text
stringlengths
1
2.05k
import transform from tvm.relay.prelude
import Prelude def test_remove_all_prelude_functions(): mod = tvm.IRModule() p = Prelude(mod) x = relay.var("x", shape=(1, 16)) mod["main"] = relay.Function([x], x) mod = relay.transform.RemoveUnusedFunctions()(mod) l = set([x[0].name_hint for x in mod.functions.items()]) assert l == set(["main"]) def test_remove_all_prelude_functions_but_referenced_functions(): mod = tvm.IRModule() p = Prelude(mod) x = relay.var("x", shape=(1, 16)) id_func = relay.Function([x], x) id_name = relay.GlobalVar("id_func") mod[id_name] = id_func mod["main"] = relay.Function([x], id_name(x)) mod = relay.transform.RemoveUnusedFunctions()(mod) l = set([x[0].name_hint for x in mod.functions.items()]) assert l == set(["id_func", "main"]) def test_keep_only_referenced_prelude_functions(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = p.mod.get_type("List") hd = p.mod.get_global_var("hd") tl = p.mod.get_global_var("tl") l = nil() for i in [4, 3, 2, 1, 0]: l = cons(relay.const(i), l) body = hd(tl(tl(l))) mod["main"] = relay.Function([], body) mod = relay.transform.RemoveUnusedFunctions()(mod) l = set([x[0].name_hint for x in mod.functions.items()]) assert l == set(["tl", "hd", "main"]) def test_multiple_entry_functions(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = p.mod.get_type("List") hd = p.mod.get_global_var("hd") tl = p.mod.get_global_var("tl") l = nil() for i in [4, 3, 2, 1, 0]: l = cons(relay.const(i), l) body = hd(tl(tl(l))) mod["main1"] = relay.Function([], body) x = relay.var("x", shape=(1, 16)) id_func = relay.Function([x], x) id_name = relay.GlobalVar("id_func") mod[id_name] = id_func mod["main2"] = relay.Function([x], id_name(x)) mod = relay.transform.RemoveUnusedFunctions(["main1", "main2"])(mod) l = set([x[0].name_hint for x in mod.functions.items()]) assert l == set(["tl", "hd", "main2", "id_func", "main
1"]) def test_globalvar_as_call_arg(): mod = tvm.IRModule() p = Prelude(mod) tensor_array = p.get_global_var("tensor_array", "int32") tensor1 = p.get_ctor(p.get_name("tensor_t", "int32"), "tensor1", "int32") write = p.get_global_var("tensor_array_write", "int32") stack = p.get_global_var("tensor_array_stack", "int32") v = relay.var("v") init_tensor_array = tensor_array(relay.const(3)) tensor_array1 = write(init_tensor_array, relay.const(0), tensor1(v)) tensor_array2 = stack(tensor_array1) mod["main"] = relay.Function([v], tensor_array2) mod = relay.transform.RemoveUnusedFunctions()(mod) l = set([x[0].name_hint for x in mod.functions.items()]) assert "tensor_array_int32" in l def test_call_globalvar_without_args(): def get_mod(): mod = tvm.IRModule({}) fn1 = relay.Function([], relay.const(1)) fn2 = relay.Function([], relay.const(2)) g1 = relay.GlobalVar("g1") g2 = relay.GlobalVar("g2") mod[g1] = fn1 mod[g2] = fn2 p = relay.var("p", "bool") mod["main"] = relay.Function([p], relay.Call(relay.If(p, g1, g2), [])) return mod mod = get_mod() ref_mod = get_mod() mod = relay.transform.RemoveUnusedFunctions()(mod) assert tvm.ir.structural_equal(mod, ref_mod, map_free_vars=True) if __name__ == "__main__": pytest.main()
import pytest
import tvm from tvm
import relay from tvm.relay
import transform from tvm.relay.testing
import run_opt_pass, run_infer_type
import numpy as np def test_simplify_reshape(): def before(): x = relay.var("x", shape=(1, 16, 16, 16), dtype="float32") w = relay.var("w", shape=(32, 16, 3, 3), dtype="float32") y = relay.nn.conv2d(x, w, padding=(1, 1)) y = relay.reshape(y, newshape=(1, 16, -1)) y = relay.reshape(y, newshape=(4, 8, -1, 16)) y = relay.reverse_reshape(y, newshape=(32, 0, -1)) return relay.Function([x, w], y) def expected(): x = relay.var("x", shape=(1, 16, 16, 16), dtype="float32") w = relay.var("w", shape=(32, 16, 3, 3), dtype="float32") y = relay.nn.conv2d(x, w, padding=(1, 1)) y = relay.reshape(y, newshape=(32, 16, 16)) return relay.Function([x, w], y) def symbolic(): b = tvm.te.size_var("b") x = relay.var("x", shape=(b, 16, 16, 16), dtype="float32") w = relay.var("w", shape=(32, 16, 3, 3), dtype="float32") y = relay.nn.conv2d(x, w, padding=(1, 1)) y = relay.reshape(y, newshape=(1, 16, -1)) y = relay.reshape(y, newshape=(4, 8, -1, 16)) y = relay.reverse_reshape(y, newshape=(32, 0, -1)) return relay.Function([x, w], y) z = before() zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(zz, after) z = symbolic() zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(symbolic(), transform.InferType()) assert tvm.ir.structural_equal(zz, after) def test_simplify_transpose(): def before1(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.transpose(x, axes=[0, 2, 3, 1]) y = relay.layout_transform(y, "NHWC", "HWCN") y = relay.transpose(y, axes=[3, 0, 1, 2]) return relay.Function([x], y) def expected1(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.transpose(x, axes=[0, 2, 3, 1]) return relay.Function([x
], y) def before2(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.nn.relu(x) y = relay.transpose(y, axes=[0, 2, 3, 1]) y = relay.transpose(y, axes=[1, 2, 3, 0]) y = relay.transpose(y, axes=[3, 2, 0, 1]) return relay.Function([x], y) def expected2(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.nn.relu(x) return relay.Function([x], y) def before3(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.nn.relu(x) y = relay.transpose(y) y = relay.transpose(y) y = relay.transpose(y, axes=[0, 2, -1, 1]) y = relay.transpose(y) y = relay.transpose(y) return relay.Function([x], y) def expected3(): x = relay.var("x", shape=(1, 3, 224, 224), dtype="float32") y = relay.nn.relu(x) y = relay.transpose(y, axes=[0, 2, 3, 1]) return relay.Function([x], y) def before4(): """ Simplify transpose->layout_transform and its inverse. Input: NHWC -> NCHW -> NCHW4c -> op -> NCHW4c -> NCHW -> NHWC Simplified: NHWC -> NCHW4c -> op -> NCHW4c -> NHWC """ x = relay.var("x", shape=(1, 56, 56, 128), dtype="float32") y = relay.transpose(x, axes=[0, 3, 1, 2]) y = relay.layout_transform(y, "NCHW", "NCHW4c") y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW4c", "NCHW") y = relay.transpose(y, axes=[0, 2, 3, 1]) return relay.Function([x], y) def expected4(): x = relay.var("x", shape=(1, 56, 56, 128), dtype="float32") y = relay.layout_transform(x, "NHWC", "NCHW4c") y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW4c", "NHWC") return relay.Function([x], y) def before5(): """ Simplify layout_transform->layout_transform and its inverse. Input: NHWC -
> NCHW -> NCHW4c -> op -> NCHW4c -> NCHW -> NHWC Simplified: NHWC -> NCHW4c -> op -> NCHW4c -> NHWC """ x = relay.var("x", shape=(1, 56, 56, 128), dtype="float32") y = relay.layout_transform(x, "NHWC", "NCHW") y = relay.layout_transform(y, "NCHW", "NCHW4c") y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW4c", "NCHW") y = relay.layout_transform(y, "NCHW", "NHWC") return relay.Function([x], y) def expected5(): x = relay.var("x", shape=(1, 56, 56, 128), dtype="float32") y = relay.layout_transform(x, "NHWC", "NCHW4c") y = relay.nn.relu(y) y = relay.layout_transform(y, "NCHW4c", "NHWC") return relay.Function([x], y) def before6(): """ Remove trivial layout_transform->layout_transform. Input: NCHW -> NHWC -> NCHW -> op Simplified: NHWC -> op """ x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.layout_transform(x, "NCHW", "NHWC") y = relay.layout_transform(y, "NHWC", "NCHW") y = relay.nn.relu(y) return relay.Function([x], y) def expected6(): x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.nn.relu(x) return relay.Function([x], y) def before7(): """ Remove trivial layout_transform->layout_transform. Input: NCHW4c -> NCHW8c -> NCHW4c -> op Simplified: NCHW4c -> op """ x = relay.var("x", shape=(1, 32, 56, 56, 4), dtype="float32") y = relay.layout_transform(x, "NCHW4c", "NCHW8c") y = relay.layout_transform(y, "NCHW8c", "NCHW4c") y = relay.nn.relu(y) return relay.Function([x], y) def expected7(): x = relay.var("x", shape=(1, 32, 56, 56, 4), dtype="float32") y = relay.nn.relu(x) return relay.Function([x], y) def before8(): """ Simplify layout_transform->lay
