.attrs, [te.placeholder(dshape), te.placeholder(wshape)], out.checked_type, target, ) with TempOpAttr("nn.conv2d", "FTVMStrategy", _tmp_strategy): impls = _get_impls((1, 8, 7, 7), (32, 8, 3, 3)) assert len(impls) == 2 impls = _get_impls((1, 16, 7, 7), (32, 16, 3, 3)) assert len(impls) == 3 def test_select_implementation(): target = tvm.target.Target("llvm") def _select_impl(dshape, wshape, use_autotvm=False): data = relay.var("data", shape=dshape) weight = relay.var("wshape", shape=wshape) out = relay.nn.conv2d(data, weight, padding=(1, 1)) out = run_infer_type(out) return relay.backend.te_compiler.select_implementation( relay.op.get("nn.conv2d"), out.attrs, [te.placeholder(dshape), te.placeholder(wshape)], out.checked_type, target, use_autotvm, ) with TempOpAttr("nn.conv2d", "FTVMStrategy", _tmp_strategy): impl, _ = _select_impl((1, 8, 7, 7), (32, 8, 3, 3)) assert impl.name == "conv2d_2" impl, _ = _select_impl((1, 8, 7, 7), (32, 8, 3, 3), True) assert impl.name == "conv2d_2" impl, _ = _select_impl((1, 16, 7, 7), (32, 16, 3, 3))
assert impl.name == "conv2d_3" impl, _ = _select_impl((1, 16, 7, 7), (32, 16, 3, 3), True) assert impl.name == "conv2d_3" records = [] records.append(_create_record("test/conv2d_1", (1, 8, 7, 7), (32, 8, 3, 3), target, 0.5)) records.append(_create_record("test/conv2d_1", (1, 16, 7, 7), (32, 16, 3, 3), target, 1.0)) with target: with autotvm.apply_history_best(records): impl, _ = _select_impl((1, 8, 7, 7), (32, 8, 3, 3), True) assert impl.name == "conv2d_1" impl, _ = _select_impl((1, 16, 7, 7), (32, 16, 3, 3), True) assert impl.name == "conv2d_1" records.append(_create_record("test/conv2d_2", (1, 8, 7, 7), (32, 8, 3, 3), target, 0.2)) records.append(_create_record("test/conv2d_1", (1, 16, 7, 7), (32, 16, 3, 3), target, 1.2)) with target: with autotvm.apply_history_best(records): impl, _ = _select_impl((1, 8, 7, 7), (32, 8, 3, 3), True) assert impl.name == "conv2d_2" impl, _ = _select_impl((1, 16, 7, 7), (32, 16, 3, 3), True) assert impl.name == "conv2d_1" def test_te_compiler(): tec = relay.backend.te_compiler.get() def get_func(shape): x = relay.var("x", shape=shape) y = relay.add(x, x) z = relay.add(y, x) f = relay.Function([x], z) mod = tvm.IRModule.from_expr(f) mod = relay.transform.InferType()(mod) return mod["main"] z1 = tec.lower(get_func((10,)), "llvm") z2 = tec.lower(get_func((10,)), "llvm") z3 = tec.lower(get_func(()), "llvm") assert z1.same_as(z2) assert not z3.same_as(z1) if tvm.testing.device_enabled("cuda"): z4 = tec.lower(get_func(()), "cuda") assert not z3.same_as(z4) for target in ["llvm"]: dev = tvm.device(target) if tvm.testing.device_enabled(target): f = tec.jit(get_func((10,)), target) x = tvm.nd.ar
ray(np.ones(10).astype("float32"), device=dev) y = tvm.nd.empty((10,), device=dev) f(x, y) tvm.testing.assert_allclose(y.numpy(), x.numpy() * 3) def test_compile_placeholder_bypass(): te_compiler = relay.backend.te_compiler.get() x = relay.var("x", shape=(2, 3)) y = relay.var("y", shape=(2, 3)) z = relay.var("z", shape=(2, 3)) result = relay.Tuple([x, relay.op.concatenate([y, z], axis=0)]) func = relay.Function(relay.analysis.free_vars(result), result) with tvm.transform.PassContext(opt_level=0): graph, lib, params = relay.build(tvm.IRModule.from_expr(func), "llvm") def test_compile_injective_with_tuple(): x = relay.var("x", shape=(2, 3)) y = relay.var("y", shape=(2, 3)) x_transpose = relay.transpose(x) output = relay.Tuple([x_transpose, y]) func = relay.Function([x, y], output) relay.build(tvm.IRModule.from_expr(func), "llvm") def test_compile_tuple_dup(): x = relay.var("data", shape=(16, 