out_transform with rank contraction and expansion Input: NCHW4c -> NCHW -> NCHW8c -> op Simplified: NCHW4c -> NCHW8c -> op """ x = relay.var("x", shape=(1, 32, 56, 56, 4), dtype="float32") y = relay.layout_transform(x, "NCHW4c", "NCHW") y = relay.layout_transform(y, "NCHW", "NCHW8c") y = relay.nn.relu(y) return relay.Function([x], y) def expected8(): x = relay.var("x", shape=(1, 32, 56, 56, 4), dtype="float32") y = relay.layout_transform(x, "NCHW4c", "NCHW8c") y = relay.nn.relu(y) return relay.Function([x], y) def before9(): """ Remove trivial layout_transform->layout_transform. Input: NCHW -> NCHW4c -> NCHW -> op Simplified: NCHW -> op """ x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.layout_transform(x, "NCHW", "NCHW4c") y = relay.layout_transform(y, "NCHW4c", "NCHW") y = relay.nn.relu(y) return relay.Function([x], y) def expected9(): x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.nn.relu(x) return relay.Function([x], y) def before10(): """ Simplify layout_transform->layout_transform without rank change to transpose. Input: NCHW -> NHWC -> CHWN -> op Simplified: NCHW -> CHWN -> op """ x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.layout_transform(x, "NCHW", "NHWC") y = relay.layout_transform(y, "NHWC", "CHWN") y = relay.nn.relu(y) return relay.Function([x], y) def expected10(): x = relay.var("x", shape=(1, 128, 56, 56), dtype="float32") y = relay.transpose(x, axes=[1, 2, 3, 0]) y = relay.nn.relu(y) return relay.Function([x], y) for before, expected in [ [before1(), expected1()], [before2(), expected2()], [before3(), expected3()],
[before4(), expected4()], [before5(), expected5()], [before6(), expected6()], [before7(), expected7()], [before8(), expected8()], [before9(), expected9()], [before10(), expected10()], ]: after = run_opt_pass(before, transform.SimplifyExpr()) expected = run_opt_pass(expected, transform.InferType()) assert tvm.ir.structural_equal(after, expected), "\nafter: {} \nexpected: {}".format( after, expected ) def test_simplify_full_elementwise(): def validate(shape, value, dtype): def before_left(x, elem_op, full): return elem_op(full, x) def after_left(x, elem_op, value): if elem_op == relay.add and value == 0: return x elif elem_op == relay.multiply and (value == 1 or (value > 1 and dtype == "bool")): return x return elem_op(relay.const(value, dtype), x) def before_right(x, elem_op, full): return elem_op(x, full) def after_right(x, elem_op, value): if elem_op in [relay.add, relay.subtract] and value == 0: return x elif elem_op in [relay.multiply, relay.divide] and ( value == 1 or (value > 1 and dtype == "bool") ): return x return elem_op(x, relay.const(value, dtype)) x = relay.var("x", shape=shape, dtype=dtype) elem_ops = [relay.add, relay.multiply, relay.subtract, relay.divide] full_ops = [] if value == 0: full_ops.append(relay.zeros(shape, dtype)) full_ops.append(relay.zeros_like(x)) if value == 1: full_ops.append(relay.ones(shape, dtype)) full_ops.append(relay.ones_like(x)) else: full_ops.append(relay.full(relay.const(value, dtype), shape)) full_ops.append(relay.full_like(x, relay.const(value, dtype))) for op in elem_ops: for full in full_ops:
z = before_left(x, op, full) zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(after_left(x, op, value), transform.InferType()) assert tvm.ir.structural_equal(zz, after) z = before_right(x, op, full) zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(after_right(x, op, value), transform.InferType()) assert tvm.ir.structural_equal(zz, after) full_ops = [] if value == 0: full_ops.append(relay.zeros(shape * 2, dtype)) if value == 1: full_ops.append(relay.ones(shape * 2, dtype)) else: full_ops.append(relay.full(relay.const(value, dtype), shape * 2)) for op in elem_ops: for full in full_ops: z = before_left(x, op, full) zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(before_left(x, op, full), transform.InferType()) assert tvm.ir.structural_equal(zz, after) z = before_right(x, op, full) zz = run_opt_pass(z, transform.SimplifyExpr()) after = run_opt_pass(before_right(x, op, full), transform.InferType()) assert tvm.ir.structural_equal(zz, after) for shape in [[10], [10, 10], [10, 10, 10]]: for dtype in ["float32", "int32", "bool"]: for value in [0, 1, 2]: validate(shape, value, dtype) def test_eliminate_identity(): def check(x, y=None, do_nothing=False): expected = run_infer_type(x) if do_nothing: actual = run_opt_pass(x, transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) else: assert y is not None actual = run_opt_pass(y, transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) shape = [2, 3, 4] dtype = "float32" x = relay.var("x", shape=shap
e, dtype=dtype) x = run_opt_pass(x, transform.InferType()) for (op, op_like, id_op, const) in [ (relay.zeros, relay.zeros_like, relay.add, relay.const(0, dtype)), (relay.ones, relay.ones_like, relay.multiply, relay.const(1, dtype)), ]: check(x, id_op(op_like(x), x)) check(x, id_op(op(shape, dtype), x)) check(x, id_op(const, x)) check(x, id_op(op(shape[1:], dtype), x)) check(x, id_op(x, op_like(x))) check(x, id_op(x, op(shape, dtype))) check(x, id_op(x, const)) check(x, id_op(x, op(shape[1:], dtype))) check(id_op(x, op([2] + shape, dtype)), do_nothing=True) check(id_op(op([2] + shape, dtype), x), do_nothing=True) for (op, op_like, id_op, const) in [ (relay.zeros, relay.zeros_like, relay.subtract, relay.const(0, dtype)), (relay.ones, relay.ones_like, relay.divide, relay.const(1, dtype)), ]: check(x, id_op(x, op_like(x))) check(x, id_op(x, const)) check(x, id_op(x, op(shape, dtype))) check(x, id_op(x, op(shape[1:], dtype))) check(id_op(x, op([2] + shape, dtype)), do_nothing=True) check(id_op(const, x), id_op(op(shape, dtype), x)) check(id_op(const, x), id_op(op_like(x), x)) def test_simplify_same_cast(): dtype = "int32" data = relay.var("data", shape=(3, 4, 5), dtype=dtype) expr1 = relay.cast(data, dtype) dtype_like = relay.var("dtype_like", shape=(2, 2, 2), dtype=dtype) expr2 = relay.cast_like(data, dtype_like) expected = run_infer_type(data) actual1 = run_opt_pass(expr1, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual1, expected) actual2 = run_opt_pass(expr2, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual2, expected) def test_simplify_consecutive_cast(): x = relay.var("x", shape=(3, 4, 5), dtype="int8") y = relay.var("y", shape=(3, 4), dtype="int64") z = relay.var("z", shape=(3,), dtype="float32") expr1 = relay.cast(x, "in