16)) log = relay.log(x) output = relay.Tuple([log, log]) f = relay.Function([x], output) relay.build(tvm.IRModule.from_expr(f), "llvm") def test_compile_full(): shape = ( tvm.tir.IntImm("int32", 1), tvm.tir.IntImm("int64", 16), tvm.tir.IntImm("int64", 16), tvm.tir.IntImm("int32", 64), ) output = relay.full(relay.const(0, "int32"), shape=shape, dtype="int32") f = relay.Function([], output) mod = tvm.IRModule.from_expr(f) mod = relay.qnn.transform.CanonicalizeOps()(mod) relay.build(mod, "llvm") def test_compile_nhwc_pack(): data = relay.var("data", shape=(1, 1, 1, 1024), dtype="uint8") weight = relay.var("weight", shape=(1, 1, 1024, 1001), dtype="int8") p2 = relay.var("p2", shape=(1, 1, 1, 1), dtype="int32") conv = relay.nn.conv2d( data, weight, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) multiply = relay.multiply(relay.const(
-22, dtype="int32"), p2) tile = relay.tile(multiply, reps=(1, 1, 1, 1001)) subtract = relay.subtract(conv, tile) func = subtract mod = relay.Function(relay.analysis.free_vars(func), func) relay.build(mod, target="llvm") def test_compile_propogate_hash(): data = relay.var("data", shape=(1, 1, 1, 1024), dtype="uint8") weight = relay.var("weight", shape=(1, 1, 1024, 1001), dtype="int8") p2 = relay.var("p2", shape=(1, 1, 1, 1), dtype="int32") conv = relay.nn.conv2d( data, weight, kernel_size=(1, 1), data_layout="NHWC", kernel_layout="HWIO", out_dtype="int32", ) multiply = relay.multiply(relay.const(-22, dtype="int32"), p2) tile = relay.tile(multiply, reps=(1, 1, 1, 1001)) subtract = relay.subtract(conv, tile) func = subtract mod = tvm.IRModule.from_expr(relay.Function(relay.analysis.free_vars(func), func)) vm = relay.vm.VMCompiler() opt_mod, _ = vm.optimize(mod, target="llvm") for f in opt_mod.functions.values(): assert "hash" in f.attrs.keys() if __name__ == "__main__": test_get_valid_implementations() test_select_implementation() test_te_compiler() test_compile_placeholder_bypass() test_compile_injective_with_tuple() test_compile_tuple_dup() test_compile_full() test_compile_nhwc_pack()
import pytest from tvm
import TVMError from tvm.relay.backend
import Runtime def test_create(): runtime = Runtime("cpp") assert str(runtime) == "cpp" def test_create_runtime_with_options(): runtime = Runtime("crt", {"system-lib": True}) assert str(runtime) == "crt" assert runtime["system-lib"] def test_attr_check(): runtime = Runtime("crt", {"system-lib": True}) assert "woof" not in runtime assert "system-lib" in runtime def test_create_runtime_not_found(): with pytest.raises(TVMError, match='Runtime "woof" is not defined'): Runtime("woof", {}) def test_create_runtime_attr_not_found(): with pytest.raises(TVMError, match='Attribute "woof" is not available on this Runtime'): Runtime("crt", {"woof": "bark"}) def test_create_runtime_attr_type_incorrect(): with pytest.raises( TVMError, match='Attribute "system-lib" should have type "IntImm"' ' but instead found "runtime.String"', ): Runtime("crt", {"system-lib": "woof"}) def test_list_runtimes(): assert "crt" in Runtime.list_registered() @pytest.mark.parametrize("runtime", [Runtime("crt"), "crt"]) def test_list_runtime_options(runtime): aot_options = Runtime.list_registered_options(runtime) assert "system-lib" in aot_options assert aot_options["system-lib"] == "IntImm" def test_list_runtime_options_not_found(): with pytest.raises(TVMError, match='Runtime "woof" is not defined'): Runtime.list_registered_options("woof")
import itertools
import numpy as np
import scipy.sparse as sp
import tvm from tvm.ir
import IRModule from tvm