t16") expr2 = relay.cast(expr1, "int32") expr3 = relay.cast_like(expr2, y) expr4 = relay.cast_like(expr3, z) actual1 = run_opt_pass(expr2, relay.transform.SimplifyExpr()) expected = run_infer_type(relay.cast(x, "int32")) assert tvm.ir.structural_equal(actual1, expected) actual2 = run_opt_pass(expr3, relay.transform.SimplifyExpr()) expected = run_infer_type(relay.cast(x, "int64")) assert tvm.ir.structural_equal(actual2, expected) actual3 = run_opt_pass(expr4, relay.transform.SimplifyExpr()) expected = run_infer_type(relay.cast(x, "float32")) assert tvm.ir.structural_equal(actual3, expected) x = relay.var("x", shape=(3, 4, 5), dtype="float32") y = relay.var("y", shape=(3, 4), dtype="float32") expr1 = relay.cast(x, "int32") expr2 = relay.cast_like(expr1, y) actual = run_opt_pass(expr2, relay.transform.SimplifyExpr()) expected = run_infer_type(relay.cast(expr1, "float32")) assert tvm.ir.structural_equal(actual, expected) x = relay.var("x", shape=(3, 4), dtype="int64") expr1 = relay.cast(x, "bool") expr2 = relay.cast(expr1, "int32") actual = run_opt_pass(expr2, relay.transform.SimplifyExpr()) expected = run_infer_type(expr2) assert tvm.ir.structural_equal(actual, expected) def test_concretize_reshape_like(): data = relay.var("data", shape=(2, 3, 4), dtype="float32") shape_like = relay.var("shape_like", shape=(6, 2, 2), dtype="float32") expr = relay.reshape_like(data, shape_like) expected = run_infer_type(relay.reshape(data, (6, 2, 2))) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_reshape_like_attrs(): data = relay.var("data", shape=(2, 3, 4), dtype="float32") shape_like = relay.var("shape_like", shape=(6, 2, 2), dtype="float32") expr = relay.reshape_like(data, shape_like, lhs_begin=2, rhs_begin=1) expected = run_infer_type(relay.reshape(data, (2, 3, 2, 2))) actual = run_opt_pass(e
xpr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_zeros_like(): dtype = "int32" shape_like = relay.var("shape_like", shape=(3, 4, 5), dtype=dtype) expr = relay.zeros_like(shape_like) expected = run_infer_type(relay.zeros((3, 4, 5), dtype)) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_ones_like(): dtype = "int32" shape_like = relay.var("shape_like", shape=(3, 4, 5), dtype=dtype) expr = relay.ones_like(shape_like) expected = run_infer_type(relay.ones((3, 4, 5), dtype)) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_full_like(): dtype = "int32" shape_like = relay.var("shape_like", shape=(3, 4, 5), dtype=dtype) fill_value = relay.var("fill", relay.TensorType((), "float32")) expr = relay.full_like(shape_like, fill_value) expected = run_infer_type(relay.full(fill_value, (3, 4, 5), dtype)) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_collapse_sum_like(): data = relay.var("data", shape=(3, 3, 3), dtype="float32") shape_like = relay.var("shape_like", shape=(3,), dtype="float32") expr = relay.collapse_sum_like(data, shape_like) expected = run_infer_type(relay.collapse_sum_to(data, (3,))) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_broadcast_to_like(): data = relay.var("data", shape=(3,), dtype="float32") shape_like = relay.var("shape_like", shape=(3, 3, 3), dtype="float32") expr = relay.broadcast_to_like(data, shape_like) expected = run_infer_type(relay.broadcast_to(data, (3, 3, 3))) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def te
st_concretize_cast_like(): dim_any = tvm.tir.Any() data = relay.var("data", shape=(3, dim_any, 5), dtype="float32") dtype_like = relay.var("dtype_like", shape=(dim_any, 3, 3), dtype="int32") expr = relay.cast_like(data, dtype_like) expected = run_infer_type(relay.cast(data, "int32")) actual = run_opt_pass(expr, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_concretize_multiple(): x = relay.var("x", shape=(2, 3), dtype="float32") y = relay.var("y", shape=(3,), dtype="float32") l = x + y dl = relay.ones_like(l) dx = relay.zeros_like(x) dy = relay.zeros_like(y) dx = dx + relay.collapse_sum_like(dl, dx) dy = dy + relay.collapse_sum_like(dl, dy) ret = relay.Tuple([dx, dy]) dl_c = relay.ones((2, 3), "float32") dx_c = relay.collapse_sum_to(dl_c, (2, 3)) dy_c = relay.collapse_sum_to(dl_c, (3,)) ret_c = relay.Tuple([dx_c, dy_c]) expected = run_infer_type(ret_c) actual = run_opt_pass(ret, relay.transform.SimplifyExpr()) assert tvm.ir.structural_equal(actual, expected) def test_simplify_mul_add(): def check_simple_fold(origin_exprs, expect_expr): for origin_expr in origin_exprs: simple_expr = run_opt_pass(origin_expr, transform.SimplifyExpr()) assert tvm.ir.structural_equal(simple_expr, expect_expr) n = 32 c1_val = np.random.uniform(size=n).astype("float32") c2_val = np.random.uniform(size=n).astype("float32") c3_val = np.random.uniform(size=n).astype("float32") x = relay.var("x", shape=(n,), dtype="float32") c1 = relay.const(c1_val) c2 = relay.const(c2_val) c3 = relay.const(c3_val) origin_exprs = [ x + c1 + c2, c1 + x + c2, ] expect_expr = x + relay.const(c1_val + c2_val) check_simple_fold(origin_exprs, expect_expr) origin_exprs = [ x * c1 * c2, c1 * x * c2, ] expect_expr = x * relay.const(c1_val * c2_val) check_simple_fold(
origin_exprs, expect_expr) origin_exprs = [ (x + c1) * c2, (c1 + x) * c2, c2 * (x + c1), c2 * (c1 + x), ] expect_expr = x * c2 + relay.const(c1_val * c2_val) check_simple_fold(origin_exprs, expect_expr) origin_exprs = [ (x + c1) * c2 + c3, (c1 + x) * c2 + c3, c2 * (x + c1) + c3, c2 * (c1 + x) + c3, c3 + (x + c1) * c2, c3 + (c1 + x) * c2, c3 + c2 * (x + c1), c3 + c2 * (c1 + x), ] expect_expr = x * c2 + relay.const(c1_val * c2_val + c3_val) check_simple_fold(origin_exprs, expect_expr) origin_exprs = [ (x * c1 + c2) * c3, (c1 * x + c2) * c3, (c2 + x * c1) * c3, (c2 + c1 * x) * c3, c3 * (x * c1 + c2), c3 * (c1 * x + c2), c3 * (c2 + x * c1), c3 * (c2 + c1 * x), ] expect_expr = x * relay.const(c1_val * c3_val) + relay.const(c2_val * c3_val) check_simple_fold(origin_exprs, expect_expr) def test_simplify_rsqrt(): shape = (32, 1, 1) x = relay.var("x", shape=shape, dtype="float32") def before(c): return relay.const(c) / relay.sqrt(x) def expected(c): if c == 1: return relay.rsqrt(x) else: return relay.const(c) * relay.rsqrt(x) for c in [1.0, 2.0, 2.5]: opt = run_opt_pass(before(c), transform.SimplifyExpr()) after = run_opt_pass(expected(c), transform.InferType()) assert tvm.ir.structural_equal(opt, after) def test_simplify_dq_argmax(): shape = (4, 32, 1, 1) x = relay.var("x", shape=shape, dtype="int8") def before(): y = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(0)) return relay.op.argmax(y, axis=1) def expected(): return relay.op.argmax(x, axis=1) opt = run_opt_pass(before(), transform.SimplifyExpr()) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(opt, after) def test_simplify_dq_argmin():
shape = (4, 32, 1, 1) x = relay.var("x", shape=shape, dtype="int8") def before(): y = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(0)) return relay.op.argmin(y, axis=1) def expected(): return relay.op.argmin(x, axis=1) opt = run_opt_pass(before(), transform.SimplifyExpr()) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(opt, after) def test_simplify_dq_argsort(): shape = (4, 32, 1, 1) x = relay.var("x", shape=shape, dtype="int8") def before(): y = relay.qnn.op.dequantize(x, relay.const(2.0), relay.const(0)) return relay.op.argsort(y, axis=1) def expected(): return relay.op.argsort(x, axis=1) opt = run_opt_pass(before(), transform.SimplifyExpr()) after = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(opt, after) def test_simplify_clip_cast(): x = relay.var("x", shape=(4, 8), dtype="int32") def before(): clip = relay.clip(x, a_min=0.0, a_max=255.0) cast = relay.cast(clip, "uint8") return relay.cast(cast, "int32") def expected(): return relay.clip(x, a_min=0.0, a_max=255.0) opt = run_opt_pass(before(), transform.SimplifyExpr()) ref = run_infer_type(expected()) assert tvm.ir.structural_equal(opt, ref) def test_simplify_cast_clip(): x = relay.var("x", shape=(4, 8), dtype="int32") def before(): cast = relay.cast(x, "uint8") return relay.clip(cast, a_min=0.0, a_max=255.0) def expected(): return relay.cast(x, "uint8") opt = run_opt_pass(before(), transform.SimplifyExpr()) ref = run_infer_type(expected()) assert tvm.ir.structural_equal(opt, ref) def test_simplify_add(): x = relay.var("x", shape=(1, 3, 100, 100), dtype="float32") def before(): return relay.add(x, x) def expected(): s = relay.const(2.0) return relay.multiply(x, s) opt = run_opt_pass(before(), transform.SimplifyExp
r()) ref = run_infer_type(expected()) assert tvm.ir.structural_equal(opt, ref) if __name__ == "__main__": pytest.main([__file__])
from tvm.ir
import IRModule, structural_equal from tvm
import relay as rly from tvm.relay.transform
import SimplifyInference, InferType def test_simplify_batchnorm(dtype="float32"): def simple_bn(x, gamma, beta, moving_mean, moving_var, axis=1, epsilon=1e-5, shape=None): scale = rly.multiply( rly.const(1, dtype) / rly.sqrt(moving_var + rly.const(epsilon, dtype)), gamma ) shift = rly.add(rly.multiply(rly.negative(moving_mean), scale), beta) num_newaxis = len(shape) - (axis + 1) if num_newaxis: scale = rly.expand_dims(scale, axis=1, num_newaxis=num_newaxis) shift = rly.expand_dims(shift, axis=1, num_newaxis=num_newaxis) return x * scale + shift def check(dim, axis, nstep): eps = 0.01 ttype1 = rly.TensorType(tuple(10 for i in range(dim)), dtype) ttype2 = rly.TensorType((10,), dtype) x = rly.var("x", ttype1) beta = rly.var("beta", ttype2) gamma = rly.var("gamma", ttype2) moving_var = rly.var("moving_var", ttype2) moving_mean = rly.var("moving_mean", ttype2) y1, y2 = x, x for _ in range(nstep): y1, _, _ = rly.nn.batch_norm( y1 + rly.const(1, dtype), gamma, beta, moving_mean, moving_var, epsilon=eps, axis=axis, ) y1 = rly.nn.dropout(y1) y2 = simple_bn( y2 + rly.const(1, dtype), gamma, beta, moving_mean, moving_var, epsilon=eps, axis=axis, shape=ttype1.shape, ) mod = IRModule.from_expr(y1) simplify = SimplifyInference() mod = InferType()(mod) mod = simplify(mod) y1 = mod["main"].body assert structural_equal(y1, y2, map_free_vars=True) check(2, 1, 1) check(4, 1, 1) check(4, 0, 3) if __name__ == "__main__": test_simplify_batchnorm(dtype="float32") test_simplify_batchnorm(
dtype="float16")
import numpy as np
import tvm from tvm
import relay from tvm.relay
import transform from tvm.relay.build_module
import bind_params_by_name from tvm.relay.testing
import run_infer_type, create_workload def run_opt_pass(expr, opt_pass): assert isinstance(opt_pass, tvm.transform.Pass) mod = tvm.IRModule.from_expr(expr) mod = relay.transform.InferType()(mod) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def test_split_concat_metal(): shape = (1, 1, 1, 3) dtype = "float32" axis = 1 inputs = [] for i in range(100): inputs.append(relay.var("p{}".format(i), shape=shape, dtype=dtype)) def before(): inp = relay.Tuple(inputs) return relay.op.concatenate(inp, axis) def expected(): limit = tvm.target.Target("metal").max_function_args - 1 splitNum = int(len(inputs) / limit) if len(inputs) % limit > 0: splitNum += 1 splitted = [] for i in range(splitNum): startIdx = i * limit argsCount = min(limit, len(inputs) - startIdx) args = [] for j in range(argsCount): args.append(inputs[j + startIdx]) t = relay.Tuple(args) concat = relay.op.concatenate(t, axis) splitted.append(relay.annotation.stop_fusion(concat)) inp = relay.Tuple(splitted) return relay.op.concatenate(inp, axis) res = run_opt_pass(before(), transform.SplitArgs(tvm.target.Target("metal").max_function_args)) exp = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(res, exp) def test_split_concat_cuda(): shape = (1, 1, 1, 3) dtype = "float32" axis = 1 inputs = [] for i in range(100): inputs.append(relay.var("p{}".format(i), shape=shape, dtype=dtype)) def before(): inp = relay.Tuple(inputs) return relay.op.concatenate(inp, axis) def expected(): inp = relay.Tuple(inputs) return relay.op.concatenate(inp, axis) res = run_opt_pass(before(), transform.SplitArgs(tvm.target.Target("cuda").max_function_args)
) exp = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(res, exp) if __name__ == "__main__": test_split_concat_metal() test_split_concat_cuda()
import pytest
import sys
import numpy as np
import tvm
import tvm.testing from tvm
import te from tvm
import relay from tvm.relay.analysis
import detect_feature from tvm.relay
import op, create_executor, transform from tvm.relay.prelude
import Prelude from tvm.relay.testing
import count from tvm.relay.analysis
import Feature def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def check_eval(expr, expected_result, mod=None, rtol=1e-07): dev = tvm.device("llvm", 0) result = create_executor(mod=mod, device=dev, target="llvm").evaluate(expr) np.testing.assert_allclose(result.numpy(), expected_result, rtol=rtol) def test_explicit_bound(): x = relay.const(1) y = op.add(x, x) z = op.add(y, y) f = relay.Function([], op.add(z, z)) assert not Feature.fLet in detect_feature(f) anf = run_opt_pass(f, transform.ToANormalForm()) assert Feature.fLet in detect_feature(anf) check_eval(f(), 8.0) check_eval(anf(), 8.0) def test_order(): z = relay.const(3) y = relay.const(2) x = relay.const(1) val = x + y * z check_eval(val, 7.0) anf = run_opt_pass(val, [transform.ToANormalForm(), transform.InferType()]) a = relay.Var("a", relay.IncompleteType()) b = relay.Var("b", relay.IncompleteType()) c = relay.Var("c", relay.IncompleteType()) d = relay.Var("d", relay.IncompleteType()) e = relay.Var("e", relay.IncompleteType()) expected_output = e expected_output = relay.Let(e, a + d, expected_output) expected_output = relay.Let(d, b * c, expected_output) expected_output = relay.Let(c, z, expected_output) expected_output = relay.Let(b, y, expected_output) expected_output = relay.Let(a, x, expected_output) expected_output = run_opt_pass(expected_output, transform.InferType()) assert tvm.ir.structural_equal(anf, expected_output) def test_if(): cond = relay.const(True) x = relay.If(cond, relay.const(2), relay.const(3)) anf = run_opt_pass(x, [transform.ToANormalForm(), transform.InferType()]) a = relay.Var("a", relay.Incomp
leteType()) b = relay.Var("b", relay.IncompleteType()) c = relay.Var("c", relay.IncompleteType()) d = relay.Var("d", relay.IncompleteType()) true_branch = relay.Let(a, relay.const(2), a) false_branch = relay.Let(b, relay.const(3), b) expected_output = relay.If(c, true_branch, false_branch) expected_output = relay.Let(d, expected_output, d) expected_output = relay.Let(c, cond, expected_output) expected_output = run_opt_pass(expected_output, transform.InferType()) assert tvm.ir.structural_equal(anf, expected_output) def test_let_as_subexpr(): def on_cpu(x): return relay.annotation.on_device(x, tvm.device("cpu"), constrain_result=True) x = relay.Var("x", relay.IncompleteType()) c = relay.const(1) l = relay.Let(x, on_cpu(c + c), x) body = l * l anf = run_opt_pass(body, [transform.ToANormalForm(), transform.InferType()]) v0 = relay.Var("v0", relay.IncompleteType()) v1 = relay.Var("v1", relay.IncompleteType()) v2 = relay.Var("v2", relay.IncompleteType()) expected_output = relay.Let( v0, on_cpu(c), relay.Let( x, on_cpu(v0 + v0), relay.Let(v1, x, relay.Let(v2, v1 * v1, v2)), ), ) expected_output = run_opt_pass(expected_output, transform.InferType()) tvm.ir.assert_structural_equal(anf, expected_output) def test_recursion(): """ Program: let f(n: i32) -> i32 = { m = (n * 2) if (n == 0) { return m; } else { return m + f(n - 1); } } f(5); """ mod = tvm.IRModule() i64 = relay.TensorType((), "int64") f = relay.GlobalVar("f") n = relay.Var("n", i64) m = n * relay.const(2, "int64") funcbody = relay.If( relay.equal(n, relay.const(0, "int64")), m, m + f(n - relay.const(1, "int64")) ) value = relay.Function([n], funcbody, i64, []) mod[f] = value check_eval(f(relay.const(5, "int64")), 30.0, mod=mod) old_f =