import relay from tvm.relay.data_dep_optimization
import simplify_fc_transpose def run_func(func, params, x): with tvm.transform.PassContext(opt_level=3): lib = relay.build(func, "llvm", params=params) from tvm.contrib
import graph_executor dev = tvm.cpu(0) dtype = "float32" m = graph_executor.GraphModule(lib["default"](dev)) m.set_input("data", tvm.nd.array(x.astype(dtype))) m.run() tvm_output = m.get_output(0) return tvm_output.numpy() def test_simplify_fc_transpose(): data = relay.var("data", shape=(1, 32), dtype="float32") x = relay.nn.relu(data) w1 = relay.var("w1", shape=(32, 64), dtype="float32") y = relay.nn.dense(x, relay.transpose(w1, axes=[1, 0])) z = relay.nn.relu(y) w2 = relay.var("w2", shape=(64, 16), dtype="float32") zz = relay.nn.dense(z, relay.transpose(w2, axes=[1, 0])) func = relay.Function(relay.analysis.free_vars(zz), zz) params = { "w1": tvm.nd.array(np.random.uniform(-1, 1, (32, 64)).astype("float32")), "w2": tvm.nd.array(np.random.uniform(-1, 1, (64, 16)).astype("float32")), } x_np = np.random.randn(1, 32).astype("float32") old_result = run_func(func, params, x_np) new_func, new_params = simplify_fc_transpose.convert(func, params) new_result = run_func(new_func, new_params, x_np) np.testing.assert_allclose(old_result, new_result, atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_simplify_fc_transpose()
import itertools
import numpy as np
import scipy.sparse as sp
import tvm from tvm.ir
import IRModule from tvm
import relay from tvm.topi.sparse.utils
import random_bsr_matrix from tvm.relay.build_module
import bind_params_by_name def run_func(func, params, x): with tvm.transform.PassContext(opt_level=3): graph, lib, new_params = relay.build(func, "llvm", params=params) from tvm.contrib
import graph_executor dev = tvm.cpu(0) dtype = "float32" m = graph_executor.create(graph, lib, dev) m.set_input("data", tvm.nd.array(x.astype(dtype))) m.set_input(**new_params) m.run() tvm_output = m.get_output(0) return tvm_output.numpy() def test_bsr_sparse_conv2d_nchw(): data = relay.var("data", shape=(1, 64, 32, 32), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(128, 64, 1, 1), dtype="float32") y = relay.nn.conv2d(x, w, channels=128, kernel_size=1, data_layout="NCHW", kernel_layout="OIHW") z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = { "weight": tvm.nd.array( np.array(random_bsr_matrix(128, 64, 8, 1, 0.1, "float32").todense()).reshape( 128, 64, 1, 1 ) ) } x_np = np.random.randn(1, 64, 32, 32).astype("float32") dense_output = run_func(func, params, x_np) sparse_func, params = relay.data_dep_optimization.bsr_conv2d.convert( func, params, (8, 1), 0.2, "NCHW" ) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) def test_bsr_sparse_conv2d_nhwc(): data = relay.var("data", shape=(1, 32, 32, 64), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(1, 1, 64, 128), dtype="float32") y = relay.nn.conv2d(x, w, channels=128, kernel_size=1, data_layout="NHWC", kernel_layout="HWIO") z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = { "weight": tvm.nd.array( np.array(random_bsr_matrix(128, 64, 8, 1, 0.1, "float32").todense()).T.reshape( 1, 1, 64, 128 ) ) } x_np = np.random.randn(1, 32, 32, 64).astype("float32") dense_output = run_func(func, params, x_np) sparse_func, params = relay.data_dep_optimization.bsr_conv2d.convert( func, para