mod[f] mod = transform.ToANormalForm()(mod) f = mod[f] check_eval(f(relay.const(5, "int64")), 30.0, mod=mod) def test_ref(): i = relay.Var("i") iv = relay.Var("iv") u = relay.Var("u") uv = relay.Var("uv") body = relay.add(iv, uv) body = relay.Let(uv, relay.RefRead(i), body) body = relay.Let(u, relay.RefWrite(i, relay.const(2)), body) body = relay.Let(iv, relay.RefRead(i), body) body = relay.Let(i, relay.RefCreate(relay.const(1)), body) check_eval(body, 3) opt_body = run_opt_pass(body, transform.ToANormalForm()) check_eval(opt_body, 3) def test_nat_add(): mod = tvm.IRModule() p = Prelude(mod) p.mod.import_from_std("nat.rly") nat, z, s = p.mod.get_type("nat") add = p.mod.get_global_var("nat_add") dev = tvm.device("llvm", 0) intrp = create_executor(mod=mod, device=dev, target="llvm") assert mod[add].checked_type == relay.FuncType([nat(), nat()], nat()) assert count(p, intrp.evaluate(add(s(z()), s(z())))) == 2 expr = add(s(z()), s(z())) f = relay.GlobalVar("f") mod[f] = relay.Function([], expr) mod = transform.ToANormalForm()(mod) expr = mod["f"] assert count(p, intrp.evaluate(expr.body)) == 2 assert Feature.fLet in detect_feature(mod[add]) def test_let(): x = relay.Var("x") y = relay.Var("y") d = relay.const(4.0, "float32") body = relay.Let(y, x, x + y) body = relay.Let(x, d, body) check_eval(body, 8) opt_body = run_opt_pass(body, transform.ToANormalForm()) check_eval(opt_body, 8) def test_function(): t = relay.TensorType((), "float32") x = relay.Var("x", t) f = relay.Function([x], x + x) d = relay.const(4.0, "float32") anf_f = run_opt_pass(f, transform.ToANormalForm()) assert isinstance(anf_f, relay.Function) check_eval(f(d), 8) check_eval(anf_f(d), 8) def test_gradient_if(): x = relay.var("a", shape=(1, 16)) y = relay.var("y", shape=(1, 16)) cond = relay.var("cond", shape=(), dtype="uint1") net = re
lay.If(cond, x, x) net = relay.add(x, net) net = relay.Function([cond, x, y], net) mod = tvm.IRModule.from_expr(net) mod = relay.transform.ToANormalForm()(mod) mod = relay.transform.InferType()(mod) mod["main"] = relay.transform.gradient(mod["main"], mode="higher_order") mod = relay.transform.ToANormalForm()(mod) if __name__ == "__main__": tvm.testing.main()
import pytest
import numpy as np
import tvm from tvm
import te from tvm
import relay from tvm.relay.analysis
import detect_feature from tvm.relay
import op, create_executor, transform from tvm.relay.prelude
import Prelude from tvm.relay.testing
import count, create_workload from tvm.relay.analysis
import Feature from tvm.relay.analysis
import check_basic_block_normal_form def run_opt_pass(expr, passes): passes = passes if isinstance(passes, list) else [passes] mod = tvm.IRModule.from_expr(expr) seq = tvm.transform.Sequential(passes) with tvm.transform.PassContext(opt_level=3): mod = seq(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def check_eval(expr, expected_result, mod=None, rtol=1e-07): dev = tvm.device("llvm", 0) result = create_executor(mod=mod, device=dev, target="llvm").evaluate(expr) np.testing.assert_allclose(result.numpy(), expected_result, rtol=rtol) def test_no_explicit_bind(): x = relay.const(1) y = op.add(x, x) z = op.add(y, y) f = relay.Function([], op.add(z, z)) """ fn () { %0 = add(1, 1); %1 = add(%0, %0); add(%1, %1) } """ assert not Feature.fLet in detect_feature(f) bblock = run_opt_pass(f, transform.ToBasicBlockNormalForm()) assert Feature.fLet not in detect_feature(bblock) check_eval(f(), 8.0) check_eval(bblock(), 8.0) check_basic_block_normal_form(bblock) def test_top_level_nested_if(): x = relay.var("x", shape=(), dtype="bool") y = relay.var("y", shape=(), dtype="float32") z = relay.var("z", shape=(), dtype="float32") cond_t = relay.const(True) cond_f = relay.const(False) one = relay.const(1, dtype="float32") three = relay.const(3, dtype="float32") y2 = relay.add(y, y) z2 = relay.add(z, z) true_branch = relay.If(cond_t, relay.add(z2, y2), relay.add(three, y2)) false_branch = relay.If(cond_f, z2, one) body = relay.If(x, true_branch, false_branch) """ free_var %x: bool if (%x) { if (True) { free_var %z: float32 %0 = add(%z, %z); free_var %y: float32 %1 = add(%y, %y); add(%0, %1) } else { add(3f, %1) } } else { if (False) { %0 } else { 1f } } """ def expected(): x = relay.va
r("x", shape=(), dtype="bool") y = relay.var("y", shape=(), dtype="float32") z = relay.var("z", shape=(), dtype="float32") cond_t = relay.const(True) cond_f = relay.const(False) one = relay.const(1, dtype="float32") three = relay.const(3, dtype="float32") y2 = relay.var("y2") z2 = relay.var("z2") true_branch = relay.If(cond_t, relay.add(z2, y2), relay.add(three, y2)) true_branch = relay.Let(y2, relay.add(y, y), true_branch) false_branch = relay.If(cond_f, z2, one) body = relay.If(x, true_branch, false_branch) body = relay.Let(z2, relay.add(z, z), body) return body bblock = run_opt_pass(body, [transform.ToBasicBlockNormalForm(), transform.InferType()]) """ free_var %z: float32 let %x: float32 = add(%z, %z) /* ty=float32 */; free_var %x1: bool if (%x1) { free_var %y: float32 let %x2: float32 = add(%y, %y) /* ty=float32 */; if (True /* ty=bool */) { add(%x, %x2) /* ty=float32 */ } else { add(3f /* ty=float32 */, %x2) /* ty=float32 */ } } else { if (False /* ty=bool */) { %x } else { 1f /* ty=float32 */ } } """ expected_output = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(bblock, expected_output, map_free_vars=True) def test_nested_if(): x = relay.var("x", shape=(), dtype="bool") y = relay.var("y", shape=(), dtype="float32") cond_t = relay.const(True) cond_f = relay.const(False) one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") three = relay.const(3, dtype="float32") y2 = relay.add(y, y) true_branch = relay.If(cond_t, y2, relay.add(three, y2)) false_branch = relay.If(cond_f, two, one) body = relay.If(x, true_branch, false_branch) """ free_var %x: bool if (%x) { if (True) { free_var %y: float32 %0 = add(%y, %y); %0 } else { a
dd(3f, %0) } } else { if (False) { 2f } else { 1f } } """ def expected(): x = relay.var("x", shape=(), dtype="bool") y = relay.var("y", shape=(), dtype="float32") cond_t = relay.const(True) cond_f = relay.const(False) one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") three = relay.const(3, dtype="float32") y2 = relay.var("y2") true_branch = relay.If(cond_t, y2, relay.add(three, y2)) true_branch = relay.Let(y2, relay.add(y, y), true_branch) false_branch = relay.If(cond_f, two, one) body = relay.If(x, true_branch, false_branch) return body bblock = run_opt_pass(body, [transform.ToBasicBlockNormalForm(), transform.InferType()]) """ free_var %x: bool if (%x) { free_var %y: float32 let %x1: float32 = add(%y, %y) /* ty=float32 */; if (True /* ty=bool */) { %x1 } else { add(3f /* ty=float32 */, %x1) /* ty=float32 */ } } else { if (False /* ty=bool */) { 2f /* ty=float32 */ } else { 1f /* ty=float32 */ } } """ expected_output = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(bblock, expected_output, map_free_vars=True) check_basic_block_normal_form(bblock) def test_recursion(): """ Program: let f(n: i32) -> i32 = { m = (n * 2) if (n == 0) { return m; } else { return m + f(n - 1); } } f(5); """ mod = tvm.IRModule() i64 = relay.TensorType((), "int64") f = relay.GlobalVar("f") n = relay.Var("n", i64) m = n * relay.const(2, "int64") cond = relay.equal(n, relay.const(0, "int64")) false_branch = m + f(n - relay.const(1, "int64")) funcbody = relay.If(cond, m, false_branch) value = relay.Function([n], funcbody, i64, []) mod[f] = value check_eval(f(re
lay.const(5, "int64")), 30.0, mod=mod) old_f = mod[f] mod = transform.ToBasicBlockNormalForm()(mod) f = mod[f] check_eval(f(relay.const(5, "int64")), 30.0, mod=mod) check_basic_block_normal_form(f) def test_ref(): i = relay.Var("i") iv = relay.Var("iv") u = relay.Var("u") uv = relay.Var("uv") body = relay.add(iv, uv) body = relay.Let(uv, relay.RefRead(i), body) body = relay.Let(u, relay.RefWrite(i, relay.const(2)), body) body = relay.Let(iv, relay.RefRead(i), body) body = relay.Let(i, relay.RefCreate(relay.const(1)), body) check_eval(body, 3) opt_body = run_opt_pass(body, transform.ToBasicBlockNormalForm()) check_eval(opt_body, 3) check_basic_block_normal_form(opt_body) def test_nat_add(): mod = tvm.IRModule() p = Prelude(mod) p.mod.import_from_std("nat.rly") nat, z, s = p.mod.get_type("nat") add = p.mod.get_global_var("nat_add") dev = tvm.device("llvm", 0) assert mod[add].checked_type == relay.FuncType([nat(), nat()], nat()) assert ( count(p, create_executor(mod=mod, device=dev, target="llvm").evaluate(add(s(z()), s(z())))) == 2 ) expr = add(s(z()), s(z())) f = relay.GlobalVar("f") mod[f] = relay.Function([], expr) mod = transform.InferType()(mod) mod = transform.ToBasicBlockNormalForm()(mod) opt_expr = mod["f"] assert ( count(p, create_executor(mod=mod, device=dev, target="llvm").evaluate(opt_expr.body)) == 2 ) assert not Feature.fLet in detect_feature(mod[add]) check_basic_block_normal_form(opt_expr) def test_let(): def test_let1(): x = relay.Var("x") c = relay.const(4.0, "float32") body = relay.Let(x, c, x) body = run_opt_pass(body, transform.InferType()) """ let %x: float32 = 4f /* ty=float32 */; %x """ opt_body = run_opt_pass(body, transform.ToBasicBlockNormalForm()) assert tvm.ir.structural_equal(body, opt_body) check_basic_block_normal_form
(opt_body) def test_let1_1(): x = relay.Var("y") d = relay.const(4.0, "float32") body = relay.Let(x, d, relay.add(x, x)) body = run_opt_pass(body, transform.InferType()) opt_body = run_opt_pass(body, transform.ToBasicBlockNormalForm()) assert tvm.ir.structural_equal(body, opt_body) check_basic_block_normal_form(opt_body) def test_let2(): x = relay.Var("x") y = relay.Var("y") d = relay.const(4.0, "float32") body = relay.Let(y, x, x) body = relay.Let(x, d, body) body = run_opt_pass(body, transform.InferType()) check_eval(body, 4) def expected(): x = relay.Var("x") y = relay.Var("y") d = relay.const(4.0, "float32") body = relay.Let(y, x, y) body = relay.Let(x, d, body) return body opt_body = run_opt_pass(body, transform.ToBasicBlockNormalForm()) expected_body = run_opt_pass(expected(), transform.InferType()) assert tvm.ir.structural_equal(opt_body, expected_body) check_basic_block_normal_form(opt_body) def test_let3(): x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") c = relay.const(3.0, "float32") d = relay.const(4.0, "float32") body = relay.Let(z, x + y, x + z) body = relay.Let(x, d, body) body = relay.Let(y, c, body) body = run_opt_pass(body, transform.InferType()) opt_body = run_opt_pass(body, transform.ToBasicBlockNormalForm()) assert tvm.ir.structural_equal(body, opt_body) check_basic_block_normal_form(opt_body) test_let1() test_let1_1() test_let2() test_let3() def test_function(): t = relay.TensorType((), "float32") x = relay.Var("x", t) f = relay.Function([x], x + x) d = relay.const(4.0, "float32") bblock = run_opt_pass(f, transform.ToBasicBlockNormalForm()) assert isinstance(bblock, relay.Function) check_eval(f(d), 8)
check_eval(bblock(d), 8) check_basic_block_normal_form(bblock) def test_gradient_if(): x = relay.var("a", shape=(1, 16)) y = relay.var("y", shape=(1, 16)) cond = relay.var("cond", shape=(), dtype="uint1") net = relay.If(cond, x, x) net = relay.add(x, net) net = relay.Function([cond, x, y], net) mod = tvm.IRModule.from_expr(net) mod = relay.transform.ToBasicBlockNormalForm()(mod) mod = relay.transform.InferType()(mod) net_grad = relay.transform.gradient(mod["main"], mode="higher_order") mod["main"] = net_grad mod_grad = relay.transform.ToBasicBlockNormalForm()(mod) check_basic_block_normal_form(mod_grad["main"]) check_basic_block_normal_form(mod["main"]) def test_if(): def if_expr(x): """ free_var %x: float32 %0 = equal(%x, 2f); if (%0) { %1 = add(%x, 1f); multiply(%1, 2f) } else { multiply(%1, 1f) } """ one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") v1 = relay.add(x, one) v2 = relay.equal(x, two) true_branch = relay.multiply(v1, two) false_branch = relay.multiply(v1, one) body = relay.If(v2, true_branch, false_branch) return body def expected_if_expr(x): """ free_var %x: float32 let %v1: float32 = add(%x, 1f /* ty=float32 */) /* ty=float32 */; %0 = equal(%x, 2f /* ty=float32 */) /* ty=bool */; if (%0) { multiply(%v1, 2f /* ty=float32 */) /* ty=float32 */ } else { multiply(%v1, 1f /* ty=float32 */) /* ty=float32 */ } """ one = relay.const(1, dtype="float32") two = relay.const(2, dtype="float32") v1 = relay.var("v1") v2 = relay.equal(x, two) true_branch = relay.multiply(v1, two) false_branch = relay.multiply(v1, one) body = relay.If(v2, true_branch, false_branch) body = relay.Let(v1, relay.add(x, one), body) return
body x = relay.var("x", shape=(), dtype="float32") body = if_expr(x) expected_body = expected_if_expr(x) bblock = run_opt_pass(body, [transform.ToBasicBlockNormalForm(), transform.InferType()]) expected_bblock = run_opt_pass(expected_body, transform.InferType()) assert tvm.ir.structural_equal(bblock, expected_bblock, map_free_vars=True) check_basic_block_normal_form(bblock) func = relay.Function([x], body) expected_func = relay.Function([x], expected_body) bblock = run_opt_pass(func, [transform.ToBasicBlockNormalForm(), transform.InferType()]) expected_bblock = run_opt_pass(expected_func, transform.InferType()) assert tvm.ir.structural_equal(bblock, expected_bblock) check_basic_block_normal_form(bblock) def test_higher_order_return(): x = relay.var("x", shape=(1,), dtype="float32") y = relay.var("y", shape=(1,), dtype="float32") z = relay.var("z", shape=(1,), dtype="float32") x2 = relay.add(x, x) func_a = relay.Function([y], relay.add(x2, y)) func_b = relay.Function([z], relay.add(x2, z)) body = relay.Tuple([func_a, func_b]) body = relay.Function([x], body) """ fn (%x: Tensor[(1), float32]) { %1 = fn (%y: Tensor[(1), float32]) { %0 = add(%x, %x); add(%0, %y) }; %2 = fn (%z: Tensor[(1), float32]) { add(%0, %z) }; (%1, %2) } """ bblock = run_opt_pass(body, transform.ToBasicBlockNormalForm()) check_basic_block_normal_form(bblock) def test_higher_order_nested(): x = relay.var("x", dtype="float32", shape=(1,)) s = relay.var("s", dtype="float32", shape=(1,)) shared = relay.add(s, s) func_true = relay.Function([x], relay.add(x, shared)) choice_t = relay.FuncType([], relay.scalar_type("bool")) f = relay.Var("f", choice_t) z = relay.Var("z") body = relay.If(f(), func_true, relay.Function([z], relay.add(z, shared))) top = relay.Function([f, s], body) """ fn (%f: fn () -> bool, %s: Tensor[(1), float32])
{ %0 = %f(); if (%0) { fn (%x: Tensor[(1), float32]) { %1 = add(%s, %s); add(%x, %1) } } else { fn (%z) { add(%z, %1) } } } """ bblock = run_opt_pass(top, transform.ToBasicBlockNormalForm()) check_basic_block_normal_form(bblock) def test_immutability(): simple_net = relay.nn.conv2d( data=relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")), weight=relay.var("weight"), kernel_size=(5, 5), channels=3, padding=(1, 1), ) simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, _ = create_workload(simple_net) old_mod = mod with tvm.transform.PassContext(opt_level=4): with tvm.target.Target("llvm"): seq = tvm.transform.Sequential(passes=[transform.ToBasicBlockNormalForm()], opt_level=4) new_mod = seq(mod) assert old_mod.astext() == mod.astext() assert old_mod.astext() != new_mod.astext() if __name__ == "__main__": pytest.main([__file__])