ms, (8, 1), 0.2, "NHWC" ) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) def test_bsr_sparse_conv2d_3x3_nchw(): data = relay.var("data", shape=(1, 64, 32, 32), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(128, 64, 3, 3), dtype="float32") y = relay.nn.conv2d( x, w, channels=128, kernel_size=3, padding=1, data_layout="NCHW", kernel_layout="OIHW" ) z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = { "weight": tvm.nd.array( np.array(random_bsr_matrix(128, 64 * 9, 16, 1, 0.1, "float32").todense()).reshape( 128, 64, 3, 3 ) ) } x_np = np.random.randn(1, 64, 32, 32).astype("float32") dense_output = run_func(func, params, x_np) func = bind_params_by_name(func, params) sparse_func, params = relay.data_dep_optimization.bsr_conv2d.convert2( func, {}, (16, 1), 0.2, "NCHW", 3 ) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) def test_bsr_sparse_conv2d_3x3_nhwc(): data = relay.var("data", shape=(1, 32, 32, 64), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(3, 3, 64, 128), dtype="float32") y = relay.nn.conv2d( x, w, channels=128, kernel_size=3, padding=1, data_layout="NHWC", kernel_layout="HWIO" ) z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = { "weight": tvm.nd.array( np.array(random_bsr_matrix(128, 64 * 9, 16, 1, 0.1, "float32").todense()).T.reshape( 3, 3, 64, 128 ) ) } x_np = np.random.randn(1, 32, 32, 64).astype("float32") dense_output = run_func(func, params, x_np) func = bind_params_by_name(func, params) sparse_func, params = relay.data_dep_optimization
.bsr_conv2d.convert2( func, {}, (16, 1), 0.2, "NHWC", 3 ) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_bsr_sparse_conv2d_nhwc() test_bsr_sparse_conv2d_nchw() test_bsr_sparse_conv2d_3x3_nhwc() test_bsr_sparse_conv2d_3x3_nchw()
import itertools
import numpy as np
import scipy.sparse as sp
import tvm from tvm.ir
import IRModule from tvm
import relay def random_bsr_matrix(M, N, BS_R, BS_C, density, dtype="float32"): Y = np.zeros((M, N), dtype=dtype) assert M % BS_R == 0 assert N % BS_C == 0 nnz = int(density * M * N) num_blocks = int(nnz / (BS_R * BS_C)) + 1 candidate_blocks = np.asarray(list(itertools.product(range(0, M, BS_R), range(0, N, BS_C)))) assert candidate_blocks.shape[0] == M chosen_blocks = candidate_blocks[ np.random.choice(candidate_blocks.shape[0], size=num_blocks, replace=False) ] for i in range(len(chosen_blocks)): r, c = chosen_blocks[i] Y[r : r + BS_R, c : c + BS_C] = np.random.randn(BS_R, BS_C) s = sp.bsr_matrix(Y, blocksize=(BS_R, BS_C)) assert s.data.shape == (num_blocks, BS_R, BS_C) assert s.data.size >= nnz assert s.indices.shape == (num_blocks,) assert s.indptr.shape == (M return s def run_func(func, params, x): with tvm.transform.PassContext(opt_level=3): graph, lib, new_params = relay.build(func, "llvm", params=params) from tvm.contrib
import graph_executor dev = tvm.cpu(0) dtype = "float32" m = graph_executor.create(graph, lib, dev) m.set_input("data", tvm.nd.array(x.astype(dtype))) m.set_input(**new_params) m.run() tvm_output = m.get_output(0) return tvm_output.numpy() def test_bsr_sparse_dense(): data = relay.var("data", shape=(1, 128), dtype="float32") x = relay.nn.relu(data) w = relay.var("weight", shape=(768, 128), dtype="float32") y = relay.nn.dense(x, w) z = relay.nn.relu(y) func = relay.Function(relay.analysis.free_vars(z), z) params = {"weight": tvm.nd.array(random_bsr_matrix(768, 128, 32, 1, 0.1).todense())} x_np = np.random.randn(1, 128).astype("float32") dense_output = run_func(func, params, x_np) sparse_func, params = relay.data_dep_optimization.bsr_dense.convert(func, params, (32, 1), 0.2) sparse_output = run_func(sparse_func, params, x_np) np.testing.assert_allclose(sparse_output, dense_output, atol=1e-5, rtol=1e-5) if __name__ == "__main__": test_bsr_sparse_dense()
"""Unit tests for target hooks."""
import sys
import numpy as np
import pytest
import logging
import tvm