import numpy as np
import tvm
import tvm.testing from tvm
import relay from tvm.relay.analysis
import detect_feature from tvm.relay.transform
import to_cps, un_cps from tvm.relay.analysis
import Feature from tvm.relay.prelude
import Prelude from tvm.relay.testing
import make_nat_expr, rand, run_infer_type, run_opt_pass from tvm.relay
import create_executor from tvm.relay
import transform def test_id(): x = relay.var("x", shape=[]) id = run_infer_type(relay.Function([x], x)) id_cps = run_infer_type(to_cps(id)) def test_double(): t = relay.TypeVar("t") x = relay.var("x", t) f = relay.var("f", relay.FuncType([t], t)) double = run_infer_type(relay.Function([f, x], f(f(x)), t, [t])) double_cps = run_infer_type(to_cps(double)) def test_recursion(): mod = tvm.IRModule() p = Prelude(mod) p.mod.import_from_std("nat.rly") nat_iterate = p.mod.get_global_var("nat_iterate") shape = (10, 10) dtype = "float32" t = relay.TensorType(shape, dtype) x = relay.var("x", t) double = relay.Function([x], x + x) i = relay.var("i", t) func = relay.Function([i], nat_iterate(double, make_nat_expr(p, 3))(i)) mod["main"] = func mod = relay.transform.InferType()(mod) mod["main"] = to_cps(mod["main"], mod=mod) mod = relay.transform.InferType()(mod) mod["main"] = un_cps(mod["main"]) i_nd = rand(dtype, *shape) forward = create_executor(mod=mod).evaluate()(i_nd) tvm.testing.assert_allclose(forward.numpy(), 8 * i_nd.numpy()) def test_cps_pe(): def destroy_ref(x): x = run_infer_type(x) x = to_cps(x) x = run_infer_type(x) y = un_cps(x) y = run_infer_type(y) x = run_opt_pass( x, tvm.transform.Sequential( [ transform.PartialEvaluate(), transform.InferType(), transform.DeadCodeElimination(inline_once=True, ignore_impurity=True), ] ), ) assert Feature.fRefCreate not in detect_feature(x) unit = relay.Function([], relay.const(0.0, dtype="float32")) f_ref = relay.Var("f_ref") one = relay.const(1.0, dtype="float32") two = relay.const(2.0, dtype="float32") cond = relay.var(shape=(), dtype="uint1", name_hint="cond") true_branch = relay.RefWrite(f_ref, relay.Function([], one)) fal
se_branch = relay.RefWrite(f_ref, relay.Function([], two)) if_expr = relay.If(cond, true_branch, false_branch) stmt = relay.Let( f_ref, relay.RefCreate(unit), relay.Let(relay.Var("x"), if_expr, relay.Call(relay.RefRead(f_ref), [])), ) F = relay.Function([cond], stmt) destroy_ref(F) G = relay.Function([cond], relay.If(cond, one, two)) G = run_infer_type(G) G = relay.transform.gradient(G) destroy_ref(G) x = relay.var("x", shape=(1, 16)) y = relay.var("y", shape=(1, 16)) z = relay.var("z", shape=(1, 16)) cond = relay.var("cond", shape=(), dtype="uint1") H = relay.If(cond, x, y) H = relay.add(H, z) H = relay.Function([cond, x, y, z], H) H = run_infer_type(H) H = relay.transform.gradient(H) destroy_ref(H) if __name__ == "__main__": tvm.testing.main()
import numpy as np
import tvm from tvm
import relay from tvm.relay
import op, create_executor, transform from tvm.relay.analysis
import Feature from tvm.relay.analysis
import detect_feature def run_opt_pass(expr, opt_pass): mod = tvm.IRModule.from_expr(expr) mod = opt_pass(mod) entry = mod["main"] return entry if isinstance(expr, relay.Function) else entry.body def check_eval(expr, args, expected_result, mod=None, rtol=1e-07): if mod is None: mod = tvm.IRModule() dev = tvm.device("llvm", 0) result = create_executor(mod=mod, device=dev, target="llvm").evaluate(expr)(*args) np.testing.assert_allclose(result.numpy(), expected_result, rtol=rtol) def test_implicit_share(): x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") body = relay.Let(z, op.add(y, y), op.add(z, z)) body = relay.Let(y, op.add(x, x), body) f = relay.Function([], relay.Let(x, relay.const(1), body)) g = run_opt_pass(f, transform.ToGraphNormalForm()) assert Feature.fLet in detect_feature(f) assert not Feature.fLet in detect_feature(g) check_eval(f, [], 8.0) check_eval(g, [], 8.0) def test_round_trip(): x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") body = relay.Let(z, op.add(y, y), op.add(z, z)) body = relay.Let(y, op.add(x, x), body) f = relay.Function([], relay.Let(x, relay.const(1), body)) g = run_opt_pass(f, transform.ToGraphNormalForm()) h = run_opt_pass(g, transform.ToANormalForm()) assert Feature.fLet in detect_feature(f) assert not Feature.fLet in detect_feature(g) check_eval(f, [], 8.0) check_eval(g, [], 8.0) check_eval(h, [], 8.0) if __name__ == "__main__": test_implicit_share() test_round_trip()
import tvm from tvm
import te from tvm
import relay from tvm.relay.prelude
import Prelude from tvm.relay.analysis
import unmatched_cases
import pytest def test_empty_match_block(): v = relay.Var("v") match = relay.Match(v, []) unmatched = unmatched_cases(match) assert len(unmatched) == 1 assert isinstance(unmatched[0], relay.PatternWildcard) def test_trivial_matches(): v = relay.Var("v") match = relay.Match(v, [relay.Clause(relay.PatternWildcard(), v)]) assert len(unmatched_cases(match)) == 0 w = relay.Var("w") match = relay.Match(v, [relay.Clause(relay.PatternVar(w), w)]) assert len(unmatched_cases(match)) == 0 def test_single_constructor_adt(): mod = tvm.IRModule() box = relay.GlobalTypeVar("box") a = relay.TypeVar("a") box_ctor = relay.Constructor("box", [a], box) box_data = relay.TypeData(box, [a], [box_ctor]) mod[box] = box_data v = relay.Var("v") match = relay.Match( v, [relay.Clause(relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), v)] ) assert len(unmatched_cases(match, mod)) == 0 nested_pattern = relay.Match( v, [ relay.Clause( relay.PatternConstructor( box_ctor, [ relay.PatternConstructor( box_ctor, [relay.PatternConstructor(box_ctor, [relay.PatternWildcard()])], ) ], ), v, ) ], ) assert len(unmatched_cases(nested_pattern, mod)) == 0 def test_too_specific_match(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = mod.get_type("List") v = relay.Var("v") match = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()]
), ], ), v, ) ], ) unmatched = unmatched_cases(match, mod) nil_found = False single_length_found = False assert len(unmatched) == 2 for case in unmatched: assert isinstance(case, relay.PatternConstructor) if case.constructor == nil: nil_found = True if case.constructor == cons: assert isinstance(case.patterns[1], relay.PatternConstructor) assert case.patterns[1].constructor == nil single_length_found = True assert nil_found and single_length_found new_match = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()] ), ], ), v, ), relay.Clause(relay.PatternWildcard(), v), ], ) assert len(unmatched_cases(new_match, mod)) == 0 def test_multiple_constructor_clauses(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = mod.get_type("List") v = relay.Var("v") match = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternConstructor(nil, [])] ), v, ), relay.Clause( relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternConstructor(nil, [])] ), ], ), v
, ), relay.Clause(relay.PatternConstructor(nil, []), v), relay.Clause( relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()] ), ], ), v, ), ], ) assert len(unmatched_cases(match, mod)) == 0 def test_missing_in_the_middle(): mod = tvm.IRModule() p = Prelude(mod) _, cons, nil = mod.get_type("List") v = relay.Var("v") match = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternConstructor(nil, [])] ), v, ), relay.Clause(relay.PatternConstructor(nil, []), v), relay.Clause( relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [ relay.PatternWildcard(), relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()] ), ], ), ], ), v, ), ], ) unmatched = unmatched_cases(match, mod) assert len(unmatched) == 1 assert isinstance(unmatched[0], relay.PatternConstructor) assert unmatched[0].constructor == cons assert isinstance(unmatched[0].patterns[1], relay.PatternConstructor) assert unmatched[0].patterns[1]
.constructor == cons assert isinstance(unmatched[0].patterns[1].patterns[1], relay.PatternConstructor) assert unmatched[0].patterns[1].patterns[1].constructor == nil def test_mixed_adt_constructors(): mod = tvm.IRModule() box = relay.GlobalTypeVar("box") a = relay.TypeVar("a") box_ctor = relay.Constructor("box", [a], box) box_data = relay.TypeData(box, [a], [box_ctor]) mod[box] = box_data p = Prelude(mod) _, cons, nil = p.mod.get_type("List") v = relay.Var("v") box_of_lists_inc = relay.Match( v, [ relay.Clause( relay.PatternConstructor( box_ctor, [ relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()] ) ], ), v, ) ], ) unmatched = unmatched_cases(box_of_lists_inc, mod) assert len(unmatched) == 1 assert isinstance(unmatched[0], relay.PatternConstructor) assert unmatched[0].constructor == box_ctor assert len(unmatched[0].patterns) == 1 and unmatched[0].patterns[0].constructor == nil box_of_lists_comp = relay.Match( v, [ relay.Clause( relay.PatternConstructor(box_ctor, [relay.PatternConstructor(nil, [])]), v ), relay.Clause( relay.PatternConstructor( box_ctor, [ relay.PatternConstructor( cons, [relay.PatternWildcard(), relay.PatternWildcard()] ) ], ), v, ), ], ) assert len(unmatched_cases(box_of_lists_comp, mod)) == 0 list_of_boxes_inc = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [
relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternWildcard(), ], ), v, ) ], ) unmatched = unmatched_cases(list_of_boxes_inc, mod) assert len(unmatched) == 1 assert isinstance(unmatched[0], relay.PatternConstructor) assert unmatched[0].constructor == nil list_of_boxes_comp = relay.Match( v, [ relay.Clause( relay.PatternConstructor( cons, [ relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternConstructor(nil, []), ], ), v, ), relay.Clause( relay.PatternConstructor( cons, [ relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternConstructor( cons, [ relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternConstructor(nil, []), ], ), ], ), v, ), relay.Clause( relay.PatternConstructor( cons, [ relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternConstructor( cons, [ relay.PatternConstructor(box_ctor, [relay.PatternWildcard()]), relay.PatternConstructor( cons, [
relay.PatternConstructor( box_ctor, [relay.PatternWildcard()] ), relay.PatternConstructor(nil, []), ], ), ], ), ], ), v, ), relay.Clause( relay.PatternConstructor(cons, [relay.PatternWildcard(), relay.PatternWildcard()]), v, ), relay.Clause(relay.PatternConstructor(nil, []), v), ], ) assert len(unmatched_cases(list_of_boxes_comp, mod)) == 0 def test_tuple_match(): a = relay.Var("a") b = relay.Var("b") clause = relay.Clause(relay.PatternTuple([relay.PatternVar(a), relay.PatternVar(b)]), a + b) x = relay.Match(relay.Tuple([relay.const(1), relay.const(1)]), [clause]) assert len(unmatched_cases(x)) == 0 def test_inf_loop_case(): code = """ type Arith[A] { Zero, Const(A), Plus(Arith[A], Arith[A]) } def @shallow_opt[A](%a: Arith[A]) -> Arith[A] { match (%a) { Plus(Zero, %r) => %r, Plus(%l, Zero) => %l, _ => %a } } """ tvm.parser.fromtext(code) def test_expanding_ctor_with_no_args(): code = """ type List[A] { Cons(A, List[A]), Nil, } def @expand_on_nil_match(%a: List[(List[()],)]) -> int { match (%a) { Cons((Nil), Nil) => 1, _ => 2, } } """ tvm.parser.fromtext(code) def test_expanding_empty_tuple(): code = """ type List[A] { Cons(A, List[A]), Nil, } def @expand_on_empty_tuple_match(%a: (List[()], ())) -> int { match (%a) { (Cons((), Nil), ()) => 1, _ => 2, } } """ tvm.parser.fromtext(code) if __name__ == "__main__": pytest.main([__file__])
import tvm from tvm
import te from tvm
import relay from tvm.relay.analysis
import ( free_vars, free_type_vars, bound_vars, bound_type_vars, all_vars, all_type_vars, ) def assert_vars_match(actual, expected): assert len(actual) == len(expected) for i in range(len(actual)): assert actual[i] == expected[i] def test_free_vars(): ty = relay.TensorType([], "int32") x = relay.Var("x", ty) fvx = free_vars(x) assert len(fvx) == 1 assert fvx[0] == x v = relay.Constant(tvm.nd.array(10)) let = relay.Let(x, v, x) fvx = free_vars(let) assert len(free_vars(let)) == 0 f = relay.Function([x], x, ty) assert len(free_vars(f)) == 0 def test_free_vars_tuple(): t = relay.Var("t") fv = free_vars(relay.Tuple([t, t])) assert len(fv) == 1 assert fv[0] == t fv = free_vars(relay.TupleGetItem(t, 123)) assert len(fv) == 1 assert fv[0] == t def test_free_type_vars(): tp = relay.TypeVar("") ty = relay.TupleType([tp, relay.TensorType([], "int32")]) x = relay.Var("x", ty) y = relay.Var("y") let = relay.Let(x, y, x) fvl = free_vars(let) assert len(fvl) == 1 assert fvl[0] == y ftvl = free_type_vars(let) assert len(ftvl) == 1 assert ftvl[0] == tp def test_bound_vars(): x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") a = relay.Var("a") f1 = relay.Function([x, y, z], relay.Let(a, x, relay.Tuple([]))) assert_vars_match(bound_vars(f1), [x, y, z, a]) tup = relay.Tuple([x, y, z, a]) assert len(bound_vars(tup)) == 0 f2 = relay.Function([x, y], relay.Tuple([x, y, z, a])) assert_vars_match(bound_vars(f2), [x, y]) def test_match_vars(): mod = tvm.IRModule() p = relay.prelude.Prelude(mod) rlist, cons, nil = p.mod.get_type("List") x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") match1 = relay.Match( nil(), [ relay.Clause(relay.PatternConstructor(nil), z), relay.Clause( relay.PatternConstructor(cons, [relay.PatternVar(x), rel
ay.PatternVar(y)]), cons(x, y), ), ], ) match2 = relay.Match( nil(), [ relay.Clause( relay.PatternConstructor(cons, [relay.PatternWildcard(), relay.PatternVar(x)]), y ), relay.Clause(relay.PatternWildcard(), z), ], ) assert_vars_match(bound_vars(match1), [x, y]) assert_vars_match(free_vars(match1), [z]) assert_vars_match(all_vars(match1), [z, x, y]) assert_vars_match(bound_vars(match2), [x]) assert_vars_match(free_vars(match2), [y, z]) assert_vars_match(all_vars(match2), [x, y, z]) def test_bound_type_vars(): a = relay.TypeVar("a") b = relay.TypeVar("b") c = relay.TypeVar("c") ft1 = relay.FuncType([a], b, [a, b]) bound_ft1 = bound_type_vars(ft1) assert_vars_match(bound_type_vars(ft1), [a, b]) ft2 = relay.FuncType([], c, [a]) assert_vars_match(bound_type_vars(ft2), [a]) tup_ty = relay.TupleType([a, b, c]) assert len(bound_type_vars(tup_ty)) == 0 f1 = relay.Function([], relay.Tuple([]), type_params=[a, b]) assert_vars_match(bound_type_vars(f1), [a, b]) f2 = relay.Function([], relay.Tuple([]), c) assert len(bound_type_vars(f2)) == 0 x = relay.Var("x", a) let1 = relay.Let(x, relay.Tuple([]), x) assert len(bound_type_vars(let1)) == 0 let2 = relay.Let(x, relay.Function([], relay.Tuple([]), type_params=[b, c]), x) assert_vars_match(bound_type_vars(let2), [b, c]) def test_all_vars(): x = relay.Var("x") y = relay.Var("y") z = relay.Var("z") f1 = relay.Function([x, y], z) assert_vars_match(all_vars(f1), [x, y, z]) f2 = relay.Function([x], relay.Let(y, relay.Tuple([]), z)) assert_vars_match(all_vars(f2), [x, y, z]) f3 = relay.Function([x], relay.Tuple([y, z])) assert_vars_match(all_vars(f3), [x, y, z]) tup = relay.Tuple([x, y, z]) assert_vars_match(all_vars(tup), [x, y, z]) def test_all_type_vars(): a = relay.TypeVar("a") b = relay.T